A myelodysplastic-myeloproliferative disease characterized by monocytosis, increased monocytes in the bone marrow, variable degrees of dysplasia, but an absence of immature granulocytes in the blood.
A pediatric acute myeloid leukemia involving both myeloid and monocytoid precursors. At least 20% of non-erythroid cells are of monocytic origin.
A leukemia affecting young children characterized by SPLENOMEGALY, enlarged lymph nodes, rashes, and hemorrhages. Traditionally classed as a myeloproliferative disease, it is now considered a mixed myeloproliferative-mylelodysplastic disorder.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Substances that are recognized by the immune system and induce an immune reaction.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Substances elaborated by bacteria that have antigenic activity.
Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin.
Substances elaborated by viruses that have antigenic activity.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Established cell cultures that have the potential to propagate indefinitely.
Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Transforming proteins coded by myb oncogenes. Transformation of cells by v-myb in conjunction with v-ets is seen in the avian E26 leukemia virus.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Progenitor cells from which all blood cells derive.
Surface antigens expressed on myeloid cells of the granulocyte-monocyte-histiocyte series during differentiation. Analysis of their reactivity in normal and malignant myelomonocytic cells is useful in identifying and classifying human leukemias and lymphomas.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
An acute myeloid leukemia in which 80% or more of the leukemic cells are of monocytic lineage including monoblasts, promonocytes, and MONOCYTES.
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle.
Antibodies produced by a single clone of cells.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
C57BL mice are a commonly used strain of laboratory mice that are inbred to produce consistent and predictable results in scientific research.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Clonal hematopoietic stem cell disorders characterized by dysplasia in one or more hematopoietic cell lineages. They predominantly affect patients over 60, are considered preleukemic conditions, and have high probability of transformation into ACUTE MYELOID LEUKEMIA.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
Substances of fungal origin that have antigenic activity.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Any part or derivative of a helminth that elicits an immune reaction. The most commonly seen helminth antigens are those of the schistosomes.
An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE).
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The major group of transplantation antigens in the mouse.
Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS.
The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Conditions which cause proliferation of hemopoietically active tissue or of tissue which has embryonic hemopoietic potential. They all involve dysregulation of multipotent MYELOID PROGENITOR CELLS, most often caused by a mutation in the JAK2 PROTEIN TYROSINE KINASE.
A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8)
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
A glycoprotein that is secreted into the luminal surface of the epithelia in the gastrointestinal tract. It is found in the feces and pancreaticobiliary secretions and is used to monitor the response to colon cancer treatment.
BALB/C is a commonly used strain of inbred mice in medical research, known for their genetic uniformity and susceptibility to various diseases.
Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (ANTIGENS, CD3). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues.
Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Sites on an antigen that interact with specific antibodies.
A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation.
A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS.
Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. PCNA is required for the coordinated synthesis of both leading and lagging strands at the replication fork during DNA replication. PCNA expression correlates with the proliferation activity of several malignant and non-malignant cell types.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment.
Elements of limited time intervals, contributing to particular results or situations.
A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, CD15 antigen is a stage-specific embryonic antigen.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Proteins prepared by recombinant DNA technology.
High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain a cytoplasmic protein tyrosine phosphatase activity which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. The CD45 antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons.
The classes of BONE MARROW-derived blood cells in the monocytic series (MONOCYTES and their precursors) and granulocytic series (GRANULOCYTES and their precursors).
A human cell line established from a diffuse histiocytic lymphoma (HISTIOCYTIC LYMPHOMA, DIFFUSE) and displaying many monocytic characteristics. It serves as an in vitro model for MONOCYTE and MACROPHAGE differentiation.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Stem cells derived from HEMATOPOIETIC STEM CELLS. Derived from these myeloid progenitor cells are the MEGAKARYOCYTES; ERYTHROID CELLS; MYELOID CELLS; and some DENDRITIC CELLS.
A glycoprotein that is a kallikrein-like serine proteinase and an esterase, produced by epithelial cells of both normal and malignant prostate tissue. It is an important marker for the diagnosis of prostate cancer.
Differentiation antigens found on thymocytes and on cytotoxic and suppressor T-lymphocytes. CD8 antigens are members of the immunoglobulin supergene family and are associative recognition elements in MHC (Major Histocompatibility Complex) Class I-restricted interactions.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
The lipopolysaccharide-protein somatic antigens, usually from gram-negative bacteria, important in the serological classification of enteric bacilli. The O-specific chains determine the specificity of the O antigens of a given serotype. O antigens are the immunodominant part of the lipopolysaccharide molecule in the intact bacterial cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
Mapping of the KARYOTYPE of a cell.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
The process of bone formation. Histogenesis of bone including ossification.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages.
Carbohydrate antigens expressed by malignant tissue. They are useful as tumor markers and are measured in the serum by means of a radioimmunoassay employing monoclonal antibodies.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Bone-marrow-derived, non-hematopoietic cells that support HEMATOPOETIC STEM CELLS. They have also been isolated from other organs and tissues such as UMBILICAL CORD BLOOD, umbilical vein subendothelium, and WHARTON JELLY. These cells are considered to be a source of multipotent stem cells because they include subpopulations of mesenchymal stem cells.
Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA).
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood.
A specific HLA-A surface antigen subtype. Members of this subtype contain alpha chains that are encoded by the HLA-A*02 allele family.
Glycoproteins found on the membrane or surface of cells.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
An encapsulated lymphatic organ through which venous blood filters.
The differentiation of pre-adipocytes into mature ADIPOCYTES.
Methods for maintaining or growing CELLS in vitro.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in leukemia.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Sets of cell surface antigens located on BLOOD CELLS. They are usually membrane GLYCOPROTEINS or GLYCOLIPIDS that are antigenically distinguished by their carbohydrate moieties.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Cell separation is the process of isolating specific cells from a mixture of cells, often for the purpose of further study or treatment.
Embryonic (precursor) cells of the myogenic lineage that develop from the MESODERM. They undergo proliferation, migrate to their various sites, and then differentiate into the appropriate form of myocytes (MYOCYTES, SKELETAL; MYOCYTES, CARDIAC; MYOCYTES, SMOOTH MUSCLE).
Those hepatitis B antigens found on the surface of the Dane particle and on the 20 nm spherical and tubular particles. Several subspecificities of the surface antigen are known. These were formerly called the Australia antigen.
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Clonal myeloid disorders that possess both dysplastic and proliferative features but are not properly classified as either MYELODYSPLASTIC SYNDROMES or MYELOPROLIFERATIVE DISORDERS.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
Very large BONE MARROW CELLS which release mature BLOOD PLATELETS.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. CD4 antigens are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. CD4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
Polymorphic class I human histocompatibility (HLA) surface antigens present on almost all nucleated cells. At least 20 antigens have been identified which are encoded by the A locus of multiple alleles on chromosome 6. They serve as targets for T-cell cytolytic responses and are involved with acceptance or rejection of tissue/organ grafts.
The sum of the weight of all the atoms in a molecule.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc.
Glycoproteins expressed on cortical thymocytes and on some dendritic cells and B-cells. Their structure is similar to that of MHC Class I and their function has been postulated as similar also. CD1 antigens are highly specific markers for human LANGERHANS CELLS.
Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The cells in the granulocytic series that give rise to mature granulocytes (NEUTROPHILS; EOSINOPHILS; and BASOPHILS). These precursor cells include myeloblasts, promyelocytes, myelocytes and metamyelocytes.
A species of ALPHARETROVIRUS causing anemia in fowl.
Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
A cell line derived from cultured tumor cells.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
Transport proteins that carry specific substances in the blood or across cell membranes.
An acute myeloid leukemia in which abnormal PROMYELOCYTES predominate. It is frequently associated with DISSEMINATED INTRAVASCULAR COAGULATION.
A protein found most abundantly in the nervous system. Defects or deficiencies in this protein are associated with NEUROFIBROMATOSIS 1, Watson syndrome, and LEOPARD syndrome. Mutations in the gene (GENE, NEUROFIBROMATOSIS 1) affect two known functions: regulation of ras-GTPase and tumor suppression.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
A receptor for MACROPHAGE COLONY-STIMULATING FACTOR encoded by the c-fms proto-oncogene (GENES, FMS). It contains an intrinsic protein-tyrosine kinase activity. When activated the receptor undergoes autophosphorylation, phosphorylation of down-stream signaling molecules and rapid down-regulation.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene.
Retroviral proteins that have the ability to transform cells. They can induce sarcomas, leukemias, lymphomas, and mammary carcinomas. Not all retroviral proteins are oncogenic.
Molecules on the surface of B- and T-lymphocytes that recognize and combine with specific antigens.
Adherence of cells to surfaces or to other cells.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells.
A severe sometimes chronic anemia, usually macrocytic in type, that does not respond to ordinary antianemic therapy.
A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17.
The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
A cytologic technique for measuring the functional capacity of stem cells by assaying their activity.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Antigens of the virion of the HEPATITIS B VIRUS or the Dane particle, its surface (HEPATITIS B SURFACE ANTIGENS), core (HEPATITIS B CORE ANTIGENS), and other associated antigens, including the HEPATITIS B E ANTIGENS.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR).
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Specialized forms of antibody-producing B-LYMPHOCYTES. They synthesize and secrete immunoglobulin. They are found only in lymphoid organs and at sites of immune responses and normally do not circulate in the blood or lymph. (Rosen et al., Dictionary of Immunology, 1989, p169 & Abbas et al., Cellular and Molecular Immunology, 2d ed, p20)
The rate dynamics in chemical or physical systems.
Glycolipid-anchored membrane glycoproteins expressed on cells of the myelomonocyte lineage including monocytes, macrophages, and some granulocytes. They function as receptors for the complex of lipopolysaccharide (LPS) and LPS-binding protein.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
The GENETIC TRANSLATION products of the fusion between an ONCOGENE and another gene. The latter may be of viral or cellular origin.
A group of three different alpha chains (CD11a, CD11b, CD11c) that are associated with an invariant CD18 beta chain (ANTIGENS, CD18). The three resulting leukocyte-adhesion molecules (RECEPTORS, LEUKOCYTE ADHESION) are LYMPHOCYTE FUNCTION-ASSOCIATED ANTIGEN-1; MACROPHAGE-1 ANTIGEN; and ANTIGEN, P150,95.

Expression and cellular localization of the CC chemokines PARC and ELC in human atherosclerotic plaques. (1/1497)

Local immune responses are thought to play an important role in the development of atherosclerosis. Histological studies have shown that human atherosclerotic lesions contain T lymphocytes throughout all stages of development, many of which are in an activated state. A number of novel CC chemokines have been described recently, which are potent chemoattractants for lymphocytes: PARC (pulmonary and activation-regulated chemokine), ELC (EBI1-ligand chemokine), LARC (liver and activation-regulated chemokine), and SLC (secondary lymphoid-tissue chemokine). Using reverse transcriptase-polymerase chain reaction and in situ hybridization, we have found gene expression for PARC and ELC but not for LARC or SLC in human atherosclerotic plaques. Immunohistochemical staining of serial plaque sections with specific cell markers revealed highly different expression patterns of PARC and ELC. PARC mRNA was restricted to CD68+ macrophages (n = 14 of 18), whereas ELC mRNA was widely expressed by macrophages and intimal smooth muscle cells (SMC) in nearly all of the lesions examined (n = 12 of 14). ELC mRNA was also found to be expressed in the medial SMC wall of highly calcified plaques (n = 4). Very low levels of ELC mRNA expression could also be detected in normal mammary arteries but no mRNA expression for PARC was detected in these vessels (n = 4). In vitro, ELC mRNA was found to be up-regulated in aortic SMC stimulated with tumor necrosis factor-a and interferon-gamma but not in SMC stimulated with serum. Both PARC and ELC mRNA were expressed by monocyte-derived macrophages but not monocytes. The expression patterns of PARC and ELC mRNA in human atherosclerotic lesions suggest a potential role for these two recently described CC chemokines in attracting T lymphocytes into atherosclerotic lesions.  (+info)

Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. (2/1497)

Macrosialin (mouse CD68), a macrophage-specific member of the lysosomal-associated membrane protein family, displays N-linked glycosylation and a heavily sialylated, mucin-like domain. We show that phagocytosis of zymosan by inflammatory peritoneal macrophages potently alters glycan processing of macrosialin in vitro. The phagocytic glycoform is not induced by other forms of endocytosis and depends on particle internalization. Zymosan uptake does not influence macrosialin protein synthesis, but increases the specific incorporation of D-[2-3H]mannose, D-[6-3H]galactose, N-acetyl-D-[1-3H]glucosamine and L-[5,6-3H]fucose by 2-15-fold. The phagocytic glycoform displays increased binding of agglutinins from peanut, Amaranthus caudatus and Galanthus nivalis, whereas binding of the sialic-acid-specific Maakia amurensis agglutinin is slightly reduced. Digestion by N-Glycanase abolishes the incorporation of [3H]mannose label and Galanthus nivalis agglutinin binding activity, but preserves the incorporation of galactose and N-acetylglucosamine and specific lectin binding. We also show that phagocytosis increases the complexity and length of O-linked chains. The data presented highlight the importance of differential glycosylation in the biology of macrosialin, phagosomes and macrophages in general.  (+info)

Immunohistochemical analysis of arterial wall cellular infiltration in Buerger's disease (endarteritis obliterans). (3/1497)

PURPOSE: The diagnosis of Buerger's disease has depended on clinical symptoms and angiographic findings, whereas pathologic findings are considered to be of secondary importance. Arteries from patients with Buerger's tissue were analyzed histologically, including immunophenotyping of the infiltrating cells, to elucidate the nature of Buerger's disease as a vasculitis. METHODS: Thirty-three specimens from nine patients, in whom Buerger's disease was diagnosed on the basis of our clinical and angiographic criteria between 1980 and 1995 at Nagoya University Hospital, were studied. Immunohistochemical studies were performed on paraffin-embedded tissue with a labeled streptoavidin-biotin method. RESULTS: The general architecture of vessel walls was well preserved regardless of the stage of disease, and cell infiltration was observed mainly in the thrombus and the intima. Among infiltrating cells, CD3(+) T cells greatly outnumbered CD20(+) B cells. CD68(+) macrophages or S-100(+) dendritic cells were detected, especially in the intima during acute and subacute stages. All cases except one showed infiltration by the human leukocyte antigen-D region (HLA-DR) antigen-bearing macrophages and dendritic cells in the intima. Immunoglobulins G, A, and M (IgG, IgA, IgM) and complement factors 3d and 4c (C3d, C4c) were deposited along the internal elastic lamina. CONCLUSION: Buerger's disease is strictly an endarteritis that is introduced by T-cell mediated cellular immunity and by B-cell mediated humoral immunity associated with activation of macrophages or dendritic cells in the intima.  (+info)

Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer's disease. (4/1497)

Experimental studies indicate that overactivation of the DNA repair protein poly(ADP-ribose) polymerase (PARP) in response to oxidative damage to DNA can cause cell death due to depletion of NAD+. Oxidative damage to DNA and other macromolecules has been reported to be increased in the brains of patients with Alzheimer's disease. In the present study we sought evidence of PARP activation in Alzheimer's disease by immunostaining sections of frontal and temporal lobe from autopsy material of 20 patients and 10 controls, both for PARP itself and for its end-product, poly(ADP-ribose). All of the brains had previously been subjected to detailed neuropathological examination to confirm the diagnosis of Alzheimer's disease or, in the controls, to exclude Alzheimer's disease-type pathology. Double immunolabelling for poly(ADP-ribose) and microtubule-associated protein 2 (MAP2), glial fibrillary-acidic protein (GFAP), CD68, A beta-protein or tau was used to assess the identity of the cells with poly(ADP-ribose) accumulation and their relationship to plaques and neurofibrillary tangles. Both PARP- and poly(ADP-ribose)-immunolabelled cells were detected in a much higher proportion of Alzheimer's disease (20 out of 20) brains than of control brains (5 out of 10) (P = 0.0018). Double-immunolabelling for poly(ADP-ribose) and markers of neuronal, astrocytic and microglial differentiation (MAP2, GFAP and CD68, respectively) showed many of the cells containing poly(ADP-ribose) to be neurons. Most of these were small pyramidal neurons in cortical laminae 3 and 5. A few of the cells containing poly(ADP-ribose) were astrocytes. No poly(ADP-ribose) accumulation was detected in microglia. Double-immunolabelling for poly(ADP-ribose) and tau or A beta-protein indicated that the cells with accumulation of poly(ADP-ribose) did not contain tangles and relatively few occurred within plaques. Our findings indicate that there is enhanced PARP activity in Alzheimer's disease and suggest that pharmacological interventions aimed at inhibiting PARP may have a role in slowing the progression of the disease.  (+info)

Identification of the block in targeted retroviral-mediated gene transfer. (5/1497)

A chimeric retroviral vector (33E67) containing a CD33-specific single-chain antibody was generated in an attempt to target cells displaying the CD33 surface antigen. The chimeric envelope protein was translated, processed, and incorporated into viral particles as efficiently as wild-type envelope protein. The viral particles carrying the 33E67 envelope protein could bind efficiently to the CD33 receptor on target cells and were internalized, but no gene transfer occurred. A unique experimental approach was used to examine the basis for this postbinding block. Our data indicate that the chimeric envelope protein itself cannot participate in the fusion process, the most reasonable explanation being that this chimeric protein cannot undergo the appropriate conformational change that is thought to be triggered by receptor binding, a suggested prerequisite to subsequent fusion and core entry. These results indicate that the block to gene transfer in this system, and probably in most of the current chimeric retroviral vectors to date, is the inability of the chimeric envelope protein to undergo this obligatory conformational change.  (+info)

CD40 expression on graft infiltrates and parenchymal CD154 (CD40L) induction in human chronic renal allograft rejection. (6/1497)

BACKGROUND: CD40-CD154 (CD40L) costimulatory signaling plays a pivotal role in the effector mechanisms of transplant graft rejection. In animal models, CD40-CD154 blockade induces long-term graft acceptance concurrent with an absence of chronic rejection (CR) lesions. Given the critical importance of CD40-CD154 interactions in the development of chronic transplant allograft rejection, the relevance of in situ CD40 and CD154 expression was assessed in human chronic renal allograft rejection. METHODS: The expression of CD40, CD154, CD68, and T-cell receptor (TCR)alpha/beta was analyzed by immunohistochemistry. Serial cryostat sections of snap-frozen core renal allograft biopsies were obtained from 30 renal transplant patients. Biopsy specimens received diagnoses of CR (N = 23) according to the Banff classification and were compared with controls (N = 7) consisting of stable allografts and normal kidney tissue. RESULTS: Striking CD40 staining of graft cellular infiltrates (P = 0.016) was observed in renal allografts with CR compared with controls. The CD40+ cellular infiltrates in CR were predominantly TCR alpha/beta + T cells and some CD68+ macrophages. These findings were contrasted by the low-level CD40 expression detected in glomeruli and tubules of CR and controls. However, glomerular induction of CD154 was observed in CR allografts (P = 0.028) as compared with controls. CD154 immunoreactivity was demonstrated on glomerular endothelial, epithelial, and mesangial cells. Moderate CD154 expression was detected on tubular epithelial cells, and only weak CD154 immunoreactivity was observed on the infiltrates in isolated CR cases. CONCLUSION: In human chronic renal allograft rejection, CD40 is expressed on graft-infiltrating cells of the T cell and macrophage compartments. CD154 expression is induced on glomerular and tubular epithelial cells during CR, demonstrating another novel source of CD154 expression. The data substantiate the potential contributory role of an interaction between CD40+ graft-destructive effector T cells and macrophages with CD154+ renal allograft parenchymal cells in the development of chronic renal allograft rejection.  (+info)

The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. (7/1497)

The myeloid restricted membrane glycoprotein, CD33, is a member of the recently characterized "sialic acid-binding immunoglobulin-related lectin" family. Although CD33 can mediate sialic acid-dependent cell interactions as a recombinant protein, its function in myeloid cells has yet to be determined. Since CD33 contains two potential immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail, we investigated whether it might act as a signaling receptor in myeloid cells. Tyrosine phosphorylation of CD33 in myeloid cell lines was stimulated by cell surface cross-linking or by pervanadate, and inhibited by PP2, a specific inhibitor of Src family tyrosine kinases. Phosphorylated CD33 recruited both the protein-tyrosine phosphatases, SHP-1 and SHP-2. CD33 was dephosphorylated in vitro by the co-immunoprecipitated tyrosine phosphatases, suggesting that it might also be an in vivo substrate. The first CD33 phosphotyrosine motif is dominant in CD33-SHP-1/SHP-2 interactions, since mutating tyrosine 340 in a CD33-cytoplasmic tail fusion protein significantly reduced binding to SHP-1 and SHP-2 in THP-1 lysates, while mutation of tyrosine 358 had no effect. Furthermore, the NH2-terminal Src homology 2 domain of SHP-1 and SHP-2, believed to be essential for phosphatase activation, selectively bound a CD33 phosphopeptide containing tyrosine 340 but not one containing tyrosine 358. Finally, mutation of tyrosine 340 increased red blood cell binding by CD33 expressed in COS cells. Hence, CD33 signaling through selective recruitment of SHP-1/SHP-2 may modulate its ligand(s) binding activity.  (+info)

Expression of the activation antigen CD97 and its ligand CD55 in rheumatoid synovial tissue. (8/1497)

OBJECTIVE: Fibroblast-like synoviocytes (FLS) express decay-accelerating factor (CD55) at high levels. Recently, it was found that CD55 is a specific cellular ligand for the 7-span transmembrane receptor CD97. The objective of this study was to define the expression of this receptor-ligand pair in synovial tissue (ST) to provide more insight into the interaction between FLS and surrounding cells. METHODS: Antibodies against CD97 and CD55 were used for immunohistologic analysis of synovial biopsy specimens from 16 patients with rheumatoid arthritis (RA) and 15 patients with osteoarthritis (OA). In addition, an enzyme-linked immunosorbent assay system was used to determine the expression of soluble CD97 (sCD97) in synovial fluid (SF) from 30 patients with RA, 13 with OA, and 10 with reactive arthritis (ReA). RESULTS: In both RA and OA ST sections, strong expression of CD55 was confirmed on FLS in the intimal lining layer, where it was also found that all macrophages expressed CD97. The percentage of macrophages that expressed CD97 was lower in the synovial sublining (P = 0.005). The mean levels of sCD97 in SF were significantly higher in RA patients than in patients with OA or ReA (P < 0.0001). CONCLUSION: These results suggest that FLS are able to interact with macrophages via the CD97/CD55 receptor-ligand system. In this respect, the CD97/CD55 pair may account for the specific architecture of the intimal lining layer and may be of primary importance in maintaining and amplifying synovial inflammation. The specific increase in sCD97 levels in RA SF might be related to the presence of activated proteolytic systems or to the increase in synovial mass, rather than a consequence of local receptor-ligand interaction.  (+info)

Leukemia, Myelomonocytic, Chronic (M4) is a type of cancer that affects the bone marrow and blood cells. It is a type of myeloid leukemia, which means that it affects the myeloid stem cells that give rise to white blood cells, red blood cells, and platelets. In M4 leukemia, the bone marrow produces too many abnormal myelomonocytic cells, which are a type of white blood cell that is involved in fighting infections. These abnormal cells do not function properly and can build up in the bone marrow and bloodstream, crowding out healthy blood cells and making it difficult for the body to fight infections. Symptoms of M4 leukemia may include fatigue, weakness, fever, night sweats, and weight loss. Other symptoms may include easy bruising or bleeding, pale skin, shortness of breath, and an enlarged spleen or liver. Treatment for M4 leukemia typically involves chemotherapy, which uses drugs to kill the abnormal myelomonocytic cells. In some cases, a stem cell transplant may also be recommended, in which healthy blood-forming cells are transplanted into the patient to replace the abnormal cells. The prognosis for M4 leukemia depends on various factors, including the age and overall health of the patient, the stage of the disease, and the response to treatment.

