Apolipoprotein C-I: A 6.6-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS; INTERMEDIATE-DENSITY LIPOPROTEINS; and HIGH-DENSITY LIPOPROTEINS. Apo C-I displaces APO E from lipoproteins, modulate their binding to receptors (RECEPTORS, LDL), and thereby decrease their clearance from plasma. Elevated Apo C-I levels are associated with HYPERLIPOPROTEINEMIA and ATHEROSCLEROSIS.Apolipoproteins C: A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE.Apolipoprotein C-III: A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS and CHYLOMICRON REMNANTS. Apo C-III, synthesized in the liver, is an inhibitor of LIPOPROTEIN LIPASE. Apo C-III modulates the binding of chylomicron remnants and VLDL to receptors (RECEPTORS, LDL) thus decreases the uptake of triglyceride-rich particles by the liver cells and subsequent degradation. The normal Apo C-III is glycosylated. There are several polymorphic forms with varying amounts of SIALIC ACID (Apo C-III-0, Apo C-III-1, and Apo C-III-2).Lipoproteins, VLDL: A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.TriglyceridesApolipoprotein A-I: The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.NK Cell Lectin-Like Receptor Subfamily A: An inhibitory subclass of NK cell lectin-like receptors that interacts with CLASS I MAJOR HISTOCOMPATIBILITY ANTIGENS and prevents the activation of NK CELLS.Receptors, NK Cell Lectin-Like: Structurally-related receptors that are typically found on NATURAL KILLER CELLS. They are considered lectin-like proteins in that they share sequence homology with the carbohydrate binding domains of C-TYPE LECTINS. They differ from classical C-type lectins, however, in that they appear to lack CALCIUM-binding domains.Apolipoproteins E: A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.Apolipoprotein B-100: A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.Antigens, Ly: A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes.Apolipoproteins B: Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.Apolipoprotein E4: A major and the second most common isoform of apolipoprotein E. In humans, Apo E4 differs from APOLIPOPROTEIN E3 at only one residue 112 (cysteine is replaced by arginine), and exhibits a lower resistance to denaturation and greater propensity to form folded intermediates. Apo E4 is a risk factor for ALZHEIMER DISEASE and CARDIOVASCULAR DISEASES.Apolipoprotein E3: A 34-kDa glycosylated protein. A major and most common isoform of apolipoprotein E. Therefore, it is also known as apolipoprotein E (ApoE). In human, Apo E3 is a 299-amino acid protein with a cysteine at the 112 and an arginine at the 158 position. It is involved with the transport of TRIGLYCERIDES; PHOSPHOLIPIDS; CHOLESTEROL; and CHOLESTERYL ESTERS in and out of the cells.Apolipoprotein A-II: The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.Apolipoproteins: Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.Apolipoprotein C-II: A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS. It contains a cofactor for LIPOPROTEIN LIPASE and activates several triacylglycerol lipases. The association of Apo C-II with plasma CHYLOMICRONS; VLDL, and HIGH-DENSITY LIPOPROTEINS is reversible and changes rapidly as a function of triglyceride metabolism. Clinically, Apo C-II deficiency is similar to lipoprotein lipase deficiency (HYPERLIPOPROTEINEMIA TYPE I) and is therefore called hyperlipoproteinemia type IB.Apolipoproteins A: Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.Apolipoprotein B-48: A 241-kDa protein synthesized only in the INTESTINES. It serves as a structural protein of CHYLOMICRONS. Its exclusive association with chylomicron particles provides an indicator of intestinally derived lipoproteins in circulation. Apo B-48 is a shortened form of apo B-100 and lacks the LDL-receptor region.Apolipoprotein E2: One of three major isoforms of apolipoprotein E. In humans, Apo E2 differs from APOLIPOPROTEIN E3 at one residue 158 where arginine is replaced by cysteine (R158--C). In contrast to Apo E3, Apo E2 displays extremely low binding affinity for LDL receptors (RECEPTORS, LDL) which mediate the internalization and catabolism of lipoprotein particles in liver cells. ApoE2 allelic homozygosity is associated with HYPERLIPOPROTEINEMIA TYPE III.Lipoproteins, HDL: A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.Apoprotein(a): A large and highly glycosylated protein constituent of LIPOPROTEIN (A). It has very little affinity for lipids but forms disulfide-linkage to APOLIPOPROTEIN B-100. Apoprotein(a) has SERINE PROTEINASE activity and can be of varying sizes from 400- to 800-kDa. It is homologous to PLASMINOGEN and is known to modulate THROMBOSIS and FIBRINOLYSIS.Cholesterol: The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.Lipoproteins: Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.Lipoprotein(a): A lipoprotein that resembles the LOW-DENSITY LIPOPROTEINS but with an extra protein moiety, APOPROTEIN (A) also known as APOLIPOPROTEIN (A), linked to APOLIPOPROTEIN B-100 on the LDL by one or two disulfide bonds. High plasma level of lipoprotein (a) is associated with increased risk of atherosclerotic cardiovascular disease.Apolipoproteins D: A glycoprotein component of HIGH-DENSITY LIPOPROTEINS that transports small hydrophobic ligands including CHOLESTEROL and STEROLS. It occurs in the macromolecular complex with LECITHIN CHOLESTEROL ACYLTRANSFERASE. Apo D is expressed in and secreted from a variety of tissues such as liver, placenta, brain tissue and others.Lipoproteins, LDL: A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.Lipids: A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)Receptors, LDL: Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.Atherosclerosis: A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.Cholesterol, HDL: Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol.Arteriosclerosis: Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Phosphatidylcholine-Sterol O-Acyltransferase: An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. EC 2.3.1.43.Encyclopedias as Topic: Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)Lipoprotein Lipase: An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34.Fatigue: The state of weariness following a period of exertion, mental or physical, characterized by a decreased capacity for work and reduced efficiency to respond to stimuli.Databases, Protein: Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.Sequence Analysis, Protein: A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.Systems Integration: The procedures involved in combining separately developed modules, components, or subsystems so that they work together as a complete system. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Internet: A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.Proteome: The protein complement of an organism coded for by its genome.Biotin: A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.Antibodies: Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).Antibody Specificity: The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.Antibodies, Viral: Immunoglobulins produced in response to VIRAL ANTIGENS.Antibodies, Monoclonal: Antibodies produced by a single clone of cells.Antibodies, Bacterial: Immunoglobulins produced in a response to BACTERIAL ANTIGENS.

