The main trunk of the systemic arteries.
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
The aorta from the DIAPHRAGM to the bifurcation into the right and left common iliac arteries.
Pathological processes involving any part of the AORTA.
A birth defect characterized by the narrowing of the AORTA that can be of varying degree and at any point from the transverse arch to the iliac bifurcation. Aortic coarctation causes arterial HYPERTENSION before the point of narrowing and arterial HYPOTENSION beyond the narrowed portion.
An abnormal balloon- or sac-like dilatation in the wall of AORTA.
Radiographic visualization of the aorta and its branches by injection of contrast media, using percutaneous puncture or catheterization procedures.
The nonstriated involuntary muscle tissue of blood vessels.
An abnormal balloon- or sac-like dilatation in the wall of the THORACIC AORTA. This proximal descending portion of aorta gives rise to the visceral and the parietal branches above the aortic hiatus at the diaphragm.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
Aneurysm caused by a tear in the TUNICA INTIMA of a blood vessel leading to interstitial HEMORRHAGE, and splitting (dissecting) of the vessel wall, often involving the AORTA. Dissection between the intima and media causes luminal occlusion. Dissection at the media, or between the media and the outer adventitia causes aneurismal dilation.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Surgical insertion of BLOOD VESSEL PROSTHESES to repair injured or diseased blood vessels.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
The tearing or bursting of the wall along any portion of the AORTA, such as thoracic or abdominal. It may result from the rupture of an aneurysm or it may be due to TRAUMA.
An abnormal balloon- or sac-like dilatation in the wall of the ABDOMINAL AORTA which gives rise to the visceral, the parietal, and the terminal (iliac) branches below the aortic hiatus at the diaphragm.
Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.
Drugs used to cause constriction of the blood vessels.
Inflammation of the wall of the AORTA.
Aneurysm due to growth of microorganisms in the arterial wall, or infection arising within preexisting arteriosclerotic aneurysms.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Drugs used to cause dilation of the blood vessels.
'Elastin' is a highly elastic protein in connective tissue that allows many tissues in the body to resume their shape after stretching or contracting, such as the skin, lungs, and blood vessels.
A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.
Polyester polymers formed from terephthalic acid or its esters and ethylene glycol. They can be formed into tapes, films or pulled into fibers that are pressed into meshes or woven into fabrics.
The vessels carrying blood away from the heart.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
That phase of a muscle twitch during which a muscle returns to a resting position.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The condition of an anatomical structure's being dilated beyond normal dimensions.
An autosomal dominant disorder of CONNECTIVE TISSUE with abnormal features in the heart, the eye, and the skeleton. Cardiovascular manifestations include MITRAL VALVE PROLAPSE, dilation of the AORTA, and aortic dissection. Other features include lens displacement (ectopia lentis), disproportioned long limbs and enlarged DURA MATER (dural ectasia). Marfan syndrome is associated with mutations in the gene encoding fibrillin, a major element of extracellular microfibrils of connective tissue.
A diet that contributes to the development and acceleration of ATHEROGENESIS.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
The inferior and superior venae cavae.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR).
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Not an aneurysm but a well-defined collection of blood and CONNECTIVE TISSUE outside the wall of a blood vessel or the heart. It is the containment of a ruptured blood vessel or heart, such as sealing a rupture of the left ventricle. False aneurysm is formed by organized THROMBUS and HEMATOMA in surrounding tissue.
Either of two large arteries originating from the abdominal aorta; they supply blood to the pelvis, abdominal wall and legs.
A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
Elements of limited time intervals, contributing to particular results or situations.
The valve between the left ventricle and the ascending aorta which prevents backflow into the left ventricle.
Cholesterol present in food, especially in animal products.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.
Surgical union or shunt between ducts, tubes or vessels. It may be end-to-end, end-to-side, side-to-end, or side-to-side.
A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS.
A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body.
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues using a transducer placed in the esophagus.
Devices that provide support for tubular structures that are being anastomosed or for body cavities during skin grafting.
A chronic inflammatory process that affects the AORTA and its primary branches, such as the brachiocephalic artery (BRACHIOCEPHALIC TRUNK) and CAROTID ARTERIES. It results in progressive arterial stenosis, occlusion, and aneurysm formation. The pulse in the arm is hard to detect. Patients with aortitis syndrome often exhibit retinopathy.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs.
Resistance and recovery from distortion of shape.
Artery arising from the brachiocephalic trunk on the right side and from the arch of the aorta on the left side. It distributes to the neck, thoracic wall, spinal cord, brain, meninges, and upper limb.
An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS.
The act of constricting.
A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.
Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed)
Arteries which arise from the abdominal aorta and distribute to most of the intestines.
Connective tissue comprised chiefly of elastic fibers. Elastic fibers have two components: ELASTIN and MICROFIBRILS.
The first and largest artery branching from the aortic arch. It distributes blood to the right side of the head and neck and to the right arm.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Pathologic deposition of calcium salts in tissues.
The main artery of the thigh, a continuation of the external iliac artery.
A non-selective inhibitor of nitric oxide synthase. It has been used experimentally to induce hypertension.
The plan and delineation of prostheses in general or a specific prosthesis.
Operative procedures for the treatment of vascular disorders.
Pathological condition characterized by the backflow of blood from the ASCENDING AORTA back into the LEFT VENTRICLE, leading to regurgitation. It is caused by diseases of the AORTIC VALVE or its surrounding tissue (aortic root).
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins).
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Conditions resulting from abnormalities in the arteries branching from the ASCENDING AORTA, the curved portion of the aorta. These syndromes are results of occlusion or abnormal blood flow to the head-neck or arm region leading to neurological defects and weakness in an arm. These syndromes are associated with vascular malformations; ATHEROSCLEROSIS; TRAUMA; and blood clots.
A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
A condition with abnormally high levels of CHOLESTEROL in the blood. It is defined as a cholesterol value exceeding the 95th percentile for the population.
The innermost layer of an artery or vein, made up of one layer of endothelial cells and supported by an internal elastic lamina.
A stable prostaglandin endoperoxide analog which serves as a thromboxane mimetic. Its actions include mimicking the hydro-osmotic effect of VASOPRESSIN and activation of TYPE C PHOSPHOLIPASES. (From J Pharmacol Exp Ther 1983;224(1): 108-117; Biochem J 1984;222(1):103-110)
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A pathological constriction that can occur above (supravalvular stenosis), below (subvalvular stenosis), or at the AORTIC VALVE. It is characterized by restricted outflow from the LEFT VENTRICLE into the AORTA.
Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life.
The arterial trunk that arises from the abdominal aorta and after a short course divides into the left gastric, common hepatic and splenic arteries.
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Radiography of blood vessels after injection of a contrast medium.
A lesion on the surface of the skin or a mucous surface, produced by the sloughing of inflammatory necrotic tissue.
Severe or complete loss of motor function in the lower extremities and lower portions of the trunk. This condition is most often associated with SPINAL CORD DISEASES, although BRAIN DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; NEUROMUSCULAR DISEASES; and MUSCULAR DISEASES may also cause bilateral leg weakness.
Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow.
A fetal blood vessel connecting the pulmonary artery with the descending aorta.
A technique to arrest the flow of blood by lowering BODY TEMPERATURE to about 20 degrees Centigrade, usually achieved by infusing chilled perfusate. The technique provides a bloodless surgical field for complex surgeries.
Minimally invasive procedures, diagnostic or therapeutic, performed within the BLOOD VESSELS. They may be perfomed via ANGIOSCOPY; INTERVENTIONAL MAGNETIC RESONANCE IMAGING; INTERVENTIONAL RADIOGRAPHY; or INTERVENTIONAL ULTRASONOGRAPHY.
A repeat operation for the same condition in the same patient due to disease progression or recurrence, or as followup to failed previous surgery.
Reduced blood flow to the spinal cord which is supplied by the anterior spinal artery and the paired posterior spinal arteries. This condition may be associated with ARTERIOSCLEROSIS, trauma, emboli, diseases of the aorta, and other disorders. Prolonged ischemia may lead to INFARCTION of spinal cord tissue.
Surgical incision into the chest wall.
A rare amino acid found in elastin, formed by condensation of four molecules of lysine into a pyridinium ring.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Cell surface proteins that bind THROMBOXANES with high affinity and trigger intracellular changes influencing the behavior of cells. Some thromboxane receptors act via the inositol phosphate and diacylglycerol second messenger systems.
Non-invasive method of vascular imaging and determination of internal anatomy without injection of contrast media or radiation exposure. The technique is used especially in CEREBRAL ANGIOGRAPHY as well as for studies of other vascular structures.
The veins and arteries of the HEART.
A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION.
The middle layer of blood vessel walls, composed principally of thin, cylindrical, smooth muscle cells and elastic tissue. It accounts for the bulk of the wall of most arteries. The smooth muscle cells are arranged in circular layers around the vessel, and the thickness of the coat varies with the size of the vessel.
The dilatation of the aortic wall behind each of the cusps of the aortic valve.
Diversion of the flow of blood from the entrance of the right atrium directly to the aorta (or femoral artery) via an oxygenator thus bypassing both the heart and lungs.
Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency.
A large vessel supplying the whole length of the small intestine except the superior part of the duodenum. It also supplies the cecum and the ascending part of the colon and about half the transverse part of the colon. It arises from the anterior surface of the aorta below the celiac artery at the level of the first lumbar vertebra.
The flow of BLOOD through or around an organ or region of the body.
A subclass of alpha-adrenergic receptors that mediate contraction of SMOOTH MUSCLE in a variety of tissues such as ARTERIOLES; VEINS; and the UTERUS. They are usually found on postsynaptic membranes and signal through GQ-G11 G-PROTEINS.
A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE.
Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY).
The venous trunk which receives blood from the lower extremities and from the pelvic and abdominal organs.
A volatile vasodilator which relieves ANGINA PECTORIS by stimulating GUANYLATE CYCLASE and lowering cytosolic calcium. It is also sometimes used for TOCOLYSIS and explosives.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
An inhibitor of nitric oxide synthetase which has been shown to prevent glutamate toxicity. Nitroarginine has been experimentally tested for its ability to prevent ammonia toxicity and ammonia-induced alterations in brain energy and ammonia metabolites. (Neurochem Res 1995:200(4):451-6)
Created as a republic in 1918 by Czechs and Slovaks from territories formerly part of the Austro-Hungarian Empire. The country split into the Czech Republic and Slovakia 1 January 1993.

Reduction in baroreflex cardiovascular responses due to venous infusion in the rabbit. (1/10763)

We studied reflex bradycardia and depression of mean arterial blood pressure (MAP) during left aortic nerve (LAN) stimulation before and after volume infusion in the anesthetized rabbit. Step increases in mean right atrial pressure (MRAP) to 10 mm Hg did not result in a significant change in heart rate or MAP. After volume loading, responses to LAN stimulation were not as great and the degree of attenuation was propoetional to the level of increased MRAP. A change in responsiveness was observed after elevation of MRAP by only 1 mm Hg, corresponding to less than a 10% increase in average calculated blood volume. after an increase in MRAP of 10 mm Hg, peak responses were attenuated by 44% (heart rate) and 52% (MAP), and the initial slopes (rate of change) were reduced by 46% (heart rate) and 66% (MAP). Comparison of the responses after infusion with blood and dextran solutions indicated that hemodilution was an unlikely explanation for the attenuation of the reflex responses. Total arterial baroreceptor denervation (ABD) abolished the volume-related attenuation was still present following bilateral aortic nerve section or vagotomy. It thus appears that the carotid sinus responds to changes inblood volume and influences the reflex cardiovascular responses to afferent stimulation of the LAN. On the other hand, cardiopulmonary receptors subserved by vagal afferents do not appear to be involved.  (+info)

Quantification of baroreceptor influence on arterial pressure changes seen in primary angiotension-induced hypertension in dogs. (2/10763)

We studied the role of the sino-aortic baroreceptors in the gradual development of hypertension induced by prolonged administration of small amounts of angiotensin II (A II) in intact dogs and dogs with denervated sino-aortic baroreceptors. Short-term 1-hour infusions of A II(1.0-100 ng/kg per min) showed that conscious denervated dogs had twice the pressor sensitivity of intact dogs. Long-term infusions of A II at 5.0 ng/kg per min (2-3 weeks) with continuous 24-hour recordings of arterial pressure showed that intact dogs required 28 hours to reach the same level of pressure attained by denervated dogs during the 1st hour of infusion. At the 28th hour the pressure in both groups was 70% of the maximum value attained by the 7th day of infusion. Both intact and denervated dogs reached nearly the same plateau level of pressure, the magnitude being directly related both the the A II infusion rate and the daily sodium intake. Cardiac output in intact dogs initially decreased after the onset of A II infusion, but by the 5th day of infusion it was 38% above control, whereas blood volume was unchanged. Heart rate returned to normal after a reduction during the 1st day of infusion in intact dogs. Plasma renin activity could not be detected after 24 hours of A II infusion in either intact or denervated dogs. The data indicate that about 35% of the hypertensive effect of A II results from its acute pressor action, and an additional 35% of the gradual increase in arterial pressure is in large measure a result of baroreceptor resetting. We conclude that the final 30% increase in pressure seems to result from increased cardiac output, the cause of which may be decreased vascular compliance. since the blood volume remains unaltered.  (+info)

Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. (3/10763)

Atherosclerotic lesion development is characterized by the recruitment of leukocytes, principally monocytes, to the vessel wall. Considerable interest has been focused on the adhesion molecule(s) involved in leukocyte/endothelial interactions. The goal of the present study was to determine the role of the very late antigen-4 (VLA-4) integrin/ligand interaction in fatty streak development using murine models. Because alpha4 null mice are not viable, a peptidomimetic was used to block VLA-4-mediated leukocyte binding. The ability of a synthetic peptidomimetic of connecting segment-1 (CS-1 peptide) to block the recruitment of leukocytes and the accumulation of lipid in the aortic sinus of either wild-type mice (strain C57BL/6J) or mice with a low-density lipoprotein null mutation (LDLR-/-) maintained on an atherogenic diet was assessed. The active (Ac) CS-1 peptide or scrambled (Sc) CS-1 peptide was delivered subcutaneously into mice using a mini osmotic pump. Mice were exposed to the peptide for 24 to 36 hours before the onset of the atherogenic diet. In C57BL/6J mice, leukocyte entry into the aortic sinus, as assessed by en face preparations, was inhibited by the active peptide (Ac=28+/-4, Sc=54+/-6 monocytes/valve; P=0.004). Additionally, frozen sections stained with Oil Red O were analyzed to assess lipid accumulation in the aortic sinus. C57BL/6J mice that received the (Ac) compound demonstrated significantly reduced lesion areas as compared with mice that received the (Sc) peptide (Ac=4887+/-4438 microm2, Sc=15 009 +/-5619 microm2; P<0.0001). In a separate study, LDLR-/- mice were implanted with pumps containing either the (Ac) or (Sc) peptide before initiation of the atherogenic diet. Because LDLR-/- mice fed a chow diet displayed small lesions at 14 weeks, the effects of the peptide seen in these animals represented a change in early lipid accumulation rather than initiation. By using whole-mount preparations, the (Ac) but not the (Sc) peptide significantly reduced the area of lipid accumulation in the aortic sinus, resulting in an approximate 66% decrease. Plasma analysis from all studies revealed concentrations of peptide to be present at levels previously determined by in vitro analysis to block adhesion. (Ac) CS-1 peptide, which blocks VLA-4 on the leukocyte surface, is effective in reducing leukocyte recruitment and lipid accumulation in the aortic sinus. The present study provides in vivo evidence that the VLA-4 integrin plays an important role in the initiation of the atherosclerotic lesion and lipid accumulation, and it suggests a potential therapeutic strategy for this disease.  (+info)

Role of nitric oxide-cGMP pathway in adrenomedullin-induced vasodilation in the rat. (4/10763)

We previously reported that adrenomedullin (AM), a potent vasodilator peptide discovered in pheochromocytoma cells, stimulates nitric oxide (NO) release in the rat kidney. To further investigate whether the NO-cGMP pathway is involved in the mechanisms of AM-induced vasodilation, we examined the effects of E-4021, a cGMP-specific phosphodiesterase inhibitor, on AM-induced vasorelaxation in aortic rings and perfused kidneys isolated from Wistar rats. We also measured NO release from the kidneys using a chemiluminescence assay. AM (10(-10) to 10(-7) mol/L) relaxed the aorta precontracted with phenylephrine in a dose-dependent manner. Denudation of endothelium (E) attenuated the vasodilatory action of AM (10(-7) mol/L AM: intact (E+) -25.7+/-5.2% versus denuded (E-) -7. 8+/-0.6%, P<0.05). On the other hand, pretreatment with 10(-8) mol/L E-4021 augmented AM-induced vasorelaxation in the intact aorta (-49. 0+/-7.9%, P<0.05) but not in the denuded one. E-4021 also enhanced acetylcholine (ACh)-induced vasorelaxation in the rat intact aorta (10(-7) mol/L ACh -36.6+/-8.4% versus 10(-8) mol/L E-4021+10(-7) mol/L ACh -62.7+/-3.1%, P<0.05). In perfused kidneys, AM-induced vasorelaxation was also augmented by preincubation with E-4021 (10(-9) mol/L AM -15.4+/-0.6% versus 10(-8) mol/L E-4021+10(-9) mol/L AM -23.6+/-1.2%, P<0.01). AM significantly increased NO release from rat kidneys (DeltaNO: +11.3+/-0.8 fmol. min-1. g-1 kidney at 10(-9) mol/L AM), which was not affected by E-4021. E-4021 enhanced ACh-induced vasorelaxation (10(-9) mol/L ACh -9.7+/-1.7% versus 10(-8) mol/L E-4021+10(-9) mol/L ACh -18.8+/-2.9%, P<0.01) but did not affect ACh-induced NO release from the kidneys. In the aorta and the kidney, 10(-4) mol/L of NG-nitro-L-arginine methyl ester, an NO synthase inhibitor, and 10(-5) mol/L of methylene blue, a guanylate cyclase inhibitor, reduced the vasodilatory effect of AM. These results suggest that the NO-cGMP pathway is involved in the mechanism of AM-induced vasorelaxation, at least in the rat aorta and kidney.  (+info)