Leukemia, Myelomonocytic, Acute (M4) is a type of acute myeloid leukemia (AML) that is characterized by the rapid growth of abnormal white blood cells called myelomonocytic cells in the bone marrow and bloodstream. These cells do not function properly and can interfere with the production of healthy blood cells, leading to a range of symptoms such as fatigue, weakness, fever, and easy bruising or bleeding. M4 leukemia is classified based on the specific type of myelomonocytic cell that is affected. In M4 leukemia, the affected cells are called myelomonocytic cells, which are a type of white blood cell that is involved in the immune response and the destruction of bacteria and other foreign substances. Treatment for M4 leukemia typically involves chemotherapy, which is used to kill the abnormal cells and restore normal blood cell production. In some cases, a stem cell transplant may also be recommended, which involves replacing the patient's diseased bone marrow with healthy bone marrow from a donor. The prognosis for M4 leukemia depends on various factors, including the patient's age, overall health, and response to treatment.

Juvenile myelomonocytic leukemia (JMML) is a rare type of cancer that affects the bone marrow and blood cells. It is a type of leukemia that primarily affects children, although it can occur in adults as well. In JMML, the bone marrow produces too many myelomonocytic cells, which are a type of white blood cell that helps fight infections. This can lead to a decrease in the production of other important blood cells, such as red blood cells and platelets, which can cause anemia, fatigue, and bleeding. JMML is usually diagnosed in children between the ages of 1 and 6, although it can occur in older children and adults. The exact cause of JMML is not known, but it is thought to be related to genetic mutations that affect the normal development and function of blood cells. Treatment for JMML typically involves chemotherapy and/or bone marrow transplantation, although the specific treatment plan will depend on the individual patient's age, overall health, and the specific characteristics of their leukemia.

Cell differentiation is the process by which cells acquire specialized functions and characteristics during development. It is a fundamental process that occurs in all multicellular organisms, allowing cells to differentiate into various types of cells with specific functions, such as muscle cells, nerve cells, and blood cells. During cell differentiation, cells undergo changes in their shape, size, and function, as well as changes in the proteins and other molecules they produce. These changes are controlled by a complex network of genes and signaling pathways that regulate the expression of specific genes in different cell types. Cell differentiation is a critical process for the proper development and function of tissues and organs in the body. It is also involved in tissue repair and regeneration, as well as in the progression of diseases such as cancer, where cells lose their normal differentiation and become cancerous.

In the medical field, antigens are substances that can trigger an immune response in the body. They are typically proteins or carbohydrates that are found on the surface of cells or viruses, bacteria, and other microorganisms. When the immune system encounters an antigen, it produces antibodies that can recognize and bind to the antigen, marking it for destruction by immune cells. Antigens can be classified into two main categories: 1. Exogenous antigens: These are antigens that come from outside the body, such as bacteria, viruses, and toxins. They can cause an immune response when they enter the body. 2. Endogenous antigens: These are antigens that are produced by the body itself, such as cancer cells or damaged cells. They can also trigger an immune response if they are recognized as foreign by the immune system. Antigens play a crucial role in the immune system's ability to protect the body against infections and diseases. They are also used in medical treatments such as vaccines, where they are introduced into the body to stimulate an immune response and provide protection against future infections.

In the medical field, antigens are molecules that can trigger an immune response in the body. Surface antigens are antigens that are located on the surface of cells or viruses. They are recognized by the immune system as foreign and can trigger an immune response, leading to the production of antibodies that can neutralize or destroy the antigen. Surface antigens are important for the development of vaccines, as they can be used to stimulate the immune system to produce a protective response against specific diseases. Examples of surface antigens include the spike protein on the surface of the SARS-CoV-2 virus, which is the cause of COVID-19, and the antigens on the surface of cancer cells, which can be targeted by cancer vaccines.

In the medical field, "Antigens, Bacterial" refers to substances that are produced by bacteria and can trigger an immune response in the body. These antigens can be proteins, polysaccharides, lipids, or nucleic acids that are unique to a particular bacterial species or strain. When bacteria enter the body, the immune system recognizes these antigens as foreign and mounts a defense against them. This response can include the production of antibodies by B cells, which can neutralize the bacteria or mark them for destruction by other immune cells. The immune response to bacterial antigens is an important part of the body's defense against bacterial infections. Bacterial antigens are used in a variety of medical applications, including the development of vaccines to prevent bacterial infections. By introducing a small amount of a bacterial antigen into the body, vaccines can stimulate the immune system to produce a response that will protect against future infections by the same bacteria.

In the medical field, "Antigens, Neoplasm" refers to proteins or other molecules that are produced by cancer cells (neoplasms) and are recognized by the immune system as foreign. These antigens can be used as targets for cancer immunotherapy, which aims to stimulate the immune system to attack and destroy cancer cells. Antigens, neoplasm can also be used as diagnostic markers to identify cancer cells in the body or to monitor the effectiveness of cancer treatment.

In the medical field, antigens are substances that can trigger an immune response in the body. Antigens can be found in various forms, including proteins, carbohydrates, and lipids, and they can be produced by viruses, bacteria, fungi, and other microorganisms. Viral antigens are specific proteins or other molecules that are produced by viruses and can be recognized by the immune system as foreign. When a virus enters the body, it produces viral antigens, which are then recognized by the immune system as a threat and trigger an immune response. The immune response to viral antigens involves the production of antibodies, which are proteins that can bind to and neutralize the virus. The immune system also produces immune cells, such as T cells and B cells, which can recognize and destroy infected cells. Understanding the properties and behavior of viral antigens is important in the development of vaccines and other treatments for viral infections. By stimulating the immune system to recognize and respond to viral antigens, vaccines can help protect against viral infections and prevent the spread of disease.

In the medical field, "Cells, Cultured" refers to cells that have been grown and maintained in a controlled environment outside of their natural biological context, typically in a laboratory setting. This process is known as cell culture and involves the isolation of cells from a tissue or organism, followed by their growth and proliferation in a nutrient-rich medium. Cultured cells can be derived from a variety of sources, including human or animal tissues, and can be used for a wide range of applications in medicine and research. For example, cultured cells can be used to study the behavior and function of specific cell types, to develop new drugs and therapies, and to test the safety and efficacy of medical products. Cultured cells can be grown in various types of containers, such as flasks or Petri dishes, and can be maintained at different temperatures and humidity levels to optimize their growth and survival. The medium used to culture cells typically contains a combination of nutrients, growth factors, and other substances that support cell growth and proliferation. Overall, the use of cultured cells has revolutionized medical research and has led to many important discoveries and advancements in the field of medicine.

In the medical field, a cell line refers to a group of cells that have been derived from a single parent cell and have the ability to divide and grow indefinitely in culture. These cells are typically grown in a laboratory setting and are used for research purposes, such as studying the effects of drugs or investigating the underlying mechanisms of diseases. Cell lines are often derived from cancerous cells, as these cells tend to divide and grow more rapidly than normal cells. However, they can also be derived from normal cells, such as fibroblasts or epithelial cells. Cell lines are characterized by their unique genetic makeup, which can be used to identify them and compare them to other cell lines. Because cell lines can be grown in large quantities and are relatively easy to maintain, they are a valuable tool in medical research. They allow researchers to study the effects of drugs and other treatments on specific cell types, and to investigate the underlying mechanisms of diseases at the cellular level.

Leukemia, Myeloid is a type of cancer that affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that helps fight infections and diseases in the body. In leukemia, myeloid cells grow and divide uncontrollably, leading to an overproduction of these cells in the bone marrow and bloodstream. There are several subtypes of myeloid leukemia, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML is a rapidly progressing cancer that usually affects older adults, while CML is a slower-growing cancer that is more common in middle-aged and older adults. Symptoms of myeloid leukemia may include fatigue, weakness, fever, night sweats, weight loss, and easy bruising or bleeding. Treatment for myeloid leukemia typically involves chemotherapy, radiation therapy, targeted therapy, and bone marrow transplantation. The prognosis for myeloid leukemia depends on the subtype, age of the patient, and the stage of the disease at diagnosis.

In the medical field, "Antigens, CD" refers to a group of proteins found on the surface of certain cells in the immune system. These proteins, known as CD antigens, are recognized by other immune cells and play a crucial role in the immune response to infections and diseases. CD antigens are classified into different families based on their structure and function. Some CD antigens are expressed on the surface of immune cells themselves, while others are found on the surface of cells that are targeted by the immune system, such as cancer cells or cells infected with viruses. The identification and characterization of CD antigens has been important for the development of new diagnostic tests and therapies for a variety of diseases, including cancer, autoimmune disorders, and infectious diseases. For example, monoclonal antibodies that target specific CD antigens have been used in cancer immunotherapy to help the immune system recognize and attack cancer cells.

V-myb is a type of oncogene protein that is associated with the development of certain types of cancer. Oncogenes are genes that have the potential to cause cancer when they are mutated or expressed at high levels. V-myb is a member of the myb family of transcription factors, which are proteins that regulate the expression of other genes. In normal cells, v-myb helps to control the growth and development of cells. However, when it is mutated or expressed at high levels, it can cause cells to grow and divide uncontrollably, leading to the development of cancer. V-myb is involved in the development of several types of cancer, including acute myeloid leukemia, lymphoma, and multiple myeloma.

Cell division is the process by which a single cell divides into two or more daughter cells. This process is essential for the growth, development, and repair of tissues in the body. There are two main types of cell division: mitosis and meiosis. Mitosis is the process by which somatic cells (non-reproductive cells) divide to produce two identical daughter cells with the same number of chromosomes as the parent cell. This process is essential for the growth and repair of tissues in the body. Meiosis, on the other hand, is the process by which germ cells (reproductive cells) divide to produce four genetically diverse daughter cells with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction. Abnormalities in cell division can lead to a variety of medical conditions, including cancer. In cancer, cells divide uncontrollably and form tumors, which can invade nearby tissues and spread to other parts of the body.

In the medical field, RNA, Messenger (mRNA) refers to a type of RNA molecule that carries genetic information from DNA in the nucleus of a cell to the ribosomes, where proteins are synthesized. During the process of transcription, the DNA sequence of a gene is copied into a complementary RNA sequence called messenger RNA (mRNA). This mRNA molecule then leaves the nucleus and travels to the cytoplasm of the cell, where it binds to ribosomes and serves as a template for the synthesis of a specific protein. The sequence of nucleotides in the mRNA molecule determines the sequence of amino acids in the protein that is synthesized. Therefore, changes in the sequence of nucleotides in the mRNA molecule can result in changes in the amino acid sequence of the protein, which can affect the function of the protein and potentially lead to disease. mRNA molecules are often used in medical research and therapy as a way to introduce new genetic information into cells. For example, mRNA vaccines work by introducing a small piece of mRNA that encodes for a specific protein, which triggers an immune response in the body.

Antigens, Differentiation, Myelomonocytic refers to a group of antigens that are expressed on the surface of myelomonocytic cells, which are a type of white blood cell that includes monocytes and macrophages. These antigens are used to identify and distinguish between different types of myelomonocytic cells and to study their development and function. They are also used in diagnostic tests to detect and monitor certain diseases and conditions, such as leukemia and other blood disorders.

In the medical field, a base sequence refers to the specific order of nucleotides (adenine, thymine, cytosine, and guanine) that make up the genetic material (DNA or RNA) of an organism. The base sequence determines the genetic information encoded within the DNA molecule and ultimately determines the traits and characteristics of an individual. The base sequence can be analyzed using various techniques, such as DNA sequencing, to identify genetic variations or mutations that may be associated with certain diseases or conditions.

In the medical field, antigens are molecules that can trigger an immune response in the body. Protozoan antigens are antigens that are produced by protozoan parasites, which are single-celled organisms that can cause various diseases in humans and animals. Protozoan antigens can be found in a variety of protozoan parasites, including Plasmodium (which causes malaria), Trypanosoma (which causes African sleeping sickness), Leishmania (which causes leishmaniasis), and Giardia (which causes giardiasis). When the immune system encounters a protozoan antigen, it produces antibodies that can recognize and bind to the antigen. This can help to neutralize the parasite or mark it for destruction by other immune cells. However, some protozoan parasites are able to evade the immune system and continue to cause disease.

Transcription factors are proteins that regulate gene expression by binding to specific DNA sequences and controlling the transcription of genetic information from DNA to RNA. They play a crucial role in the development and function of cells and tissues in the body. In the medical field, transcription factors are often studied as potential targets for the treatment of diseases such as cancer, where their activity is often dysregulated. For example, some transcription factors are overexpressed in certain types of cancer cells, and inhibiting their activity may help to slow or stop the growth of these cells. Transcription factors are also important in the development of stem cells, which have the ability to differentiate into a wide variety of cell types. By understanding how transcription factors regulate gene expression in stem cells, researchers may be able to develop new therapies for diseases such as diabetes and heart disease. Overall, transcription factors are a critical component of gene regulation and have important implications for the development and treatment of many diseases.

Acute Monocytic Leukemia (AML) is a type of cancer that affects the bone marrow and blood cells. It is characterized by the rapid growth of abnormal white blood cells called monocytoid cells, which do not function properly and can build up in the blood and bone marrow, crowding out healthy blood cells. AML is a type of leukemia that is classified as acute because it progresses rapidly and requires prompt treatment. It is also classified as monocytic because the abnormal white blood cells are primarily monocytoid cells. Symptoms of AML may include fatigue, weakness, fever, night sweats, weight loss, and easy bruising or bleeding. Diagnosis is typically made through a combination of blood tests, bone marrow biopsy, and imaging studies. Treatment for AML typically involves chemotherapy, radiation therapy, and/or stem cell transplantation. The goal of treatment is to destroy the abnormal white blood cells and restore normal blood cell production. The prognosis for AML depends on various factors, including the age and overall health of the patient, the type and stage of the disease, and the response to treatment.

Antigens, Polyomavirus Transforming are proteins that are produced by certain types of polyomaviruses, which are a group of viruses that can cause cancer in humans and animals. These antigens are produced by the virus after it infects a cell and transforms it into a cancerous cell. The antigens are recognized by the immune system as foreign and can trigger an immune response, which can help to control the growth and spread of the cancerous cells. However, in some cases, the immune system may not be able to effectively recognize and attack the cancerous cells, which can lead to the progression of the cancer.

Monoclonal antibodies (mAbs) are laboratory-made proteins that can mimic the immune system's ability to fight off harmful pathogens, such as viruses and bacteria. They are produced by genetically engineering cells to produce large quantities of a single type of antibody, which is specific to a particular antigen (a molecule that triggers an immune response). In the medical field, monoclonal antibodies are used to treat a variety of conditions, including cancer, autoimmune diseases, and infectious diseases. They can be administered intravenously, intramuscularly, or subcutaneously, depending on the condition being treated. Monoclonal antibodies work by binding to specific antigens on the surface of cells or pathogens, marking them for destruction by the immune system. They can also block the activity of specific molecules involved in disease processes, such as enzymes or receptors. Overall, monoclonal antibodies have revolutionized the treatment of many diseases, offering targeted and effective therapies with fewer side effects than traditional treatments.

In the medical field, "Antigens, Differentiation" refers to proteins or other molecules that are expressed on the surface of cells and can be recognized by the immune system as foreign or abnormal. These antigens play a crucial role in the process of cell differentiation, which is the process by which cells develop specialized functions and characteristics. There are several types of antigens that are involved in cell differentiation, including surface antigens, cytoplasmic antigens, and nuclear antigens. Surface antigens are located on the surface of cells and are recognized by the immune system as foreign or abnormal. Cytoplasmic antigens are located inside the cytoplasm of cells and are involved in the regulation of cell growth and division. Nuclear antigens are located inside the nucleus of cells and are involved in the regulation of gene expression. Antigens, differentiation are important for the proper functioning of the immune system, as they help to identify and eliminate abnormal or foreign cells. They are also important for the development and maintenance of specialized cell types, as they help to regulate the expression of specific genes and proteins that are necessary for the function of these cells.

In the medical field, a cell lineage refers to the developmental history of a cell, tracing its origin back to a common ancestor cell and following its subsequent divisions and differentiation into specialized cell types. Cell lineage is an important concept in the study of stem cells, which have the potential to differentiate into a wide variety of cell types. By understanding the cell lineage of stem cells, researchers can better understand how they develop into specific cell types and how they might be used to treat various diseases. In addition, cell lineage is also important in the study of cancer, as cancer cells often arise from normal cells that have undergone mutations and have begun to divide uncontrollably. By studying the cell lineage of cancer cells, researchers can gain insights into the genetic and molecular changes that have occurred during cancer development and identify potential targets for cancer therapy.

Bone marrow cells are the cells found in the bone marrow, which is the soft, spongy tissue found in the center of bones. These cells are responsible for producing blood cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow cells: hematopoietic stem cells and progenitor cells. Hematopoietic stem cells are capable of dividing and differentiating into any type of blood cell, while progenitor cells are capable of dividing and differentiating into specific types of blood cells. In the medical field, bone marrow cells are often used in the treatment of blood disorders, such as leukemia and lymphoma, as well as in the transplantation of bone marrow to replace damaged or diseased bone marrow. In some cases, bone marrow cells may also be used in research to study the development and function of blood cells.

Myelodysplastic syndromes (MDS) are a group of blood disorders that affect the bone marrow, which is the spongy tissue inside bones where blood cells are produced. In MDS, the bone marrow produces abnormal blood cells that do not function properly, leading to a decrease in the number of healthy blood cells in the body. MDS can cause a range of symptoms, including fatigue, weakness, shortness of breath, and an increased risk of infections and bleeding. The severity of MDS can vary widely, and some people with the condition may not experience any symptoms at all. There are several different types of MDS, which are classified based on the specific characteristics of the abnormal blood cells and the severity of the disease. Treatment for MDS depends on the type and severity of the condition, and may include medications, blood transfusions, or bone marrow transplantation.

Acute Myeloid Leukemia (AML) is a type of cancer that affects the bone marrow and blood cells. It is characterized by the rapid growth of abnormal white blood cells, called myeloid cells, in the bone marrow. These abnormal cells do not function properly and can crowd out healthy blood cells, leading to a variety of symptoms such as fatigue, weakness, and frequent infections. AML can occur in people of all ages, but it is most common in adults over the age of 60. Treatment for AML typically involves chemotherapy, radiation therapy, and/or stem cell transplantation.

In the medical field, "Antigens, Fungal" refers to substances that can trigger an immune response in the body when they are recognized as foreign or harmful. These substances are produced by fungi and can be found in various forms, such as proteins, polysaccharides, and lipids. When the immune system encounters fungal antigens, it produces antibodies and immune cells that can recognize and attack the fungi. This immune response can help to prevent or treat fungal infections, such as candidiasis, aspergillosis, and cryptococcosis. However, in some cases, the immune system may overreact to fungal antigens, leading to an autoimmune response that can cause damage to healthy tissues. This can occur in conditions such as chronic mucocutaneous candidiasis, where the immune system becomes hyperactive and attacks the skin and mucous membranes. Overall, understanding the role of fungal antigens in the immune system is important for the diagnosis and treatment of fungal infections and other immune-related conditions.

DNA-binding proteins are a class of proteins that interact with DNA molecules to regulate gene expression. These proteins recognize specific DNA sequences and bind to them, thereby affecting the transcription of genes into messenger RNA (mRNA) and ultimately the production of proteins. DNA-binding proteins play a crucial role in many biological processes, including cell division, differentiation, and development. They can act as activators or repressors of gene expression, depending on the specific DNA sequence they bind to and the cellular context in which they are expressed. Examples of DNA-binding proteins include transcription factors, histones, and non-histone chromosomal proteins. Transcription factors are proteins that bind to specific DNA sequences and regulate the transcription of genes by recruiting RNA polymerase and other factors to the promoter region of a gene. Histones are proteins that package DNA into chromatin, and non-histone chromosomal proteins help to organize and regulate chromatin structure. DNA-binding proteins are important targets for drug discovery and development, as they play a central role in many diseases, including cancer, genetic disorders, and infectious diseases.

Cell proliferation refers to the process of cell division and growth, which is essential for the maintenance and repair of tissues in the body. In the medical field, cell proliferation is often studied in the context of cancer, where uncontrolled cell proliferation can lead to the formation of tumors and the spread of cancer cells to other parts of the body. In normal cells, cell proliferation is tightly regulated by a complex network of signaling pathways and feedback mechanisms that ensure that cells divide only when necessary and that they stop dividing when they have reached their full capacity. However, in cancer cells, these regulatory mechanisms can become disrupted, leading to uncontrolled cell proliferation and the formation of tumors. In addition to cancer, cell proliferation is also important in other medical conditions, such as wound healing, tissue regeneration, and the development of embryos. Understanding the mechanisms that regulate cell proliferation is therefore critical for developing new treatments for cancer and other diseases.