Reversal of hyperlipidaemia in apolipoprotein C1 transgenic mice by adenovirus-mediated gene delivery of the low-density-lipoprotein receptor, but not by the very-low-density-lipoprotein receptor. (1/107)

We have shown previously that human apolipoprotein (apo)C1 transgenic mice exhibit hyperlipidaemia, due primarily to an impaired clearance of very-low-density lipoprotein (VLDL) particles from the circulation. In the absence of at least the low-density-lipoprotein receptor (LDLR), it was shown that APOC1 overexpression in transgenic mice inhibited the hepatic uptake of VLDL via the LDLR-related protein. In the present study, we have now examined the effect of apoC1 on the binding of lipoproteins to both the VLDL receptor (VLDLR) and the LDLR. The binding specificity of the VLDLR and LDLR for apoC1-enriched lipoprotein particles was examined in vivo through adenovirus-mediated gene transfer of the VLDLR and the LDLR [giving rise to adenovirus-containing (Ad)-VLDLR and Ad-LDLR respectively] in APOC1 transgenic mice, LDLR-deficient (LDLR-/-) mice and wild-type mice. Remarkably, Ad-VLDLR treatment did not reduce hyperlipidaemia in transgenic mice overexpressing human APOC1, irrespective of both the level of transgenic expression and the presence of the LDLR, whereas Ad-VLDLR treatment did reverse hyperlipidaemia in LDLR-/- and wild-type mice. On the other hand, Ad-LDLR treatment strongly decreased plasma lipid levels in these APOC1 transgenic mice. These results suggest that apoC1 inhibits the clearance of lipoprotein particles via the VLDLR, but not via the LDLR. This hypothesis is corroborated by in vitro binding studies. Chinese hamster ovary (CHO) cells expressing the VLDLR (CHO-VLDLR) or LDLR (CHO-LDLR) bound less APOC1 transgenic VLDL than wild-type VLDL. Intriguingly, however, enrichment with apoE enhanced dose-dependently the binding of wild-type VLDL to CHO-VLDLR cells (up to 5-fold), whereas apoE did not enhance the binding of APOC1 transgenic VLDL to these cells. In contrast, for binding to CHO-LDLR cells, both wild-type and APOC1 transgenic VLDL were stimulated upon enrichment with apoE. From these studies, we conclude that apoC1 specifically inhibits the apoE-mediated binding of triacylglycerol-rich lipoprotein particles to the VLDLR, whereas apoC1-enriched lipoproteins can still bind to the LDLR. The variability in specificity of these lipoprotein receptors for apoC1-containing lipoprotein particles provides further evidence for a regulatory role of apoC1 in the delivery of lipoprotein constituents to different tissues on which these receptors are located.  (+info)

Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein. (2/107)

New isoforms of apolipoprotein (apo)C-I and apoC-III have been detected in delipidated fractions from very low density lipoprotein (VLDL) using matrix-assisted laser desorption (MALDI) and electrospray ionization (ESI) mass spectrometry (MS). The cleavage sites of truncated apoC-III isoforms have also been identified. The VLDL fractions were isolated by fixed-angle single-spin ultracentrifugation using a self-generating sucrose density gradient and delipidated using a newly developed C18 solid phase extraction protocol. Fifteen apoC isoforms and apoE were identified in the MALDI spectra and the existence of the more abundant species was verified by ESI-MS. The relative intensities of the apoCs are closely correlated in three normolipidemic subjects. A fourth subject with type V hyperlipidemia exhibited an elevated apoC-III level and a suppressed level of the newly discovered truncated apoC-I isoform. ApoC-II was found to be particularly sensitive to in vitro oxidation. The dynamic range and specificity of the MALDI assay shows that the complete apoC isoform profile and apoE phenotype can be obtained in a single measurement from the delipidated VLDL fraction.  (+info)

Protective effect of apolipoprotein A I, A II, C I and C II on endothelial cells injury induced by low density lipoprotein. (3/107)

OBJECTIVE: To investigate the protective effect of apo-lipoprotein (apo) A I, A II, C I and C II, the main proteins in high density lipoprotein (HDL), on the morphology and function of human umbilical vein endothelial cells injured with low density lipoprotein (LDL) in vitro. METHODS: Cultured human endothelial cells derived from umbilical veins were exposed to LDL, HDL, and apoA I, A II, C I and C II. The morphology of endothelial cells was examined with phase contrast and transmission electron microscope. The released amount of lactate dehydrogenase (LDH) and 6-keto-prostaglandin F1 alpha (PGF1 alpha) was also measured. RESULTS: Endothelial cells after being injured by LDL showed cell contraction, increased release of LDH and decreased secrection of prostacyclin (PGI2). However, the addition of HDL, and apoA I, A II, C I and C II before incubation with LDL inhibited the cellular injury induced by LDL as demonstrated by lowered LDH release, increased level of PGF1 alpha and prevention of morphological changes. CONCLUSION: The results indicate that apoA I, A II, C I and C II, as well as HDL, may play an important role in combating atherogenesis by protecting endothelial cells from damages induced by LDL.  (+info)

Probing the conformation of a human apolipoprotein C-1 by amino acid substitutions and trimethylamine-N-oxide. (4/107)

To test, at the level of individual amino acids, the conformation of an exchangeable apolipoprotein in aqueous solution and in the presence of an osmolyte trimethylamine-N-oxide (TMAO), six synthetic peptide analogues of human apolipoprotein C-1 (apoC-1, 57 residues) containing point mutations in the predicted alpha-helical regions were analyzed by circular dichroism (CD). The CD spectra and the melting curves of the monomeric wild-type and plasma apoC-1 in neutral low-salt solutions superimpose, indicating 31 +/- 4% alpha-helical structure at 22 degrees C that melts reversibly with T(m,WT) = 50 +/- 2 degrees C and van't Hoff enthalpy deltaH(v,WT)(Tm) = 18 +/- 2 kcal/mol. G15A substitution leads to an increased alpha-helical content of 42 +/- 4% and an increased T(m,G15A) = 57 +/- 2 degrees C, which corresponds to stabilization by delta deltaG(app) = +0.4 +/- 1.5 kcal/mol. G15P mutant has approximately 20% alpha-helical content at 22 degrees C and unfolds with low cooperativity upon heating to 90 degrees C. R23P and T45P mutants are fully unfolded at 0-90 degrees C. In contrast, Q31P mutation leads to no destabilization or unfolding. Consequently, the R23 and T45 locations are essential for the stability of the cooperative alpha-helical unit in apoC-1 monomer, G15 is peripheral to it, and Q31 is located in a nonhelical linker region. Our results suggest that Pro mutagenesis coupled with CD provides a tool for assigning the secondary structure to protein groups, which should be useful for other self-associating proteins that are not amenable to NMR structural analysis in aqueous solution. TMAO induces a reversible cooperative coil-to-helix transition in apoC-1, with the maximal alpha-helical content reaching 74%. Comparison with the maximal alpha-helical content of 73% observed in lipid-bound apoC-1 suggests that the TMAO-stabilized secondary structure resembles the functional lipid-bound apolipoprotein conformation.  (+info)