Different contributions of endothelin-A and endothelin-B receptors in the pathogenesis of deoxycorticosterone acetate-salt-induced hypertension in rats. (5/10763)

We investigated the involvement of actions mediated by endothelin-A (ETA) and endothelin-B (ETB) receptors in the pathogenesis of deoxycorticosterone acetate (DOCA)-salt-induced hypertension in rats. Two weeks after the start of DOCA-salt treatment, rats were given ABT-627 (10 [mg/kg]/d), a selective ETA receptor antagonist; A-192621 (30 [mg/kg]/d), a selective ETB receptor antagonist; or their vehicle for 2 weeks. Uninephrectomized rats without DOCA-salt treatment served as controls. Treatment with DOCA and salt for 2 weeks led to a mild but significant hypertension; in vehicle-treated DOCA-salt rats, systolic blood pressure increased markedly after 3 to 4 weeks. Daily administration of ABT-627 for 2 weeks almost abolished any further increases in blood pressure, whereas A-192621 did not affect the development of DOCA-salt-induced hypertension. When the degree of vascular hypertrophy of the aorta was histochemically evaluated at 4 weeks, there were significant increases in wall thickness, wall area, and wall-to-lumen ratio in vehicle-treated DOCA-salt rats compared with uninephrectomized control rats. The development of vascular hypertrophy was markedly suppressed by ABT-627. In contrast, treatment with A-192621 significantly exaggerated these vascular changes. In vehicle-treated DOCA-salt rats, renal blood flow and creatinine clearance decreased, and urinary excretion of protein, blood urea nitrogen, fractional excretion of sodium, and urinary N-acetyl-beta-glucosaminidase activity increased. Such damage was overcome by treatment with ABT-627 but not with A-192621; indeed, the latter agent led to worsening of the renal dysfunction. Histopathologic examination of the kidney in vehicle-treated DOCA-salt rats revealed tubular dilatation and atrophy as well as thickening of small arteries. Such damage was reduced in animals given ABT-627, whereas more severe histopathologic changes were observed in A-192621-treated animals. These results strongly support the view that ETA receptor-mediated action plays an important role in the pathogenesis of DOCA-salt-induced hypertension. On the other hand, it seems likely that the ETB receptor-mediated action protects against vascular and renal injuries in this model of hypertension. A selective ETA receptor antagonist is likely to be useful for treatment of subjects with mineralocorticoid-dependent hypertension, whereas ETB-selective antagonism alone is detrimental to such cases.  (+info)

AMP-activated protein kinase phosphorylation of endothelial NO synthase. (6/10763)

The AMP-activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl-coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co-immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser-1177 in the presence of Ca2+-calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+-calmodulin, AMPK also phosphorylates eNOS at Thr-495 in the CaM-binding sequence, resulting in inhibition of eNOS activity but Thr-495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.  (+info)

RNA antisense abrogation of MAT1 induces G1 phase arrest and triggers apoptosis in aortic smooth muscle cells. (7/10763)

The human MAT1 gene (menage a trois 1) is an assembly factor and a targeting subunit of cyclin-dependent kinase (CDK)-activating kinase. The novel mechanisms by which MAT1 forms an active CDK-activating kinase and determines substrate specificity of CDK7-cyclin H are involved in the cell cycle, DNA repair, and transcription. Hyperplasia of vascular smooth muscle cells (SMC) is a fundamental pathologic feature of luminal narrowing in vascular occlusive diseases, and nothing is yet known regarding the cell cycle phase specificity of the MAT1 gene in its involvement in SMC proliferation. To investigate such novel regulatory pathways, MAT1 expression was abrogated by retrovirus-mediated gene transfer of antisense MAT1 RNA in cultured rat aortic SMCs. We show that abrogation of MAT1 expression retards SMC proliferation and inhibits cell activation from a nonproliferative state. Furthermore, we have demonstrated that these effects are due to G1 phase arrest and apoptotic cell death. Our studies indicate a link between cell cycle control and apoptosis and reveal a potential mechanism for coupling the regulation of MAT1 with G1 exit and prevention of apoptosis.  (+info)

Endogenous plasma endothelin concentrations and coronary circulation in patients with mild dilated cardiomyopathy. (8/10763)

OBJECTIVE: To determine whether increased plasma concentrations of endothelin-1 (ET-1) and big endothelin (BET) play a role in the regulation of coronary circulation in patients with idiopathic dilated cardiomyopathy (IDCM). SETTING: Tertiary referral centre for cardiac diseases. PATIENTS: Fourteen patients (eight male/six female; mean (SD) age 59 (9) years) with IDCM (ejection fraction 36 (9)%) and five normotensive subjects (two male/three female; age 52 (7) years) serving as controls were studied. METHODS: Functional status was classified according to New York Heart Association (NYHA) class. Endogenous ET-1 and BET plasma concentrations from the aorta and the coronary sinus were determined by radioimmunoassay. Coronary blood flow, using the inert chromatographic argon method, myocardial oxygen consumption, and coronary sinus oxygen content under basal conditions were determined. RESULTS: In the aorta, mean (SD) concentrations of ET-1 (IDCM 0.76 (0.25) v controls 0.31 (0.06) fmol/ml; p = 0.002) and BET (IDCM 3.58 (1.06) v controls 2.11 (0.58) fmol/ml; p = 0.014) were increased in patients with IDCM. Aortic ET-1 concentrations correlated positively with NYHA class (r = 0. 731; p < 0.001), myocardial oxygen consumption (r = 0.749; p < 0. 001), and coronary blood flow (r = 0.645; p = 0.003), but inversely with coronary sinus oxygen content (r = -0.633; p = 0.004), which was significantly decreased in IDCM patients (IDCM 4.68 (1.05) v controls 6.70 (1.06) vol%; p = 0.003). CONCLUSIONS: The coronary circulation in patients with IDCM is exposed to an increased endothelin load. ET-1 concentrations correlate with functional deterioration. A decrease of the coronary sinus content of oxygen suggests a mismatch between coronary blood flow and metabolic demand. Thus, ET-1 might be a marker of a disequilibrium between myocardial oxygen demand and coronary blood flow in IDCM.  (+info)

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

The thoracic aorta is the segment of the largest artery in the human body (the aorta) that runs through the chest region (thorax). The thoracic aorta begins at the aortic arch, where it branches off from the ascending aorta, and extends down to the diaphragm, where it becomes the abdominal aorta.

The thoracic aorta is divided into three parts: the ascending aorta, the aortic arch, and the descending aorta. The ascending aorta rises from the left ventricle of the heart and is about 2 inches (5 centimeters) long. The aortic arch curves backward and to the left, giving rise to the brachiocephalic trunk, the left common carotid artery, and the left subclavian artery. The descending thoracic aorta runs downward through the chest, passing through the diaphragm to become the abdominal aorta.

The thoracic aorta supplies oxygenated blood to the upper body, including the head, neck, arms, and chest. It plays a critical role in maintaining blood flow and pressure throughout the body.

The abdominal aorta is the portion of the aorta, which is the largest artery in the body, that runs through the abdomen. It originates from the thoracic aorta at the level of the diaphragm and descends through the abdomen, where it branches off into several smaller arteries that supply blood to the pelvis, legs, and various abdominal organs. The abdominal aorta is typically divided into four segments: the suprarenal, infrarenal, visceral, and parietal portions. Disorders of the abdominal aorta can include aneurysms, atherosclerosis, and dissections, which can have serious consequences if left untreated.

Aortic diseases refer to conditions that affect the aorta, which is the largest and main artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. Aortic diseases can weaken or damage the aorta, leading to various complications. Here are some common aortic diseases with their medical definitions:

1. Aortic aneurysm: A localized dilation or bulging of the aortic wall, which can occur in any part of the aorta but is most commonly found in the abdominal aorta (abdominal aortic aneurysm) or the thoracic aorta (thoracic aortic aneurysm). Aneurysms can increase the risk of rupture, leading to life-threatening bleeding.
2. Aortic dissection: A separation of the layers of the aortic wall due to a tear in the inner lining, allowing blood to flow between the layers and potentially cause the aorta to rupture. This is a medical emergency that requires immediate treatment.
3. Aortic stenosis: A narrowing of the aortic valve opening, which restricts blood flow from the heart to the aorta. This can lead to shortness of breath, chest pain, and other symptoms. Severe aortic stenosis may require surgical or transcatheter intervention to replace or repair the aortic valve.
4. Aortic regurgitation: Also known as aortic insufficiency, this condition occurs when the aortic valve does not close properly, allowing blood to leak back into the heart. This can lead to symptoms such as fatigue, shortness of breath, and palpitations. Treatment may include medication or surgical repair or replacement of the aortic valve.
5. Aortitis: Inflammation of the aorta, which can be caused by various conditions such as infections, autoimmune diseases, or vasculitides. Aortitis can lead to aneurysms, dissections, or stenosis and may require medical treatment with immunosuppressive drugs or surgical intervention.
6. Marfan syndrome: A genetic disorder that affects the connective tissue, including the aorta. People with Marfan syndrome are at risk of developing aortic aneurysms and dissections, and may require close monitoring and prophylactic surgery to prevent complications.

Aortic coarctation is a narrowing of the aorta, the largest blood vessel in the body that carries oxygen-rich blood from the heart to the rest of the body. This condition usually occurs in the part of the aorta that is just beyond where it arises from the left ventricle and before it divides into the iliac arteries.

In aortic coarctation, the narrowing can vary from mild to severe, and it can cause a variety of symptoms depending on the severity of the narrowing and the age of the individual. In newborns and infants with severe coarctation, symptoms may include difficulty breathing, poor feeding, and weak or absent femoral pulses (located in the groin area). Older children and adults with mild to moderate coarctation may not experience any symptoms until later in life, when high blood pressure, headaches, nosebleeds, leg cramps, or heart failure develop.

Aortic coarctation is typically diagnosed through physical examination, imaging tests such as echocardiography, CT angiography, or MRI, and sometimes cardiac catheterization. Treatment options include surgical repair or balloon dilation (also known as balloon angioplasty) to open the narrowed section of the aorta. If left untreated, aortic coarctation can lead to serious complications such as high blood pressure, heart failure, stroke, and rupture or dissection of the aorta.

An aortic aneurysm is a medical condition characterized by the abnormal widening or bulging of the wall of the aorta, which is the largest artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. When the aortic wall weakens, it can stretch and balloon out, forming an aneurysm.

Aortic aneurysms can occur anywhere along the aorta but are most commonly found in the abdominal section (abdominal aortic aneurysm) or the chest area (thoracic aortic aneurysm). The size and location of the aneurysm, as well as the patient's overall health, determine the risk of rupture and associated complications.

Aneurysms often do not cause symptoms until they become large or rupture. Symptoms may include:

* Pain in the chest, back, or abdomen
* Pulsating sensation in the abdomen
* Difficulty breathing
* Hoarseness
* Coughing or vomiting

Risk factors for aortic aneurysms include age, smoking, high blood pressure, family history, and certain genetic conditions. Treatment options depend on the size and location of the aneurysm and may include monitoring, medication, or surgical repair.

Aortography is a medical procedure that involves taking X-ray images of the aorta, which is the largest blood vessel in the body. The procedure is usually performed to diagnose or assess various conditions related to the aorta, such as aneurysms, dissections, or blockages.

To perform an aortography, a contrast dye is injected into the aorta through a catheter that is inserted into an artery, typically in the leg or arm. The contrast dye makes the aorta visible on X-ray images, allowing doctors to see its structure and any abnormalities that may be present.

The procedure is usually performed in a hospital or outpatient setting and may require sedation or anesthesia. While aortography can provide valuable diagnostic information, it also carries some risks, such as allergic reactions to the contrast dye, damage to blood vessels, or infection. Therefore, it is typically reserved for situations where other diagnostic tests have been inconclusive or where more invasive treatment may be required.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

A thoracic aortic aneurysm is a localized dilatation or bulging of the thoracic aorta, which is the part of the aorta that runs through the chest cavity. The aorta is the largest artery in the body, and it carries oxygenated blood from the heart to the rest of the body.

Thoracic aortic aneurysms can occur anywhere along the thoracic aorta, but they are most commonly found in the aortic arch or the descending thoracic aorta. These aneurysms can vary in size, and they are considered significant when they are 50% larger than the expected normal diameter of the aorta.

The exact cause of thoracic aortic aneurysms is not fully understood, but several factors can contribute to their development, including:

* Atherosclerosis (hardening and narrowing of the arteries)
* High blood pressure
* Genetic disorders such as Marfan syndrome or Ehlers-Danlos syndrome
* Infections or inflammation of the aorta
* Trauma to the chest

Thoracic aortic aneurysms can be asymptomatic and found incidentally on imaging studies, or they may present with symptoms such as chest pain, cough, difficulty swallowing, or hoarseness. If left untreated, thoracic aortic aneurysms can lead to serious complications, including aortic dissection (tearing of the inner layer of the aorta) or rupture, which can be life-threatening.

Treatment options for thoracic aortic aneurysms include medical management with blood pressure control and cholesterol-lowering medications, as well as surgical repair or endovascular stenting, depending on the size, location, and growth rate of the aneurysm. Regular follow-up imaging is necessary to monitor the size and progression of the aneurysm over time.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

A dissecting aneurysm is a serious and potentially life-threatening condition that occurs when there is a tear in the inner layer of the artery wall, allowing blood to flow between the layers of the artery wall. This can cause the artery to bulge or balloon out, leading to a dissection aneurysm.

Dissecting aneurysms can occur in any artery, but they are most commonly found in the aorta, which is the largest artery in the body. When a dissecting aneurysm occurs in the aorta, it is often referred to as a "dissecting aortic aneurysm."

Dissecting aneurysms can be caused by various factors, including high blood pressure, atherosclerosis (hardening and narrowing of the arteries), genetic disorders that affect the connective tissue, trauma, or illegal drug use (such as cocaine).

Symptoms of a dissecting aneurysm may include sudden severe chest or back pain, which can feel like ripping or tearing, shortness of breath, sweating, lightheadedness, or loss of consciousness. If left untreated, a dissecting aneurysm can lead to serious complications, such as rupture of the artery, stroke, or even death.

Treatment for a dissecting aneurysm typically involves surgery or endovascular repair to prevent further damage and reduce the risk of rupture. The specific treatment approach will depend on various factors, including the location and size of the aneurysm, the patient's overall health, and their medical history.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Blood vessel prosthesis implantation is a surgical procedure in which an artificial blood vessel, also known as a vascular graft or prosthetic graft, is inserted into the body to replace a damaged or diseased native blood vessel. The prosthetic graft can be made from various materials such as Dacron (polyester), PTFE (polytetrafluoroethylene), or bovine/human tissue.

The implantation of a blood vessel prosthesis is typically performed to treat conditions that cause narrowing or blockage of the blood vessels, such as atherosclerosis, aneurysms, or traumatic injuries. The procedure may be used to bypass blocked arteries in the legs (peripheral artery disease), heart (coronary artery bypass surgery), or neck (carotid endarterectomy). It can also be used to replace damaged veins for hemodialysis access in patients with kidney failure.

The success of blood vessel prosthesis implantation depends on various factors, including the patient's overall health, the location and extent of the vascular disease, and the type of graft material used. Possible complications include infection, bleeding, graft thrombosis (clotting), and graft failure, which may require further surgical intervention or endovascular treatments.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Aortic rupture is a medical emergency that refers to the tearing or splitting of the aorta, which is the largest and main artery in the body. The aorta carries oxygenated blood from the heart to the rest of the body. An aortic rupture can lead to life-threatening internal bleeding and requires immediate medical attention.

There are two types of aortic ruptures:

1. Aortic dissection: This occurs when there is a tear in the inner lining of the aorta, allowing blood to flow between the layers of the aortic wall. This can cause the aorta to bulge or split, leading to a rupture.
2. Thoracic aortic aneurysm rupture: An aneurysm is a weakened and bulging area in the aortic wall. When an aneurysm in the thoracic aorta (the part of the aorta that runs through the chest) ruptures, it can cause severe bleeding and other complications.

Risk factors for aortic rupture include high blood pressure, smoking, aging, family history of aortic disease, and certain genetic conditions such as Marfan syndrome or Ehlers-Danlos syndrome. Symptoms of an aortic rupture may include sudden severe chest or back pain, difficulty breathing, weakness, sweating, and loss of consciousness. Treatment typically involves emergency surgery to repair the aorta and control bleeding.

An abdominal aortic aneurysm (AAA) is a localized dilatation or bulging of the abdominal aorta, which is the largest artery in the body that supplies oxygenated blood to the trunk and lower extremities. Normally, the diameter of the abdominal aorta measures about 2 centimeters (cm) in adults. However, when the diameter of the aorta exceeds 3 cm, it is considered an aneurysm.

AAA can occur anywhere along the length of the abdominal aorta, but it most commonly occurs below the renal arteries and above the iliac bifurcation. The exact cause of AAA remains unclear, but several risk factors have been identified, including smoking, hypertension, advanced age, male gender, family history, and certain genetic disorders such as Marfan syndrome and Ehlers-Danlos syndrome.

The main concern with AAA is the risk of rupture, which can lead to life-threatening internal bleeding. The larger the aneurysm, the greater the risk of rupture. Symptoms of AAA may include abdominal or back pain, a pulsating mass in the abdomen, or symptoms related to compression of surrounding structures such as the kidneys, ureters, or nerves. However, many AAAs are asymptomatic and are discovered incidentally during imaging studies performed for other reasons.

Diagnosis of AAA typically involves imaging tests such as ultrasound, computed tomography (CT) scan, or magnetic resonance imaging (MRI). Treatment options depend on the size and location of the aneurysm, as well as the patient's overall health status. Small AAAs that are not causing symptoms may be monitored with regular imaging studies to assess for growth. Larger AAAs or those that are growing rapidly may require surgical repair, either through open surgery or endovascular repair using a stent graft.

A blood vessel prosthesis is a medical device that is used as a substitute for a damaged or diseased natural blood vessel. It is typically made of synthetic materials such as polyester, Dacron, or ePTFE (expanded polytetrafluoroethylene) and is designed to mimic the function of a native blood vessel by allowing the flow of blood through it.