In the medical field, "Antigens, Helminth" refers to proteins or other molecules found on the surface of helminths (parasitic worms) that can trigger an immune response in the host. These antigens can be recognized by the host's immune system as foreign and can stimulate the production of antibodies and other immune cells to fight off the infection. Helminth antigens are important in the diagnosis and treatment of helminth infections, as well as in the development of vaccines against these parasites.

Tretinoin, also known as retinoic acid, is a medication used in the medical field to treat various skin conditions, including acne, wrinkles, and age spots. It works by increasing the turnover of skin cells, which can help to unclog pores and reduce the formation of acne. Tretinoin is available in various forms, including creams, gels, and liquids, and is typically applied to the skin once or twice a day. It can cause dryness, redness, and peeling of the skin, but these side effects usually improve over time as the skin adjusts to the medication. Tretinoin is a prescription medication and should only be used under the guidance of a healthcare provider.

Bone marrow is a soft, spongy tissue found inside the bones of most mammals, including humans. It is responsible for producing blood cells, including red blood cells, white blood cells, and platelets. Red blood cells are responsible for carrying oxygen throughout the body, white blood cells help fight infections and diseases, and platelets are involved in blood clotting. The bone marrow is divided into two main types: red bone marrow and yellow bone marrow. Red bone marrow is responsible for producing all types of blood cells, while yellow bone marrow is primarily responsible for producing fat cells. In some cases, the bone marrow can be damaged or diseased, leading to conditions such as leukemia, lymphoma, or aplastic anemia. In these cases, bone marrow transplantation may be necessary to replace damaged or diseased bone marrow with healthy bone marrow from a donor.

In the medical field, an amino acid sequence refers to the linear order of amino acids in a protein molecule. Proteins are made up of chains of amino acids, and the specific sequence of these amino acids determines the protein's structure and function. The amino acid sequence is determined by the genetic code, which is a set of rules that specifies how the sequence of nucleotides in DNA is translated into the sequence of amino acids in a protein. Each amino acid is represented by a three-letter code, and the sequence of these codes is the amino acid sequence of the protein. The amino acid sequence is important because it determines the protein's three-dimensional structure, which in turn determines its function. Small changes in the amino acid sequence can have significant effects on the protein's structure and function, and this can lead to diseases or disorders. For example, mutations in the amino acid sequence of a protein involved in blood clotting can lead to bleeding disorders.

Myeloproliferative disorders (MPDs) are a group of blood disorders characterized by the overproduction of blood cells in the bone marrow. These disorders are caused by genetic mutations that lead to the uncontrolled growth and proliferation of certain types of blood cells, such as red blood cells, white blood cells, or platelets. The most common MPDs are polycythemia vera, essential thrombocythemia, and primary myelofibrosis. These disorders can lead to a variety of symptoms, including fatigue, weakness, shortness of breath, abdominal pain, and bleeding disorders. Treatment for MPDs typically involves medications to control the overproduction of blood cells and manage symptoms. In some cases, a blood transfusion or a stem cell transplant may be necessary. It is important for individuals with MPDs to work closely with their healthcare providers to manage their condition and prevent complications.

Carcinoembryonic Antigen (CEA) is a protein that is produced by certain types of cancer cells, as well as by normal cells in the embryonic stage of development. It is a glycoprotein that is found in the blood and tissues of the body. In the medical field, CEA is often used as a tumor marker, which means that it can be measured in the blood to help diagnose and monitor certain types of cancer. CEA levels are typically higher in people with cancer than in people without cancer, although they can also be elevated in other conditions, such as inflammatory bowel disease, liver disease, and smoking. CEA is most commonly used as a tumor marker for colorectal cancer, but it can also be used to monitor the response to treatment and to detect recurrence of the cancer. It is also used as a tumor marker for other types of cancer, such as pancreatic cancer, breast cancer, and lung cancer. It is important to note that while elevated CEA levels can be a sign of cancer, they do not necessarily mean that a person has cancer. Other factors, such as age, gender, and family history, can also affect CEA levels. Therefore, CEA should be interpreted in conjunction with other diagnostic tests and clinical information.

Receptors, Antigen, T-Cell are a type of immune cell receptors found on the surface of T cells in the immune system. These receptors are responsible for recognizing and binding to specific antigens, which are foreign substances or molecules that trigger an immune response. T-cell receptors (TCRs) are a type of antigen receptor that recognizes and binds to specific antigens presented on the surface of infected or abnormal cells by major histocompatibility complex (MHC) molecules. TCRs are highly specific and can recognize a wide variety of antigens, including viruses, bacteria, and cancer cells. Once a TCR recognizes an antigen, it sends a signal to the T cell to become activated and initiate an immune response. Activated T cells can then divide and differentiate into different types of effector cells, such as cytotoxic T cells that can directly kill infected or abnormal cells, or helper T cells that can stimulate other immune cells to mount a more robust response. Overall, T-cell receptors play a critical role in the immune system's ability to recognize and respond to foreign antigens, and are an important target for the development of vaccines and immunotherapies.

Leukemia, Experimental refers to the study of leukemia using experimental methods, such as laboratory research and animal models, to better understand the disease and develop new treatments. Experimental leukemia research involves investigating the underlying genetic and molecular mechanisms that contribute to the development and progression of leukemia, as well as testing new drugs and therapies in preclinical models before they are tested in humans. This type of research is important for advancing our understanding of leukemia and improving treatment options for patients.

Antigens, viral, tumor are proteins or other molecules that are present on the surface of viruses or cancer cells. These antigens can be recognized by the immune system as foreign and can trigger an immune response to fight off the virus or cancer cells. In the medical field, antigens, viral, tumor are often used as targets for vaccines or cancer treatments, such as immunotherapy.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a crucial role in the immune system. They are responsible for producing antibodies, which are proteins that help the body recognize and fight off foreign substances such as viruses, bacteria, and other pathogens. B-cells are produced in the bone marrow and mature in the spleen and lymph nodes. When a B-cell encounters an antigen (a foreign substance that triggers an immune response), it becomes activated and begins to divide rapidly. The activated B-cell then differentiates into plasma cells, which produce and secrete large amounts of antibodies specific to the antigen. The antibodies produced by B-cells can neutralize pathogens by binding to them and preventing them from infecting cells, or they can mark them for destruction by other immune cells. B-cells also play a role in memory, meaning that they can remember specific antigens and mount a faster and more effective immune response if they encounter the same antigen again in the future. B-cell disorders, such as autoimmune diseases and certain types of cancer, can result from problems with the development, activation, or function of B-cells.

Dimethyl sulfoxide (DMSO) is a colorless, viscous liquid that is commonly used in the medical field as a solvent, a penetration enhancer, and a therapeutic agent. It is also known as dimethyl sulfone or dimethyl sulfide oxide. DMSO has a number of potential medical applications, including as a pain reliever, an anti-inflammatory, and a treatment for a variety of conditions such as multiple sclerosis, rheumatoid arthritis, and psoriasis. It is also used as a solvent for other drugs and as a preservative for certain medical products. However, the use of DMSO in medicine is controversial, and there is limited scientific evidence to support its effectiveness for many of the conditions it is claimed to treat. Additionally, DMSO can cause side effects such as skin irritation, nausea, and dizziness, and it may interact with other medications. As a result, its use in medicine is generally limited to research and experimental settings, and it is not approved for use as a drug by regulatory agencies in many countries.

HLA-DR antigens are a group of proteins that are expressed on the surface of cells of the immune system. They play a crucial role in the recognition and presentation of antigens to T cells, which is a key step in the immune response. HLA-DR antigens are encoded by the HLA-DR gene, which is located on chromosome 6. There are many different HLA-DR antigens, each with a unique sequence of amino acids that determines its specificity for different antigens. HLA-DR antigens are also known as human leukocyte antigen (HLA) DR antigens or major histocompatibility complex (MHC) class II DR antigens.

Proliferating Cell Nuclear Antigen (PCNA) is a protein that plays a crucial role in DNA replication and repair in cells. It is also known as Replication Factor C (RFC) subunit 4 or proliferating cell nuclear antigen-like 1 (PCNA-like 1). PCNA is a highly conserved protein that is found in all eukaryotic cells. It is a homotrimeric protein, meaning that it is composed of three identical subunits. Each subunit has a central channel that can bind to DNA, and it is this channel that is responsible for the interaction of PCNA with other proteins involved in DNA replication and repair. During DNA replication, PCNA forms a complex with other proteins, including DNA polymerase δ and the replication factor C (RFC) complex. This complex is responsible for unwinding the DNA double helix, synthesizing new DNA strands, and ensuring that the newly synthesized strands are correctly paired with the template strands. PCNA is also involved in DNA repair processes, particularly in the repair of DNA damage caused by ultraviolet (UV) radiation. In this context, PCNA interacts with other proteins, such as the X-ray repair cross-complementing protein 1 (XRCC1), to facilitate the repair of DNA damage. Overall, PCNA is a critical protein in the maintenance of genomic stability and the prevention of DNA damage-induced diseases, such as cancer.

Leukemia is a type of cancer that affects the blood and bone marrow. It is characterized by the abnormal production of white blood cells, which can interfere with the normal functioning of the immune system and other parts of the body. There are several different types of leukemia, including acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML). Treatment for leukemia typically involves chemotherapy, radiation therapy, and/or stem cell transplantation.

Blotting, Western is a laboratory technique used to detect specific proteins in a sample by transferring proteins from a gel to a membrane and then incubating the membrane with a specific antibody that binds to the protein of interest. The antibody is then detected using an enzyme or fluorescent label, which produces a visible signal that can be quantified. This technique is commonly used in molecular biology and biochemistry to study protein expression, localization, and function. It is also used in medical research to diagnose diseases and monitor treatment responses.

Receptors, Antigen, B-Cell are a type of immune cell receptors found on the surface of B cells in the immune system. These receptors are responsible for recognizing and binding to specific antigens, which are foreign substances such as viruses, bacteria, or other pathogens. When a B cell encounters an antigen that matches its receptor, it becomes activated and begins to produce antibodies, which are proteins that can recognize and neutralize the specific antigen. The production of antibodies by B cells is a key part of the adaptive immune response, which helps the body to defend against infections and other harmful substances.

Proto-oncogenes are normal genes that are involved in regulating cell growth and division. When these genes are mutated or overexpressed, they can become oncogenes, which can lead to the development of cancer. Proto-oncogenes are also known as proto-oncogene proteins.

Cell transformation, neoplastic refers to the process by which normal cells in the body undergo genetic changes that cause them to become cancerous or malignant. This process involves the accumulation of mutations in genes that regulate cell growth, division, and death, leading to uncontrolled cell proliferation and the formation of tumors. Neoplastic transformation can occur in any type of cell in the body, and it can be caused by a variety of factors, including exposure to carcinogens, radiation, viruses, and inherited genetic mutations. Once a cell has undergone neoplastic transformation, it can continue to divide and grow uncontrollably, invading nearby tissues and spreading to other parts of the body through the bloodstream or lymphatic system. The diagnosis of neoplastic transformation typically involves a combination of clinical examination, imaging studies, and biopsy. Treatment options for neoplastic transformation depend on the type and stage of cancer, as well as the patient's overall health and preferences. Common treatments include surgery, radiation therapy, chemotherapy, targeted therapy, and immunotherapy.

Histocompatibility antigens class II are a group of proteins found on the surface of certain cells in the immune system. These proteins play a crucial role in the immune response by presenting foreign substances, such as bacteria or viruses, to immune cells called T cells. The class II antigens are encoded by a group of genes called the major histocompatibility complex (MHC) class II genes. These genes are located on chromosome 6 in humans and are highly polymorphic, meaning that there are many different versions of the genes. This diversity of MHC class II antigens allows the immune system to recognize and respond to a wide variety of foreign substances.

Nuclear proteins are proteins that are found within the nucleus of a cell. The nucleus is the control center of the cell, where genetic material is stored and regulated. Nuclear proteins play a crucial role in many cellular processes, including DNA replication, transcription, and gene regulation. There are many different types of nuclear proteins, each with its own specific function. Some nuclear proteins are involved in the structure and organization of the nucleus itself, while others are involved in the regulation of gene expression. Nuclear proteins can also interact with other proteins, DNA, and RNA molecules to carry out their functions. In the medical field, nuclear proteins are often studied in the context of diseases such as cancer, where changes in the expression or function of nuclear proteins can contribute to the development and progression of the disease. Additionally, nuclear proteins are important targets for drug development, as they can be targeted to treat a variety of diseases.

CD15, also known as sialyl Lewis X, is a type of antigen found on the surface of certain cells in the body. It is a carbohydrate molecule that is attached to a protein called sialyltransferase. CD15 is expressed on the surface of many types of cells, including neutrophils, monocytes, and some cancer cells. In the medical field, CD15 is often used as a marker to identify certain types of cancer cells. For example, it is commonly expressed on the surface of acute myeloid leukemia (AML) cells, a type of blood cancer. CD15 can also be used to identify other types of cancer cells, such as colon cancer and ovarian cancer. In addition to its use in cancer diagnosis, CD15 is also used as a target for certain types of cancer treatment. Monoclonal antibodies, which are laboratory-made molecules that can recognize and bind to specific antigens, can be designed to target CD15 on cancer cells. These antibodies can then be used to deliver chemotherapy drugs directly to the cancer cells, potentially increasing the effectiveness of treatment and reducing side effects.

Recombinant proteins are proteins that are produced by genetically engineering bacteria, yeast, or other organisms to express a specific gene. These proteins are typically used in medical research and drug development because they can be produced in large quantities and are often more pure and consistent than proteins that are extracted from natural sources. Recombinant proteins can be used for a variety of purposes in medicine, including as diagnostic tools, therapeutic agents, and research tools. For example, recombinant versions of human proteins such as insulin, growth hormones, and clotting factors are used to treat a variety of medical conditions. Recombinant proteins can also be used to study the function of specific genes and proteins, which can help researchers understand the underlying causes of diseases and develop new treatments.

CD45 is a type of protein found on the surface of many different types of immune cells, including white blood cells. It is also known as leukocyte common antigen or lymphocyte common antigen. CD45 plays an important role in the function of the immune system by helping to regulate the activity of immune cells. It is also used as a marker to identify different types of immune cells in the laboratory. Antigens, CD45 refers to molecules that bind to CD45 on the surface of immune cells and trigger an immune response. These antigens can be found on viruses, bacteria, and other foreign substances, as well as on abnormal cells in the body.

CD34 is a protein found on the surface of certain cells in the body, including hematopoietic stem cells, progenitor cells, and endothelial cells. In the medical field, CD34 is often used as a marker to identify and isolate these cells for various purposes, such as in bone marrow transplantation or in research studies. Antigens, CD34 refers to the specific portion of the CD34 protein that serves as an antigen, or a substance that triggers an immune response in the body. Antigens, CD34 can be used as a diagnostic tool to detect the presence of certain diseases or conditions, such as certain types of leukemia or myelodysplastic syndromes. They can also be used in the development of targeted therapies for these conditions.

Prostate-Specific Antigen (PSA) is a protein produced by the cells of the prostate gland in men. It is normally present in small amounts in the blood, but levels can increase if there is an abnormality in the prostate gland, such as cancer. PSA testing is commonly used as a screening tool for prostate cancer, as elevated levels of PSA can indicate the presence of cancerous cells in the prostate gland. However, it is important to note that not all cases of elevated PSA levels are due to cancer, and some men with prostate cancer may have normal PSA levels. Therefore, PSA testing should be interpreted in conjunction with other clinical information and diagnostic tests.

In the medical field, "Antigens, CD8" refers to a group of proteins found on the surface of certain immune cells called CD8+ T cells, also known as cytotoxic T cells. These proteins, called major histocompatibility complex (MHC) class I molecules, bind to specific antigens (foreign substances) that have been processed and presented by antigen-presenting cells (APCs) such as dendritic cells, macrophages, and B cells. When CD8+ T cells encounter an APC presenting an antigen that matches one of their CD8 receptors, they become activated and differentiate into effector cells that can directly kill infected or cancerous cells. This process is a key part of the immune response to infections and cancer. Antigens, CD8 are important targets for the development of vaccines and cancer immunotherapies, as they can stimulate the immune system to recognize and attack cancer cells or pathogens.

Tetradecanoylphorbol acetate (TPA) is a synthetic compound that belongs to a class of chemicals called phorbol esters. It is a potent tumor promoter and has been used in research to study the mechanisms of cancer development and progression. TPA works by activating protein kinase C (PKC), a family of enzymes that play a key role in cell signaling and proliferation. When TPA binds to a specific receptor on the cell surface, it triggers a cascade of events that leads to the activation of PKC, which in turn promotes cell growth and division. TPA has been shown to promote the growth of tumors in animal models and has been linked to the development of certain types of cancer in humans, including skin cancer and breast cancer. It is also used in some experimental treatments for cancer, although its use is limited due to its potential toxicity and side effects.

In the medical field, O antigens refer to a type of polysaccharide found on the surface of certain bacteria. These antigens are part of the lipopolysaccharide (LPS) layer that surrounds the bacterial cell membrane and play a role in the bacteria's ability to interact with the host immune system. The O antigens are named based on the chemical structure of the polysaccharide chain, which can vary greatly between different bacterial species. For example, the O antigen of Escherichia coli is composed of a repeating unit of a disaccharide, while the O antigen of Salmonella typhi is composed of a repeating unit of a trisaccharide. The presence of O antigens on the surface of bacteria can be important for the diagnosis and treatment of bacterial infections. For example, the O antigen of E. coli can be used to identify specific strains of the bacteria that are responsible for causing certain types of infections, such as urinary tract infections or food poisoning. Additionally, the O antigens can be used as targets for vaccines to help protect against bacterial infections.

Neoplasm proteins are proteins that are produced by cancer cells. These proteins are often abnormal and can contribute to the growth and spread of cancer. They can be detected in the blood or other body fluids, and their presence can be used as a diagnostic tool for cancer. Some neoplasm proteins are also being studied as potential targets for cancer treatment.

Homeodomain proteins are a class of transcription factors that play a crucial role in the development and differentiation of cells and tissues in animals. They are characterized by a highly conserved DNA-binding domain called the homeodomain, which allows them to recognize and bind to specific DNA sequences. Homeodomain proteins are involved in a wide range of biological processes, including embryonic development, tissue differentiation, and organogenesis. They regulate the expression of genes that are essential for these processes by binding to specific DNA sequences and either activating or repressing the transcription of target genes. There are many different types of homeodomain proteins, each with its own unique function and target genes. Some examples of homeodomain proteins include the Hox genes, which are involved in the development of the body plan in animals, and the Pax genes, which are involved in the development of the nervous system. Mutations in homeodomain proteins can lead to a variety of developmental disorders, including congenital malformations and intellectual disabilities. Understanding the function and regulation of homeodomain proteins is therefore important for the development of new treatments for these conditions.

Dendritic cells are a type of immune cell that plays a crucial role in the body's immune response. They are found in various tissues throughout the body, including the skin, lymph nodes, and mucous membranes. Dendritic cells are responsible for capturing and processing antigens, which are foreign substances that can trigger an immune response. They do this by engulfing and breaking down antigens, and then presenting them to other immune cells, such as T cells, in a way that activates the immune response. Dendritic cells are also involved in the regulation of immune responses, helping to prevent the body from overreacting to harmless substances and to maintain immune tolerance to self-antigens. In the medical field, dendritic cells are being studied for their potential use in cancer immunotherapy. They can be genetically modified to recognize and attack cancer cells, and are being tested in clinical trials as a way to treat various types of cancer.

In the medical field, "trans-activators" refer to proteins or molecules that activate the transcription of a gene, which is the process by which the information in a gene is used to produce a functional product, such as a protein. Trans-activators can bind to specific DNA sequences near a gene and recruit other proteins, such as RNA polymerase, to initiate transcription. They can also modify the chromatin structure around a gene to make it more accessible to transcription machinery. Trans-activators play important roles in regulating gene expression and are involved in many biological processes, including development, differentiation, and disease.

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a protein that plays a critical role in the development and function of white blood cells, particularly granulocytes and macrophages. It is produced by a variety of cells, including bone marrow cells, fibroblasts, and endothelial cells. In the bone marrow, GM-CSF stimulates the proliferation and differentiation of hematopoietic stem cells into granulocytes and macrophages. These cells are important components of the immune system and play a key role in fighting infections and removing damaged or infected cells from the body. GM-CSF also has a number of other functions in the body, including promoting the survival of granulocytes and macrophages, enhancing their ability to phagocytose (engulf and destroy) pathogens, and stimulating the production of cytokines and other signaling molecules that help to coordinate the immune response. In the medical field, GM-CSF is used as a treatment for a variety of conditions, including cancer, bone marrow suppression, and certain immune disorders. It is typically administered as a recombinant protein, either as a standalone therapy or in combination with other treatments.

Antigens, Tumor-Associated, Carbohydrate (TAC) are a type of tumor-associated antigen that are composed of carbohydrates. These antigens are found on the surface of cancer cells and are not present on normal cells. They are recognized by the immune system as foreign and can stimulate an immune response against the cancer cells. TAC antigens are being studied as potential targets for cancer immunotherapy, which aims to harness the power of the immune system to fight cancer.

Cloning, molecular, in the medical field refers to the process of creating identical copies of a specific DNA sequence or gene. This is achieved through a technique called polymerase chain reaction (PCR), which amplifies a specific DNA sequence to produce multiple copies of it. Molecular cloning is commonly used in medical research to study the function of specific genes, to create genetically modified organisms for therapeutic purposes, and to develop new drugs and treatments. It is also used in forensic science to identify individuals based on their DNA. In the context of human cloning, molecular cloning is used to create identical copies of a specific gene or DNA sequence from one individual and insert it into the genome of another individual. This technique has been used to create transgenic animals, but human cloning is currently illegal in many countries due to ethical concerns.

In the medical field, "clone cells" refers to the process of creating genetically identical copies of a single cell. This is typically done through a technique called cell division, in which a single cell divides into two identical daughter cells. The daughter cells are genetically identical to the parent cell because they inherit the same genetic material. Cloning cells is a common technique used in many areas of medicine, including tissue engineering, regenerative medicine, and cancer research. It can also be used in the production of vaccines and other medical treatments.