Accumulation of apolipoprotein C-I-rich and cholesterol-rich VLDL remnants during exaggerated postprandial triglyceridemia in normolipidemic patients with coronary artery disease. (5/107)

BACKGROUND: Exaggerated postprandial triglyceridemia is common in normolipidemic patients with coronary artery disease (CAD). Alterations in the composition of triglyceride-rich lipoproteins (TRLs) are likely to underlie this metabolic disturbance. However, the composition of very-low-density lipoproteins (VLDLs), which are the most abundant postprandial TRLs, has never been defined in CAD patients. METHODS AND RESULTS: We examined postprandial changes in the number and composition of VLDLs in middle-aged, normolipidemic CAD patients and control subjects. TRLs from 14 patients and 14 control subjects aged 45 to 55 years were subfractionated by density gradient ultracentrifugation into Svedberg flotation rate (Sf) fractions >400, 60 to 400, and 20 to 60. The VLDLs were separated from chylomicron remnants by immunoaffinity chromatography. In CAD patients, the postprandial concentrations of triglycerides and large (Sf 60 to 400) VLDL particles were elevated. In addition, their postprandial large VLDLs were enriched in apolipoprotein (apo) C-I and their postprandial small (Sf 20 to 60) VLDL remnants were enriched with apo C-I and cholesterol. CONCLUSIONS: Perturbed handling of postprandial triglycerides in normolipidemic CAD patients involves the accumulation of apo C-I-rich large VLDL particles and the generation of small, apo C-I- and cholesterol-rich VLDL remnants.  (+info)

Structural studies of a baboon (Papio sp.) plasma protein inhibitor of cholesteryl ester transferase. (6/107)

A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I. Relative to CETIP, baboon apoC-I is a weak inhibitor of baboon cholesteryl ester transferase (CET). To study the structural features responsible for CET inhibition, CETIP was synthesized by solid-phase methods. Using sodium dodecyl sulfate (SDS) to model the lipoprotein environment, the solution structure of CETIP was probed by optical and 1H NMR spectroscopy. Circular dichroism data show that the protein lacks a well-defined structure in water but, upon the addition of SDS, becomes helical (56%). A small blue shift of 8 nm was observed in the intrinsic tryptophan fluorescence of CETIP in the presence of saturating amounts of SDS, suggesting that tryptophan-23 is not buried deeply in the lipid environment. The helical nature of CETIP in the presence of SDS was confirmed by upfield 1Halpha secondary shifts and an average solution structure determined by distance geometry/simulated annealing calculations using 476 NOE-based distance restraints. The backbone (N-Calpha-C=O) root-mean-square deviation of an ensemble of 17 out of 25 calculated structures superimposed on the average structure was 1.06+0.30 A using residues V4-P35 and 0.51+/-0.17 A using residues A7-S32. Although the side-chain orientations fit the basic description of a class A amphipathic helix, both intramolecular salt bridge formation and "snorkeling" of basic side chains toward the polar face play minor, if any, roles in stabilizing the lipid-bound amphipathic structure. Conformational features of the calculated structures for CETIP are discussed relative to models of CETIP inhibition of cholesteryl ester transferase.  (+info)

Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. (7/107)