Blood vessel prostheses are used in various surgical procedures, including coronary artery bypass grafting, peripheral arterial reconstruction, and the creation of arteriovenous fistulas for dialysis access. The choice of material and size of the prosthesis depends on several factors, such as the location and diameter of the vessel being replaced, the patient's age and overall health status, and the surgeon's preference.

It is important to note that while blood vessel prostheses can be effective in restoring blood flow, they may also carry risks such as infection, thrombosis (blood clot formation), and graft failure over time. Therefore, careful patient selection, surgical technique, and postoperative management are crucial for the success of these procedures.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

Phenylephrine is a medication that belongs to the class of drugs known as sympathomimetic amines. It primarily acts as an alpha-1 adrenergic receptor agonist, which means it stimulates these receptors, leading to vasoconstriction (constriction of blood vessels). This effect can be useful in various medical situations, such as:

1. Nasal decongestion: When applied topically in the nose, phenylephrine causes constriction of the blood vessels in the nasal passages, which helps to relieve congestion and swelling. It is often found in over-the-counter (OTC) cold and allergy products.
2. Ocular circulation: In ophthalmology, phenylephrine is used to dilate the pupils before eye examinations. The increased pressure from vasoconstriction helps to open up the pupil, allowing for a better view of the internal structures of the eye.
3. Hypotension management: In some cases, phenylephrine may be given intravenously to treat low blood pressure (hypotension) during medical procedures like spinal anesthesia or septic shock. The vasoconstriction helps to increase blood pressure and improve perfusion of vital organs.

It is essential to use phenylephrine as directed, as improper usage can lead to adverse effects such as increased heart rate, hypertension, arrhythmias, and rebound congestion (when used as a nasal decongestant). Always consult with a healthcare professional for appropriate guidance on using this medication.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Aortitis is a medical condition characterized by inflammation of the aorta, which is the largest artery in the body that carries oxygenated blood from the heart to the rest of the body. The inflammation can cause damage to the aortic wall, leading to weakening, bulging (aneurysm), or tearing (dissection) of the aorta. Aortitis can be caused by various conditions, including infections, autoimmune diseases, and certain medications. It is essential to diagnose and treat aortitis promptly to prevent serious complications.

An infected aneurysm, also known as a mycotic aneurysm, is a localized dilation or bulging of the wall of a blood vessel that has been invaded and damaged by infectious organisms. This type of aneurysm can occur in any blood vessel, but they are most commonly found in the aorta and cerebral arteries.

Infected aneurysms are usually caused by bacterial or fungal infections that spread through the bloodstream from another part of the body, such as endocarditis (infection of the heart valves), pneumonia, or skin infections. The infection weakens the vessel wall, causing it to bulge and potentially rupture, which can lead to serious complications such as hemorrhage, stroke, or even death.

Symptoms of infected aneurysm may include fever, chills, fatigue, weakness, weight loss, and localized pain or tenderness in the area of the aneurysm. Diagnosis is typically made through imaging tests such as CT angiography, MRI, or ultrasound, along with blood cultures to identify the causative organism. Treatment usually involves a combination of antibiotics to eliminate the infection and surgical intervention to repair or remove the aneurysm.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

Elastin is a protein that provides elasticity to tissues and organs, allowing them to resume their shape after stretching or contracting. It is a major component of the extracellular matrix in many tissues, including the skin, lungs, blood vessels, and ligaments. Elastin fibers can stretch up to 1.5 times their original length and then return to their original shape due to the unique properties of this protein. The elastin molecule is made up of cross-linked chains of the protein tropoelastin, which are produced by cells called fibroblasts and then assembled into larger elastin fibers by enzymes called lysyl oxidases. Elastin has a very long half-life, with some estimates suggesting that it can remain in the body for up to 70 years or more.

Atherosclerosis is a medical condition characterized by the buildup of plaques, made up of fat, cholesterol, calcium, and other substances found in the blood, on the inner walls of the arteries. This process gradually narrows and hardens the arteries, reducing the flow of oxygen-rich blood to various parts of the body. Atherosclerosis can affect any artery in the body, including those that supply blood to the heart (coronary arteries), brain, limbs, and other organs. The progressive narrowing and hardening of the arteries can lead to serious complications such as coronary artery disease, carotid artery disease, peripheral artery disease, and aneurysms, which can result in heart attacks, strokes, or even death if left untreated.

The exact cause of atherosclerosis is not fully understood, but it is believed to be associated with several risk factors, including high blood pressure, high cholesterol levels, smoking, diabetes, obesity, physical inactivity, and a family history of the condition. Atherosclerosis can often progress without any symptoms for many years, but as the disease advances, it can lead to various signs and symptoms depending on which arteries are affected. Treatment typically involves lifestyle changes, medications, and, in some cases, surgical procedures to restore blood flow.

I'm sorry for any confusion, but "Polyethylene Terephthalates" is not a medical term. It is a type of polymer used in the manufacturing of various products, such as plastic bottles and textile fibers. Medically, you might encounter the abbreviation "PET" or "PET scan," which stands for "Positron Emission Tomography." A PET scan is a type of medical imaging that provides detailed pictures of the body's interior. If you have any medical terms you would like defined, I'd be happy to help!

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Pathologic dilatation refers to an abnormal and excessive widening or enlargement of a body cavity or organ, which can result from various medical conditions. This abnormal dilation can occur in different parts of the body, including the blood vessels, digestive tract, airways, or heart chambers.

In the context of the cardiovascular system, pathologic dilatation may indicate a weakening or thinning of the heart muscle, leading to an enlarged chamber that can no longer pump blood efficiently. This condition is often associated with various heart diseases, such as cardiomyopathy, valvular heart disease, or long-standing high blood pressure.

In the gastrointestinal tract, pathologic dilatation may occur due to mechanical obstruction, neuromuscular disorders, or inflammatory conditions that affect the normal motility of the intestines. Examples include megacolon in Hirschsprung's disease, toxic megacolon in ulcerative colitis, or volvulus (twisting) of the bowel.

Pathologic dilatation can lead to various complications, such as reduced organ function, impaired circulation, and increased risk of infection or perforation. Treatment depends on the underlying cause and may involve medications, surgery, or other interventions to address the root problem and prevent further enlargement.

Marfan syndrome is a genetic disorder that affects the body's connective tissue. Connective tissue helps to strengthen and support various structures in the body, including the skin, ligaments, blood vessels, and heart. In Marfan syndrome, the body produces an abnormal amount of a protein called fibrillin-1, which is a key component of connective tissue. This leads to problems with the formation and function of connective tissue throughout the body.

The most serious complications of Marfan syndrome typically involve the heart and blood vessels. The aorta, which is the large artery that carries blood away from the heart, can become weakened and stretched, leading to an increased risk of aortic dissection or rupture. Other common features of Marfan syndrome include long, thin fingers and toes; tall stature; a curved spine; and eye problems such as nearsightedness and lens dislocation.

Marfan syndrome is usually inherited in an autosomal dominant pattern, which means that a child has a 50% chance of inheriting the gene mutation from a parent who has the condition. However, about 25% of cases are the result of a new mutation and occur in people with no family history of the disorder. There is no cure for Marfan syndrome, but treatment can help to manage the symptoms and reduce the risk of complications.

An atherogenic diet is a type of eating pattern that can contribute to the development and progression of atherosclerosis, which is the hardening and narrowing of the arteries due to the buildup of fats, cholesterol, and other substances in the inner lining of the artery walls.

An atherogenic diet is typically high in saturated and trans fats, cholesterol, refined carbohydrates, and salt, and low in fiber, fruits, vegetables, and unsaturated fats. This type of diet can increase the levels of LDL (low-density lipoprotein) or "bad" cholesterol in the blood, which can lead to the formation of plaques in the arteries and increase the risk of cardiovascular disease, including heart attack and stroke.

Therefore, it is recommended to follow a heart-healthy diet that emphasizes fruits, vegetables, whole grains, lean proteins, and healthy fats to reduce the risk of atherosclerosis and other chronic diseases.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

"Venae Cavae" is a term that refers to the two large veins in the human body that return deoxygenated blood from the systemic circulation to the right atrium of the heart.

The "Superior Vena Cava" receives blood from the upper half of the body, including the head, neck, upper limbs, and chest, while the "Inferior Vena Cava" collects blood from the lower half of the body, including the abdomen and lower limbs.

Together, these veins play a crucial role in the circulatory system by ensuring that oxygen-depleted blood is efficiently returned to the heart for reoxygenation in the lungs.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

WKY (Wistar Kyoto) is not a term that refers to "rats, inbred" in a medical definition. Instead, it is a strain of laboratory rat that is widely used in biomedical research. WKY rats are an inbred strain, which means they are the result of many generations of brother-sister matings, resulting in a genetically uniform population.

WKY rats originated from the Wistar Institute in Philadelphia and were established as a normotensive control strain to contrast with other rat strains that exhibit hypertension. They have since been used in various research areas, including cardiovascular, neurological, and behavioral studies. Compared to other commonly used rat strains like the spontaneously hypertensive rat (SHR), WKY rats are known for their lower blood pressure, reduced stress response, and greater emotionality.

In summary, "WKY" is a designation for an inbred strain of laboratory rat that is often used as a control group in biomedical research due to its normotensive characteristics.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

A false aneurysm, also known as a pseudoaneurysm, is a type of aneurysm that occurs when there is a leakage or rupture of blood from a blood vessel into the surrounding tissues, creating a pulsating hematoma or collection of blood. Unlike true aneurysms, which involve a localized dilation or bulging of the blood vessel wall, false aneurysms do not have a complete covering of all three layers of the arterial wall (intima, media, and adventitia). Instead, they are typically covered by only one or two layers, such as the intima and adventitia, or by surrounding tissues like connective tissue or fascia.

False aneurysms can result from various factors, including trauma, infection, iatrogenic causes (such as medical procedures), or degenerative changes in the blood vessel wall. They are more common in arteries than veins and can occur in any part of the body. If left untreated, false aneurysms can lead to serious complications such as rupture, thrombosis, distal embolization, or infection. Treatment options for false aneurysms include surgical repair, endovascular procedures, or observation with regular follow-up imaging.

The iliac arteries are major branches of the abdominal aorta, the large artery that carries oxygen-rich blood from the heart to the rest of the body. The iliac arteries divide into two branches, the common iliac arteries, which further bifurcate into the internal and external iliac arteries.

The internal iliac artery supplies blood to the lower abdomen, pelvis, and the reproductive organs, while the external iliac artery provides blood to the lower extremities, including the legs and feet. Together, the iliac arteries play a crucial role in circulating blood throughout the body, ensuring that all tissues and organs receive the oxygen and nutrients they need to function properly.

SHR (Spontaneously Hypertensive Rats) are an inbred strain of rats that were originally developed through selective breeding for high blood pressure. They are widely used as a model to study hypertension and related cardiovascular diseases, as well as neurological disorders such as stroke and dementia.

Inbred strains of animals are created by mating genetically identical individuals (siblings or offspring) for many generations, resulting in a population that is highly homozygous at all genetic loci. This means that the animals within an inbred strain are essentially genetically identical to one another, which makes them useful for studying the effects of specific genes or environmental factors on disease processes.

SHR rats develop high blood pressure spontaneously, without any experimental manipulation, and show many features of human hypertension, such as increased vascular resistance, left ventricular hypertrophy, and renal dysfunction. They also exhibit a number of behavioral abnormalities, including hyperactivity, impulsivity, and cognitive deficits, which make them useful for studying the neurological consequences of hypertension and other cardiovascular diseases.

Overall, inbred SHR rats are an important tool in biomedical research, providing a valuable model for understanding the genetic and environmental factors that contribute to hypertension and related disorders.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

The aortic valve is the valve located between the left ventricle (the lower left chamber of the heart) and the aorta (the largest artery in the body, which carries oxygenated blood from the heart to the rest of the body). It is made up of three thin flaps or leaflets that open and close to regulate blood flow. During a heartbeat, the aortic valve opens to allow blood to be pumped out of the left ventricle into the aorta, and then closes to prevent blood from flowing back into the ventricle when it relaxes. Any abnormality or damage to this valve can lead to various cardiovascular conditions such as aortic stenosis, aortic regurgitation, or infective endocarditis.

Dietary cholesterol is a type of cholesterol that comes from the foods we eat. It is present in animal-derived products such as meat, poultry, dairy products, and eggs. While dietary cholesterol can contribute to an increase in blood cholesterol levels for some people, it's important to note that saturated and trans fats have a more significant impact on blood cholesterol levels than dietary cholesterol itself.

The American Heart Association recommends limiting dietary cholesterol intake to less than 300 milligrams per day for most people, and less than 200 milligrams per day for those with a history of heart disease or high cholesterol levels. However, individual responses to dietary cholesterol can vary, so it's essential to monitor blood cholesterol levels and adjust dietary habits accordingly.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

Apolipoprotein E (ApoE) is a protein involved in the metabolism of lipids, particularly cholesterol. It is produced primarily by the liver and is a component of several types of lipoproteins, including very low-density lipoproteins (VLDL) and high-density lipoproteins (HDL).

ApoE plays a crucial role in the transport and uptake of lipids in the body. It binds to specific receptors on cell surfaces, facilitating the delivery of lipids to cells for energy metabolism or storage. ApoE also helps to clear cholesterol from the bloodstream and is involved in the repair and maintenance of tissues.

There are three major isoforms of ApoE, designated ApoE2, ApoE3, and ApoE4, which differ from each other by only a few amino acids. These genetic variations can have significant effects on an individual's risk for developing certain diseases, particularly cardiovascular disease and Alzheimer's disease. For example, individuals who inherit the ApoE4 allele have an increased risk of developing Alzheimer's disease, while those with the ApoE2 allele may have a reduced risk.

In summary, Apolipoprotein E is a protein involved in lipid metabolism and transport, and genetic variations in this protein can influence an individual's risk for certain diseases.

Surgical anastomosis is a medical procedure that involves the connection of two tubular structures, such as blood vessels or intestines, to create a continuous passage. This technique is commonly used in various types of surgeries, including vascular, gastrointestinal, and orthopedic procedures.

During a surgical anastomosis, the ends of the two tubular structures are carefully prepared by removing any damaged or diseased tissue. The ends are then aligned and joined together using sutures, staples, or other devices. The connection must be secure and leak-free to ensure proper function and healing.

The success of a surgical anastomosis depends on several factors, including the patient's overall health, the location and condition of the structures being joined, and the skill and experience of the surgeon. Complications such as infection, bleeding, or leakage can occur, which may require additional medical intervention or surgery.

Proper postoperative care is also essential to ensure the success of a surgical anastomosis. This may include monitoring for signs of complications, administering medications to prevent infection and promote healing, and providing adequate nutrition and hydration.

nitroprusside (ni-troe-rus-ide)

A rapid-acting vasodilator used in the management of severe hypertension, acute heart failure, and to reduce afterload in patients undergoing cardiac surgery. It is a potent arterial and venous dilator that decreases preload and afterload, thereby reducing myocardial oxygen demand. Nitroprusside is metabolized to cyanide, which must be monitored closely during therapy to prevent toxicity.

Pharmacologic class: Peripheral vasodilators

Therapeutic class: Antihypertensives, Vasodilators

Medical Categories: Cardiovascular Drugs, Hypertension Agents

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Nitric Oxide Synthase Type III (NOS-III), also known as endothelial Nitric Oxide Synthase (eNOS), is an enzyme responsible for the production of nitric oxide (NO) in the endothelium, the lining of blood vessels. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing NO as a byproduct. The release of NO from eNOS plays an important role in regulating vascular tone and homeostasis, including the relaxation of smooth muscle cells in the blood vessel walls, inhibition of platelet aggregation, and modulation of immune function. Mutations or dysfunction in NOS-III can contribute to various cardiovascular diseases such as hypertension, atherosclerosis, and erectile dysfunction.

The endothelium is the thin, delicate tissue that lines the interior surface of blood vessels and lymphatic vessels. It is a single layer of cells called endothelial cells that are in contact with the blood or lymph fluid. The endothelium plays an essential role in maintaining vascular homeostasis by regulating blood flow, coagulation, platelet activation, immune function, and angiogenesis (the formation of new blood vessels). It also acts as a barrier between the vessel wall and the circulating blood or lymph fluid. Dysfunction of the endothelium has been implicated in various cardiovascular diseases, diabetes, inflammation, and cancer.

Catheterization is a medical procedure in which a catheter (a flexible tube) is inserted into the body to treat various medical conditions or for diagnostic purposes. The specific definition can vary depending on the area of medicine and the particular procedure being discussed. Here are some common types of catheterization:

1. Urinary catheterization: This involves inserting a catheter through the urethra into the bladder to drain urine. It is often performed to manage urinary retention, monitor urine output in critically ill patients, or assist with surgical procedures.
2. Cardiac catheterization: A procedure where a catheter is inserted into a blood vessel, usually in the groin or arm, and guided to the heart. This allows for various diagnostic tests and treatments, such as measuring pressures within the heart chambers, assessing blood flow, or performing angioplasty and stenting of narrowed coronary arteries.
3. Central venous catheterization: A catheter is inserted into a large vein, typically in the neck, chest, or groin, to administer medications, fluids, or nutrition, or to monitor central venous pressure.
4. Peritoneal dialysis catheterization: A catheter is placed into the abdominal cavity for individuals undergoing peritoneal dialysis, a type of kidney replacement therapy.
5. Neurological catheterization: In some cases, a catheter may be inserted into the cerebrospinal fluid space (lumbar puncture) or the brain's ventricular system (ventriculostomy) to diagnose or treat various neurological conditions.

These are just a few examples of catheterization procedures in medicine. The specific definition and purpose will depend on the medical context and the particular organ or body system involved.

Transesophageal echocardiography (TEE) is a type of echocardiogram, which is a medical test that uses sound waves to create detailed images of the heart. In TEE, a special probe containing a transducer is passed down the esophagus (the tube that connects the mouth to the stomach) to obtain views of the heart from behind. This allows for more detailed images of the heart structures and function compared to a standard echocardiogram, which uses a probe placed on the chest. TEE is often used in patients with poor image quality from a standard echocardiogram or when more detailed images are needed to diagnose or monitor certain heart conditions. It is typically performed by a trained cardiologist or sonographer under the direction of a cardiologist.