DNA primers are short, single-stranded DNA molecules that are used in a variety of molecular biology techniques, including polymerase chain reaction (PCR) and DNA sequencing. They are designed to bind to specific regions of a DNA molecule, and are used to initiate the synthesis of new DNA strands. In PCR, DNA primers are used to amplify specific regions of DNA by providing a starting point for the polymerase enzyme to begin synthesizing new DNA strands. The primers are complementary to the target DNA sequence, and are added to the reaction mixture along with the DNA template, nucleotides, and polymerase enzyme. The polymerase enzyme uses the primers as a template to synthesize new DNA strands, which are then extended by the addition of more nucleotides. This process is repeated multiple times, resulting in the amplification of the target DNA sequence. DNA primers are also used in DNA sequencing to identify the order of nucleotides in a DNA molecule. In this application, the primers are designed to bind to specific regions of the DNA molecule, and are used to initiate the synthesis of short DNA fragments. The fragments are then sequenced using a variety of techniques, such as Sanger sequencing or next-generation sequencing. Overall, DNA primers are an important tool in molecular biology, and are used in a wide range of applications to study and manipulate DNA.

Histocompatibility antigens class I (HLA class I) are a group of proteins found on the surface of almost all cells in the human body. These proteins play a crucial role in the immune system by presenting pieces of foreign substances, such as viruses or bacteria, to immune cells called T cells. HLA class I antigens are encoded by a group of genes located on chromosome 6. There are several different HLA class I antigens, each with a unique structure and function. The specific HLA class I antigens present on a person's cells can affect their susceptibility to certain diseases, including autoimmune disorders, infectious diseases, and cancer. In the context of transplantation, HLA class I antigens are important because they can trigger an immune response if the donor tissue is not a close match to the recipient's own tissue. This immune response, known as rejection, can lead to the rejection of the transplanted tissue or organ. Therefore, matching HLA class I antigens between the donor and recipient is an important consideration in transplantation.

Apoptosis is a programmed cell death process that occurs naturally in the body. It is a vital mechanism for maintaining tissue homeostasis and eliminating damaged or unwanted cells. During apoptosis, cells undergo a series of changes that ultimately lead to their death and removal from the body. These changes include chromatin condensation, DNA fragmentation, and the formation of apoptotic bodies, which are engulfed by neighboring cells or removed by immune cells. Apoptosis plays a critical role in many physiological processes, including embryonic development, tissue repair, and immune function. However, when apoptosis is disrupted or dysregulated, it can contribute to the development of various diseases, including cancer, autoimmune disorders, and neurodegenerative diseases.

Immunoglobulin G (IgG) is a type of protein that is produced by the immune system in response to the presence of foreign substances, such as bacteria, viruses, and toxins. It is the most abundant type of immunoglobulin in the blood and is responsible for the majority of the body's defense against infections. IgG is produced by B cells, which are a type of white blood cell that plays a key role in the immune response. When a B cell encounters a foreign substance, it produces IgG antibodies that can recognize and bind to the substance, marking it for destruction by other immune cells. IgG antibodies can also be transferred from mother to child through the placenta during pregnancy, providing the baby with some protection against infections during the first few months of life. In addition, some vaccines contain IgG antibodies to help stimulate the immune system and provide protection against specific diseases. Overall, IgG is an important component of the immune system and plays a critical role in protecting the body against infections and diseases.

CD3 is a protein complex that is found on the surface of T cells, a type of white blood cell that plays a central role in the immune system. CD3 is a component of the T cell receptor (TCR), which is responsible for recognizing and binding to specific antigens on the surface of other cells. Antigens, CD3 refers to antigens that are recognized by the CD3 component of the TCR. These antigens are typically proteins or other molecules that are present on the surface of cells, and they can be either self-antigens (present on the body's own cells) or foreign antigens (present on the cells of pathogens or other foreign substances). When a T cell encounters an antigen that is recognized by its CD3 receptor, it becomes activated and begins to divide and differentiate into various types of effector T cells, which can then mount an immune response against the pathogen or foreign substance.

Repressor proteins are a class of proteins that regulate gene expression by binding to specific DNA sequences and preventing the transcription of the associated gene. They are often involved in controlling the expression of genes that are involved in cellular processes such as metabolism, growth, and differentiation. Repressor proteins can be classified into two main types: transcriptional repressors and post-transcriptional repressors. Transcriptional repressors bind to specific DNA sequences near the promoter region of a gene, which prevents the binding of RNA polymerase and other transcription factors, thereby inhibiting the transcription of the gene. Post-transcriptional repressors, on the other hand, bind to the mRNA of a gene, which prevents its translation into protein or causes its degradation, thereby reducing the amount of protein produced. Repressor proteins play important roles in many biological processes, including development, differentiation, and cellular response to environmental stimuli. They are also involved in the regulation of many diseases, including cancer, neurological disorders, and metabolic disorders.

Acute Erythroblastic Leukemia (AEL) is a rare type of acute myeloid leukemia (AML) that is characterized by the overproduction of immature red blood cells (erythroblasts) in the bone marrow. This leads to a decrease in the production of mature red blood cells, which can cause anemia, fatigue, weakness, and shortness of breath. AEL is typically diagnosed in adults and is more common in males than females. The symptoms of AEL can be similar to those of other types of AML, so a bone marrow biopsy is usually performed to confirm the diagnosis. Treatment for AEL typically involves chemotherapy and/or radiation therapy to kill the cancer cells and restore normal blood cell production. In some cases, a stem cell transplant may also be recommended. The prognosis for AEL depends on various factors, including the patient's age, overall health, and the specific type and stage of the disease.

HLA-A2 Antigen is a protein found on the surface of cells in the human body. It is a part of the human leukocyte antigen (HLA) system, which plays a crucial role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. The HLA-A2 Antigen is a specific type of HLA-A protein that is expressed on the surface of cells in the body. It is one of the most widely studied HLA antigens because it is associated with the ability of the immune system to recognize and respond to certain types of viruses, such as the Epstein-Barr virus (EBV) and the human papillomavirus (HPV). In the medical field, the HLA-A2 Antigen is often used as a marker for certain diseases and conditions. For example, it is commonly used in the diagnosis and treatment of certain types of cancer, such as melanoma and lung cancer. It is also used in the development of vaccines and other therapies for these diseases. Overall, the HLA-A2 Antigen plays an important role in the immune system's ability to recognize and respond to foreign substances, and it is an important marker for certain diseases and conditions in the medical field.

Membrane glycoproteins are proteins that are attached to the cell membrane through a glycosyl group, which is a complex carbohydrate. These proteins play important roles in cell signaling, cell adhesion, and cell recognition. They are involved in a wide range of biological processes, including immune response, cell growth and differentiation, and nerve transmission. Membrane glycoproteins can be classified into two main types: transmembrane glycoproteins, which span the entire cell membrane, and peripheral glycoproteins, which are located on one side of the membrane.

Recombinant fusion proteins are proteins that are produced by combining two or more genes in a single molecule. These proteins are typically created using genetic engineering techniques, such as recombinant DNA technology, to insert one or more genes into a host organism, such as bacteria or yeast, which then produces the fusion protein. Fusion proteins are often used in medical research and drug development because they can have unique properties that are not present in the individual proteins that make up the fusion. For example, a fusion protein might be designed to have increased stability, improved solubility, or enhanced targeting to specific cells or tissues. Recombinant fusion proteins have a wide range of applications in medicine, including as therapeutic agents, diagnostic tools, and research reagents. Some examples of recombinant fusion proteins used in medicine include antibodies, growth factors, and cytokines.

Adipogenesis is the process by which precursor cells differentiate into mature adipocytes, which are specialized cells that store energy in the form of fat. This process is regulated by various signaling pathways and transcription factors, and is influenced by a variety of factors including hormones, nutrients, and physical activity. Adipogenesis plays a critical role in maintaining energy homeostasis in the body, and is also involved in the development of obesity and other metabolic disorders.

Cell culture techniques refer to the methods used to grow and maintain cells in a controlled laboratory environment. These techniques are commonly used in the medical field for research, drug development, and tissue engineering. In cell culture, cells are typically grown in a liquid medium containing nutrients, hormones, and other substances that support their growth and survival. The cells are usually placed in a specialized container called a culture dish or flask, which is incubated in a controlled environment with a specific temperature, humidity, and oxygen level. There are several types of cell culture techniques, including: 1. Monolayer culture: In this technique, cells are grown in a single layer on the surface of the culture dish. This is the most common type of cell culture and is used for many types of research and drug development. 2. Suspension culture: In this technique, cells are grown in a liquid medium and are free to move around. This is commonly used for the cultivation of cells that do not form a monolayer, such as stem cells and cancer cells. 3. Co-culture: In this technique, two or more types of cells are grown together in the same culture dish. This is used to study interactions between different cell types and is commonly used in tissue engineering. 4. 3D culture: In this technique, cells are grown in a three-dimensional matrix, such as a scaffold or hydrogel. This is used to mimic the structure and function of tissues in the body and is commonly used in tissue engineering and regenerative medicine. Overall, cell culture techniques are essential tools in the medical field for advancing our understanding of cell biology, developing new drugs and therapies, and engineering tissues and organs for transplantation.

Interferon-gamma (IFN-γ) is a type of cytokine, which is a signaling molecule that plays a crucial role in the immune system. It is produced by various immune cells, including T cells, natural killer cells, and macrophages, in response to viral or bacterial infections, as well as in response to certain types of cancer. IFN-γ has a wide range of effects on the immune system, including the activation of macrophages and other immune cells, the inhibition of viral replication, and the promotion of T cell differentiation and proliferation. It also plays a role in the regulation of the immune response, helping to prevent excessive inflammation and tissue damage. In the medical field, IFN-γ is used as a therapeutic agent in the treatment of certain types of cancer, such as Hodgkin's lymphoma and multiple myeloma. It is also being studied as a potential treatment for other conditions, such as autoimmune diseases and viral infections.

The cell cycle is the series of events that a cell undergoes from the time it is born until it divides into two daughter cells. It is a highly regulated process that is essential for the growth, development, and repair of tissues in the body. The cell cycle consists of four main phases: interphase, prophase, metaphase, and anaphase. During interphase, the cell grows and replicates its DNA in preparation for cell division. In prophase, the chromatin condenses into visible chromosomes, and the nuclear envelope breaks down. In metaphase, the chromosomes align at the center of the cell, and in anaphase, the sister chromatids separate and move to opposite poles of the cell. The cell cycle is tightly regulated by a complex network of proteins that ensure that the cell only divides when it is ready and that the daughter cells receive an equal share of genetic material. Disruptions in the cell cycle can lead to a variety of medical conditions, including cancer.

In the medical field, cross reactions refer to the phenomenon where an individual's immune system reacts to a substance that it has not been specifically exposed to before, but has a similar molecular structure to a substance that it has previously encountered. This can occur when an individual has been exposed to a substance that triggers an immune response, and then later encounters a similar substance that triggers a similar response. For example, if an individual is allergic to peanuts, their immune system may produce antibodies that react to the proteins in peanuts. If they later encounter a similar protein in a different food, such as tree nuts, their immune system may also produce antibodies that react to the protein in tree nuts, even though they have never been exposed to tree nuts before. This is known as a cross reaction. Cross reactions can occur in a variety of medical contexts, including allergies, autoimmune diseases, and infections. They can also occur with vaccines, where the vaccine contains a small amount of a similar substance to the pathogen that it is designed to protect against. In some cases, cross reactions can be mild and harmless, while in other cases they can be severe and even life-threatening.

Blood group antigens are proteins or carbohydrates that are present on the surface of red blood cells (RBCs) and other cells in the body. These antigens are responsible for the different blood types that are commonly classified as A, B, AB, and O. Blood group antigens are recognized by the immune system as foreign substances and can trigger an immune response if they are present in the wrong type of blood. This can lead to the production of antibodies that attack and destroy the RBCs, causing a condition called hemolytic anemia. In medical practice, knowledge of blood group antigens is important for blood transfusions, organ transplantation, and other medical procedures that involve the use of blood or blood products. It is also important for identifying potential donors for bone marrow transplantation and for determining the risk of certain diseases, such as sickle cell anemia and thalassemia.

In the medical field, cell separation refers to the process of isolating specific types of cells from a mixture of cells. This can be done for a variety of reasons, such as to study the properties and functions of a particular cell type, to prepare cells for transplantation, or to remove unwanted cells from a sample. There are several methods for cell separation, including centrifugation, fluorescence-activated cell sorting (FACS), and magnetic bead separation. Centrifugation involves spinning a sample of cells at high speeds to separate them based on their size and density. FACS uses lasers to excite fluorescent markers on the surface of cells, allowing them to be sorted based on their fluorescence intensity. Magnetic bead separation uses magnetic beads coated with antibodies to bind to specific cell surface markers, allowing them to be separated from other cells using a magnetic field. Cell separation is an important technique in many areas of medicine, including cancer research, stem cell biology, and immunology. It allows researchers to study specific cell types in detail and to develop new treatments for diseases based on a better understanding of cell biology.

Antibody specificity refers to the ability of an antibody to recognize and bind to a specific antigen or foreign substance. Antibodies are proteins produced by the immune system in response to the presence of an antigen, such as a virus or bacteria. Each antibody is unique and has a specific shape that allows it to recognize and bind to a specific antigen. Antibody specificity is important in the immune response because it ensures that the immune system can distinguish between self and non-self molecules. This helps to prevent the immune system from attacking the body's own cells and tissues, which can lead to autoimmune diseases. Antibody specificity is also important in the development of vaccines. Vaccines contain weakened or inactivated forms of a pathogen or its antigens, which stimulate the immune system to produce antibodies that can recognize and neutralize the pathogen if it is encountered in the future. By selecting antigens that are specific to a particular pathogen, vaccines can help to protect against a wide range of infections.

Myelodysplastic-Myeloproliferative Diseases (MDS-MPsD) is a group of blood disorders that affect the bone marrow, which is the spongy tissue inside bones where blood cells are produced. MDS-MPsD is characterized by an abnormal increase in the number of blood cells in the bone marrow, which can lead to the production of abnormal blood cells that do not function properly. This can cause a variety of symptoms, including fatigue, weakness, and an increased risk of infections and bleeding. MDS-MPsD can be a precancerous condition, and some people with MDS-MPsD may develop acute myeloid leukemia (AML). Treatment for MDS-MPsD typically involves medications to control symptoms and improve blood cell production, as well as blood transfusions and stem cell transplantation in some cases.

Membrane proteins are proteins that are embedded within the lipid bilayer of a cell membrane. They play a crucial role in regulating the movement of substances across the membrane, as well as in cell signaling and communication. There are several types of membrane proteins, including integral membrane proteins, which span the entire membrane, and peripheral membrane proteins, which are only in contact with one or both sides of the membrane. Membrane proteins can be classified based on their function, such as transporters, receptors, channels, and enzymes. They are important for many physiological processes, including nutrient uptake, waste elimination, and cell growth and division.

In the medical field, "chickens" typically refers to the domesticated bird species Gallus gallus domesticus. Chickens are commonly raised for their meat, eggs, and feathers, and are also used in research and as pets. In veterinary medicine, chickens can be treated for a variety of health conditions, including diseases such as avian influenza, Newcastle disease, and fowl pox. They may also require treatment for injuries or trauma, such as broken bones or cuts. In human medicine, chickens are not typically used as a source of treatment or therapy. However, some research has been conducted using chicken cells or proteins as models for human diseases or as potential sources of vaccines or other medical interventions.

CD4 antigens, also known as CD4 molecules, are a type of protein found on the surface of certain cells in the immune system. These cells, called T cells, play a crucial role in the body's defense against infection and disease. CD4 antigens are specifically associated with helper T cells, which are a type of T cell that works to coordinate the immune response by activating other immune cells. Helper T cells express high levels of CD4 antigens on their surface, which allows them to bind to and activate other immune cells, such as B cells and macrophages. In the context of the human immunodeficiency virus (HIV), the virus specifically targets and destroys CD4+ T cells, leading to a weakened immune system and an increased susceptibility to opportunistic infections and certain types of cancer. Therefore, CD4+ T cell count is often used as a key indicator of HIV infection and disease progression.

Blotting, Northern is a laboratory technique used to detect and quantify specific RNA molecules in a sample. It involves transferring RNA from a gel onto a membrane, which is then hybridized with a labeled complementary DNA probe. The probe binds to the specific RNA molecules on the membrane, allowing their detection and quantification through autoradiography or other imaging methods. Northern blotting is commonly used to study gene expression patterns in cells or tissues, and to compare the expression levels of different RNA molecules in different samples.

HLA-A antigens are a group of proteins that are expressed on the surface of cells in the human immune system. These proteins play a crucial role in the immune response by helping to identify and distinguish between "self" and "non-self" cells. HLA-A antigens are encoded by a group of genes located on chromosome 6, and there are many different variations of these antigens, each with a unique amino acid sequence. These variations, known as alleles, are responsible for the diversity of the HLA-A antigens that are expressed in the human population. HLA-A antigens are important for the proper functioning of the immune system, and they are also used in the field of transplantation to help match donors and recipients for organ and tissue transplants.

CD1 antigens are a group of cell surface proteins that are expressed on antigen-presenting cells (APCs) such as dendritic cells, macrophages, and B cells. They play a crucial role in the immune system by presenting antigens to T cells, which are responsible for recognizing and responding to foreign substances in the body. CD1 antigens are different from the more well-known MHC (major histocompatibility complex) antigens, which are also expressed on APCs and play a similar role in antigen presentation. However, CD1 antigens are specialized in presenting certain types of antigens, particularly lipid antigens, to T cells. There are four different types of CD1 antigens: CD1a, CD1b, CD1c, and CD1d. Each type of CD1 antigen has a unique structure and function, and they are expressed on different subsets of APCs. For example, CD1a is primarily expressed on dendritic cells and Langerhans cells, while CD1b is expressed on monocytes and macrophages. CD1 antigens are important for the immune system's ability to recognize and respond to a wide range of pathogens, including viruses, bacteria, and fungi. They are also involved in the regulation of immune responses and the development of autoimmune diseases.

DNA, or deoxyribonucleic acid, is a molecule that carries genetic information in living organisms. It is composed of four types of nitrogen-containing molecules called nucleotides, which are arranged in a specific sequence to form the genetic code. In the medical field, DNA is often studied as a tool for understanding and diagnosing genetic disorders. Genetic disorders are caused by changes in the DNA sequence that can affect the function of genes, leading to a variety of health problems. By analyzing DNA, doctors and researchers can identify specific genetic mutations that may be responsible for a particular disorder, and develop targeted treatments or therapies to address the underlying cause of the condition. DNA is also used in forensic science to identify individuals based on their unique genetic fingerprint. This is because each person's DNA sequence is unique, and can be used to distinguish one individual from another. DNA analysis is also used in criminal investigations to help solve crimes by linking DNA evidence to suspects or victims.

Avian myeloblastosis virus (AMV) is a type of retrovirus that infects birds, particularly chickens. It is a member of the genus Myeloblastosis virus, which belongs to the family Retroviridae. AMV can cause a variety of diseases in birds, including myeloid leukosis, a type of cancer that affects the bone marrow and causes an overproduction of immature white blood cells. The virus can also cause respiratory infections, reproductive problems, and other health issues in birds. AMV is transmitted through the transfer of infected bird cells or bodily fluids, such as semen or egg yolk. It can also be transmitted through contaminated equipment or surfaces. In the medical field, AMV is studied as a model for retroviral infections and cancer research. It has also been used as a vector for gene therapy, where the virus is modified to deliver specific genes to cells in the body.

A cell line, transformed, is a type of cell that has been genetically altered to become cancerous or immortal. This is typically done through exposure to chemicals, radiation, or viruses that cause changes in the DNA of the cell, allowing it to grow and divide uncontrollably. Transformed cell lines are often used in research to study cancer biology and develop new treatments, as they can be easily grown and manipulated in the laboratory. They are also used in the production of vaccines and other medical products.

Cytokines are small proteins that are produced by various cells of the immune system, including white blood cells, macrophages, and dendritic cells. They play a crucial role in regulating immune responses and inflammation, and are involved in a wide range of physiological processes, including cell growth, differentiation, and apoptosis. Cytokines can be classified into different groups based on their function, including pro-inflammatory cytokines, anti-inflammatory cytokines, and regulatory cytokines. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1), promote inflammation and recruit immune cells to the site of infection or injury. Anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta), help to dampen the immune response and prevent excessive inflammation. Regulatory cytokines, such as interleukin-4 (IL-4) and interleukin-13 (IL-13), help to regulate the balance between pro-inflammatory and anti-inflammatory responses. Cytokines play a critical role in many diseases, including autoimmune disorders, cancer, and infectious diseases. They are also important in the development of vaccines and immunotherapies.

Adipocytes, also known as fat cells, are specialized cells in the body that store energy in the form of fat. They are found in adipose tissue, which is the most common type of connective tissue in the body. Adipocytes are responsible for regulating energy balance by storing and releasing fat as needed. They also play a role in the production of hormones, such as leptin and adiponectin, which help to regulate appetite and metabolism. In medical terms, the study of adipocytes is known as adipocyte biology or adipocyte research.

In the medical field, "cell survival" refers to the ability of cells to survive and continue to function despite exposure to harmful stimuli or conditions. This can include exposure to toxins, radiation, or other forms of stress that can damage or kill cells. Cell survival is an important concept in many areas of medicine, including cancer research, where understanding how cells survive and resist treatment is crucial for developing effective therapies. In addition, understanding the mechanisms that regulate cell survival can also have implications for other areas of medicine, such as tissue repair and regeneration.

A cell line, tumor is a type of cell culture that is derived from a cancerous tumor. These cell lines are grown in a laboratory setting and are used for research purposes, such as studying the biology of cancer and testing potential new treatments. They are typically immortalized, meaning that they can continue to divide and grow indefinitely, and they often exhibit the characteristics of the original tumor from which they were derived, such as specific genetic mutations or protein expression patterns. Cell lines, tumor are an important tool in cancer research and have been used to develop many of the treatments that are currently available for cancer patients.