The aim of the present study was to identify the protein that accounts for the cholesteryl ester transfer protein (CETP)-inhibitory activity that is specifically associated with human plasma high density lipoproteins (HDL). To this end, human HDL apolipoproteins were fractionated by preparative polyacrylamide gradient gel electrophoresis, and 30 distinct protein fractions with molecular masses ranging from 80 down to 2 kDa were tested for their ability to inhibit CETP activity. One single apolipoprotein fraction was able to completely inhibit CETP activity. The N-terminal sequence of the 6-kDa protein inhibitor matched the N-terminal sequence of human apoC-I, the inhibition was completely blocked by specific anti-apolipoprotein C-I antibodies, and mass spectrometry analysis confirmed the identity of the isolated inhibitor with full-length human apoC-I. Pure apoC-I was able to abolish CETP activity in a concentration-dependent manner and with a high efficiency (IC(50) = 100 nmol/liter). The inhibitory potency of total delipidated HDL apolipoproteins completely disappeared after a treatment with anti-apolipoprotein C-I antibodies, and the apoC-I deprivation of native plasma HDL by immunoaffinity chromatography produced a mean 43% rise in cholesteryl ester transfer rates. The main localization of apoC-I in HDL and not in low density lipoprotein in normolipidemic plasma provides further support for the specific property of HDL in inhibiting CETP activity.  (+info)

Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. (8/107)

To examine the potential regulatory involvement of retroelements in the human genome, we screened the transcribed sequences of GenBank and expressed sequence tag data bases with long terminal repeat (LTR) elements derived from different human endogenous retroviruses. These screenings detected human transcripts containing LTRs belonging to the human endogenous retrovirus-E family fused to the apolipoprotein CI (apoC-I) and the endothelin B receptor (EBR) genes. However, both genes are known to have non-LTR (native) promoters. Initial reverse transcription-polymerase chain reaction experiments confirmed and authenticated the presence of transcripts from both the native and LTR promoters. Using a 5'-rapid amplification of cDNA ends protocol, we showed that the alternative transcripts of apoC-I and EBR are initiated and promoted by the LTRs. The LTR-apoC-I fusion and native apoC-I transcripts are present in many of the tissues tested. As expected, we found apoC-I preferentially expressed in liver, where about 15% of the transcripts are derived from the LTR promoter. Transient transfections suggest that the expression is not dependent on the LTR itself, but the presence of the LTR increases activity of the apoC-I promoter from both humans and baboons. The native EBR-driven transcripts were also detected in many tissues, whereas the LTR-driven transcripts appear limited to placenta. In contrast to the LTR of apoC-I, the EBR LTR promotes a significant proportion of the total EBR transcripts, and transient transfection results indicate that the LTR acts as a strong promoter and enhancer in a placental cell line. This investigation reports two examples where LTR sequences contribute to increased transcription of human genes and illustrates the impact of mobile elements on gene and genome evolution.  (+info)

  • This gene encodes apolipoprotein A-I, which is the major protein component of high density lipoprotein (HDL) in plasma. (nih.gov)
  • We have generated transgenic mice over-expressing human apolipoprotein CI (apo CI) using the native gene joined to the downstream 154-bp liver-specific enhancer that we defined for apo E. Human apo CI (HuCI)-transgenic mice showed elevation of plasma triglycerides (mg/dl) compared to controls in both the fasted (211 +/- 81 vs 123 +/- 52, P = 0.0001) and fed (265 +/- 105 vs 146 +/- 68, P (jci.org)
  • OBJECTIVE To determine plasma apolipoprotein A-IV (apoA-IV) levels and phenotype distribution in non-insulin-dependent diabetes mellitus (NIDDM) patients and to analyze the influence of apoA-IV phenotype on lipid profiles in NIDDM. (diabetesjournals.org)
  • In addition, we observed in a previous small study decreased plasma concentrations of apolipoprotein A-IV (apoA-IV) in preoperative patients with kidney cancer. (aacrjournals.org)
  • Smoking cigarettes, taking diuretics, or taking medicines that contain androgens can also cause lower levels of apolipoprotein A. (ahealthyme.com)
  • To the best of our knowledge, the vertebrate apolipoprotein L (APOL) family has not previously been ascribed to any definite pathophysiological function, although the conserved BH3 protein domain suggests a role in programmed cell death or an interference with mitochondrial processes. (spandidos-publications.com)