A stent is a small mesh tube that's used to treat narrow or weak arteries. Arteries are blood vessels that carry blood away from your heart to other parts of your body. A stent is placed in an artery as part of a procedure called angioplasty. Angioplasty restores blood flow through narrowed or blocked arteries by inflating a tiny balloon inside the blocked artery to widen it.

The stent is then inserted into the widened artery to keep it open. The stent is usually made of metal, but some are coated with medication that is slowly and continuously released to help prevent the formation of scar tissue in the artery. This can reduce the chance of the artery narrowing again.

Stents are also used in other parts of the body, such as the neck (carotid artery) and kidneys (renal artery), to help maintain blood flow and prevent blockages. They can also be used in the urinary system to treat conditions like ureteropelvic junction obstruction or narrowing of the urethra.

Takayasu arteritis is a rare inflammatory disease that affects the large blood vessels in the body, most commonly the aorta and its main branches. It's also known as pulseless disease or aortic arch syndrome. The condition primarily affects young to middle-aged women, although it can occur in anyone at any age.

The inflammation caused by Takayasu arteritis can lead to narrowing, thickening, and weakening of the affected blood vessels' walls, which can result in reduced blood flow to various organs and tissues. This can cause a variety of symptoms depending on the severity and location of the vessel involvement.

Common symptoms include:

* Weak or absent pulses in the arms and/or legs
* High blood pressure (hypertension)
* Dizziness, lightheadedness, or fainting spells due to reduced blood flow to the brain
* Headaches
* Visual disturbances
* Fatigue
* Weight loss
* Night sweats
* Fever

Diagnosis of Takayasu arteritis typically involves a combination of medical history, physical examination, laboratory tests, and imaging studies. Treatment usually includes corticosteroids or other immunosuppressive medications to control inflammation and maintain remission. Regular follow-up with a healthcare provider is essential to monitor disease activity and adjust treatment as necessary.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

The pulmonary artery is a large blood vessel that carries deoxygenated blood from the right ventricle of the heart to the lungs for oxygenation. It divides into two main branches, the right and left pulmonary arteries, which further divide into smaller vessels called arterioles, and then into a vast network of capillaries in the lungs where gas exchange occurs. The thin walls of these capillaries allow oxygen to diffuse into the blood and carbon dioxide to diffuse out, making the blood oxygen-rich before it is pumped back to the left side of the heart through the pulmonary veins. This process is crucial for maintaining proper oxygenation of the body's tissues and organs.

In medicine, elasticity refers to the ability of a tissue or organ to return to its original shape after being stretched or deformed. This property is due to the presence of elastic fibers in the extracellular matrix of the tissue, which can stretch and recoil like rubber bands.

Elasticity is an important characteristic of many tissues, particularly those that are subjected to repeated stretching or compression, such as blood vessels, lungs, and skin. For example, the elasticity of the lungs allows them to expand and contract during breathing, while the elasticity of blood vessels helps maintain normal blood pressure by allowing them to expand and constrict in response to changes in blood flow.

In addition to its role in normal physiology, elasticity is also an important factor in the diagnosis and treatment of various medical conditions. For example, decreased elasticity in the lungs can be a sign of lung disease, while increased elasticity in the skin can be a sign of aging or certain genetic disorders. Medical professionals may use techniques such as pulmonary function tests or skin biopsies to assess elasticity and help diagnose these conditions.

The subclavian artery is a major blood vessel that supplies the upper limb and important structures in the neck and head. It arises from the brachiocephalic trunk (in the case of the right subclavian artery) or directly from the aortic arch (in the case of the left subclavian artery).

The subclavian artery has several branches, including:

1. The vertebral artery, which supplies blood to the brainstem and cerebellum.
2. The internal thoracic artery (also known as the mammary artery), which supplies blood to the chest wall, breast, and anterior mediastinum.
3. The thyrocervical trunk, which gives rise to several branches that supply the neck, including the inferior thyroid artery, the suprascapular artery, and the transverse cervical artery.
4. The costocervical trunk, which supplies blood to the neck and upper back, including the posterior chest wall and the lower neck muscles.

The subclavian artery is a critical vessel in maintaining adequate blood flow to the upper limb, and any blockage or damage to this vessel can lead to significant morbidity, including arm pain, numbness, weakness, or even loss of function.

Angiotensin II is a potent vasoactive peptide hormone that plays a critical role in the renin-angiotensin-aldosterone system (RAAS), which is a crucial regulator of blood pressure and fluid balance in the body. It is formed from angiotensin I through the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II has several physiological effects on various organs, including:

1. Vasoconstriction: Angiotensin II causes contraction of vascular smooth muscle, leading to an increase in peripheral vascular resistance and blood pressure.
2. Aldosterone release: Angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption and potassium excretion in the kidneys, thereby increasing water retention and blood volume.
3. Sympathetic nervous system activation: Angiotensin II activates the sympathetic nervous system, leading to increased heart rate and contractility, further contributing to an increase in blood pressure.
4. Thirst regulation: Angiotensin II stimulates the hypothalamus to increase thirst, promoting water intake and helping to maintain intravascular volume.
5. Cell growth and fibrosis: Angiotensin II has been implicated in various pathological processes, such as cell growth, proliferation, and fibrosis, which can contribute to the development of cardiovascular and renal diseases.

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are two classes of medications commonly used in clinical practice to target the RAAS by blocking the formation or action of angiotensin II, respectively. These drugs have been shown to be effective in managing hypertension, heart failure, and chronic kidney disease.

In medical terms, constriction refers to the narrowing or tightening of a body part or passageway. This can occur due to various reasons such as spasms of muscles, inflammation, or abnormal growths. It can lead to symptoms like difficulty in breathing, swallowing, or blood flow, depending on where it occurs. For example, constriction of the airways in asthma, constriction of blood vessels in hypertension, or constriction of the esophagus in certain digestive disorders.

Potassium chloride is an essential electrolyte that is often used in medical settings as a medication. It's a white, crystalline salt that is highly soluble in water and has a salty taste. In the body, potassium chloride plays a crucial role in maintaining fluid and electrolyte balance, nerve function, and muscle contraction.

Medically, potassium chloride is commonly used to treat or prevent low potassium levels (hypokalemia) in the blood. Hypokalemia can occur due to various reasons such as certain medications, kidney diseases, vomiting, diarrhea, or excessive sweating. Potassium chloride is available in various forms, including tablets, capsules, and liquids, and it's usually taken by mouth.

It's important to note that potassium chloride should be used with caution and under the supervision of a healthcare provider, as high levels of potassium (hyperkalemia) can be harmful and even life-threatening. Hyperkalemia can cause symptoms such as muscle weakness, irregular heartbeat, and cardiac arrest.

Cyclic guanosine monophosphate (cGMP) is a important second messenger molecule that plays a crucial role in various biological processes within the human body. It is synthesized from guanosine triphosphate (GTP) by the enzyme guanylyl cyclase.

Cyclic GMP is involved in regulating diverse physiological functions, such as smooth muscle relaxation, cardiovascular function, and neurotransmission. It also plays a role in modulating immune responses and cellular growth and differentiation.

In the medical field, changes in cGMP levels or dysregulation of cGMP-dependent pathways have been implicated in various disease states, including pulmonary hypertension, heart failure, erectile dysfunction, and glaucoma. Therefore, pharmacological agents that target cGMP signaling are being developed as potential therapeutic options for these conditions.

The mesenteric arteries are the arteries that supply oxygenated blood to the intestines. There are three main mesenteric arteries: the superior mesenteric artery, which supplies blood to the small intestine (duodenum to two-thirds of the transverse colon) and large intestine (cecum, ascending colon, and the first part of the transverse colon); the inferior mesenteric artery, which supplies blood to the distal third of the transverse colon, descending colon, sigmoid colon, and rectum; and the middle colic artery, which is a branch of the superior mesenteric artery that supplies blood to the transverse colon. These arteries are important in maintaining adequate blood flow to the intestines to support digestion and absorption of nutrients.

Elastic tissue is a type of connective tissue found in the body that is capable of returning to its original shape after being stretched or deformed. It is composed mainly of elastin fibers, which are protein molecules with a unique structure that allows them to stretch and recoil. Elastic tissue is found in many areas of the body, including the lungs, blood vessels, and skin, where it provides flexibility and resilience.

The elastin fibers in elastic tissue are intertwined with other types of connective tissue fibers, such as collagen, which provide strength and support. The combination of these fibers allows elastic tissue to stretch and recoil efficiently, enabling organs and tissues to function properly. For example, the elasticity of lung tissue allows the lungs to expand and contract during breathing, while the elasticity of blood vessels helps maintain blood flow and pressure.

Elastic tissue can become less flexible and resilient with age or due to certain medical conditions, such as emphysema or Marfan syndrome. This can lead to a variety of health problems, including respiratory difficulties, cardiovascular disease, and skin sagging.

The brachiocephalic trunk, also known as the brachiocephalic artery or innominate artery, is a large vessel that branches off the aorta and divides into the right common carotid artery and the right subclavian artery. It supplies blood to the head, neck, and arms on the right side of the body.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

The femoral artery is the major blood vessel that supplies oxygenated blood to the lower extremity of the human body. It is a continuation of the external iliac artery and becomes the popliteal artery as it passes through the adductor hiatus in the adductor magnus muscle of the thigh.

The femoral artery is located in the femoral triangle, which is bound by the sartorius muscle anteriorly, the adductor longus muscle medially, and the biceps femoris muscle posteriorly. It can be easily palpated in the groin region, making it a common site for taking blood samples, measuring blood pressure, and performing surgical procedures such as femoral artery catheterization and bypass grafting.

The femoral artery gives off several branches that supply blood to the lower limb, including the deep femoral artery, the superficial femoral artery, and the profunda femoris artery. These branches provide blood to the muscles, bones, skin, and other tissues of the leg, ankle, and foot.

NG-Nitroarginine Methyl Ester (L-NAME) is not a medication, but rather a research chemical used in scientific studies. It is an inhibitor of nitric oxide synthase, an enzyme that synthesizes nitric oxide, a molecule involved in the relaxation of blood vessels.

Therefore, L-NAME is often used in experiments to investigate the role of nitric oxide in various physiological and pathophysiological processes. It is important to note that the use of L-NAME in humans is not approved for therapeutic purposes due to its potential side effects, which can include hypertension, decreased renal function, and decreased cerebral blood flow.

Prosthesis design is a specialized field in medical device technology that involves creating and developing artificial substitutes to replace a missing body part, such as a limb, tooth, eye, or internal organ. The design process typically includes several stages: assessment of the patient's needs, selection of appropriate materials, creation of a prototype, testing and refinement, and final fabrication and fitting of the prosthesis.

The goal of prosthesis design is to create a device that functions as closely as possible to the natural body part it replaces, while also being comfortable, durable, and aesthetically pleasing for the patient. The design process may involve collaboration between medical professionals, engineers, and designers, and may take into account factors such as the patient's age, lifestyle, occupation, and overall health.

Prosthesis design can be highly complex, particularly for advanced devices such as robotic limbs or implantable organs. These devices often require sophisticated sensors, actuators, and control systems to mimic the natural functions of the body part they replace. As a result, prosthesis design is an active area of research and development in the medical field, with ongoing efforts to improve the functionality, comfort, and affordability of these devices for patients.

Vascular surgical procedures are operations that are performed to treat conditions and diseases related to the vascular system, which includes the arteries, veins, and capillaries. These procedures can be invasive or minimally invasive and are often used to treat conditions such as peripheral artery disease, carotid artery stenosis, aortic aneurysms, and venous insufficiency.

Some examples of vascular surgical procedures include:

* Endarterectomy: a procedure to remove plaque buildup from the inside of an artery
* Bypass surgery: creating a new path for blood to flow around a blocked or narrowed artery
* Angioplasty and stenting: using a balloon to open a narrowed artery and placing a stent to keep it open
* Aneurysm repair: surgically repairing an aneurysm, a weakened area in the wall of an artery that has bulged out and filled with blood
* Embolectomy: removing a blood clot from a blood vessel
* Thrombectomy: removing a blood clot from a vein

These procedures are typically performed by vascular surgeons, who are trained in the diagnosis and treatment of vascular diseases.

Aortic valve insufficiency, also known as aortic regurgitation or aortic incompetence, is a cardiac condition in which the aortic valve does not close properly during the contraction phase of the heart cycle. This allows blood to flow back into the left ventricle from the aorta, instead of being pumped out to the rest of the body. As a result, the left ventricle must work harder to maintain adequate cardiac output, which can lead to left ventricular enlargement and heart failure over time if left untreated.

The aortic valve is a trileaflet valve that lies between the left ventricle and the aorta. During systole (the contraction phase of the heart cycle), the aortic valve opens to allow blood to be pumped out of the left ventricle into the aorta and then distributed to the rest of the body. During diastole (the relaxation phase of the heart cycle), the aortic valve closes to prevent blood from flowing back into the left ventricle.

Aortic valve insufficiency can be caused by various conditions, including congenital heart defects, infective endocarditis, rheumatic heart disease, Marfan syndrome, and trauma. Symptoms of aortic valve insufficiency may include shortness of breath, fatigue, chest pain, palpitations, and edema (swelling). Diagnosis is typically made through physical examination, echocardiography, and other imaging studies. Treatment options depend on the severity of the condition and may include medication, surgery to repair or replace the aortic valve, or a combination of both.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Blood vessels are the part of the circulatory system that transport blood throughout the body. They form a network of tubes that carry blood to and from the heart, lungs, and other organs. The main types of blood vessels are arteries, veins, and capillaries. Arteries carry oxygenated blood away from the heart to the rest of the body, while veins return deoxygenated blood back to the heart. Capillaries connect arteries and veins and facilitate the exchange of oxygen, nutrients, and waste materials between the blood and the body's tissues.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Aortic arch syndromes are a group of conditions that affect the aortic arch, which is the curved portion of the aorta that arises from the left ventricle of the heart and gives rise to the major branches of the arterial system. These syndromes are typically caused by congenital abnormalities or degenerative changes in the aorta and can result in various complications, such as obstruction of blood flow, aneurysm formation, and dissection.

There are several types of aortic arch syndromes, including:

1. Coarctation of the Aorta: This is a narrowing of the aorta at the point where it leaves the heart, just distal to the origin of the left subclavian artery. It can cause hypertension in the upper extremities and reduced blood flow to the lower extremities.
2. Aortic Arch Aneurysm: This is a localized dilation or bulging of the aorta in the region of the aortic arch. It can lead to dissection, rupture, or embolism.
3. Aortic Arch Dissection: This is a separation of the layers of the aortic wall, which can result from hypertension, trauma, or genetic disorders such as Marfan syndrome. It can cause severe chest pain, shortness of breath, and shock.
4. Kommerell's Diverticulum: This is an outpouching or bulge in the aorta at the origin of the ligamentum arteriosum, which is a remnant of the ductus arteriosus. It can cause compression of the airways or esophagus and increase the risk of dissection or rupture.
5. Abernethy Malformation: This is a rare congenital anomaly in which there is an abnormal connection between the portal vein and systemic venous circulation, leading to the bypass of the liver. It can cause various complications such as hepatic encephalopathy, pulmonary hypertension, and liver tumors.

The diagnosis and management of aortic arch syndromes require a multidisciplinary approach involving cardiologists, radiologists, surgeons, and other specialists. Treatment options may include medications, endovascular procedures, or surgical interventions depending on the severity and location of the lesion.

Methylene Blue is a heterocyclic aromatic organic compound with the molecular formula C16H18ClN3S. It is primarily used as a medication, but can also be used as a dye or as a chemical reagent. As a medication, it is used in the treatment of methemoglobinemia (a condition where an abnormal amount of methemoglobin is present in the blood), as well as in some forms of poisoning and infections. It works by acting as a reducing agent, converting methemoglobin back to hemoglobin, which is the form of the protein that is responsible for carrying oxygen in the blood. Methylene Blue has also been used off-label for other conditions, such as vasculitis and Alzheimer's disease, although its effectiveness for these uses is not well established.

It is important to note that Methylene Blue should be used with caution, as it can cause serious side effects in some people, particularly those with kidney or liver problems, or those who are taking certain medications. It is also important to follow the instructions of a healthcare provider when using this medication, as improper use can lead to toxicity.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

The carotid arteries are a pair of vital blood vessels in the human body that supply oxygenated blood to the head and neck. Each person has two common carotid arteries, one on each side of the neck, which branch off from the aorta, the largest artery in the body.

The right common carotid artery originates from the brachiocephalic trunk, while the left common carotid artery arises directly from the aortic arch. As they ascend through the neck, they split into two main branches: the internal and external carotid arteries.

The internal carotid artery supplies oxygenated blood to the brain, eyes, and other structures within the skull, while the external carotid artery provides blood to the face, scalp, and various regions of the neck.

Maintaining healthy carotid arteries is crucial for overall cardiovascular health and preventing serious conditions like stroke, which can occur when the arteries become narrowed or blocked due to the buildup of plaque or fatty deposits (atherosclerosis). Regular check-ups with healthcare professionals may include monitoring carotid artery health through ultrasound or other imaging techniques.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Cardiovascular models are simplified representations or simulations of the human cardiovascular system used in medical research, education, and training. These models can be physical, computational, or mathematical and are designed to replicate various aspects of the heart, blood vessels, and blood flow. They can help researchers study the structure and function of the cardiovascular system, test new treatments and interventions, and train healthcare professionals in diagnostic and therapeutic techniques.

Physical cardiovascular models may include artificial hearts, blood vessels, or circulation systems made from materials such as plastic, rubber, or silicone. These models can be used to study the mechanics of heart valves, the effects of different surgical procedures, or the impact of various medical devices on blood flow.

Computational and mathematical cardiovascular models use algorithms and equations to simulate the behavior of the cardiovascular system. These models may range from simple representations of a single heart chamber to complex simulations of the entire circulatory system. They can be used to study the electrical activity of the heart, the biomechanics of blood flow, or the distribution of drugs in the body.