In the medical field, carrier proteins are proteins that transport molecules across cell membranes or within cells. These proteins bind to specific molecules, such as hormones, nutrients, or waste products, and facilitate their movement across the membrane or within the cell. Carrier proteins play a crucial role in maintaining the proper balance of molecules within cells and between cells. They are involved in a wide range of physiological processes, including nutrient absorption, hormone regulation, and waste elimination. There are several types of carrier proteins, including facilitated diffusion carriers, active transport carriers, and ion channels. Each type of carrier protein has a specific function and mechanism of action. Understanding the role of carrier proteins in the body is important for diagnosing and treating various medical conditions, such as genetic disorders, metabolic disorders, and neurological disorders.

Acute promyelocytic leukemia (APL) is a type of acute myeloid leukemia (AML) that is characterized by the accumulation of abnormal white blood cells called promyelocytes in the bone marrow. These cells do not mature properly and are unable to function normally, leading to a deficiency in the production of healthy red blood cells, white blood cells, and platelets. APL is a rare but aggressive form of leukemia, and it is typically diagnosed in adults, although it can occur in children as well. The symptoms of APL can vary depending on the severity of the condition, but they may include fever, fatigue, weakness, easy bruising or bleeding, and shortness of breath. Treatment for APL typically involves chemotherapy and the use of a drug called all-trans retinoic acid (ATRA), which can help to induce the differentiation of the abnormal promyelocytes into healthy cells. In some cases, a stem cell transplant may also be necessary. With appropriate treatment, the prognosis for APL is generally good, with a high rate of remission and cure.

Neurofibromin 1 (NF1) is a protein that plays a crucial role in the development and function of nerve cells (neurons) in the human body. It is encoded by the NF1 gene, which is located on chromosome 17. Mutations in the NF1 gene can lead to a genetic disorder called neurofibromatosis type 1 (NF1), which is characterized by the development of benign tumors called neurofibromas on the skin and nervous system. These tumors can cause pain, disfigurement, and other complications. In addition to its role in tumor suppression, NF1 is also involved in regulating cell growth and differentiation, as well as the development of the nervous system. Mutations in the NF1 gene can also increase the risk of other health problems, such as learning disabilities, optic gliomas (tumors in the optic nerve), and brain tumors. Overall, NF1 is a critical protein in the development and function of the nervous system, and mutations in the NF1 gene can have significant consequences for an individual's health and well-being.

Antibody formation, also known as immunoglobulin production, is a process in the immune system where specialized cells called B cells produce antibodies in response to the presence of foreign substances, such as bacteria, viruses, or toxins, in the body. When a foreign substance enters the body, it is recognized by the immune system as foreign and triggers an immune response. B cells are activated and begin to divide and differentiate into plasma cells, which are specialized cells that produce antibodies. These antibodies are proteins that are designed to recognize and bind to specific antigens, which are molecules found on the surface of foreign substances. Once the antibodies bind to the antigens, they can neutralize the foreign substance, mark it for destruction by other immune cells, or activate the complement system, which is a group of proteins that work together to destroy the foreign substance. Antibody formation is a crucial part of the immune system's defense against infections and diseases. It is also an important aspect of the development of vaccines, which stimulate the immune system to produce antibodies against specific pathogens before the person is exposed to the actual pathogen.

Basic Helix-Loop-Helix (bHLH) transcription factors are a family of proteins that play important roles in regulating gene expression in a variety of biological processes, including development, differentiation, and cell cycle control. These proteins are characterized by a specific DNA-binding domain, known as the bHLH domain, which allows them to bind to specific DNA sequences and regulate the transcription of target genes. bHLH transcription factors are involved in a wide range of cellular processes, including the development of the nervous system, the formation of muscle tissue, and the regulation of cell growth and differentiation. They are also involved in the regulation of various diseases, including cancer, and are being studied as potential therapeutic targets. In the medical field, bHLH transcription factors are important for understanding the molecular mechanisms underlying various diseases and for developing new treatments. They are also being studied as potential biomarkers for disease diagnosis and prognosis.

HLA-D antigens are a group of proteins that are expressed on the surface of cells in the human immune system. These proteins play a crucial role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. HLA-D antigens are part of the human leukocyte antigen (HLA) system, which is a group of genes that are located on chromosome 6. There are several different HLA-D antigens, including HLA-DQ, HLA-DR, and HLA-DP. Each of these antigens is encoded by a different gene and has a unique structure and function. HLA-D antigens are involved in the immune system's ability to distinguish between self and non-self cells. They are also important in the development of autoimmune diseases, which occur when the immune system mistakenly attacks the body's own cells. In addition, HLA-D antigens play a role in the transplantation of organs and tissues, as they can help to determine whether a transplant is likely to be successful or not.

Immune sera refers to a type of blood serum that contains antibodies produced by the immune system in response to an infection or vaccination. These antibodies are produced by B cells, which are a type of white blood cell that plays a key role in the immune response. Immune sera can be used to diagnose and treat certain infections, as well as to prevent future infections. For example, immune sera containing antibodies against a specific virus or bacteria can be used to diagnose a current infection or to prevent future infections in people who have been exposed to the virus or bacteria. Immune sera can also be used as a research tool to study the immune response to infections and to develop new vaccines and treatments. In some cases, immune sera may be used to treat patients with severe infections or allergies, although this is less common than using immune sera for diagnostic or preventive purposes.

The Receptor, Macrophage Colony-Stimulating Factor (M-CSFR) is a protein receptor that is expressed on the surface of various types of cells, including macrophages, osteoclasts, and dendritic cells. It is also known as c-fms and is a member of the receptor tyrosine kinase (RTK) family. M-CSFR plays a critical role in the development and function of macrophages, which are a type of white blood cell that plays a key role in the immune system. M-CSFR is activated by its ligand, macrophage colony-stimulating factor (M-CSF), which is a cytokine that is produced by a variety of cells, including macrophages and osteoblasts. When M-CSF binds to M-CSFR, it triggers a signaling cascade that leads to the proliferation, differentiation, and survival of macrophages. M-CSFR is also involved in the regulation of bone metabolism, as it is expressed on osteoclasts, which are cells that break down bone tissue. In the medical field, M-CSFR is an important target for the development of drugs for the treatment of various diseases, including cancer, inflammation, and bone disorders. For example, drugs that block the activity of M-CSFR have been shown to be effective in reducing the growth and spread of certain types of cancer, such as multiple myeloma and breast cancer.

Retroviridae Proteins, Oncogenic refers to proteins encoded by retroviruses that have the ability to cause cancer in infected cells. Retroviruses are a type of virus that use RNA as their genetic material and reverse transcribe their RNA genome into DNA, which is then integrated into the host cell's genome. Oncogenic retroviruses can cause cancer by inserting their DNA into the host cell's genome at a specific location, called a viral integration site, which can disrupt the normal functioning of cellular genes and lead to uncontrolled cell growth and division. Examples of oncogenic retroviruses include the human immunodeficiency virus (HIV) and the avian leukosis virus (ALV).

Receptors, Antigen are proteins on the surface of immune cells that recognize and bind to specific molecules called antigens. Antigens can be found on the surface of pathogens such as viruses and bacteria, as well as on the surface of normal cells that have been damaged or are undergoing changes. When an antigen binds to its corresponding receptor on an immune cell, it triggers a series of events that lead to the activation and proliferation of immune cells, ultimately resulting in an immune response against the pathogen or abnormal cell.

In the medical field, cell adhesion refers to the process by which cells stick to each other or to a surface. This is an essential process for the proper functioning of tissues and organs in the body. There are several types of cell adhesion, including: 1. Homophilic adhesion: This occurs when cells adhere to each other through the interaction of specific molecules on their surface. 2. Heterophilic adhesion: This occurs when cells adhere to each other through the interaction of different molecules on their surface. 3. Heterotypic adhesion: This occurs when cells adhere to each other through the interaction of different types of cells. 4. Intercellular adhesion: This occurs when cells adhere to each other through the interaction of molecules within the cell membrane. 5. Intracellular adhesion: This occurs when cells adhere to each other through the interaction of molecules within the cytoplasm. Cell adhesion is important for a variety of processes, including tissue development, wound healing, and the immune response. Disruptions in cell adhesion can lead to a variety of medical conditions, including cancer, autoimmune diseases, and inflammatory disorders.

Receptors, cell surface are proteins that are located on the surface of cells and are responsible for receiving signals from the environment. These signals can be chemical, electrical, or mechanical in nature and can trigger a variety of cellular responses. There are many different types of cell surface receptors, including ion channels, G-protein coupled receptors, and enzyme-linked receptors. These receptors play a critical role in many physiological processes, including sensation, communication, and regulation of cellular activity. In the medical field, understanding the function and regulation of cell surface receptors is important for developing new treatments for a wide range of diseases and conditions.

The cell nucleus is a membrane-bound organelle found in eukaryotic cells that contains the cell's genetic material, or DNA. It is typically located in the center of the cell and is surrounded by a double membrane called the nuclear envelope. The nucleus is responsible for regulating gene expression and controlling the cell's activities. It contains a dense, irregularly shaped mass of chromatin, which is made up of DNA and associated proteins. The nucleus also contains a small body called the nucleolus, which is responsible for producing ribosomes, the cellular structures that synthesize proteins.

In the medical field, an antigen-antibody reaction refers to the interaction between a foreign substance, called an antigen, and a protein produced by the immune system called an antibody. Antigens are typically proteins or carbohydrates found on the surface of viruses, bacteria, or other foreign substances that enter the body. When the immune system detects an antigen, it produces antibodies that specifically bind to that antigen. This binding can neutralize the antigen, mark it for destruction by immune cells, or activate other immune responses. Antibodies are produced by B cells, a type of white blood cell in the immune system. Each B cell produces a specific type of antibody that can bind to a specific antigen. Once an antibody binds to an antigen, it forms an antigen-antibody complex, which can be detected by laboratory tests. Antigen-antibody reactions play a critical role in the immune response to infections and other foreign substances. They are also used in medical treatments, such as immunotherapy, where antibodies are used to target specific antigens on cancer cells or other harmful substances.

In the medical field, "DNA, Complementary" refers to the property of DNA molecules to pair up with each other in a specific way. Each strand of DNA has a unique sequence of nucleotides (adenine, thymine, guanine, and cytosine), and the nucleotides on one strand can only pair up with specific nucleotides on the other strand in a complementary manner. For example, adenine (A) always pairs up with thymine (T), and guanine (G) always pairs up with cytosine (C). This complementary pairing is essential for DNA replication and transcription, as it ensures that the genetic information encoded in one strand of DNA can be accurately copied onto a new strand. The complementary nature of DNA also plays a crucial role in genetic engineering and biotechnology, as scientists can use complementary DNA strands to create specific genetic sequences or modify existing ones.

Proteins are complex biomolecules made up of amino acids that play a crucial role in many biological processes in the human body. In the medical field, proteins are studied extensively as they are involved in a wide range of functions, including: 1. Enzymes: Proteins that catalyze chemical reactions in the body, such as digestion, metabolism, and energy production. 2. Hormones: Proteins that regulate various bodily functions, such as growth, development, and reproduction. 3. Antibodies: Proteins that help the immune system recognize and neutralize foreign substances, such as viruses and bacteria. 4. Transport proteins: Proteins that facilitate the movement of molecules across cell membranes, such as oxygen and nutrients. 5. Structural proteins: Proteins that provide support and shape to cells and tissues, such as collagen and elastin. Protein abnormalities can lead to various medical conditions, such as genetic disorders, autoimmune diseases, and cancer. Therefore, understanding the structure and function of proteins is essential for developing effective treatments and therapies for these conditions.

Interleukin-3 (IL-3) is a type of cytokine, which is a signaling molecule that plays a crucial role in regulating the immune system. IL-3 is produced by a variety of cells, including immune cells such as T cells, B cells, and mast cells, as well as by some non-immune cells such as fibroblasts and endothelial cells. In the medical field, IL-3 is primarily used as a therapeutic agent to treat certain types of blood disorders and cancers. For example, IL-3 has been shown to stimulate the growth and differentiation of certain types of blood cells, such as neutrophils and eosinophils, which are important for fighting infections and allergies. It has also been used to treat certain types of leukemia and lymphoma, as well as myelodysplastic syndrome, a group of blood disorders characterized by abnormal blood cell production. However, IL-3 can also have harmful effects if it is produced in excess or if it is not properly regulated. For example, it has been implicated in the development of certain types of autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis, where the immune system mistakenly attacks healthy cells and tissues. As a result, the use of IL-3 as a therapeutic agent is carefully monitored and regulated to minimize the risk of adverse effects.

Anemia, refractory refers to a type of anemia that does not respond to standard treatments or does not respond well to treatment. Refractory anemia is a chronic condition characterized by a low red blood cell count (anemia) that persists despite treatment with iron supplements, folic acid, and vitamin B12. Refractory anemia can be further classified into several subtypes, including refractory anemia with ring sideroblasts (RARS), refractory anemia with excess blasts (RAEB), and refractory anemia with excess blasts in transformation (RAEB-T). These subtypes are differentiated based on the presence of specific genetic abnormalities and the number of blast cells in the bone marrow. Refractory anemia can be caused by a variety of factors, including genetic disorders, autoimmune diseases, infections, and exposure to certain medications or toxins. Treatment options for refractory anemia may include blood transfusions, stem cell transplantation, and targeted therapies that address the underlying cause of the anemia.

Muramidase is an enzyme that is involved in the degradation of peptidoglycan, a major component of bacterial cell walls. It is also known as lysozyme or muramidase lysozyme. The enzyme cleaves the bond between the N-acetylglucosamine and N-acetylmuramic acid residues in the peptidoglycan chain, leading to the breakdown of the cell wall and ultimately the death of the bacterium. Muramidase is found in various organisms, including humans, and is used as an antimicrobial agent in some medications. It is also used in laboratory research to study bacterial cell wall structure and function.

Calcitriol is a hormone that is produced in the kidneys and helps to regulate the amount of calcium and phosphorus in the body. It is also known as vitamin D3 or 1,25-dihydroxyvitamin D3. Calcitriol plays a critical role in maintaining healthy bones by promoting the absorption of calcium from the intestines and increasing the reabsorption of calcium from the kidneys. It also helps to regulate the immune system and may have other effects on the body. Calcitriol is available as a medication and is used to treat a variety of conditions, including osteoporosis, hyperparathyroidism, and vitamin D deficiency.

A Colony-Forming Units (CFU) Assay is a method used to determine the number of viable bacterial cells present in a sample. The assay involves plating a known volume of the sample onto a solid growth medium and incubating the plate for a specific period of time. The number of colonies that grow on the plate is then counted and used to calculate the number of CFUs per milliliter of the original sample. This information is important in the medical field for monitoring the effectiveness of antibiotics, assessing the quality of water and food, and diagnosing and tracking the spread of bacterial infections.

Biological markers, also known as biomarkers, are measurable indicators of biological processes, pathogenic processes, or responses to therapeutic interventions. In the medical field, biological markers are used to diagnose, monitor, and predict the progression of diseases, as well as to evaluate the effectiveness of treatments. Biological markers can be found in various biological samples, such as blood, urine, tissue, or body fluids. They can be proteins, genes, enzymes, hormones, metabolites, or other molecules that are associated with a specific disease or condition. For example, in cancer, biological markers such as tumor markers can be used to detect the presence of cancer cells or to monitor the response to treatment. In cardiovascular disease, biological markers such as cholesterol levels or blood pressure can be used to assess the risk of heart attack or stroke. Overall, biological markers play a crucial role in medical research and clinical practice, as they provide valuable information about the underlying biology of diseases and help to guide diagnosis, treatment, and monitoring.

Antibodies, also known as immunoglobulins, are proteins produced by the immune system in response to the presence of foreign substances, such as viruses, bacteria, and other pathogens. Antibodies are designed to recognize and bind to specific molecules on the surface of these foreign substances, marking them for destruction by other immune cells. There are five main classes of antibodies: IgG, IgA, IgM, IgD, and IgE. Each class of antibody has a unique structure and function, and they are produced by different types of immune cells in response to different types of pathogens. Antibodies play a critical role in the immune response, helping to protect the body against infection and disease. They can neutralize pathogens by binding to them and preventing them from entering cells, or they can mark them for destruction by other immune cells. In some cases, antibodies can also help to stimulate the immune response by activating immune cells or by recruiting other immune cells to the site of infection. Antibodies are often used in medical treatments, such as in the development of vaccines, where they are used to stimulate the immune system to produce a response to a specific pathogen. They are also used in diagnostic tests to detect the presence of specific pathogens or to monitor the immune response to a particular treatment.

Macrophage Colony-Stimulating Factor (M-CSF) is a protein that plays a crucial role in the development and function of macrophages, a type of white blood cell that is an important component of the immune system. M-CSF is produced by a variety of cells, including macrophages, monocytes, and osteoblasts, and it acts on macrophages to stimulate their proliferation and differentiation. M-CSF is also involved in the regulation of the inflammatory response, and it has been shown to play a role in the development of certain types of cancer, such as multiple myeloma and breast cancer. In addition, M-CSF has been used as a therapeutic agent in the treatment of certain types of cancer, such as myelodysplastic syndromes and acute myeloid leukemia. Overall, M-CSF is an important molecule in the immune system and has a number of potential therapeutic applications.

Alkaline Phosphatase (ALP) is an enzyme that is found in many tissues throughout the body, including the liver, bone, and intestines. In the medical field, ALP levels are often measured as a diagnostic tool to help identify various conditions and diseases. There are several types of ALP, including tissue-nonspecific ALP (TN-ALP), bone-specific ALP (B-ALP), and liver-specific ALP (L-ALP). Each type of ALP is produced by different tissues and has different functions. In general, elevated levels of ALP can indicate a variety of medical conditions, including liver disease, bone disease, and certain types of cancer. For example, elevated levels of ALP in the blood can be a sign of liver damage or disease, while elevated levels in the urine can be a sign of bone disease or kidney problems. On the other hand, low levels of ALP can also be a cause for concern, as they may indicate a deficiency in certain vitamins or minerals, such as vitamin D or calcium. Overall, ALP is an important biomarker that can provide valuable information to healthcare providers in the diagnosis and management of various medical conditions.

CD14 is a protein that is expressed on the surface of certain cells in the immune system, including macrophages and monocytes. It is a receptor for lipopolysaccharide (LPS), a component of the cell wall of certain types of bacteria. When CD14 binds to LPS, it triggers a signaling cascade that activates the immune system and leads to the production of pro-inflammatory cytokines. CD14 is also involved in the recognition and processing of other types of antigens, including bacterial and viral proteins. In the medical field, CD14 is often used as a marker for the activation of the innate immune system and is studied in the context of various diseases, including sepsis, infectious diseases, and cancer.

In the medical field, cell movement refers to the ability of cells to move from one location to another within a tissue or organism. This movement can occur through various mechanisms, including crawling, rolling, and sliding, and is essential for many physiological processes, such as tissue repair, immune response, and embryonic development. There are several types of cell movement, including: 1. Chemotaxis: This is the movement of cells in response to chemical gradients, such as the concentration of a signaling molecule. 2. Haptotaxis: This is the movement of cells in response to physical gradients, such as the stiffness or topography of a substrate. 3. Random walk: This is the movement of cells in a seemingly random manner, which can be influenced by factors such as cell adhesion and cytoskeletal dynamics. 4. Amoeboid movement: This is the movement of cells that lack a well-defined cytoskeleton and rely on changes in cell shape and adhesion to move. Understanding cell movement is important for many medical applications, including the development of new therapies for diseases such as cancer, the study of tissue regeneration and repair, and the design of new materials for tissue engineering and regenerative medicine.

Oncogene proteins, fusion refers to the abnormal combination of two or more genes that results in the production of a new protein that is not normally present in the body. These fusion proteins are often associated with the development of cancer, as they can disrupt normal cellular processes and lead to uncontrolled cell growth and division. Fusion proteins can occur as a result of genetic mutations or chromosomal rearrangements, such as translocations or inversions. They can be detected through various diagnostic tests, including molecular genetic testing and immunohistochemistry. Examples of oncogene proteins, fusion include BCR-ABL1 in chronic myeloid leukemia, EML4-ALK in non-small cell lung cancer, and NPM-ALK in anaplastic large cell lymphoma. Targeted therapies that specifically inhibit the activity of these fusion proteins are often used in the treatment of these cancers.

CD11 antigens are a group of cell surface proteins that are expressed on various immune cells, including neutrophils, monocytes, and dendritic cells. They are also known as integrins and play a crucial role in the immune response by mediating the adhesion and migration of immune cells to sites of infection or inflammation. CD11 antigens are composed of two subunits, CD11a, CD11b, CD11c, CD11d, CD11e, and CD11f, which form heterodimers on the surface of immune cells. These heterodimers bind to various ligands, including other integrins, immunoglobulins, and extracellular matrix proteins, to mediate immune cell adhesion and migration. CD11 antigens are also involved in the activation of immune cells, including neutrophils and monocytes, and play a role in the clearance of pathogens and debris from the body. In addition, CD11 antigens are involved in the regulation of immune responses, including the differentiation and activation of T cells and B cells. Abnormal expression or function of CD11 antigens has been associated with various immune disorders, including autoimmune diseases, infectious diseases, and cancer. Therefore, CD11 antigens are an important target for the development of new therapies for these conditions.

Lipopolysaccharides (LPS) are a type of complex carbohydrate found on the surface of gram-negative bacteria. They are composed of a lipid A moiety, a core polysaccharide, and an O-specific polysaccharide. LPS are important components of the bacterial cell wall and play a role in the innate immune response of the host. In the medical field, LPS are often studied in the context of sepsis, a life-threatening condition that occurs when the body's response to an infection causes widespread inflammation. LPS can trigger a strong immune response in the host, leading to the release of pro-inflammatory cytokines and other mediators that can cause tissue damage and organ failure. As a result, LPS are often used as a model for studying the pathophysiology of sepsis and for developing new treatments for this condition. LPS are also used in research as a tool for studying the immune system and for developing vaccines against bacterial infections. They can be purified from bacterial cultures and used to stimulate immune cells in vitro or in animal models, allowing researchers to study the mechanisms of immune responses to bacterial pathogens. Additionally, LPS can be used as an adjuvant in vaccines to enhance the immune response to the vaccine antigen.