Overall, cardiovascular models play an essential role in advancing our understanding of the human body and improving patient care.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Hypercholesterolemia is a medical term that describes a condition characterized by high levels of cholesterol in the blood. Specifically, it refers to an abnormally elevated level of low-density lipoprotein (LDL) cholesterol, also known as "bad" cholesterol, which can contribute to the development of fatty deposits in the arteries called plaques. Over time, these plaques can narrow and harden the arteries, leading to atherosclerosis, a condition that increases the risk of heart disease, stroke, and other cardiovascular complications.

Hypercholesterolemia can be caused by various factors, including genetics, lifestyle choices, and underlying medical conditions. In some cases, it may not cause any symptoms until serious complications arise. Therefore, regular cholesterol screening is essential for early detection and management of hypercholesterolemia. Treatment typically involves lifestyle modifications, such as a healthy diet, regular exercise, and weight management, along with medication if necessary.

Tunica intima, also known as the intima layer, is the innermost layer of a blood vessel, including arteries and veins. It is in direct contact with the flowing blood and is composed of simple squamous endothelial cells that form a continuous, non-keratinized, stratified epithelium. These cells play a crucial role in maintaining vascular homeostasis by regulating the passage of molecules and immune cells between the blood and the vessel wall, as well as contributing to the maintenance of blood fluidity and preventing coagulation.

The tunica intima is supported by a thin layer of connective tissue called the basement membrane, which provides structural stability and anchorage for the endothelial cells. Beneath the basement membrane lies a loose network of elastic fibers and collagen, known as the internal elastic lamina, that separates the tunica intima from the middle layer, or tunica media.

In summary, the tunica intima is the innermost layer of blood vessels, primarily composed of endothelial cells and a basement membrane, which regulates various functions to maintain vascular homeostasis.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Aortic valve stenosis is a cardiac condition characterized by the narrowing or stiffening of the aortic valve, which separates the left ventricle (the heart's main pumping chamber) from the aorta (the large artery that carries oxygen-rich blood to the rest of the body). This narrowing or stiffening prevents the aortic valve from opening fully, resulting in reduced blood flow from the left ventricle to the aorta and the rest of the body.

The narrowing can be caused by several factors, including congenital heart defects, calcification (hardening) of the aortic valve due to aging, or scarring of the valve due to rheumatic fever or other inflammatory conditions. As a result, the left ventricle must work harder to pump blood through the narrowed valve, which can lead to thickening and enlargement of the left ventricular muscle (left ventricular hypertrophy).

Symptoms of aortic valve stenosis may include chest pain or tightness, shortness of breath, fatigue, dizziness or fainting, and heart palpitations. Severe aortic valve stenosis can lead to serious complications such as heart failure, arrhythmias, or even sudden cardiac death. Treatment options may include medications to manage symptoms, lifestyle changes, or surgical intervention such as aortic valve replacement.

Congenital heart defects (CHDs) are structural abnormalities in the heart that are present at birth. They can affect any part of the heart's structure, including the walls of the heart, the valves inside the heart, and the major blood vessels that lead to and from the heart.

Congenital heart defects can range from mild to severe and can cause various symptoms depending on the type and severity of the defect. Some common symptoms of CHDs include cyanosis (a bluish tint to the skin, lips, and fingernails), shortness of breath, fatigue, poor feeding, and slow growth in infants and children.

There are many different types of congenital heart defects, including:

1. Septal defects: These are holes in the walls that separate the four chambers of the heart. The two most common septal defects are atrial septal defect (ASD) and ventricular septal defect (VSD).
2. Valve abnormalities: These include narrowed or leaky valves, which can affect blood flow through the heart.
3. Obstruction defects: These occur when blood flow is blocked or restricted due to narrowing or absence of a part of the heart's structure. Examples include pulmonary stenosis and coarctation of the aorta.
4. Cyanotic heart defects: These cause a lack of oxygen in the blood, leading to cyanosis. Examples include tetralogy of Fallot and transposition of the great arteries.

The causes of congenital heart defects are not fully understood, but genetic factors and environmental influences during pregnancy may play a role. Some CHDs can be detected before birth through prenatal testing, while others may not be diagnosed until after birth or later in childhood. Treatment for CHDs may include medication, surgery, or other interventions to improve blood flow and oxygenation of the body's tissues.

The celiac artery, also known as the anterior abdominal aortic trunk, is a major artery that originates from the abdominal aorta and supplies oxygenated blood to the foregut, which includes the stomach, liver, spleen, pancreas, and upper part of the duodenum. It branches into three main branches: the left gastric artery, the splenic artery, and the common hepatic artery. The celiac artery plays a crucial role in providing blood to these vital organs, and any disruption or damage to it can lead to serious health consequences.

Smooth muscle myocytes are specialized cells that make up the contractile portion of non-striated, or smooth, muscles. These muscles are found in various organs and structures throughout the body, including the walls of blood vessels, the digestive system, the respiratory system, and the reproductive system.

Smooth muscle myocytes are smaller than their striated counterparts (skeletal and cardiac muscle cells) and have a single nucleus. They lack the distinctive banding pattern seen in striated muscles and instead have a uniform appearance of actin and myosin filaments. Smooth muscle myocytes are controlled by the autonomic nervous system, which allows them to contract and relax involuntarily.

These cells play an essential role in many physiological processes, such as regulating blood flow, moving food through the digestive tract, and facilitating childbirth. They can also contribute to various pathological conditions, including hypertension, atherosclerosis, and gastrointestinal disorders.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Angiography is a medical procedure in which an x-ray image is taken to visualize the internal structure of blood vessels, arteries, or veins. This is done by injecting a radiopaque contrast agent (dye) into the blood vessel using a thin, flexible catheter. The dye makes the blood vessels visible on an x-ray image, allowing doctors to diagnose and treat various medical conditions such as blockages, narrowing, or malformations of the blood vessels.

There are several types of angiography, including:

* Cardiac angiography (also called coronary angiography) - used to examine the blood vessels of the heart
* Cerebral angiography - used to examine the blood vessels of the brain
* Peripheral angiography - used to examine the blood vessels in the limbs or other parts of the body.

Angiography is typically performed by a radiologist, cardiologist, or vascular surgeon in a hospital setting. It can help diagnose conditions such as coronary artery disease, aneurysms, and peripheral arterial disease, among others.

A medical definition of an ulcer is:

A lesion on the skin or mucous membrane characterized by disintegration of surface epithelium, inflammation, and is associated with the loss of substance below the normal lining. Gastric ulcers and duodenal ulcers are types of peptic ulcers that occur in the gastrointestinal tract.

Another type of ulcer is a venous ulcer, which occurs when there is reduced blood flow from vein insufficiency, usually in the lower leg. This can cause skin damage and lead to an open sore or ulcer.

There are other types of ulcers as well, including decubitus ulcers (also known as pressure sores or bedsores), which are caused by prolonged pressure on the skin.

Paraplegia is a medical condition characterized by partial or complete loss of motor function and sensation in the lower extremities, typically affecting both legs. This results from damage to the spinal cord, often due to trauma such as accidents, falls, or gunshot wounds, or from diseases like spina bifida, polio, or tumors. The specific area and extent of the injury on the spinal cord determine the severity and location of paralysis. Individuals with paraplegia may require assistive devices for mobility, such as wheelchairs, and may face various health challenges, including pressure sores, urinary tract infections, and chronic pain.

Pulsatile flow is a type of fluid flow that occurs in a rhythmic, wave-like pattern, typically seen in the cardiovascular system. It refers to the periodic variation in the volume or velocity of a fluid (such as blood) that is caused by the regular beating of the heart. In pulsatile flow, there are periods of high flow followed by periods of low or no flow, which creates a distinct pattern on a graph or tracing. This type of flow is important for maintaining proper function and health in organs and tissues throughout the body.

The Ductus Arteriosus is a fetal blood vessel that connects the pulmonary trunk (the artery that carries blood from the heart to the lungs) and the aorta (the largest artery in the body, which carries oxygenated blood from the heart to the rest of the body). This vessel allows most of the blood from the right ventricle of the fetal heart to bypass the lungs, as the fetus receives oxygen through the placenta rather than breathing air.

After birth, with the first breaths, the blood oxygen level increases and the pressure in the lungs rises. As a result, the circulation in the newborn's body changes, and the Ductus Arteriosus is no longer needed. Within the first few days or weeks of life, this vessel usually closes spontaneously, turning into a fibrous cord called the Ligamentum Arteriosum.

Persistent Patency of the Ductus Arteriosus (PDA) occurs when the Ductus Arteriosus does not close after birth, which can lead to various complications such as heart failure and pulmonary hypertension. This condition is often seen in premature infants and may require medical intervention or surgical closure of the vessel.

Deep hypothermic circulatory arrest (DHCA) is a medical procedure in which the body temperature is lowered to around 15-20°C (59-68°F), and the circulation of blood is temporarily stopped. This technique is often used during complex cardiac surgeries, such as aortic arch reconstruction or repair of congenital heart defects, to reduce the body's metabolic demand for oxygen and allow surgeons to operate in a still and bloodless field.

During DHCA, the patient is connected to a heart-lung machine that takes over the function of pumping blood and oxygenating it. The blood is then cooled down using a cooling device before being returned to the body. Once the body temperature reaches the desired level, the circulation is stopped for a short period, usually no more than 30 minutes, during which time the surgeon can work on the heart or great vessels.

After the surgical procedure is complete, the patient is gradually rewarmed, and the circulation is restarted. DHCA carries some risks, including neurological complications such as stroke, cognitive impairment, or delirium, but it remains an important tool in complex cardiac surgery.

Endovascular procedures are minimally invasive medical treatments that involve accessing and repairing blood vessels or other interior parts of the body through small incisions or punctures. These procedures typically use specialized catheters, wires, and other tools that are inserted into the body through an artery or vein, usually in the leg or arm.

Endovascular procedures can be used to treat a wide range of conditions, including aneurysms, atherosclerosis, peripheral artery disease, carotid artery stenosis, and other vascular disorders. Some common endovascular procedures include angioplasty, stenting, embolization, and thrombectomy.

The benefits of endovascular procedures over traditional open surgery include smaller incisions, reduced trauma to surrounding tissues, faster recovery times, and lower risks of complications such as infection and bleeding. However, endovascular procedures may not be appropriate for all patients or conditions, and careful evaluation and consideration are necessary to determine the best treatment approach.

A reoperation is a surgical procedure that is performed again on a patient who has already undergone a previous operation for the same or related condition. Reoperations may be required due to various reasons, such as inadequate initial treatment, disease recurrence, infection, or complications from the first surgery. The nature and complexity of a reoperation can vary widely depending on the specific circumstances, but it often carries higher risks and potential complications compared to the original operation.

Spinal cord ischemia refers to a reduction or interruption of blood flow to the spinal cord, leading to insufficient oxygen and nutrient supply. This condition can cause damage to the spinal cord tissue, potentially resulting in neurological deficits, such as muscle weakness, sensory loss, or autonomic dysfunction. Spinal cord ischemia may be caused by various factors, including atherosclerosis, embolism, spinal artery stenosis, or complications during surgery. The severity and extent of the neurological impairment depend on the duration and location of the ischemic event in the spinal cord.

Thoracotomy is a surgical procedure that involves making an incision on the chest wall to gain access to the thoracic cavity, which contains the lungs, heart, esophagus, trachea, and other vital organs. The incision can be made on the side (lateral thoracotomy), back (posterolateral thoracotomy), or front (median sternotomy) of the chest wall, depending on the specific surgical indication.

Thoracotomy is performed for various indications, including lung biopsy, lung resection, esophagectomy, heart surgery, and mediastinal mass removal. The procedure allows the surgeon to directly visualize and access the organs within the thoracic cavity, perform necessary procedures, and control bleeding if needed.

After the procedure, the incision is typically closed with sutures or staples, and a chest tube may be placed to drain any accumulated fluid or air from the pleural space around the lungs. The patient will require postoperative care and monitoring in a hospital setting until their condition stabilizes.

Desmosine is a unique amino acid that is not found in proteins, but instead is formed through the cross-linking of lysine residues in collagen and elastin fibers. These fibers are important components of the extracellular matrix, providing strength and elasticity to tissues such as skin, lungs, and blood vessels.

Desmosine is formed through a series of chemical reactions involving the oxidation of lysine residues and their subsequent condensation with other amino acids. This process creates cross-links between collagen and elastin fibers, which helps to stabilize their structure and enhance their mechanical properties.

Abnormalities in desmosine levels have been associated with various diseases, including emphysema, Marfan syndrome, and Ehlers-Danlos syndrome. Measuring desmosine levels in urine or tissue samples can provide valuable insights into the health of collagen and elastin fibers and help diagnose and monitor these conditions.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Thromboxane receptors are a type of G protein-coupled receptor that binds thromboxane A2 (TXA2), a powerful inflammatory mediator and vasoconstrictor synthesized in the body from arachidonic acid. These receptors play a crucial role in various physiological processes, including platelet aggregation, smooth muscle contraction, and modulation of immune responses.

There are two main types of thromboxane receptors: TPα and TPβ. The TPα receptor is primarily found on platelets and vascular smooth muscle cells, while the TPβ receptor is expressed in various tissues such as the kidney, lung, and brain. Activation of these receptors by thromboxane A2 leads to a variety of cellular responses, including platelet activation and aggregation, vasoconstriction, and inflammation.

Abnormalities in thromboxane receptor function have been implicated in several pathological conditions, such as cardiovascular diseases, asthma, and cancer. Therefore, thromboxane receptors are an important target for the development of therapeutic agents to treat these disorders.

Magnetic Resonance Angiography (MRA) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to create detailed images of the blood vessels or arteries within the body. It is a type of Magnetic Resonance Imaging (MRI) that focuses specifically on the circulatory system.

MRA can be used to diagnose and evaluate various conditions related to the blood vessels, such as aneurysms, stenosis (narrowing of the vessel), or the presence of plaques or tumors. It can also be used to plan for surgeries or other treatments related to the vascular system. The procedure does not use radiation and is generally considered safe, although people with certain implants like pacemakers may not be able to have an MRA due to safety concerns.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

**Prazosin** is an antihypertensive drug, which belongs to the class of medications called alpha-blockers. It works by relaxing the muscles in the blood vessels, which helps to lower blood pressure and improve blood flow. Prazosin is primarily used to treat high blood pressure (hypertension), but it may also be used for the management of symptoms related to enlarged prostate (benign prostatic hyperplasia).

In a medical definition context:

Prazosin: A selective α1-adrenergic receptor antagonist, used in the treatment of hypertension and benign prostatic hyperplasia. It acts by blocking the action of norepinephrine on the smooth muscle of blood vessels, resulting in vasodilation and decreased peripheral vascular resistance. This leads to a reduction in blood pressure and an improvement in urinary symptoms associated with an enlarged prostate.

The tunica media is the middle layer of the wall of a blood vessel or hollow organ in the body. It is primarily composed of smooth muscle cells and elastic fibers, which allow the vessel or organ to expand and contract. This layer helps regulate the diameter of the lumen (the inner space) of the vessel or organ, thereby controlling the flow of fluids such as blood or lymph through it. The tunica media plays a crucial role in maintaining proper organ function and blood pressure regulation.

The Sinus of Valsalva are three pouch-like dilations or outpouchings located at the upper part (root) of the aorta, just above the aortic valve. They are named after Antonio Maria Valsalva, an Italian anatomist and physician. These sinuses are divided into three parts:

1. Right Sinus of Valsalva: It is located to the right of the ascending aorta and usually gives rise to the right coronary artery.
2. Left Sinus of Valsalva: It is situated to the left of the ascending aorta and typically gives rise to the left coronary artery.
3. Non-coronary Sinus of Valsalva: This sinus is located in between the right and left coronary sinuses, and it does not give rise to any coronary arteries.

These sinuses play a crucial role during the cardiac cycle, particularly during ventricular contraction (systole). The pressure difference between the aorta and the ventricles causes the aortic valve cusps to be pushed into these sinuses, preventing the backflow of blood from the aorta into the ventricles.

Anatomical variations in the size and shape of the Sinuses of Valsalva can occur, and certain conditions like congenital heart diseases (e.g., aortic valve stenosis or bicuspid aortic valve) may affect their structure and function. Additionally, aneurysms or ruptures of the sinuses can lead to severe complications, such as cardiac tamponade, endocarditis, or stroke.

Cardiopulmonary bypass (CPB) is a medical procedure that temporarily takes over the functions of the heart and lungs during major heart surgery. It allows the surgeon to operate on a still, bloodless heart.

During CPB, the patient's blood is circulated outside the body with the help of a heart-lung machine. The machine pumps the blood through a oxygenator, where it is oxygenated and then returned to the body. This bypasses the heart and lungs, hence the name "cardiopulmonary bypass."

CPB involves several components, including a pump, oxygenator, heat exchanger, and tubing. The patient's blood is drained from the heart through cannulas (tubes) and passed through the oxygenator, where it is oxygenated and carbon dioxide is removed. The oxygenated blood is then warmed to body temperature in a heat exchanger before being pumped back into the body.

While on CPB, the patient's heart is stopped with the help of cardioplegia solution, which is infused directly into the coronary arteries. This helps to protect the heart muscle during surgery. The surgeon can then operate on a still and bloodless heart, allowing for more precise surgical repair.

After the surgery is complete, the patient is gradually weaned off CPB, and the heart is restarted with the help of electrical stimulation or medication. The patient's condition is closely monitored during this time to ensure that their heart and lungs are functioning properly.

While CPB has revolutionized heart surgery and allowed for more complex procedures to be performed, it is not without risks. These include bleeding, infection, stroke, kidney damage, and inflammation. However, with advances in technology and technique, the risks associated with CPB have been significantly reduced over time.

Arterial occlusive diseases are medical conditions characterized by the blockage or narrowing of the arteries, which can lead to a reduction in blood flow to various parts of the body. This reduction in blood flow can cause tissue damage and may result in serious complications such as tissue death (gangrene), organ dysfunction, or even death.

The most common cause of arterial occlusive diseases is atherosclerosis, which is the buildup of plaque made up of fat, cholesterol, calcium, and other substances in the inner lining of the artery walls. Over time, this plaque can harden and narrow the arteries, restricting blood flow. Other causes of arterial occlusive diseases include blood clots, emboli (tiny particles that travel through the bloodstream and lodge in smaller vessels), inflammation, trauma, and certain inherited conditions.

Symptoms of arterial occlusive diseases depend on the location and severity of the blockage. Common symptoms include:

* Pain, cramping, or fatigue in the affected limb, often triggered by exercise and relieved by rest (claudication)
* Numbness, tingling, or weakness in the affected limb
* Coldness or discoloration of the skin in the affected area
* Slow-healing sores or wounds on the toes, feet, or legs
* Erectile dysfunction in men

Treatment for arterial occlusive diseases may include lifestyle changes such as quitting smoking, exercising regularly, and eating a healthy diet. Medications to lower cholesterol, control blood pressure, prevent blood clots, or manage pain may also be prescribed. In severe cases, surgical procedures such as angioplasty, stenting, or bypass surgery may be necessary to restore blood flow.

The superior mesenteric artery (SMA) is a major artery that supplies oxygenated blood to the intestines, specifically the lower part of the duodenum, jejunum, ileum, cecum, ascending colon, and the first and second parts of the transverse colon. It originates from the abdominal aorta, located just inferior to the pancreas, and passes behind the neck of the pancreas before dividing into several branches to supply the intestines. The SMA is an essential vessel in the digestive system, providing blood flow for nutrient absorption and overall gut function.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Alpha-1 adrenergic receptors (also known as α1-adrenoreceptors) are a type of G protein-coupled receptor that binds catecholamines, such as norepinephrine and epinephrine. These receptors are primarily found in the smooth muscle of various organs, including the vasculature, heart, liver, kidneys, gastrointestinal tract, and genitourinary system.

When an alpha-1 adrenergic receptor is activated by a catecholamine, it triggers a signaling cascade that leads to the activation of phospholipase C, which in turn activates protein kinase C and increases intracellular calcium levels. This ultimately results in smooth muscle contraction, increased heart rate and force of contraction, and vasoconstriction.

Alpha-1 adrenergic receptors are also found in the central nervous system, where they play a role in regulating wakefulness, attention, and anxiety. There are three subtypes of alpha-1 adrenergic receptors (α1A, α1B, and α1D), each with distinct physiological roles and pharmacological properties.

In summary, alpha-1 adrenergic receptors are a type of G protein-coupled receptor that binds catecholamines and mediates various physiological responses, including smooth muscle contraction, increased heart rate and force of contraction, vasoconstriction, and regulation of wakefulness and anxiety.

Desoxycorticosterone (also known as desoxycorticosterone or DCZ) is a natural steroid hormone produced by the adrenal gland. It is a weak glucocorticoid and mineralocorticoid, which means it has some effects on blood sugar metabolism and regulates electrolyte and fluid balance in the body.

Desoxycorticosterone is used as a medication in the form of its synthetic acetate ester, desoxycorticosterone acetate (DCA), to treat Addison's disease, a condition in which the adrenal glands do not produce enough steroid hormones. DCA helps to replace the missing mineralocorticoid activity and prevent the symptoms of low blood pressure, dehydration, and electrolyte imbalances associated with Addison's disease.

It is important to note that desoxycorticosterone should only be used under the supervision of a healthcare provider, as it can have significant side effects if not properly monitored.

Adrenergic alpha-antagonists, also known as alpha-blockers, are a class of medications that block the effects of adrenaline and noradrenaline at alpha-adrenergic receptors. These receptors are found in various tissues throughout the body, including the smooth muscle of blood vessels, the heart, the genitourinary system, and the eyes.

When alpha-blockers bind to these receptors, they prevent the activation of the sympathetic nervous system, which is responsible for the "fight or flight" response. This results in a relaxation of the smooth muscle, leading to vasodilation (widening of blood vessels), decreased blood pressure, and increased blood flow.

Alpha-blockers are used to treat various medical conditions, such as hypertension (high blood pressure), benign prostatic hyperplasia (enlarged prostate), pheochromocytoma (a rare tumor of the adrenal gland), and certain types of glaucoma.

Examples of alpha-blockers include doxazosin, prazosin, terazosin, and tamsulosin. Side effects of alpha-blockers may include dizziness, lightheadedness, headache, weakness, and orthostatic hypotension (a sudden drop in blood pressure upon standing).

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Epoprostenol is a medication that belongs to a class of drugs called prostaglandins. It is a synthetic analog of a natural substance in the body called prostacyclin, which widens blood vessels and has anti-platelet effects. Epoprostenol is used to treat pulmonary arterial hypertension (PAH), a condition characterized by high blood pressure in the arteries that supply blood to the lungs.

Epoprostenol works by relaxing the smooth muscle in the walls of the pulmonary arteries, which reduces the resistance to blood flow and lowers the pressure within these vessels. This helps improve symptoms such as shortness of breath, fatigue, and chest pain, and can also prolong survival in people with PAH.

Epoprostenol is administered continuously through a small pump that delivers the medication directly into the bloodstream. It is a potent vasodilator, which means it can cause a sudden drop in blood pressure if not given carefully. Therefore, it is usually started in a hospital setting under close medical supervision.

Common side effects of epoprostenol include headache, flushing, jaw pain, nausea, vomiting, diarrhea, and muscle or joint pain. More serious side effects can include bleeding, infection at the site of the catheter, and an allergic reaction to the medication.

The inferior vena cava (IVC) is the largest vein in the human body that carries deoxygenated blood from the lower extremities, pelvis, and abdomen to the right atrium of the heart. It is formed by the union of the left and right common iliac veins at the level of the fifth lumbar vertebra. The inferior vena cava is a retroperitoneal structure, meaning it lies behind the peritoneum, the lining that covers the abdominal cavity. It ascends through the posterior abdominal wall and passes through the central tendon of the diaphragm to enter the thoracic cavity.

The inferior vena cava is composed of three parts:

1. The infrarenal portion, which lies below the renal veins
2. The renal portion, which receives blood from the renal veins
3. The suprahepatic portion, which lies above the liver and receives blood from the hepatic veins before draining into the right atrium of the heart.

The inferior vena cava plays a crucial role in maintaining venous return to the heart and contributing to cardiovascular function.

Nitroglycerin, also known as glyceryl trinitrate, is a medication used primarily for the treatment of angina pectoris (chest pain due to coronary artery disease) and hypertensive emergencies (severe high blood pressure). It belongs to a class of drugs called nitrates or organic nitrites.

Nitroglycerin works by relaxing and dilating the smooth muscle in blood vessels, which leads to decreased workload on the heart and increased oxygen delivery to the myocardium (heart muscle). This results in reduced symptoms of angina and improved cardiac function during hypertensive emergencies.

The drug is available in various forms, including sublingual tablets, sprays, transdermal patches, ointments, and intravenous solutions. The choice of formulation depends on the specific clinical situation and patient needs. Common side effects of nitroglycerin include headache, dizziness, and hypotension (low blood pressure).

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Nitro-L-arginine or Nitroarginine is not a medical term per se, but it is a chemical compound that is sometimes used in medical research and experiments. It is a salt of nitric acid and L-arginine, an amino acid that is important for the functioning of the body.

Nitroarginine is known to inhibit the production of nitric oxide, a molecule that plays a role in various physiological processes such as blood flow regulation, immune response, and neurotransmission. As a result, nitroarginine has been used in research to study the effects of reduced nitric oxide levels on different systems in the body.

It's worth noting that nitroarginine is not approved for use as a medication in humans, and its use is generally limited to laboratory settings.

Czechoslovakia was a sovereign state in Central Europe that existed from October 28, 1918, when it declared its independence from the Austro-Hungarian Empire, until January 1, 1993. On that date, Czechoslovakia underwent a "velvet divorce" into two separate countries, the Czech Republic and Slovakia.

The medical definition of 'Czechoslovakia' is not applicable as it was a country and not a medical term or condition.