Bone morphogenetic proteins (BMPs) are a group of signaling proteins that play a crucial role in the development and maintenance of bone tissue. They are secreted by various cells in the body, including bone-forming cells called osteoblasts, and are involved in processes such as bone growth, repair, and remodeling. BMPs are also used in medical treatments to promote bone growth and healing. For example, they are sometimes used in orthopedic surgeries to help repair fractures or to stimulate the growth of new bone in areas where bone has been lost, such as in spinal fusion procedures. They may also be used in dental procedures to help promote the growth of new bone in areas where teeth have been lost. BMPs are also being studied for their potential use in other medical applications, such as in the treatment of osteoporosis, a condition characterized by weak and brittle bones, and in the repair of damaged or diseased tissues in other parts of the body.

Antibodies, Bacterial are proteins produced by the immune system in response to bacterial infections. They are also known as bacterial antibodies or bacterial immunoglobulins. These antibodies are specific to bacterial antigens, which are molecules found on the surface of bacteria that trigger an immune response. When the immune system detects a bacterial infection, it produces antibodies that bind to the bacterial antigens and mark them for destruction by other immune cells. This helps to neutralize the bacteria and prevent them from causing harm to the body. Bacterial antibodies can be detected in the blood or other bodily fluids using laboratory tests. These tests are often used to diagnose bacterial infections and to monitor the effectiveness of antibiotic treatments.

CD4-positive T-lymphocytes, also known as CD4+ T-cells or T-helper cells, are a type of white blood cell that plays a critical role in the immune system. They are a subset of T-cells that express the CD4 protein on their surface, which allows them to recognize and bind to antigens presented by other immune cells. CD4+ T-cells are involved in many aspects of the immune response, including the activation and proliferation of other immune cells, the production of cytokines (chemical messengers that regulate immune responses), and the regulation of immune tolerance. They are particularly important in the response to infections caused by viruses, such as HIV, and in the development of autoimmune diseases. In HIV infection, the virus specifically targets and destroys CD4+ T-cells, leading to a decline in their numbers and a weakened immune system. This is why CD4+ T-cell count is an important marker of HIV disease progression and treatment response.

Avian proteins refer to proteins that are derived from birds. In the medical field, avian proteins are often used as a source of therapeutic agents, such as antibodies and growth factors, for the treatment of various diseases. For example, chicken egg white lysozyme is used as an antibiotic in ophthalmology, and chicken serum albumin is used as a plasma expander in surgery. Additionally, avian proteins are also used in the development of vaccines and diagnostic tests.

Macrophage-1 Antigen (Mac-1) is a protein that is expressed on the surface of certain immune cells, including macrophages and neutrophils. It is also known as CD11b/CD18 or CR3 (complement receptor 3). Mac-1 plays a role in the immune system by mediating the adhesion and migration of immune cells to sites of inflammation or infection. It also plays a role in the recognition and phagocytosis of pathogens by immune cells. In the medical field, Mac-1 is often used as a diagnostic marker for certain diseases, such as sepsis, and as a target for the development of new therapies for inflammatory and infectious diseases.

MyoD protein is a transcription factor that plays a critical role in the development and differentiation of muscle cells, also known as myoblasts. It is a member of the basic helix-loop-helix leucine zipper (bHLH-Zip) family of transcription factors, which regulate gene expression in a variety of cell types. During muscle development, MyoD protein is expressed in precursor cells that have the potential to differentiate into muscle cells. It acts as a master regulator of the myogenic program, promoting the expression of other genes involved in muscle differentiation, such as myogenin, MRF4, and MRF4. In addition to its role in muscle development, MyoD protein has also been implicated in the regulation of muscle regeneration and repair. It has been shown to promote the proliferation and differentiation of satellite cells, which are resident stem cells in muscle tissue that can give rise to new muscle fibers. Overall, MyoD protein plays a critical role in the development, differentiation, and maintenance of muscle tissue, and its dysregulation has been linked to a variety of muscle disorders and diseases.

Nerve tissue proteins are proteins that are found in nerve cells, also known as neurons. These proteins play important roles in the structure and function of neurons, including the transmission of electrical signals along the length of the neuron and the communication between neurons. There are many different types of nerve tissue proteins, each with its own specific function. Some examples of nerve tissue proteins include neurofilaments, which provide structural support for the neuron; microtubules, which help to maintain the shape of the neuron and transport materials within the neuron; and neurofilament light chain, which is involved in the formation of neurofibrillary tangles, which are a hallmark of certain neurodegenerative diseases such as Alzheimer's disease. Nerve tissue proteins are important for the proper functioning of the nervous system and any disruption in their production or function can lead to neurological disorders.

Leukemia, Lymphoid is a type of cancer that affects the white blood cells, specifically the lymphocytes. Lymphocytes are a type of white blood cell that plays a crucial role in the immune system by fighting off infections and diseases. In leukemia, lymphoid, the abnormal lymphocytes multiply uncontrollably and crowd out healthy blood cells in the bone marrow and bloodstream. This can lead to a weakened immune system, making the person more susceptible to infections, and can also cause symptoms such as fatigue, fever, night sweats, and weight loss. There are several types of leukemia, lymphoid, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and hairy cell leukemia. Treatment for leukemia, lymphoid typically involves chemotherapy, radiation therapy, targeted therapy, and bone marrow transplantation, depending on the type and stage of the cancer.

Translocation, genetic refers to a type of chromosomal rearrangement in which a segment of one chromosome breaks off and attaches to a different chromosome or to a different part of the same chromosome. This can result in a variety of genetic disorders, depending on the specific genes that are affected by the translocation. Some examples of genetic disorders that can be caused by translocations include leukemia, lymphoma, and certain types of congenital heart defects. Translocations can be detected through genetic testing, such as karyotyping, and can be important for diagnosing and treating genetic disorders.

HLA-B antigens are a group of proteins that are expressed on the surface of cells in the human immune system. These proteins play a crucial role in the immune response by helping to identify and recognize foreign substances, such as viruses and bacteria. HLA-B antigens are encoded by a group of genes located on chromosome 6, and there are many different variations of these antigens, each with a slightly different structure and function. HLA-B antigens are an important component of the immune system and are involved in many different types of immune responses, including the development of autoimmune diseases and the recognition of cancer cells.

MART-1 (Melanoma Antigen Recognized by T-cells 1) is a protein that is expressed on the surface of some melanoma cells, a type of skin cancer. It is a member of a family of proteins called melanoma differentiation antigens (MDAs), which are thought to play a role in the development and progression of melanoma. MART-1 is recognized by the immune system as foreign, and T-cells that are able to recognize and bind to MART-1 can help to eliminate melanoma cells. As a result, MART-1 has been the subject of research as a potential target for immunotherapy, which is a type of cancer treatment that uses the body's own immune system to fight cancer. Immunotherapy drugs that target MART-1 are still in the experimental stage, and more research is needed to determine their safety and effectiveness. However, some early studies have shown promise, and it is hoped that these drugs may one day be used to treat patients with advanced melanoma.

In the medical field, a chromosome inversion is a genetic rearrangement in which a segment of a chromosome breaks and reattaches in a different order. This can result in a change in the length and structure of the chromosome, as well as the order of the genes located on it. Chromosome inversions can occur naturally during the process of meiosis, or they can be caused by exposure to mutagens such as radiation or certain chemicals. In some cases, chromosome inversions may have no noticeable effects on an individual's health, while in other cases they can lead to genetic disorders or increase the risk of certain types of cancer. Chromosome inversions can be detected through genetic testing, such as karyotyping, which involves analyzing a sample of an individual's cells to identify any abnormalities in their chromosomes.

Coculture techniques refer to the process of growing two or more different cell types together in a single culture dish or flask. This is commonly used in the medical field to study interactions between cells, such as how cancer cells affect normal cells or how immune cells respond to pathogens. Coculture techniques can be used in a variety of ways, including co-culturing cells from different tissues or organs, co-culturing cells with different cell types, or co-culturing cells with microorganisms or other foreign substances. Coculture techniques can also be used to study the effects of drugs or other treatments on cell interactions. Overall, coculture techniques are a valuable tool in the medical field for studying cell interactions and developing new treatments for diseases.

CD80 is a protein that is expressed on the surface of certain cells in the immune system, including antigen-presenting cells (APCs) such as dendritic cells and macrophages. CD80 is also known as B7-1, and it plays a critical role in the activation of T cells, which are a type of immune cell that helps to fight off infections and diseases. When an APC encounters a pathogen, it engulfs the pathogen and processes its antigens, which are small pieces of the pathogen that can be recognized by the immune system. The APC then presents these antigens on its surface, along with the CD80 protein, to T cells. This interaction between the APC and the T cell is a key step in the activation of the T cell, which then becomes activated and begins to divide and differentiate into effector T cells that can directly attack the pathogen or into memory T cells that can provide long-term protection against future infections by the same pathogen. Antigens, CD80 are often used in medical research and as a tool for developing vaccines and other immune-based therapies. They can be used to stimulate the immune system to recognize and attack specific pathogens or cancer cells, or they can be used to suppress the immune system in cases where it is overactive or causing autoimmune diseases.

In the medical field, a chick embryo refers to a fertilized egg of a chicken that has been incubated for a certain period of time, typically between 4 and 21 days, until it has developed into an embryo. Chick embryos are commonly used in scientific research as a model system for studying developmental biology, genetics, and other areas of biology. They are particularly useful for studying the early stages of development, as they can be easily manipulated and observed under a microscope. Chick embryos are also used in some medical treatments, such as in the development of new drugs and therapies.

CD19 is a protein found on the surface of certain types of white blood cells, including B cells. Antigens, CD19 refers to molecules that bind to the CD19 protein on the surface of B cells, triggering an immune response. These antigens can be found on the surface of bacteria, viruses, and other foreign substances, as well as on abnormal cells in the body, such as cancer cells. In the medical field, CD19 antigens are often targeted in the treatment of certain types of blood cancers, such as leukemia and lymphoma, using monoclonal antibodies that bind to the CD19 protein and help the immune system to destroy the cancer cells.

Bone Morphogenetic Protein 2 (BMP2) is a protein that plays a crucial role in bone development and repair. It is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. In the medical field, BMP2 is used as a therapeutic agent to promote bone growth and regeneration in a variety of conditions, including spinal fusion, non-unions, and osteoporosis. It is typically administered as a bone graft substitute or in combination with other growth factors to enhance bone formation. BMP2 has also been studied for its potential use in tissue engineering and regenerative medicine, where it is used to stimulate the growth of new bone tissue in vitro and in vivo. Additionally, BMP2 has been shown to have anti-inflammatory and anti-cancer effects, making it a promising target for the development of new therapies for a range of diseases.

Chromosomes, Human, Pair 16 refers to the 16th pair of chromosomes in the human genome. Each pair of chromosomes contains a specific set of genes that are responsible for various traits and characteristics of an individual. Chromosome 16 is one of the largest human chromosomes, containing over 170 million base pairs of DNA and more than 1,000 genes. It is located on the long (q) arm of the chromosome and is known to be involved in the development and function of various organs and tissues, including the immune system, brain, and reproductive system. Mutations or abnormalities in chromosome 16 can lead to a variety of genetic disorders and diseases, such as cri-du-chat syndrome, Fanconi anemia, and some forms of cancer.

Thy-1 is a type of antigen found on the surface of certain cells in the immune system. It is also known as CD90 and is expressed on a variety of cell types, including T cells, B cells, and dendritic cells. The function of Thy-1 is not fully understood, but it is thought to play a role in cell adhesion and migration. In the medical field, Thy-1 is often used as a marker to identify and study specific types of immune cells. It is also used as a target for immunotherapy, a type of cancer treatment that uses the body's immune system to fight cancer cells.

Proto-oncogene proteins c-myb are a family of proteins that are involved in the regulation of cell growth and differentiation. They are encoded by the MYB gene and are found in a variety of cell types, including hematopoietic cells, epithelial cells, and mesenchymal cells. The c-myb protein is a transcription factor that binds to specific DNA sequences and regulates the expression of genes involved in cell proliferation, differentiation, and survival. Abnormal activation of the c-myb protein has been implicated in the development of various types of cancer, including leukemia, lymphoma, and solid tumors. In addition to its role in cancer, the c-myb protein has also been implicated in other diseases, such as anemia, thrombocytopenia, and immunodeficiency. It is a target for therapeutic intervention in cancer and other diseases, and several drugs that target the c-myb protein are currently in development.

CD40 is a protein found on the surface of certain cells in the immune system, including B cells and dendritic cells. Antigens, CD40 refers to molecules that bind to the CD40 protein on these cells, activating them and triggering an immune response. This can help the immune system to recognize and attack foreign substances, such as viruses and bacteria. CD40 ligands, which are also known as CD154, are proteins that bind to CD40 and can act as antigens. They are produced by activated T cells and other immune cells and play a role in the activation and differentiation of B cells.

Glycoproteins are a type of protein that contains one or more carbohydrate chains covalently attached to the protein molecule. These carbohydrate chains are made up of sugars and are often referred to as glycans. Glycoproteins play important roles in many biological processes, including cell signaling, cell adhesion, and immune response. They are found in many different types of cells and tissues throughout the body, and are often used as markers for various diseases and conditions. In the medical field, glycoproteins are often studied as potential targets for the development of new drugs and therapies.

Immunoglobulin M (IgM) is a type of antibody that is produced by B cells in response to an infection or foreign substance. It is the first antibody to be produced during an immune response and is present in the blood and other body fluids in relatively low concentrations. IgM antibodies are large, Y-shaped molecules that can bind to multiple antigens at once, making them highly effective at neutralizing pathogens and marking them for destruction by other immune cells. They are also able to activate the complement system, a series of proteins that can directly destroy pathogens or mark them for destruction by immune cells. IgM antibodies are often used as a diagnostic tool in medical testing, as they are typically the first antibodies to be produced in response to a new infection. They can also be used to monitor the effectiveness of vaccines and to detect the presence of certain diseases, such as viral or bacterial infections, autoimmune disorders, and certain types of cancer.

Transforming Growth Factor beta (TGF-β) is a family of cytokines that play a crucial role in regulating cell growth, differentiation, and migration. TGF-βs are secreted by a variety of cells, including immune cells, fibroblasts, and epithelial cells, and act on neighboring cells to modulate their behavior. TGF-βs have both pro-inflammatory and anti-inflammatory effects, depending on the context in which they are released. They can promote the differentiation of immune cells into effector cells that help to fight infections, but they can also suppress the immune response to prevent excessive inflammation. In addition to their role in immune regulation, TGF-βs are also involved in tissue repair and fibrosis. They can stimulate the production of extracellular matrix proteins, such as collagen, which are essential for tissue repair. However, excessive production of TGF-βs can lead to fibrosis, a condition in which excessive amounts of connective tissue accumulate in the body, leading to organ dysfunction. Overall, TGF-βs are important signaling molecules that play a critical role in regulating a wide range of cellular processes in the body.

CD8-positive T-lymphocytes, also known as cytotoxic T-cells, are a type of white blood cell that plays a crucial role in the immune system's response to infections and diseases. These cells are a subtype of T-lymphocytes, which are a type of immune cell that plays a central role in cell-mediated immunity. CD8-positive T-lymphocytes are characterized by the presence of a protein called CD8 on their surface, which helps them to recognize and bind to infected cells or cancer cells. Once bound, these cells release toxic substances that can kill the infected or cancerous cells. CD8-positive T-lymphocytes are an important part of the immune system's response to viral infections, such as HIV and herpes, and to some types of cancer. They are also involved in the immune response to bacterial infections and in the regulation of immune responses to prevent autoimmune diseases. In the medical field, CD8-positive T-lymphocytes are often studied as a way to understand the immune system's response to infections and diseases, and to develop new treatments for these conditions.

Myogenin is a transcription factor that plays a critical role in the differentiation of muscle cells, or myocytes, from stem cells. It is a member of the basic helix-loop-helix leucine zipper (bHLH-Zip) family of transcription factors, which are involved in regulating gene expression during development and differentiation. During muscle cell differentiation, myogenin is expressed in response to signals from other transcription factors, such as MyoD and Myf5. It binds to specific DNA sequences in the promoter regions of muscle-specific genes, such as creatine kinase and myosin heavy chain, and promotes their expression. This, in turn, leads to the development of muscle fibers and the formation of muscle tissue. In addition to its role in muscle cell differentiation, myogenin has also been implicated in various diseases, including cancer. For example, some studies have suggested that myogenin may be involved in the development and progression of certain types of breast and prostate cancer.

Receptors, Notch are a family of cell surface receptors that play a critical role in cell fate determination, differentiation, proliferation, and apoptosis in various tissues and organs during embryonic development and in adult organisms. The Notch signaling pathway is activated by binding of a ligand, such as Delta or Jagged, to the extracellular domain of the Notch receptor, leading to a series of intracellular events that ultimately regulate gene expression and cellular behavior. Dysregulation of Notch signaling has been implicated in a variety of human diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

"Chromosomes, Human, 16-18" refers to a specific set of chromosomes in the human genome that includes chromosomes 16, 17, and 18. These chromosomes are part of the 23 pairs of chromosomes that make up the human genome, and they contain the genetic information that determines many of the traits and characteristics of an individual. Chromosome 16 is one of the largest human chromosomes, containing over 170 million base pairs of DNA and more than 1,000 genes. It is involved in a variety of biological processes, including the development and function of the immune system, the regulation of cell growth and division, and the maintenance of genomic stability. Chromosome 17 is slightly smaller than chromosome 16, containing about 150 million base pairs of DNA and more than 1,000 genes. It is involved in a variety of biological processes, including the development and function of the nervous system, the regulation of cell growth and division, and the maintenance of genomic stability. Chromosome 18 is the smallest of the three chromosomes, containing about 145 million base pairs of DNA and more than 1,000 genes. It is involved in a variety of biological processes, including the development and function of the nervous system, the regulation of cell growth and division, and the maintenance of genomic stability. Abnormalities in any of these chromosomes can lead to a variety of genetic disorders, including some that affect the development and function of the brain and nervous system, such as Angelman syndrome and Prader-Willi syndrome.

Core binding factor alpha 1 subunit, also known as CBFα1 or RUNX1, is a transcription factor that plays a critical role in the development and function of hematopoietic stem cells and their descendants, including red blood cells, white blood cells, and platelets. It is encoded by the "RUNX1" gene and is a member of the runt-related transcription factor family. In the context of medical research, CBFα1 is often studied in the context of hematological disorders such as acute myeloid leukemia (AML), where mutations in the "RUNX1" gene are frequently observed. These mutations can lead to abnormal regulation of CBFα1 and disrupt normal hematopoiesis, contributing to the development of the disease. CBFα1 is also involved in the regulation of other biological processes, including cell differentiation, proliferation, and apoptosis. As such, it has potential therapeutic applications in the treatment of various diseases, including cancer and autoimmune disorders.

Protein-tyrosine kinases (PTKs) are a family of enzymes that play a crucial role in various cellular processes, including cell growth, differentiation, metabolism, and signal transduction. These enzymes catalyze the transfer of a phosphate group from ATP to the hydroxyl group of tyrosine residues on specific target proteins, thereby modifying their activity, localization, or interactions with other molecules. PTKs are involved in many diseases, including cancer, cardiovascular disease, and neurological disorders. They are also targets for many drugs, including those used to treat cancer and other diseases. In the medical field, PTKs are studied to understand their role in disease pathogenesis and to develop new therapeutic strategies.

In the medical field, binding sites refer to specific locations on the surface of a protein molecule where a ligand (a molecule that binds to the protein) can attach. These binding sites are often formed by a specific arrangement of amino acids within the protein, and they are critical for the protein's function. Binding sites can be found on a wide range of proteins, including enzymes, receptors, and transporters. When a ligand binds to a protein's binding site, it can cause a conformational change in the protein, which can alter its activity or function. For example, a hormone may bind to a receptor protein, triggering a signaling cascade that leads to a specific cellular response. Understanding the structure and function of binding sites is important in many areas of medicine, including drug discovery and development, as well as the study of diseases caused by mutations in proteins that affect their binding sites. By targeting specific binding sites on proteins, researchers can develop drugs that modulate protein activity and potentially treat a wide range of diseases.

Azacitidine is a medication used to treat certain types of blood cancer, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It works by slowing or stopping the growth of cancer cells in the bone marrow and bloodstream. Azacitidine is usually given by injection into a vein or under the skin, and is typically administered once a day for a period of several days, followed by a break of several days before the next cycle of treatment. It is important to note that azacitidine can cause side effects, including fatigue, nausea, and low blood cell counts, and should only be used under the supervision of a qualified healthcare professional.

Keratins are a family of fibrous proteins that are primarily found in the epidermis and hair of mammals. They are responsible for providing strength and protection to the skin and hair, and are also involved in the formation of nails and claws. In the medical field, keratins are often studied in relation to various skin conditions, such as psoriasis, eczema, and skin cancer. They are also used as markers for the differentiation of various types of skin cells, and as a diagnostic tool for identifying different types of cancer. Keratins are also found in other tissues, such as the gastrointestinal tract, respiratory tract, and the eye. In these tissues, they play important roles in maintaining the integrity and function of the epithelial lining. Overall, keratins are an important component of the skin and other tissues, and their study is important for understanding the function and health of these tissues.

Receptors, immunologic are proteins on the surface of immune cells that recognize and bind to specific molecules, such as antigens, to initiate an immune response. These receptors play a crucial role in the body's ability to defend against infections and other harmful substances. There are many different types of immunologic receptors, including T cell receptors, B cell receptors, and natural killer cell receptors, each with its own specific function and mechanism of action.

Chondrogenesis is a process of cartilage formation that occurs during embryonic development. It is the process by which mesenchymal cells differentiate into chondrocytes, which are the cells that make up cartilage. Chondrogenesis involves the production of extracellular matrix, which provides the structural support for the developing cartilage. This process is critical for the formation of many of the cartilaginous structures in the body, including the nose, ears, and trachea, as well as the growth plates in long bones. In the medical field, chondrogenesis is also studied as a potential therapeutic strategy for the repair and regeneration of damaged cartilage tissue.

Blood cells, also known as hematopoietic cells, are the cells that make up the blood. There are three main types of blood cells: red blood cells, white blood cells, and platelets. Red blood cells, also known as erythrocytes, are the most abundant type of blood cell and are responsible for carrying oxygen from the lungs to the body's tissues and removing carbon dioxide from the tissues back to the lungs. They are also responsible for maintaining the body's acid-base balance. White blood cells, also known as leukocytes, are an important part of the immune system and help protect the body against infection and disease. There are several types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils, each with a specific function in the immune response. Platelets, also known as thrombocytes, are small cell fragments that play a crucial role in blood clotting. When a blood vessel is damaged, platelets stick together to form a plug that helps prevent blood loss. Overall, blood cells are essential for maintaining the body's health and function, and any abnormalities in their production or function can lead to a variety of medical conditions.