... the aorta then travels inferiorly as the descending aorta. The descending aorta has two parts. The aorta begins to descend in ... The aorta (/eɪˈɔːrtə/ ay-OR-tə; PL: aortas or aortae) is the main and largest artery in the human body, originating from the ... After the aorta passes through the diaphragm, it is known as the abdominal aorta. The aorta ends by dividing into two major ... The aorta then continues downward as the abdominal aorta (or abdominal portion of the aorta) from the diaphragm to the aortic ...
The thoracic aorta is a continuation of the descending aorta and becomes the abdominal aorta when it passes through the ... The thoracic aorta is a part of the aorta located in the thorax. It is a continuation of the aortic arch. It is located within ... The thoracic aorta is part of the descending aorta, which has different parts named according to their structure or location. ... The initial part of the aorta, the ascending aorta, rises out of the left ventricle, from which it is separated by the aortic ...
"Aorta". Psychlists. Retrieved 2010-08-23. "Aorta". Discogs. Retrieved 2010-08-23. Aorta at Allmusic Aorta discography at ... 1970 Aorta (Columbia CS 9785) 1969 Aorta 2 (Happy Tiger HT-1010) 1970 Aorta [Reissue] (Buy or Die BOD 104) 1996 J. Vincent, R. ... The original Aorta later re-formed to do promotional spots for the U.S. Armed Forces. Their first album, Aorta, was reissued on ... "Aorta". The Rising Storm. 7 January 2008. Retrieved 2010-08-23. "Robert Christgau: CG: Aorta". "Robert Christgau: CG 70s: The ...
The paired dorsal aortae arise from aortic arches that in turn arise from the aortic sac. The primary dorsal aorta is located ... The dorsal aortae are paired (left and right) embryological vessels which progress to form the descending aorta. ... backward on the lateral aspect of the notochord under the name of the dorsal aorta. The dorsal aortae give branches to the yolk ... Each primitive aorta anteriorly receives the vitelline vein from the yolk-sac, and is prolonged[clarification needed] ...
As part of the aorta, it is a direct continuation of the descending aorta (of the thorax). The abdominal aorta begins at the ... Abdominal aorta Abdominal aorta ultrasound Cardiovascular system Nutcracker syndrome Aortocaval compression syndrome Lech, ... The abdominal aorta supplies blood to much of the abdominal cavity. It begins at T12 and ends at L4 with its bifurcation into ... The abdominal aorta's venous counterpart, the inferior vena cava (IVC), travels parallel to it on its right side. Above the ...
Fetal ascending aorta Ascending aorta Ascending aorta Ascending aorta Ascending aorta Ascending aorta Ascending aorta Ascending ... The ascending aorta (AAo) is a portion of the aorta commencing at the upper part of the base of the left ventricle, on a level ... The sinotubular junction is the point in the ascending aorta where the aortic sinuses end and the aorta becomes a tubular ... This dilatation is termed the bulb of the aorta, and on transverse section presents a somewhat oval figure. The ascending aorta ...
... (78°6′S 163°30′E / 78.100°S 163.500°E / -78.100; 163.500) is a ridge that separates upper Miers Glacier from ... This article incorporates public domain material from "Aorta Ridge". Geographic Names Information System. United States ...
In human anatomy, the descending aorta is part of the aorta, the largest artery in the body. The descending aorta begins at the ... The descending aorta anatomically consists of two portions or segments, the thoracic and the abdominal aorta, in correspondence ... Within the abdomen, the descending aorta branches into the two common iliac arteries which serve the pelvis and eventually legs ... The ductus arteriosus connects to the junction between the pulmonary artery and the descending aorta in foetal life. This ...
An overriding aorta is a congenital heart defect where the aorta is positioned directly over a ventricular septal defect (VSD ... The result is that the aorta receives some blood from the right ventricle, causing mixing of oxygenated and deoxygenated blood ... "Overriding aorta (Concept Id: C0265886) - MedGen - NCBI". www.ncbi.nlm.nih.gov. Retrieved 31 October 2021. v t e (Articles ...
By birth, the dorsal aorta becomes the descending aorta, while the genital ridges form the gonads. The mesonephros go on to ... the number of CFU-S was much greater in the aorta gonad mesonephros region. LTR-HSC activity was also found in the aorta gonad ... The dorsal aorta consists of an endothelial layer and an underlying stromal layer. There is also another cell population called ... The aorta-gonad-mesonephros (AGM) is a region of embryonic mesoderm that develops during embryonic development from the para- ...
... are confined to the thoracic portion of the aorta including the ascending aorta, aorta arch, and the descending aorta. Of the ... In the ascending aorta (the portion of the aorta which is almost vertical), one mechanism of injury is torsion (a two-way ... If the injury is in the descending thoracic aorta this could lead to a hemothorax. Where as an injury to the ascending aorta ... Injury of the thoracic aorta refers to any injury which affects the portion of the aorta which lies within the chest cavity. ...
... (CoA or CoAo), also called aortic narrowing, is a congenital condition whereby the aorta is narrow, ... The severity of coarctation of the aorta can be rated by a combination of the smallest aortic cross-sectional area of the aorta ... end-to-end anastomosis Coarctatio aortae - after excision a narrowing Coarctatio aortae - after end-to-end anastomosis. Aortic ... Since the aorta is narrowed, the left ventricle must generate a much higher pressure than normal in order to force enough blood ...
A CT scan or MRI is taken of a patient to obtain the geometry of the aorta. The information from that scan is then used to ... As the path starts to curve in the ascending aorta, the blood towards the outside of the arch tends to rotate towards the inner ... The pulsating flow of the aorta is replicated by a ventricular assist device (VAD). The VAD is driven by a pump with a waveform ... The mean velocity in the aorta varies over the cardiac cycle. During systole the mean velocity rises to a peak, then it falls ...
The mediastinal branches are numerous small vessels which supply the lymph glands and loose areolar tissue in the posterior mediastinum. This article incorporates text in the public domain from page 600 of the 20th edition of Gray's Anatomy (1918) Portal: Anatomy v t e (Articles with short description, Short description matches Wikidata, Wikipedia articles incorporating text from the 20th edition of Gray's Anatomy (1918), Articles with TA98 identifiers, Arteries of the thorax, All stub articles, Cardiovascular system stubs ...
The REBOA device is then positioned either within Zone 1 (descending thoracic aorta) or Zone 3 (infrarenal abdominal aorta) ... REBOA is performed first by achieving access to the common femoral artery (CFA) and advancing a catheter within the aorta. Upon ... The adjustable catheter design of the REBOA device allows for variable positioning of the occluding balloon within the aorta ... Although occlusion of the aorta may temporarily augment cardiac index to preserve cardiac and coronary perfusion, there is a ...
"Branches of the ascending aorta, arch of the aorta, and the descending aorta." Portal: Anatomy v t e (Articles lacking in-text ... The esophageal arteries four or five in number, arise from the front of the aorta, and pass obliquely downward to the esophagus ...
"Aorta , Biography & History". AllMusic. Retrieved 12 June 2021. "Illinoisspeedpress.com". Archived from the original on 2011-07 ... Columbia simultaneously released albums by Chicago Transit Authority, The Flock, and Aorta, and marketed them together as part ...
Aorta. 2 (4): 129-34. doi:10.12945/j.aorta.2014.13-049. PMC 4682724. PMID 26798730. In these early experiments, a common theme ... Aorta. 2 (4): 129-34. doi:10.12945/j.aorta.2014.13-049. PMC 4682724. PMID 26798730. Bigelow et al. used groundhogs cooled below ... Aorta. 2 (4): 129-34. doi:10.12945/j.aorta.2014.13-049. PMC 4682724. PMID 26798730. A physiologist named Frank Gollan worked in ... Aorta. 2 (4): 129-34. doi:10.12945/j.aorta.2014.13-049. PMC 4682724. PMID 26798730. The team performed further research on ...
lov, lisa (September 2015). "Congee - Asian Rice Porridge". aorta food. Larson, Tevy (25 February 2013). "Chicken Rice Congee ( ...
Aorta Chisinau, 2005. Give me your Image. Göttingen: Steidl, 2006. Let's Sit Down Before we go. London: Mack, 2011.Edited by ...
Since the ruptured aorta, Viewegh has been much less prolific and successful as a writer. He still suffers from short-term ... Viewegh said that when he thinks about the fact that 90% of people with a ruptured aorta do not survive, he does not worry ... Praskla mu aorta". iDNES.cz. 10 December 2012. Retrieved 24 November 2020. "Viewegh porazil bulvár. Kdo na lži vydělá, musí ... Můj život po životě (My Life After Life), published in 2013, details his recovery from his ruptured aorta. ...
The ductus operates in the fetus to shunt blood from the pulmonary artery to the proximal descending aorta thereby allowing ... Abdominal aorta aneurysms; corneal endothelium, corneal keratocytes, trabecular cells, ciliary epithelium, conjunctival stromal ...
Thoracic Aorta; page 732-737 Stephen J Thomas; Manual of Cardiac Anesthsia, William A dell, chapter 15, page 387-396, 1984 ... usually placed in the aorta or femoral artery, is used to return blood to the arterial circulation. The process of preparation ...
It is a branch of the inferior phrenic artery, itself a branch of the aorta. It supplies the adrenal gland. The superior ... The inferior phrenic artery is itself is a branch of the aorta. The phrenic artery supplies the diaphragm. The superior ... Middle suprarenal arteries Inferior suprarenal artery Listmann, Mishan; Tubbs, R. Shane (2020). "19 - The Abdominal Aorta". ...
... and a ruptured aorta. Ratzenberger was the first racing driver to lose his life at a grand prix weekend since the 1982 season, ...
In medicine, aortoiliac occlusive disease is a form of central artery disease involving the blockage of the abdominal aorta as ... JAWOR, WJ; PLICE, SG (10 May 1952). "Thrombotic obliteration of the abdominal aorta; report of a case". Journal of the American ... Graham, Robert (1814). "Case of Obstructed Aorta". Med. Chir. Tr. 5: 287-456.9. PMC 2128948. PMID 20895223. ... so named because the two common iliac stents touch each other in the distal aorta. Aorto-iliac bypass graft Axillary-bi-femoral ...
WE EMERGE, authors: Thomas McEvilley, Irina Grabovan; Art Centre AoRTa, 2004; ISBN 9975-9804-1-4 ULAY. Nastati / Become, ... the last realized in collaboration with AoRTa art centre in Chișinău, Republic of Moldova. From 1976 to 1988 Ulay was in a ...
2. The Abdominal Aorta". Anatomy of the Human Body. Retrieved 9 December 2015. Ceppa, EP; Fuh, KC; Bulkley, GB (April 2003). " ... The mesenteric arteries take blood from the aorta and distribute it to a large portion of the gastrointestinal tract. Both the ... superior and inferior mesenteric arteries arise from the abdominal aorta. Each of these arteries travel through the mesentery, ...
Marks bifurcation of aorta; Most superior aspect of iliac crest; The intertubercular plane (a.k.a. Transtubercular plane) ...
Other uncommon causes are coarctation of the aorta, Trousseau disease[medical citation needed] and Beurger's disease ( ... Doshi, Arpan R; Chikkabyrappa, Sathish (5 December 2018). "Coarctation of Aorta in Children". Cureus. 10 (12): e3690. doi: ...
... the aorta then travels inferiorly as the descending aorta. The descending aorta has two parts. The aorta begins to descend in ... The aorta (/eɪˈɔːrtə/ ay-OR-tə; PL: aortas or aortae) is the main and largest artery in the human body, originating from the ... After the aorta passes through the diaphragm, it is known as the abdominal aorta. The aorta ends by dividing into two major ... The aorta then continues downward as the abdominal aorta (or abdominal portion of the aorta) from the diaphragm to the aortic ...
If part of the aorta is narrowed, it is hard for blood to pass through the artery. ... If part of the aorta is narrowed, it is hard for blood to pass through the artery. ... The aorta is a larger artery that carries blood from the heart to the vessels that supply the rest of the body with blood. ... The aorta is a larger artery that carries blood from the heart to the vessels that supply the rest of the body with blood. ...
Learn about the heart birth defect Coarctation of the Aorta. ... What is Coarctation of the Aorta?. Coarctation of the aorta is ... If the aorta is not widened, the heart may weaken enough that it leads to heart failure. Coarctation of the aorta often occurs ... Coarctation (pronounced koh-ark-TEY-shun) of the aorta is a birth defect in which a part of the aorta, the tube that carries ... The stent is used more often to initially widen the aorta or re-widen it if the aorta narrows again after surgery has been ...
Coarctation of the aorta may occur as an isolated defect or in association with various other lesions, most commonly bicuspid ... Coarctation of the aorta (CoA) is a relatively common defect that accounts for 5-8% of all congenital heart defects. ... Aneurysm of the aorta can occur in unrepaired coarctation of the aorta and has been described in patients with Turner syndrome ... The classic coarctation of the aorta is located in the thoracic aorta distal to the origin of the left subclavian artery at ...
Aorta Abdominalis). The abdominal aorta (Fig. 531) begins at the aortic hiatus of the diaphragm, in front of the lower border ... which may spring either from the aorta or from the celiac artery. Sometimes one is derived from the aorta, and the other from ... Branches. The branches of the abdominal aorta may be divided into three sets: visceral, parietal, and terminal.. Visceral ... They are usually four in number on either side, and arise from the back of the aorta, opposite the bodies of the upper four ...
... that persons aorta (the major blood vessel that carries blood away from the heart to the body) is narrowed at some point. ... What Is Coarctation of the Aorta?. The aorta (pronounced: ay-OR-tuh) is the major artery that carries blood away from the heart ... Coarctation of the aorta can be repaired in several ways. Surgery can very effectively repair a narrowing of the aorta, usually ... When someone has coarctation(pronounced: ko-ark-TAY-shun)of the aorta, that persons aorta is narrowed at some point. ...
... is a narrowing of the aorta, the major blood vessel that carries blood away from the heart to the body. ... What Is Coarctation of the Aorta?. Coarctation of the aorta(COA) is a narrowing of the aorta, the major blood vessel that ... Coarctation of the aorta can be repaired with surgery or other procedures. One of the most common ways to fix a coarctation is ... Coarctation of the aorta is a congenital defect, meaning that a baby is born with it. Doctors arent sure why some people ...
9 Sawada H, Chen JZ, Wright BC, Moorleghen JJ, Lu HS, Daugherty A. Ultrasound imaging of the thoracic and abdominal aorta in ... Morphometry and strain distribution of the C57BL/6 mouse aorta. Am J Physiol Heart Circ Physiol 2002; 283 (05) H1829-H1837 ... 5 Barisione C, Charnigo R, Howatt DA, Moorleghen JJ, Rateri DL, Daugherty A. Rapid dilation of the abdominal aorta during ... CC BY 4.0 · Aorta (Stamford) 2021; 09(06): 215-220. DOI: 10.1055/s-0041-1731404 ...
Aortic coarctation repair procedures widen a narrowed aorta (the bodys largest artery). Learn how Childrens Health helps a ... Coarctation of the aorta is narrowing in the aorta, the bodys largest artery. The disease forces the heart to work harder to ... What is a Pediatric Repair of Coarctation of the Aorta?. Coarctation of the aorta, or aortic coarctation, is a congenital heart ... What are the benefits of a Pediatric Repair of Coarctation of the Aorta?. After repair of coarctation of the aorta, your babys ...
UTFacultiesTNWClustersResearch groupsM3IAnatomy folderAortaCAR-project ... UTFacultiesTNWClustersResearch groupsM3IAnatomy folderAortaCAR-project ...
Coarctation of the aorta is a congenital heart defect that Duke pediatric heart specialists are experts in treating. We offer ... About Coarctation of the Aorta and Aortic Arch Hypoplasia. Coarctation of the aorta refers to a distinct area of the aorta that ... Diagnosing Coarctation of the Aorta and Aortic Arch Hypoplasia. Severe cases of coarctation of the aorta are usually identified ... Coarctation of the aorta -- a narrowing of the blood vessel that carries oxygenated blood to the body -- is a congenital heart ...
Aorta. Home / About SAEM / Academies, Interest Groups, & Affiliates / AEUS / AEUS Sono Gallery / Aorta ... Aorta Transverse Distal 5 Oct 6, 2021, 15:18 PM by SAEM ...
... titled Harvest Aorta.. Harvest Aorta is an intense musical journey of about 70 minutes it took me to ecstasy. Ephemeral Sun ... Go to Harvest Aorta page for more details, where to buy and ratings/reviews ...
"Thoracic Aorta and Supra-Aortic Arch Branches" (2019) p. 139 - 163 Available at: http://works.bepress.com/brantw-ullery/80/ ...
An aortic aneurysm is a bulge in the aorta (the main blood vessel in the body). Read about the symptoms and treatment for ... Aortic dissection is a rare but serious condition where there is a tear in the innermost wall of the aorta - the largest artery ... Find out about aortic coarctation - a heart condition in which a section of the aorta, the main blood vessel from your heart, ...
Coarctation of the aorta (image) Coarctation of the aorta is a birth defect in which the aorta, the major artery from the heart ... Coarctation of the Aorta (For Teens) (Nemours Foundation) coarctation, coarctation of the aorta, aorta, ayorta, ayortah, ... Coarctation of the aorta ... to pass through the artery. This is called coarctation of the aorta. It is a type of birth defect ... The exact cause of coarctation of the aorta is unknown. It results ... the aorta prior to birth. Aortic coarctation is more ...
Your Ascending Aorta and Aortic Arch. The ascending aorta begins above the aortic root and extends towards the neck until it ... The ascending aorta and underside of the aortic arch are replaced with a separate Dacron graft, and the two grafts are ... The ascending aorta and arch are replaced with a customized, Dacron, multi-branched arch graft, and the great vessels are ... The ascending aorta is more frequently affected by aneurysms and dissections and requires open heart surgery to be repaired. ...
About AORTA. AORTA is the centre for urban development, architecture and related disciplines in the Utrecht region. We address ... All AORTA tours are suitable for secondary and higher education classes. In this case we advise a duration per tour of no more ... All tours are offered under the terms and conditions of AORTA.. Contact. For more information on tours and bookings you can ... AORTA introduces you to the highlights of contemporary architecture and urban developments in Utrecht. Book one of our thematic ...
DILATATION AND UNFOLDING OF THE AORTA IN A JAMAICAN POPULATION Message subject: (Your Name) has forwarded a page to you from ...
Copyright 2023 AORTA ...
Angiotensin-converting enzyme binding in the neointima was not different from that in the media of the uninjured aorta. Our ... Experimental injury of the rat aorta causes rapid migration of medial smooth muscle cells and their proliferation resulting in ... Balloon angioplasty enhances the expression of angiotensin II AT1 receptors in neointima of rat aorta.. ... Balloon angioplasty enhances the expression of angiotensin II AT1 receptors in neointima of rat aorta.. ...
... Ropinski, Timo University of Münster, Germany. ...
Catalogue / Starfish Aorta Colossus About. Poetry watches film. Film reads poetry. Paolo Javiers text is a catalyst for the ... Starfish Aorta Colussus. She then decided to collaborate with film artist Sean Hanley in the editing of the film. Together, ...
He had undergone replacement of the ascending aorta due to aortic dissection 9 years previously. We made a diagnosis of acute ... Although the right coronary artery was successfully cannulated, a severe bend of the artificial aorta made it very difficult to ... such as in the case of severe vessel tortuosity or a bend of the ascending aorta. ... After replacement of the ascending aorta, a severe bend in the aorta is a rare complication [1]. However, a severe bend in the ...
Rat WS Aorta Total RNA from ZYAGEN. Cat Number: RR-807-WS. UK & Europe Distribution. ... Rat WS Aorta Total RNA , RR-807-WS Zyagen Rat Total RNA Rat WS Aorta Total RNA , RR-807-WS. (No reviews yet) Write a Review ... Rat WS Aorta Total RNA , RR-807-WS , Zyagen. Total RNA is routinely extracted from single healthy normal donor using the ... Rat WS Aorta Total RNA , RR-807-WS. Rating Required Select Rating. 1 star (worst). 2 stars. 3 stars (average). 4 stars. 5 stars ...
Q25.1 - Coarctation of aorta. SNOMEDCT:. 7305005 - Coarctation of the Aorta. Differential Diagnosis & Pitfalls. Copy. * ... CT image demonstrates focal narrowing of the aorta just distal to the origin of the left subclavian artery in this patient with ... Narrowing of the descending aorta distal to the take-off of the great vessels. Posterior costal arteries and internal mammary ... Usually congenital, although can be acquired as a consequence of inflammatory diseases affecting the aorta (eg, Takayasu ...
Object Name: Atria and Aorta Rings, Pediatric Heartmold, setatria and aorta rings, pediatric heartheart, artificial ...
Attached to the hearts pumping upper left chamber, the aorta loops around then dips into your torso. Its the bodys biggest ... The aorta sends oxygen-rich blood from the heart to the rest of the body. ... Adorable aorta pin looks bloody cute on you! ... Adorable aorta pin looks bloody cute on you! The aorta sends ... Attached to the hearts pumping upper left chamber, the aorta loops around then dips into your torso. Its the bodys biggest ...
This tutorial shows how to use the Fit Centerline tool in Mimics to calculate a centerline along a tubular structure, enabling measurements to be taken.
CT Thoracic Aorta Active Fully-Specified Name. Component. Multisection. Property. Find. Time. Pt. System. Chest,Aorta.thoracic ... Pecho> Aorta torácica:. Documento:. CT. it-IT. Italian (Italy). Sezioni multiple:. Osservazione:. Pt:. Torace>Aorta.toracica:. ... Aorta.torácica:. Nar:. TC. Synonyms: Finding;. Findings;. Point in time;. Random;. TA;. Thorax;. Aortic;. AO;. Narrative;. ... aorta.torácica:. Narrativo:. tomografía computarizada. es-MX. Spanish (Mexico). Multisección:. Tipo:. Punto temporal:. ...
  • This is called coarctation of the aorta. (medlineplus.gov)
  • The exact cause of coarctation of the aorta is unknown. (medlineplus.gov)
  • Coarctation (pronounced koh-ark-TEY-shun) of the aorta is a birth defect in which a part of the aorta, the tube that carries oxygen-rich blood to the body, is narrower than usual. (cdc.gov)
  • Coarctation of the aorta is a birth defect in which a part of the aorta is narrower than usual. (cdc.gov)
  • For this reason, coarctation of the aorta is often considered a critical congenital heart defect . (cdc.gov)
  • In some babies with coarctation, it is thought that some tissue from the wall of ductus arteriosus blends into the tissue of the aorta. (cdc.gov)
  • Since the narrowing of the aorta is usually located after arteries branch to the upper body, coarctation in this region can lead to normal or high blood pressure and pulsing of blood in the head and arms and low blood pressure and weak pulses in the legs and lower body. (cdc.gov)
  • Coarctation of the aorta often occurs with other congenital heart defects. (cdc.gov)
  • The Centers for Disease Control and Prevention (CDC) estimates that about 2,200 babies are born with coarctation of the aorta each year in the United States 1 . (cdc.gov)
  • In other words, about 1 in every 1,800 babies born in the United States each year are born with coarctation of the aorta. (cdc.gov)
  • Nicholas was born with coarctation of the aorta. (cdc.gov)
  • The causes of heart defects, including coarctation of the aorta, among most babies are unknown. (cdc.gov)
  • Heart defects, like coarctation of the aorta, are also thought to be caused by a combination of genes and other risk factors, such as things the mother comes in contact with in the environment, what the mother eats or drinks, or medicines the mother uses. (cdc.gov)
  • Coarctation of the aorta is usually diagnosed after the baby is born. (cdc.gov)
  • Newborn screening using pulse oximetry during the first few days of life may or may not detect coarctation of the aorta. (cdc.gov)
  • Older children and adults with coarctation of the aorta often have high blood pressure in the arms. (cdc.gov)
  • Coarctation of the aorta is often considered a critical congenital heart defect (critical CHD) because if the narrowing is severe enough and it is not diagnosed, the baby may have serious problems soon after birth. (cdc.gov)
  • Coarctation of the aorta (CoA) is a relatively common defect that accounts for 5-8% of all congenital heart defects. (medscape.com)
  • Coarctation of the aorta may occur as an isolated defect or in association with various other lesions, most commonly bicuspid aortic valve and ventricular septal defect (VSD). (medscape.com)
  • The diagnosis of coarctation of the aorta may be missed unless an index of suspicion is maintained, and diagnosis is often delayed until the patient develops congestive heart failure (CHF) , which is common in infants, or hypertension , which is common in older children. (medscape.com)
  • This article discusses the pathology, pathophysiology, clinical features, noninvasive and invasive evaluation, and therapy in patients with coarctation of the aorta. (medscape.com)
  • Coarctation of the aorta may be defined as a constricted aortic segment that comprises localized medial thickening, with some infolding of the medial and superimposed neointimal tissue. (medscape.com)
  • In the past, coarctation of the aorta has been described as preductal (or infantile) type or postductal (or adult) type, depending on whether the coarctation segment is proximal or distal to the ductus arteriosus, respectively. (medscape.com)
  • The classic coarctation of the aorta is located in the thoracic aorta distal to the origin of the left subclavian artery at about the level of the ductal structure. (medscape.com)
  • Dilatation of the descending aorta immediately distal to the coarctation segment (poststenotic dilatation) is usually present. (medscape.com)
  • A jet lesion on the wall of the aorta distal to the coarctation site may also be present. (medscape.com)
  • Bicuspid aortic valve may be seen in nearly two thirds of infants with coarctation of the aorta, whereas only 30% of those who present in childhood have such an anomaly. (medscape.com)
  • Mitral valve anomalies, although less common than those of the aortic valve, are also associated with coarctation of the aorta. (medscape.com)
  • Sometimes, coarctation of the aorta is a complicating feature of a more complex cyanotic heart defect, such as transposition of the great arteries , Taussig-Bing anomaly, double-inlet left ventricle, tricuspid atresia with transposition of the great arteries, and hypoplastic left heart syndrome . (medscape.com)
  • Some patients with coarctation of the aorta may have cerebral aneurysms, predisposing them to cerebrovascular accidents with severe hypertension later in life. (medscape.com)
  • Coarctation of the aorta is the most common cardiac defect associated with Turner syndrome . (medscape.com)
  • When someone has coarctation (pronounced: ko-ark-TAY-shun) of the aorta , that person's aorta is narrowed at some point. (kidshealth.org)
  • A coarctation can affect the body's blood circulation because the left side of the heart has to work harder to pump blood through the narrowed aorta. (kidshealth.org)
  • A coarctation can happen anywhere in the aorta, but most often is found just beyond the point where the arteries that carry the blood to the upper body and head branch off from the aorta. (kidshealth.org)
  • Coarctation of the aorta, COA for short, is a congenital defect, meaning that someone is born with it. (kidshealth.org)
  • How Is Coarctation of the Aorta Diagnosed? (kidshealth.org)
  • How Is Coarctation of the Aorta Treated? (kidshealth.org)
  • Coarctation of the aorta can be repaired in several ways. (kidshealth.org)
  • Coarctation of the aorta (COA) is a narrowing of the aorta, the major blood vessel that carries blood away from the heart to the body. (kidshealth.org)
  • Coarctation of the aorta is a congenital defect, meaning that a baby is born with it. (kidshealth.org)
  • Any person diagnosed with high blood pressure should be checked for coarctation of the aorta. (kidshealth.org)
  • Coarctation of the aorta can be repaired with surgery or other procedures. (kidshealth.org)
  • One of the most common ways to fix a coarctation is to remove the narrow section and reconnect the two ends of the aorta. (kidshealth.org)
  • The pediatric heart team at Children's Health are highly experienced in the latest surgical and minimally invasive techniques to repair coarctation of the aorta. (childrens.com)
  • Coarctation of the aorta , or aortic coarctation, is a congenital heart disease , which means babies are born with the condition. (childrens.com)
  • Coarctation of the aorta is narrowing in the aorta, the body's largest artery. (childrens.com)
  • Coarctation of the aorta -- a narrowing of the blood vessel that carries oxygenated blood to the body -- is a congenital heart defect that Duke pediatric heart specialists are experts in treating. (dukehealth.org)
  • Coarctation of the aorta refers to a distinct area of the aorta that is narrowed or constricted. (dukehealth.org)
  • Severe cases of coarctation of the aorta are usually identified shortly after birth. (dukehealth.org)
  • Coarctation of the aorta and aortic arch hypoplasia are treated with different surgical approaches. (dukehealth.org)
  • Coarctation of the aorta is a birth defect in which the aorta , the major artery from the heart, is narrowed. (nih.gov)
  • CT image demonstrates focal narrowing of the aorta just distal to the origin of the left subclavian artery in this patient with known aortic coarctation. (logicalimages.com)
  • Barney's heart condition, coarctation of the aorta, was diagnosed at Emma's 20-week scan. (tinytickers.org)
  • This is when we were told Barney's heart hadn't formed correctly and was showing a condition called coarctation of the aorta. (tinytickers.org)
  • One way of classifying a part of the aorta is by anatomical compartment, where the thoracic aorta (or thoracic portion of the aorta) runs from the heart to the diaphragm. (wikipedia.org)
  • The aorta begins to descend in the thoracic cavity and is consequently known as the thoracic aorta. (wikipedia.org)
  • 209 The thoracic aorta gives rise to the intercostal and subcostal arteries, as well as to the superior and inferior left bronchial arteries and variable branches to the esophagus, mediastinum, and pericardium. (wikipedia.org)
  • PL: aortas or aortae) is the main and largest artery in the human body, originating from the left ventricle of the heart, branching upwards immediately after, and extending down to the abdomen, where it splits at the aortic bifurcation into two smaller arteries (the common iliac arteries). (wikipedia.org)
  • The aorta ends by dividing into two major blood vessels, the common iliac arteries and a smaller midline vessel, the median sacral artery. (wikipedia.org)
  • The aortic arches start as five pairs of symmetrical arteries connecting the heart with the dorsal aorta, and then undergo a significant remodelling to form the final asymmetrical structure of the great arteries, with the 3rd pair of arteries contributing to the common carotids, the right 4th forming the base and middle part of the right subclavian artery and the left 4th being the central part of the aortic arch. (wikipedia.org)
  • The aorta is a larger artery that carries blood from the heart to the vessels that supply the rest of the body with blood. (medlineplus.gov)
  • If part of the aorta is narrowed, it is hard for blood to pass through the artery. (medlineplus.gov)
  • The aorta (pronounced: ay-OR-tuh) is the major artery that carries blood away from the heart to the body. (kidshealth.org)
  • Although the right coronary artery was successfully cannulated, a severe bend of the artificial aorta made it very difficult to advance the catheter into the left coronary artery. (hindawi.com)
  • However, in cases of patients with diseases of the ascending aorta, it may be difficult to advance the guiding catheter into a coronary artery. (hindawi.com)
  • However, when selective cannulation of the left coronary artery was attempted, the catheter could not be controlled because of a severely bent duct in the ascending aorta. (hindawi.com)
  • Then, alternate manipulation of the DIO thrombus aspiration catheter and the angiographic catheter was very effective in advancing the two catheters through the artificial aorta, allowing these two catheters to be inserted into the left coronary artery. (hindawi.com)
  • The arch of the aorta has three branches: the brachiocephalic artery (which divides into right common carotid artery and the right subclavian artery), the left common carotid artery, and the left subclavian artery. (onteenstoday.com)
  • The aorta is the largest artery in the body and is divided into 3 parts: the ascending aorta, arch of the aorta, and descending aorta. (onteenstoday.com)
  • The first branch of the aorta is normally the innominate artery, which is also referred to as the brachiocephalic trunk. (onteenstoday.com)
  • There are five arteries that branch from the abdominal aorta: the celiac artery, the superior mesenteric artery, the inferior mesenteric artery, the renal arteries and the iliac arteries. (onteenstoday.com)
  • An abdominal aortic aneurysm occurs when a lower portion of the body's main artery (aorta) becomes weakened and bulges. (presenternet.com)
  • The aorta is your largest artery and it brings oxygenated blood to all parts of the body. (presenternet.com)
  • AAD events are initiated by a circumferential or transverse tear of the intima, followed by rapid leakage of blood into the artery wall, which undergoes thrombosis and rupture of the aorta ( 1 , 2 ). (frontiersin.org)
  • The aorta-the largest artery in the body-can be partially or completely torn by severe blunt force to the chest. (msdmanuals.com)
  • This second pump, the 'left heart,' receives the blood from the lungs during contraction, pumps it out through the great artery called the aorta. (cdc.gov)
  • Plate 211 At the root of the ascending aorta, the lumen has three small pockets between the cusps of the aortic valve and the wall of the aorta, which are called the aortic sinuses or the sinuses of Valsalva. (wikipedia.org)
  • If the problem area is small, the two free ends of the aorta may be reconnected. (medlineplus.gov)
  • Surgery can very effectively repair a narrowing of the aorta, usually by removing the narrow section and reconnecting the two good ends of the aorta. (kidshealth.org)
  • Heart surgeons perform cardiothoracic surgery to remove the narrowed section and reconnect the two ends of the aorta. (childrens.com)
  • Because the aorta is compliant, as blood is ejected into the aorta, the walls of the aorta expand to accommodate the increase in blood volume. (onteenstoday.com)
  • If the walls of the aorta become weak, an enlargement can occur, which is known as an aortic aneurysm. (presenternet.com)
  • Pediatric heart surgeons remove or open the narrowed segment of the aorta, then use a patch to create a new aortic arch that allows better blood flow. (dukehealth.org)
  • It also can cause dissection or rupture of the aorta, which can be fatal. (kidshealth.org)
  • The aorta then continues downward as the abdominal aorta (or abdominal portion of the aorta) from the diaphragm to the aortic bifurcation. (wikipedia.org)
  • Second, surgeons remove the narrowed portion of the aorta (this is called a coarctectomy) through a small incision on the side of the chest between the ribs, instead of through the breastbone. (dukehealth.org)
  • The aortic arch ends, and the descending aorta begins at the level of the intervertebral disc between the fourth and fifth thoracic vertebrae. (wikipedia.org)
  • 331 The ascending aorta develops from the outflow tract, which initially starts as a single tube connecting the heart with the aortic arches (which will form the great arteries) in early development but is then separated into the aorta and the pulmonary trunk. (wikipedia.org)
  • If a large part of the aorta is removed, a graft or one of the patient's own arteries may be used to fill the gap. (medlineplus.gov)
  • The narrowing of the aorta usually happens in the part of the blood vessel just after the arteries branch off to take blood to the head and arms, near the patent ductus arteriosus , although sometimes the narrowing occurs before or after the ductus arteriosus. (cdc.gov)
  • The abdominal aorta (Fig. 531) begins at the aortic hiatus of the diaphragm, in front of the lower border of the body of the last thoracic vertebra, and, descending in front of the vertebral column, ends on the body of the fourth lumbar vertebra, commonly a little to the left of the middle line, (* 103 by dividing into the two common iliac arteries. (theodora.com)
  • Posterior costal arteries and internal mammary and scapular arteries provide collateral flow to the descending aorta. (logicalimages.com)
  • The abdominal aorta runs from the diaphragm and ends just above the pelvis, where it divides into the iliac arteries. (onteenstoday.com)
  • The coronary arteries branch off the ascending aorta to supply the heart with blood. (onteenstoday.com)
  • The arteries (aorta)carry the pulse wave from the heart. (healthtap.com)
  • Ultrasound can be used to image the aorta and iliac arteries to detect medical conditions affecting blood flow. (cedars-sinai.org)
  • It involves all aspects of the cardiovascular system but is most visible in the age-related increased arterial stiffness of large elastic arteries, such as the aorta. (lu.se)
  • The aorta branches out to supply the entire body with blood through a series of arteries. (cdc.gov)
  • The procedure involves aortic valve replacement combined with replacement of the ascending aorta and the underside of the aortic arch with a Dacron graft. (emoryhealthcare.org)
  • He had undergone replacement of the ascending aorta due to aortic dissection 9 years previously. (hindawi.com)
  • Sometimes, doctors will try to stretch open the narrowed part of the aorta by using a balloon that is widened inside the blood vessel. (medlineplus.gov)
  • Repair procedures open the narrowed aorta to prevent heart failure and send enough blood to the body. (childrens.com)
  • Narrowing of the descending aorta distal to the take-off of the great vessels. (logicalimages.com)
  • Extra-cardiac Nkx2.5 lineage progenitors migrate into the embryo and contribute to clusters of CD41 + /CD45 + and RUNX1 + cells in the endocardium, the aorta-gonad-mesonephros region of the dorsal aorta and liver. (elifesciences.org)
  • Caproic acid (1 cM) and EDTA (10 mM) blocked the cell membrane angiotensinase of rabbit aorta. (aspetjournals.org)
  • Receptor-mediated mutual-effect amplification elicited by phenylephrine and serotonin in isolated rabbit aorta. (aspetjournals.org)
  • An abdominal aortic aneurysm is an enlarged area in the lower part of the major vessel that supplies blood to the body (aorta). (presenternet.com)
  • The defect occurs when a baby's aorta does not form correctly as the baby grows and develops during pregnancy. (cdc.gov)
  • Stanford type A dissections involve the ascending aorta and are treated via emergency surgical repair, whereas type B dissections only involve the descending aorta and usually require endovascular repair and/or medical therapy. (frontiersin.org)
  • When people aren't diagnosed until their teens, it's usually because the narrowing in the aorta is not severe enough to cause serious symptoms until then. (kidshealth.org)
  • In those cases, it's usually because the narrowing in the aorta is not severe enough to cause serious symptoms until later in life. (kidshealth.org)
  • The DIO catheter is very useful when the selection of a guiding catheter is complicated, such as in the case of severe vessel tortuosity or a bend of the ascending aorta. (hindawi.com)
  • We report a successful case of PCI performed through a severe bend of an artificial ascending aorta using the DIO thrombus aspiration catheter. (hindawi.com)
  • Is coarectation if the aorta severe? (healthtap.com)
  • [ 4 ] An autopsy revealed a large ventricular septal defect (VSD) and an overriding aorta. (medscape.com)
  • This procedure is indicated for patients who are diagnosed with aneurysm or dissection of the ascending aorta and have an abnormally functioning aortic valve. (emoryhealthcare.org)
  • If your aneurysm is large and in the section of the aorta closest to the heart, it may affect your heart valves and lead to a condition called congestive heart failure. (presenternet.com)
  • dilation of the aorta that is not defined as an aneurysm, usually less than 3 cm in diameter. (presenternet.com)
  • What is an Enlarged Aorta or Aortic Aneurysm? (presenternet.com)
  • In some patients, when stents are not possible, open surgery (requiring an incision in your chest) may be necessary to repair the aneurysm by placing an artificial blood vessel into the aorta to replace the aneurysm. (presenternet.com)
  • Retroperitoneal hemorrhage from injured aorta and IVC during trocar insertion. (smartimagebase.com)
  • These two blood vessels twist around each other, causing the aorta to start out posterior to the pulmonary trunk, but end by twisting to its right and anterior side. (wikipedia.org)
  • 531 The abdominal aorta and its branches. (theodora.com)
  • The branches of the abdominal aorta may be divided into three sets: visceral, parietal, and terminal. (theodora.com)
  • The ascending aorta and arch are replaced with a customized, Dacron, multi-branched arch graft, and the great vessels are individually re-attached to the branches of the arch graft. (emoryhealthcare.org)
  • What are all the branches of the aorta? (onteenstoday.com)
  • What are the 3 major branches of the abdominal aorta? (onteenstoday.com)
  • What are the first branches to come off of the aorta? (onteenstoday.com)
  • How many branches does the aorta have? (onteenstoday.com)
  • Binnen de Ziekenhuisgroep Twente (ZGT) wordt de nevenbevinding AAA, een aneurysma aortae abdominalis, op verschillende manieren gerapporteerd. (utwente.nl)
  • 5 Barisione C, Charnigo R, Howatt DA, Moorleghen JJ, Rateri DL, Daugherty A. Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high-frequency ultrasonography. (thieme-connect.com)
  • O que é aneurisma da aorta? (bvs.br)
  • Aunque la vía de abordaje retroperitoneal se defi nió hace décadas, quedó relegada en benefi cio del abordaje transperitoneal por la familiaridad de los cirujanos con la cirugía abdominal. (bvsalud.org)
  • Other tests that produce images of the heart also might be done, such as a chest X-ray, a magnetic resonance imaging (MRI) test, or a computerized tomography (CT) scan to look for a narrowing of the aorta. (kidshealth.org)
  • Enhanced computed tomography of the chest revealed that the replaced artificial duct in the ascending aorta was severely bent (Figure 1 ). (hindawi.com)
  • The aorta begins at the left ventricle of the heart, extending upward into the chest to form an arch. (onteenstoday.com)
  • However, a tear in the aorta may not be seen on a chest x-ray, and overlooking this injury may have serious consequences. (msdmanuals.com)
  • After the aorta passes through the diaphragm, it is known as the abdominal aorta. (wikipedia.org)
  • 195 The abdominal aorta begins at the aortic hiatus of the diaphragm at the level of the twelfth thoracic vertebra. (wikipedia.org)
  • This is done by inflating a special type of balloon to enlarge the narrowing and then placing a metallic support (stent) to hold the aorta at the larger size. (childrens.com)
  • The procedure involves excision of the ascending aorta and underside of the aortic arch, and placement of a thoracic aortic stent graft into the descending aorta at the time of arch repair. (emoryhealthcare.org)
  • Usually congenital, although can be acquired as a consequence of inflammatory diseases affecting the aorta (eg, Takayasu arteritis ). (logicalimages.com)
  • If you're anxious let your doctor check your pulsing aorta but unless its abnormally enlarged, there is unlikely to be a problem. (healthtap.com)
  • The annotated image demonstrates that the double aorta is a consequence of the acoustic prism effect of the rectus abdominis muscles (blue), and the triangular area of fat below the linea alba (green). (radiopaedia.org)
  • The aorta sends oxygen-rich blood from the heart to the rest of the body. (iheartguts.com)
  • The aorta distributes oxygenated blood to all parts of the body through the systemic circulation. (wikipedia.org)
  • Another system divides the aorta with respect to its course and the direction of blood flow. (wikipedia.org)
  • People who have this problem with their aorta may also have a weak area in the wall of blood vessels in their brain. (medlineplus.gov)
  • Both Doppler ultrasound and catheterization can be used to see if there are any differences in blood pressure in different areas of the aorta. (medlineplus.gov)
  • In other cases the aorta may be more constricted, placing a strain on the heart's left ventricle (the chamber that pumps blood to the aorta and out to the body). (kidshealth.org)
  • In this procedure, a tiny balloon is inserted into a blood vessel in the leg and a very thin wire is threaded up to the aorta, across the narrow area. (kidshealth.org)
  • This narrowing causes the left side of the heart to work harder to pump blood through the aorta. (kidshealth.org)
  • Treatment involves procedures to widen the aorta so it can provide enough blood and oxygen to the body. (childrens.com)
  • In some children, the entire aortic arch (the part of the aorta that distributes blood to the upper body) -- this is called aortic arch hypoplasia . (dukehealth.org)
  • These conditions make it difficult for blood to pump through the aorta and to the rest of the body. (dukehealth.org)
  • During this minimally invasive procedure, an interventional cardiologist makes a small incision in the groin, inserts a thin, flexible tube called a catheter into a blood vessel, and guides it to the narrowed part of the aorta. (dukehealth.org)
  • The aorta is the largest blood vessel in the body. (onteenstoday.com)
  • When you eat, your heart pumps extra blood to your stomach and small intestine through your aorta. (onteenstoday.com)
  • Does the aorta have the lowest blood pressure? (onteenstoday.com)
  • Explanation: In the general circulation, the highest blood pressure is found in the aorta and the lowest blood pressure is in the vena cava. (onteenstoday.com)
  • This means there's more blood being pumped with each heartbeat, which can make the pulse in your abdominal aorta more noticeable. (onteenstoday.com)
  • As the left ventricle ejects blood into the aorta, the aortic pressure increases. (onteenstoday.com)
  • The heart pumps blood to the entire body through the aorta. (msdmanuals.com)
  • If blood pressure and heart rate are high, a tear can become worse, sometimes causing the aorta to burst. (msdmanuals.com)
  • 18 The ascending aorta begins at the opening of the aortic valve in the left ventricle of the heart. (wikipedia.org)
  • This procedure is indicated for patients who are diagnosed with aneurysmal disease involving the aortic root and ascending aorta with abnormal aortic valve leaflets. (emoryhealthcare.org)
  • The native aortic valve and root are repaired, and the ascending aorta and proximal arch are replaced with a Dacron graft. (emoryhealthcare.org)
  • However, a 6 Fr guiding catheter could not advance beyond the severely bent part of the artificial ascending aorta due to its low profile. (hindawi.com)
  • Finally, we decided to insert a 4.2 Fr dual use catheter into a DIO thrombus aspiration catheter (a straight catheter) to pass the artificial duct in the ascending aorta. (hindawi.com)
  • The ascending aorta is more frequently affected by aneurysms and dissections and requires open heart surgery to be repaired. (emoryhealthcare.org)
  • In this system, the aorta starts as the ascending aorta, travels superiorly from the heart, and then makes a hairpin turn known as the aortic arch. (wikipedia.org)
  • If the aorta is not widened, the heart may weaken enough that it leads to heart failure . (cdc.gov)
  • The aorta is divided into four sections: The ascending aorta rises up from the heart and is about 2 inches long. (onteenstoday.com)
  • Is the aorta considered part of the heart? (onteenstoday.com)
  • The ascending aorta and underside of the aortic arch are replaced with a separate Dacron graft, and the two grafts are connected together to complete the proximal aortic reconstruction. (emoryhealthcare.org)
  • Histologically, compromised aortic integrity is the result of ECM remodeling within the aorta, including collagen degradation, elastic fiber fragmentation, and medial layer degeneration ( 4 , 5 ). (frontiersin.org)
  • Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. (jci.org)
  • If the aorta were a rigid tube, the pulse pressure would be very high. (onteenstoday.com)
  • Following the aortic arch, the aorta then travels inferiorly as the descending aorta. (wikipedia.org)
  • 191, 204 The transition from ascending aorta to aortic arch is at the pericardial reflection on the aorta. (wikipedia.org)
  • The ascending aorta begins above the aortic root and extends towards the neck until it begins to turn and give rise to the aortic arch. (emoryhealthcare.org)
  • The procedure involves excision of the ascending aorta and aortic arch. (emoryhealthcare.org)
  • During surgery, the narrowed part of the aorta will be removed or opened. (medlineplus.gov)
  • The abdominal aorta lies slightly to the left of the midline of the body. (onteenstoday.com)