CD56 is a protein found on the surface of certain types of immune cells, including natural killer (NK) cells and some subsets of T cells. Antigens, CD56 refers to molecules that bind to the CD56 protein on the surface of these immune cells, triggering an immune response. These antigens can be found on viruses, bacteria, and cancer cells, among other things. The binding of CD56 antigens to immune cells can lead to the activation and proliferation of these cells, which can help to fight off infections and diseases.

Inhibitor of Differentiation Proteins (IDPs) are a family of proteins that play a role in regulating cell differentiation and proliferation. They are also known as helix-loop-helix (HLH) transcription factors because they contain a specific DNA-binding domain that allows them to interact with other proteins and regulate gene expression. IDPs are involved in a variety of cellular processes, including cell cycle progression, apoptosis, and immune response. They are also implicated in the development of various diseases, including cancer, autoimmune disorders, and neurological disorders. Inhibitor of Differentiation Proteins are encoded by a group of genes that are located on different chromosomes and are expressed in a variety of tissues and cell types. Some of the most well-known IDPs include Id1, Id2, Id3, and Id4.

Core binding factor alpha 2 subunit, also known as CBFα2 or RUNX2, is a transcription factor that plays a critical role in the development and maintenance of bone and teeth. It is encoded by the RUNX2 gene and is a member of the runt-related transcription factor family. In the bone and teeth, CBFα2 is involved in the differentiation of osteoblasts, which are cells responsible for bone formation. It does this by regulating the expression of genes involved in bone development and mineralization. CBFα2 also plays a role in the maintenance of bone tissue by regulating the activity of osteoblasts and osteoclasts, which are cells responsible for bone resorption. Mutations in the RUNX2 gene can lead to a variety of skeletal disorders, including cleidocranial dysplasia, a condition characterized by abnormal development of the skull and collarbones. In addition, CBFα2 has been implicated in the development of certain types of cancer, including osteosarcoma, a type of bone cancer.

Antigen-presenting cells (APCs) are a type of immune cell that plays a crucial role in the immune response. They are responsible for capturing, processing, and presenting antigens (foreign substances) to T cells, which are a type of white blood cell that plays a central role in the immune response. APCs are found in various tissues throughout the body, including the skin, lungs, and digestive tract. They include dendritic cells, macrophages, and B cells. When an APC encounters an antigen, it engulfs and breaks it down into smaller pieces. These pieces are then presented on the surface of the APC in a way that allows T cells to recognize them. This process is known as antigen presentation. Once a T cell recognizes an antigen presented by an APC, it becomes activated and begins to divide, producing a population of T cells that are specific to that antigen. These activated T cells can then migrate to the site of infection or inflammation and mount an immune response against the pathogen. Overall, APCs play a critical role in the immune response by activating T cells and helping to coordinate the immune response against pathogens and other foreign substances.

RNA, Neoplasm refers to the presence of abnormal RNA molecules in a neoplasm, which is a mass of abnormal cells that grow uncontrollably in the body. RNA is a type of genetic material that plays a crucial role in the regulation of gene expression and protein synthesis. In neoplasms, abnormal RNA molecules can be produced due to mutations in the DNA that codes for RNA. These abnormal RNA molecules can affect the normal functioning of cells and contribute to the development and progression of cancer. The detection and analysis of RNA in neoplasms can provide important information about the genetic changes that are occurring in the cells and can help guide the development of targeted therapies for cancer treatment.

Tumor Necrosis Factor-alpha (TNF-alpha) is a cytokine, a type of signaling protein, that plays a crucial role in the immune response and inflammation. It is produced by various cells in the body, including macrophages, monocytes, and T cells, in response to infection, injury, or other stimuli. TNF-alpha has multiple functions in the body, including regulating the immune response, promoting cell growth and differentiation, and mediating inflammation. It can also induce programmed cell death, or apoptosis, in some cells, which can be beneficial in fighting cancer. However, excessive or prolonged TNF-alpha production can lead to chronic inflammation and tissue damage, which can contribute to the development of various diseases, including autoimmune disorders, inflammatory bowel disease, and certain types of cancer. In the medical field, TNF-alpha is often targeted in the treatment of these conditions. For example, drugs called TNF inhibitors, such as infliximab and adalimumab, are used to block the action of TNF-alpha and reduce inflammation in patients with rheumatoid arthritis, Crohn's disease, and other inflammatory conditions.

Inhibitor of Differentiation Protein 2 (ID2) is a protein that plays a role in regulating cell differentiation and proliferation in various tissues and organs. It is a member of the inhibitor of differentiation (ID) family of proteins, which are involved in the regulation of cell fate decisions during development and tissue homeostasis. ID2 is primarily expressed in cells that are in a proliferative state, such as stem cells and progenitor cells, and is involved in maintaining their undifferentiated state. It has been shown to inhibit the activity of transcription factors that promote differentiation, such as Runx1 and Runx3, and to promote the expression of genes that are involved in cell proliferation and survival. In the medical field, ID2 has been implicated in the development and progression of various diseases, including cancer. For example, ID2 has been shown to be overexpressed in certain types of leukemia and breast cancer, and its overexpression has been associated with poor prognosis. In addition, ID2 has been proposed as a potential therapeutic target for the treatment of these diseases.

Inhibitor of Differentiation Protein 1 (ID1) is a protein that plays a role in cell differentiation and proliferation. It is a member of the ID family of proteins, which are transcriptional regulators that control the expression of genes involved in cell fate determination and differentiation. ID1 is expressed in a variety of tissues and cell types, including epithelial cells, mesenchymal cells, and hematopoietic cells. It has been implicated in a number of cellular processes, including cell proliferation, migration, and invasion, as well as in the regulation of the cell cycle and apoptosis. In the medical field, ID1 has been studied in the context of cancer. It has been shown to be overexpressed in a variety of human cancers, including breast cancer, prostate cancer, and glioblastoma, and to play a role in promoting tumor growth and invasion. ID1 has also been proposed as a potential therapeutic target for the treatment of cancer.

In the medical field, an acute disease is a condition that develops suddenly and progresses rapidly over a short period of time. Acute diseases are typically characterized by severe symptoms and a high degree of morbidity and mortality. Examples of acute diseases include pneumonia, meningitis, sepsis, and heart attacks. These diseases require prompt medical attention and treatment to prevent complications and improve outcomes. In contrast, chronic diseases are long-term conditions that develop gradually over time and may persist for years or even decades.

Preleukemia, also known as premyelocytic leukemia or preleukemic syndrome, is a condition that occurs before the development of acute myeloid leukemia (AML). It is characterized by an increase in the number of immature white blood cells (myelocytes) in the bone marrow and blood. Preleukemia can be classified into two types: 1. Myelodysplastic syndrome (MDS): This is a group of blood disorders characterized by an abnormal production of blood cells in the bone marrow. MDS can progress to AML, and some cases of MDS are considered preleukemia. 2. Myeloproliferative neoplasms (MPNs): These are a group of blood disorders characterized by an overproduction of blood cells. MPNs can also progress to AML, and some cases of MPNs are considered preleukemia. Preleukemia is often diagnosed through blood tests and bone marrow biopsies. Treatment options for preleukemia depend on the underlying cause and severity of the condition. Some cases of preleukemia may be treated with chemotherapy, radiation therapy, or bone marrow transplantation. Others may be monitored closely and treated only if the condition progresses to AML.

Lymphoma is a type of cancer that affects the lymphatic system, which is a part of the immune system. It occurs when lymphocytes, a type of white blood cell, grow and divide uncontrollably, forming abnormal masses or tumors in the lymph nodes, spleen, bone marrow, or other parts of the body. There are two main types of lymphoma: Hodgkin lymphoma and non-Hodgkin lymphoma. Hodgkin lymphoma is a less common type of lymphoma that typically affects younger adults and has a better prognosis than non-Hodgkin lymphoma. Non-Hodgkin lymphoma is a more common type of lymphoma that can affect people of all ages and has a wide range of outcomes depending on the specific subtype and the stage of the disease. Symptoms of lymphoma can include swollen lymph nodes, fever, night sweats, weight loss, fatigue, and itching. Diagnosis typically involves a combination of physical examination, blood tests, imaging studies, and a biopsy of the affected tissue. Treatment for lymphoma depends on the subtype, stage, and overall health of the patient. It may include chemotherapy, radiation therapy, targeted therapy, immunotherapy, or a combination of these approaches. In some cases, a stem cell transplant may also be necessary.

Receptors, Complement refers to a group of proteins that are part of the complement system, a complex network of proteins in the blood that helps to defend the body against infections. These receptors are located on the surface of immune cells, such as macrophages and neutrophils, and bind to specific molecules on the surface of pathogens, such as bacteria and viruses. This binding triggers a series of reactions that ultimately lead to the destruction of the pathogen. The complement receptors play a crucial role in the immune response and are important for the clearance of pathogens from the body.

Autoantigens are proteins or other molecules that are normally present in the body but are mistakenly recognized as foreign by the immune system. This can lead to an autoimmune response, in which the immune system attacks the body's own tissues and organs. Autoantigens can be found in a variety of tissues and organs, including the skin, joints, blood vessels, and nervous system. Examples of autoantigens include thyroid peroxidase, which is found in the thyroid gland, and myelin basic protein, which is found in the brain and spinal cord. Autoantibodies, which are antibodies that are produced in response to autoantigens, can be detected in the blood of people with autoimmune diseases.

Receptors, Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) are proteins found on the surface of certain cells in the immune system, such as granulocytes and macrophages. These receptors bind to the hormone GM-CSF, which is produced by other cells in the body, such as T cells and fibroblasts. Activation of the GM-CSF receptor by binding to the hormone promotes the growth and differentiation of granulocytes and macrophages, which are important cells in the immune system that help to fight infections and remove damaged cells. GM-CSF receptors are also found on the surface of some cancer cells, and drugs that target these receptors are being developed as potential treatments for certain types of cancer.

In the medical field, peptides are short chains of amino acids that are linked together by peptide bonds. They are typically composed of 2-50 amino acids and can be found in a variety of biological molecules, including hormones, neurotransmitters, and enzymes. Peptides play important roles in many physiological processes, including growth and development, immune function, and metabolism. They can also be used as therapeutic agents to treat a variety of medical conditions, such as diabetes, cancer, and cardiovascular disease. In the pharmaceutical industry, peptides are often synthesized using chemical methods and are used as drugs or as components of drugs. They can be administered orally, intravenously, or topically, depending on the specific peptide and the condition being treated.

RNA, Small Interfering (siRNA) is a type of non-coding RNA molecule that plays a role in gene regulation. siRNA is approximately 21-25 nucleotides in length and is derived from double-stranded RNA (dsRNA) molecules. In the medical field, siRNA is used as a tool for gene silencing, which involves inhibiting the expression of specific genes. This is achieved by introducing siRNA molecules that are complementary to the target mRNA sequence, leading to the degradation of the mRNA and subsequent inhibition of protein synthesis. siRNA has potential applications in the treatment of various diseases, including cancer, viral infections, and genetic disorders. It is also used in research to study gene function and regulation. However, the use of siRNA in medicine is still in its early stages, and there are several challenges that need to be addressed before it can be widely used in clinical practice.

Receptors, Antigen, T-Cell, alpha-beta are a type of immune cell receptor found on the surface of T-cells in the human body. These receptors are responsible for recognizing and binding to specific antigens, which are foreign substances that trigger an immune response. The alpha-beta receptors are a type of T-cell receptor that recognizes antigens presented by major histocompatibility complex (MHC) molecules on the surface of infected or cancerous cells. When the alpha-beta receptors bind to the antigen-MHC complex, it triggers a series of events that lead to the activation and proliferation of the T-cell, which then mounts an immune response against the infected or cancerous cells.

Ovalbumin is a protein found in egg whites. It is a major allergen and can cause allergic reactions in some people. In the medical field, ovalbumin is often used as a model antigen for studying allergic reactions and for developing allergy vaccines. It is also used in research to study the structure and function of proteins, as well as in the production of various medical products, such as diagnostic reagents and pharmaceuticals.

3T3-L1 cells are a type of mouse fibroblast cell line that have been genetically modified to differentiate into adipocytes, which are fat cells. These cells are commonly used in research to study the differentiation and function of adipocytes, as well as the effects of various drugs and hormones on adipocyte metabolism. They are also used to study the development of obesity and related diseases, such as diabetes and cardiovascular disease. 3T3-L1 cells are a valuable tool in the field of obesity research and have been widely used in numerous studies to better understand the underlying mechanisms of obesity and related diseases.

The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds and encloses the cell. It is composed of a phospholipid bilayer, which consists of two layers of phospholipid molecules arranged tail-to-tail. The hydrophobic tails of the phospholipids face inward, while the hydrophilic heads face outward, forming a barrier that separates the inside of the cell from the outside environment. The cell membrane also contains various proteins, including channels, receptors, and transporters, which allow the cell to communicate with its environment and regulate the movement of substances in and out of the cell. In addition, the cell membrane is studded with cholesterol molecules, which help to maintain the fluidity and stability of the membrane. The cell membrane plays a crucial role in maintaining the integrity and function of the cell, and it is involved in a wide range of cellular processes, including cell signaling, cell adhesion, and cell division.

Naphthol AS D Esterase is an enzyme that is found in the liver and other tissues of mammals. It is involved in the metabolism of certain substances, including drugs and toxins. In the medical field, Naphthol AS D Esterase is sometimes used as a diagnostic tool to help identify liver disease or other conditions that affect liver function. It is also used in research to study the metabolism of various substances and to develop new drugs and treatments.

Colony-stimulating factors (CSFs) are a group of proteins that stimulate the growth and differentiation of certain types of blood cells in the bone marrow. There are several different types of CSFs, including granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and colony-stimulating factor-1 (CSF-1). CSFs are typically used to treat conditions that affect the production of blood cells, such as chemotherapy-induced neutropenia (a low white blood cell count), and to stimulate the growth of new blood cells in people with certain types of anemia or bone marrow disorders. They may also be used to stimulate the growth of new bone tissue in people with certain types of bone disease. CSFs are usually administered as injections, either under the skin or into a vein. They can cause side effects, such as fever, chills, and flu-like symptoms, and may also increase the risk of infection. It is important to carefully follow the instructions provided by your healthcare provider when using CSFs.

In the medical field, "Animals, Newborn" typically refers to animals that are less than 28 days old. This age range is often used to describe the developmental stage of animals, particularly in the context of research or veterinary medicine. Newborn animals may require specialized care and attention, as they are often more vulnerable to illness and injury than older animals. They may also have unique nutritional and behavioral needs that must be addressed in order to promote their growth and development. In some cases, newborn animals may be used in medical research to study various biological processes, such as development, growth, and disease. However, the use of animals in research is highly regulated, and strict ethical guidelines must be followed to ensure the welfare and safety of the animals involved.

CD86 is a protein that is expressed on the surface of certain immune cells, including dendritic cells and B cells. It is a member of the B7 family of proteins, which play a key role in regulating the immune response. CD86 is involved in the activation of T cells, which are a type of immune cell that plays a central role in the body's defense against infection and disease. When dendritic cells present an antigen (a foreign substance that triggers an immune response) to a T cell, they also express CD86 on their surface. This allows the T cell to recognize the antigen and become activated, leading to the production of immune cells that can attack and destroy the invading pathogen. In addition to its role in activating T cells, CD86 has also been shown to play a role in the regulation of the immune response. For example, it has been shown to promote the differentiation of regulatory T cells, which are a type of immune cell that helps to prevent autoimmune diseases by suppressing the activity of other immune cells. Overall, CD86 is an important protein in the immune system that plays a role in both the activation and regulation of immune responses.

Antigens, heterophile are proteins or other molecules that are found on the surface of many different types of cells and can trigger an immune response in the body. They are called "heterophile" because they are not specific to a particular type of cell or tissue, and can be recognized by antibodies that are produced by the immune system in response to a wide variety of infections or other stimuli. Heterophile antigens are often used in laboratory tests to detect the presence of certain infections or to monitor the effectiveness of treatments. For example, the heterophile antibody test (HAT) is a rapid diagnostic test that is used to detect the presence of certain viral or bacterial infections, such as influenza or strep throat. The test works by detecting the presence of heterophile antibodies in the blood, which are produced in response to the infection. Heterophile antigens are also used in the production of vaccines, which are designed to stimulate the immune system to produce antibodies in response to a specific antigen. This can help protect the body against future infections by the same pathogen.

FLT3 (Fms-like tyrosine kinase 3) is a type of protein that plays a role in the development and function of blood cells. It is a receptor tyrosine kinase, which means that it is a type of protein that is activated when it binds to a specific molecule (ligand) and then triggers a series of chemical reactions within the cell. FLT3 is expressed on the surface of certain types of blood cells, including white blood cells (leukocytes) and stem cells, and is involved in the process of cell growth and division. Mutations in the FLT3 gene can lead to the production of abnormal versions of the protein that may contribute to the development of certain types of blood cancers, such as acute myeloid leukemia (AML).

Ki-67 is a protein found in the nuclei of cells that are actively dividing. It is a useful marker for assessing the growth rate of tumors and is often used in conjunction with other markers to help diagnose and predict the behavior of cancer. The Ki-67 antigen is named after the Danish pathologist, Kai Erik Nielsen, who first described it in the 1980s. It is typically measured using immunohistochemistry, a technique that uses antibodies to detect specific proteins in tissue samples.

Protein Tyrosine Phosphatase, Non-Receptor Type 11 (PTPN11) is a protein that plays a crucial role in regulating cell signaling pathways in the human body. It is a type of protein tyrosine phosphatase, which is an enzyme that removes phosphate groups from tyrosine residues on other proteins, thereby modulating their activity. PTPN11 is encoded by the PTPN11 gene, which is located on chromosome 12 in humans. The protein is expressed in a variety of tissues, including the heart, skeletal muscle, and immune system. Mutations in the PTPN11 gene have been associated with several genetic disorders, including Noonan syndrome, LEOPARD syndrome, and cardio-facio-cutaneous syndrome. These disorders are characterized by a range of symptoms, including developmental delays, heart defects, and distinctive facial features. In addition to its role in human disease, PTPN11 has also been studied in the context of cancer. Some research suggests that PTPN11 may play a role in the development and progression of certain types of cancer, including breast cancer and leukemia.

Ras proteins are a family of small, membrane-bound GTPases that play a critical role in regulating cell growth and division. They are involved in transmitting signals from cell surface receptors to the cell interior, where they activate a cascade of downstream signaling pathways that ultimately control cell behavior. Ras proteins are found in all eukaryotic cells and are encoded by three genes: HRAS, KRAS, and NRAS. These genes are frequently mutated in many types of cancer, leading to the production of constitutively active Ras proteins that are always "on" and promote uncontrolled cell growth and division. In the medical field, Ras proteins are an important target for cancer therapy, as drugs that can inhibit the activity of Ras proteins have the potential to slow or stop the growth of cancer cells. However, developing effective Ras inhibitors has proven to be a challenging task, as Ras proteins are highly conserved and essential for normal cell function. Nonetheless, ongoing research continues to explore new ways to target Ras proteins in cancer treatment.

In the medical field, "cell count" refers to the measurement of the number of cells present in a specific sample of tissue or fluid. This measurement is typically performed using a microscope and a specialized staining technique to distinguish between different types of cells. For example, a complete blood count (CBC) is a common laboratory test that measures the number and types of cells in the blood, including red blood cells, white blood cells, and platelets. Similarly, a urine analysis may include a cell count to measure the number of white blood cells or bacteria present in the urine. Cell counts can be used to diagnose a variety of medical conditions, such as infections, inflammation, or cancer. They can also be used to monitor the effectiveness of treatments or to detect any changes in the body's cellular makeup over time.

CCAAT-Enhancer-Binding Proteins (C/EBPs) are a family of transcription factors that play important roles in regulating gene expression in various biological processes, including cell differentiation, metabolism, and inflammation. They are characterized by the presence of a conserved DNA-binding domain called the CCAAT/enhancer-binding domain (C/EBP) that allows them to bind to specific DNA sequences in the promoter regions of target genes. C/EBPs are involved in the regulation of a wide range of genes, including those involved in lipid metabolism, glucose metabolism, and the inflammatory response. They are also important in the differentiation of various cell types, including adipocytes, hepatocytes, and immune cells. In the medical field, C/EBPs have been implicated in a number of diseases, including diabetes, obesity, and inflammatory disorders. For example, dysregulation of C/EBP expression has been linked to the development of insulin resistance and type 2 diabetes, while overexpression of certain C/EBP family members has been associated with the development of inflammation and cancer. As such, C/EBPs are an important area of research in the development of new therapeutic strategies for these and other diseases.

Janus kinase 2 (JAK2) is a protein that plays a role in the signaling pathways of many different cell types in the body. It is a member of the Janus kinase family of enzymes, which are involved in the regulation of cell growth, differentiation, and immune function. In the context of the medical field, JAK2 is of particular interest because it has been implicated in the development of certain blood disorders, such as myeloproliferative neoplasms (MPNs). MPNs are a group of blood cancers that involve the overproduction of blood cells, such as red blood cells, white blood cells, or platelets. JAK2 mutations have been identified in a large proportion of patients with MPNs, and these mutations are thought to contribute to the development and progression of the disease. JAK2 inhibitors are a class of drugs that have been developed to target the JAK2 enzyme and are being used to treat certain types of MPNs. These drugs work by blocking the activity of JAK2, which helps to reduce the overproduction of blood cells and alleviate the symptoms of the disease.

Intracellular signaling peptides and proteins are molecules that are involved in transmitting signals within cells. These molecules can be either proteins or peptides, and they play a crucial role in regulating various cellular processes, such as cell growth, differentiation, and apoptosis. Intracellular signaling peptides and proteins can be activated by a variety of stimuli, including hormones, growth factors, and neurotransmitters. Once activated, they initiate a cascade of intracellular events that ultimately lead to a specific cellular response. There are many different types of intracellular signaling peptides and proteins, and they can be classified based on their structure, function, and the signaling pathway they are involved in. Some examples of intracellular signaling peptides and proteins include growth factors, cytokines, kinases, phosphatases, and G-proteins. In the medical field, understanding the role of intracellular signaling peptides and proteins is important for developing new treatments for a wide range of diseases, including cancer, diabetes, and neurological disorders.

A teratoma is a type of tumor that is composed of multiple types of tissue, including bone, cartilage, fat, and neural tissue. It is also known as a "mixed germ cell tumor" because it is derived from primitive cells that have the potential to develop into any type of tissue in the body. Teratomas are most commonly found in the ovaries, testes, and brain, but they can occur in any part of the body. They are usually benign, meaning they are not cancerous, but in some cases they can be malignant and may require treatment. Teratomas are often diagnosed through imaging tests such as ultrasound or MRI, and a biopsy may be performed to confirm the diagnosis. Treatment for teratomas depends on the size and location of the tumor, as well as whether it is benign or malignant. In some cases, surgery may be necessary to remove the tumor, and in other cases, chemotherapy or radiation therapy may be used to treat the tumor.

An antigen-antibody complex is a type of immune complex that forms when an antigen (a foreign substance that triggers an immune response) binds to an antibody (a protein produced by the immune system to recognize and neutralize antigens). When an antigen enters the body, it is recognized by specific antibodies that bind to it, forming an antigen-antibody complex. This complex can then be targeted by other immune cells, such as phagocytes, which engulf and destroy the complex. Antigen-antibody complexes can also deposit in tissues, leading to inflammation and damage. This can occur in conditions such as immune complex-mediated diseases, where the immune system mistakenly attacks healthy tissues that have been coated with antigens and antibodies. Overall, the formation of antigen-antibody complexes is a normal part of the immune response, but when it becomes dysregulated, it can lead to a variety of medical conditions.

Proto-oncogene proteins c-hck, also known as c-Kit or CD117, are a type of protein that plays a role in cell signaling and proliferation. They are encoded by the c-kit gene and are expressed on the surface of certain types of cells, including cells of the immune system, hematopoietic cells, and cells of the gastrointestinal tract. In the context of cancer, mutations in the c-kit gene can lead to the production of abnormal c-hck proteins that are constitutively activated, meaning they are always turned on and signaling even when they should not be. This can result in uncontrolled cell growth and the development of cancer. Proto-oncogene proteins c-hck are involved in a variety of cellular processes, including cell proliferation, differentiation, and migration. They are also involved in the development and function of certain types of immune cells, such as mast cells and basophils. In the medical field, c-hck is often targeted for the treatment of certain types of cancer, such as gastrointestinal stromal tumors (GISTs) and leukemias. In these cases, drugs called tyrosine kinase inhibitors (TKIs) are used to block the activity of c-hck and prevent the growth of cancer cells.

Bromodeoxyuridine (BrdU) is a synthetic analog of the nucleoside thymidine, which is a building block of DNA. It is commonly used in the medical field as a marker for DNA synthesis and cell proliferation. BrdU is incorporated into newly synthesized DNA during the S phase of the cell cycle, when DNA replication occurs. This makes it possible to detect cells that are actively dividing by staining for BrdU. BrdU staining is often used in immunohistochemistry and flow cytometry to study the proliferation of cells in various tissues and organs, including the brain, bone marrow, and skin. BrdU is also used in some cancer treatments, such as chemotherapy and radiation therapy, to target rapidly dividing cancer cells. By inhibiting DNA synthesis, BrdU can slow down or stop the growth of cancer cells, making them more susceptible to treatment. However, it is important to note that BrdU can also cause DNA damage and has been associated with an increased risk of cancer in some studies. Therefore, its use in medical research and treatment should be carefully monitored and regulated.

Receptors, Fc refers to a type of protein receptor found on the surface of immune cells, such as antibodies and immune cells, that recognize and bind to the Fc region of other proteins, particularly antibodies. The Fc region is the portion of an antibody that is located at the base of the Y-shaped structure and is responsible for binding to other proteins, such as antigens or immune cells. When an Fc receptor binds to the Fc region of an antibody, it can trigger a variety of immune responses, such as the activation of immune cells or the destruction of pathogens. Fc receptors play a critical role in the immune system and are involved in many different immune responses, including the clearance of pathogens and the regulation of inflammation.

In the medical field, culture media refers to a nutrient-rich substance used to support the growth and reproduction of microorganisms, such as bacteria, fungi, and viruses. Culture media is typically used in diagnostic laboratories to isolate and identify microorganisms from clinical samples, such as blood, urine, or sputum. Culture media can be classified into two main types: solid and liquid. Solid media is usually a gel-like substance that allows microorganisms to grow in a three-dimensional matrix, while liquid media is a broth or solution that provides nutrients for microorganisms to grow in suspension. The composition of culture media varies depending on the type of microorganism being cultured and the specific needs of that organism. Culture media may contain a variety of nutrients, including amino acids, sugars, vitamins, and minerals, as well as antibiotics or other agents to inhibit the growth of unwanted microorganisms. Overall, culture media is an essential tool in the diagnosis and treatment of infectious diseases, as it allows healthcare professionals to identify the specific microorganisms causing an infection and select the most appropriate treatment.

Carcinoma, Embryonal is a type of cancer that arises from the cells that are similar to those found in an embryo or fetus. It is a rare and aggressive form of cancer that can occur in various parts of the body, including the brain, liver, kidney, and testicles. Carcinoma, Embryonal is typically diagnosed in children and young adults, and it is more common in males than females. The exact cause of this type of cancer is not known, but it is believed to be related to genetic mutations and abnormalities. Treatment for Carcinoma, Embryonal usually involves a combination of surgery, chemotherapy, and radiation therapy. The prognosis for this type of cancer depends on several factors, including the location and stage of the cancer, as well as the age and overall health of the patient. In some cases, the cancer may be cured with treatment, while in other cases, it may be more difficult to treat and may recur or spread to other parts of the body.

Proto-oncogene proteins c-cbl are a family of proteins that play a role in the regulation of cell growth and differentiation. They are involved in the signaling pathways that control cell proliferation, survival, and migration. Mutations in the c-cbl gene can lead to the development of certain types of cancer, such as chronic myeloid leukemia and certain types of lymphoma. The c-cbl proteins are also involved in the regulation of the immune system and the development of the nervous system.

Interleukin-6 (IL-6) is a cytokine, a type of signaling molecule that plays a crucial role in the immune system. It is produced by a variety of cells, including immune cells such as macrophages, monocytes, and T cells, as well as non-immune cells such as fibroblasts and endothelial cells. IL-6 has a wide range of functions in the body, including regulating the immune response, promoting inflammation, and stimulating the growth and differentiation of immune cells. It is also involved in the regulation of metabolism, bone metabolism, and hematopoiesis (the production of blood cells). In the medical field, IL-6 is often measured as a marker of inflammation and is used to diagnose and monitor a variety of conditions, including autoimmune diseases, infections, and cancer. It is also being studied as a potential therapeutic target for the treatment of these conditions, as well as for the management of chronic pain and other conditions.

Myeloid-Lymphoid Leukemia Protein (MLL) is a type of protein that plays a crucial role in the development and function of blood cells. It is also known as Mixed Lineage Leukemia (MLL) protein. MLL is a member of a family of proteins called histone methyltransferases, which are enzymes that add methyl groups to the tails of histone proteins. Histones are proteins that help package DNA into a compact structure called chromatin. By adding methyl groups to histones, MLL can affect the accessibility of DNA to the machinery that reads and writes genetic information, which in turn can influence gene expression. In the context of leukemia, mutations in the MLL gene can lead to the production of abnormal versions of the MLL protein that are not properly regulated. This can result in the uncontrolled growth and proliferation of blood cells, leading to the development of leukemia. MLL is a type of acute leukemia that affects both myeloid and lymphoid cells, hence the name "myeloid-lymphoid leukemia." It is a rare type of leukemia, accounting for only about 1-2% of all cases of acute leukemia. Treatment for MLL leukemia typically involves chemotherapy, stem cell transplantation, and targeted therapies that specifically target the abnormal MLL protein.

Chondrocytes are specialized cells found in the cartilage tissue of the body. They are responsible for producing and maintaining the extracellular matrix of cartilage, which provides support and cushioning to joints and other structures. Chondrocytes are found in the center of cartilage structures, surrounded by a matrix of collagen fibers and proteoglycans. They are typically smaller and more numerous in areas of the cartilage that are subjected to greater stress, such as the ends of long bones. In the medical field, chondrocytes are often studied in the context of cartilage repair and regeneration, as they have the ability to divide and produce new cartilage tissue.

Bone marrow examination is a medical test that involves removing a sample of bone marrow from a patient's bone and examining it under a microscope. The bone marrow is the soft, spongy tissue found inside the bones, and it is responsible for producing blood cells, including red blood cells, white blood cells, and platelets. There are several different types of bone marrow examinations, including aspiration, biopsy, and trephination. During an aspiration, a small amount of bone marrow is removed using a needle and syringe. During a biopsy, a larger sample of bone marrow is removed using a biopsy needle. During trephination, a small piece of bone is removed, along with the bone marrow. Bone marrow examination is used to diagnose a variety of medical conditions, including anemia, leukemia, lymphoma, and multiple myeloma. It can also be used to monitor the effectiveness of treatment for these conditions, and to detect any complications that may arise during treatment.

Interleukin-4 (IL-4) is a type of cytokine, which is a signaling molecule that plays a crucial role in regulating the immune system. IL-4 is primarily produced by T-helper 2 (Th2) cells, which are a type of immune cell that helps to fight off parasitic infections and allergies. IL-4 has several important functions in the immune system. It promotes the differentiation of Th2 cells and stimulates the production of other Th2 cytokines, such as IL-5 and IL-13. IL-4 also promotes the activation and proliferation of B cells, which are responsible for producing antibodies. Additionally, IL-4 has anti-inflammatory effects and can help to suppress the activity of T-helper 1 (Th1) cells, which are involved in fighting off bacterial and viral infections. In the medical field, IL-4 is being studied for its potential therapeutic applications. For example, it is being investigated as a treatment for allergies, asthma, and certain autoimmune diseases. IL-4 is also being studied as a potential cancer immunotherapy, as it can help to activate immune cells that can recognize and attack cancer cells.

Sialic Acid Binding Ig-like Lectin 3 (SIGLEC3) is a protein that is expressed on the surface of immune cells, such as macrophages and dendritic cells. It is a member of the SIGLEC family of proteins, which are involved in the recognition and binding of sialic acid, a type of carbohydrate found on the surface of many types of cells. SIGLEC3 has been shown to play a role in the immune response to infections, as well as in the regulation of inflammation and the development of certain types of cancer. It has also been implicated in the pathogenesis of autoimmune diseases, such as multiple sclerosis and rheumatoid arthritis. In the medical field, SIGLEC3 is being studied as a potential target for the development of new therapies for a variety of diseases, including cancer and autoimmune disorders.

Antineoplastic agents, also known as cytotoxic agents or chemotherapeutic agents, are drugs that are used to treat cancer by killing or slowing the growth of cancer cells. These agents work by interfering with the normal processes of cell division and growth, which are necessary for the survival and spread of cancer cells. There are many different types of antineoplastic agents, including alkylating agents, antimetabolites, topoisomerase inhibitors, and monoclonal antibodies, among others. These agents are often used in combination with other treatments, such as surgery and radiation therapy, to provide the most effective treatment for cancer.

HLA-DQ antigens are a group of proteins found on the surface of cells in the human body. They are part of the human leukocyte antigen (HLA) system, which plays a critical role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. HLA-DQ antigens are particularly important in the immune response to certain types of infections, including those caused by viruses such as HIV and hepatitis C. They also play a role in the development of certain autoimmune diseases, such as celiac disease and type 1 diabetes. HLA-DQ antigens are classified into two main groups: HLA-DQ1 and HLA-DQ2. These groups are further divided into several subtypes, each with a unique combination of amino acids in their protein structure. The specific HLA-DQ antigens present on the surface of a person's cells can affect their susceptibility to certain diseases and their response to certain treatments.

CD27 is a protein that is found on the surface of certain immune cells, including T cells and B cells. It is a member of the tumor necrosis factor receptor superfamily and plays a role in the activation and differentiation of these immune cells. Antigens, CD27 refers to molecules that bind to the CD27 protein on the surface of immune cells. These antigens can be either self-antigens, which are normally present on the body's own cells and can be recognized by the immune system as "self," or foreign antigens, which are found on the surface of pathogens such as viruses and bacteria. The binding of antigens to CD27 on immune cells can trigger a variety of immune responses, including the activation and proliferation of T cells and B cells, the production of antibodies, and the release of cytokines, which are signaling molecules that help to coordinate the immune response. CD27 is therefore an important molecule in the immune system and plays a role in the body's ability to defend itself against infection and disease.

"Chromosomes, Human, 19-20" refers to the two chromosomes in the human genome that are numbered 19 and 20. These chromosomes are part of the 23 pairs of chromosomes that make up the genetic material of human cells. Each chromosome contains a specific set of genes, which are segments of DNA that code for proteins and other molecules that are essential for the functioning of the body. The genes on chromosomes 19 and 20 play a variety of roles in human health and development, and changes or abnormalities in these chromosomes can lead to a range of genetic disorders and health conditions.

Immunoglobulins, also known as antibodies, are proteins produced by the immune system in response to the presence of foreign substances, such as viruses, bacteria, and toxins. They are Y-shaped molecules that recognize and bind to specific antigens, which are molecules found on the surface of pathogens. There are five main classes of immunoglobulins: IgG, IgA, IgM, IgD, and IgE. Each class has a unique structure and function, and they are produced by different types of immune cells in response to different types of pathogens. Immunoglobulins play a critical role in the immune response by neutralizing pathogens, marking them for destruction by other immune cells, and activating the complement system, which helps to destroy pathogens. They are also used in medical treatments, such as immunoglobulin replacement therapy for patients with primary immunodeficiencies, and in the development of vaccines and monoclonal antibodies for the treatment of various diseases.

Complement fixation tests are a type of serological test used in the medical field to detect the presence of specific antibodies in a patient's blood. These tests are based on the principle that antibodies can bind to specific antigens, causing a change in the complement system, a group of proteins that play a role in the immune response. In a complement fixation test, a known amount of antigen is mixed with a patient's serum, and the mixture is then incubated to allow the antibodies in the serum to bind to the antigen. The bound antibodies then activate the complement system, which leads to the formation of a visible precipitate or clot. The amount of precipitate or clot formed is proportional to the amount of antibodies present in the serum. Complement fixation tests are used to diagnose a variety of infectious diseases, including syphilis, rheumatic fever, and Lyme disease. They are also used to detect the presence of certain types of cancer, such as Hodgkin's lymphoma and multiple myeloma. These tests are generally considered to be highly specific, meaning that they are less likely to produce false-positive results than other types of serological tests. However, they may be less sensitive, meaning that they may produce false-negative results in some cases.

Proto-oncogene proteins c-ets are a family of transcription factors that play a role in the regulation of cell growth and differentiation. They are involved in the development and progression of various types of cancer, including leukemia, lymphoma, and solid tumors. The c-ets proteins are encoded by genes that are located on different chromosomes and are activated through various mechanisms, such as gene mutations or chromosomal rearrangements. When these proteins are overexpressed or mutated, they can contribute to the development of cancer by promoting uncontrolled cell growth and inhibiting programmed cell death.

Cytotoxicity, immunologic refers to the ability of immune cells, such as T cells and natural killer (NK) cells, to directly kill or damage other cells in the body. This process is an important part of the immune response and is involved in the elimination of infected or cancerous cells. Cytotoxic T cells, for example, recognize and kill cells that are infected with viruses or have mutated in a way that makes them cancerous. NK cells can also recognize and kill abnormal cells, such as those that are missing the normal "self" markers on their surface. Cytotoxicity, immunologic can be measured in the laboratory using various assays, such as the lactate dehydrogenase (LDH) release assay or the chromium release assay.

Cholecalciferol, also known as vitamin D3, is a fat-soluble vitamin that is essential for maintaining healthy bones and teeth. It is produced by the body when the skin is exposed to sunlight, and it is also found in some foods, such as fatty fish, egg yolks, and fortified dairy products. In the medical field, cholecalciferol is often used to treat and prevent a variety of conditions related to vitamin D deficiency, including rickets (a disease that causes softening and weakening of the bones in children), osteomalacia (a disease that causes softening and weakening of the bones in adults), and osteoporosis (a disease that causes thinning and weakening of the bones, making them more prone to fractures). Cholecalciferol is also used to treat and prevent certain types of cancer, including breast, colon, and prostate cancer, as well as to treat and prevent high blood pressure, multiple sclerosis, and other conditions. It is usually taken as a supplement in the form of a pill or liquid, and the recommended dosage depends on the individual's age, weight, and overall health.

Intercellular signaling peptides and proteins are molecules that are secreted by cells and act as messengers to communicate with other cells. These molecules can be hormones, growth factors, cytokines, or other signaling molecules that are capable of transmitting information between cells. They play a crucial role in regulating various physiological processes, such as cell growth, differentiation, and apoptosis, as well as immune responses and inflammation. In the medical field, understanding the function and regulation of intercellular signaling peptides and proteins is important for developing new treatments for various diseases and disorders, including cancer, autoimmune diseases, and neurological disorders.

Intermediate filament proteins (IFPs) are a type of cytoskeletal protein that provide structural support to cells. They are found in all types of cells, including epithelial cells, muscle cells, and nerve cells. IFPs are composed of multiple subunits that form long, fibrous polymers that are arranged in a helical structure. These filaments are intermediate in size between the microfilaments and microtubules, which are other types of cytoskeletal proteins. IFPs play a number of important roles in cells, including maintaining cell shape, providing mechanical strength, and anchoring organelles in place. They are also involved in a variety of cellular processes, such as cell division, migration, and differentiation.

Bone Morphogenetic Protein 4 (BMP4) is a protein that plays a crucial role in the development and maintenance of bone tissue in the human body. It is a member of the transforming growth factor-beta (TGF-β) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. In the medical field, BMP4 is used as a therapeutic agent to promote bone growth and regeneration in a variety of conditions, including fractures, osteoporosis, and spinal cord injuries. It is also being studied as a potential treatment for other diseases, such as cancer and diabetes. BMP4 is produced by a variety of cells in the body, including osteoblasts (cells that produce bone tissue) and chondrocytes (cells that produce cartilage). It acts by binding to specific receptors on the surface of cells, which triggers a signaling cascade that leads to changes in gene expression and cellular behavior. Overall, BMP4 is a critical protein for the development and maintenance of bone tissue, and its therapeutic potential is being actively explored in the medical field.

Antibodies, viral, are proteins produced by the immune system in response to a viral infection. They are also known as immunoglobulins or antibodies. Viral antibodies are specific to a particular virus and can help to neutralize and eliminate the virus from the body. They are typically detected in the blood or other bodily fluids using laboratory tests, such as enzyme-linked immunosorbent assays (ELISAs) or immunofluorescence assays. The presence of viral antibodies can be used as a diagnostic tool to confirm a viral infection or to determine the immune status of an individual.

3T3 cells are a type of mouse fibroblast cell line that are commonly used in biomedical research. They are derived from the mouse embryo and are known for their ability to grow and divide indefinitely in culture. 3T3 cells are often used as a model system for studying cell growth, differentiation, and other cellular processes. They are also used in the development of new drugs and therapies, as well as in the testing of cosmetic and other products for safety and efficacy.

CD79 is a protein complex that is expressed on the surface of B cells, a type of white blood cell that plays a key role in the immune system. The CD79 complex consists of two subunits, CD79a and CD79b, which are encoded by different genes. Together, these subunits form a receptor that is activated by the binding of antigens, which are molecules that trigger an immune response. Antigens, CD79 are antigens that specifically bind to the CD79 receptor on B cells. When these antigens bind to the receptor, they activate the B cell and stimulate it to produce antibodies, which are proteins that can recognize and neutralize specific pathogens or foreign substances in the body. Antigens, CD79 are often used as diagnostic markers for certain types of B cell lymphomas, which are a type of cancer that affects the B cells. They may also be used as targets for immunotherapy, which is a type of cancer treatment that uses the body's own immune system to fight cancer.

CD28 is a protein found on the surface of T cells, a type of white blood cell that plays a central role in the immune system. CD28 is a co-stimulatory molecule, meaning that it works together with other molecules to help activate and regulate T cells. Antigens, CD28 refers to molecules that bind to the CD28 protein on T cells and activate them. These antigens are typically found on the surface of other cells, such as infected cells or cancer cells, and are recognized by T cells as foreign or abnormal. When a T cell encounters an antigen that binds to its CD28 receptor, it becomes activated and begins to divide and produce more T cells, which can then attack and destroy the infected or cancerous cells. CD28-based antigens are being studied as potential targets for immunotherapy, a type of cancer treatment that uses the body's own immune system to fight cancer. By activating T cells with CD28-based antigens, researchers hope to boost the immune system's ability to recognize and attack cancer cells.

CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4) is a protein found on the surface of certain immune cells, including T cells and B cells. It plays a role in regulating the immune response and preventing autoimmune diseases. In the context of the medical field, the CTLA-4 antigen is often studied in the context of cancer immunotherapy. Cancer cells can sometimes evade the immune system by expressing molecules that inhibit the activity of T cells. One such molecule is CTLA-4, which can bind to a protein on the surface of T cells called CD80 or CD86, effectively turning off the T cell's ability to attack cancer cells. Immunotherapies that target CTLA-4 have been developed to help the immune system recognize and attack cancer cells. These therapies work by blocking the interaction between CTLA-4 and CD80/CD86, allowing T cells to mount a stronger immune response against cancer cells. While these therapies have shown promise in some types of cancer, they can also cause side effects such as autoimmune reactions.

Chromosome aberrations refer to changes or abnormalities in the structure or number of chromosomes in a cell. These changes can occur naturally during cell division or as a result of exposure to mutagens such as radiation or certain chemicals. Chromosome aberrations can be classified into several types, including deletions, duplications, inversions, translocations, and aneuploidy. These changes can have significant effects on the function of the affected cells and can lead to a variety of medical conditions, including cancer, genetic disorders, and birth defects. In the medical field, chromosome aberrations are often studied as a way to understand the genetic basis of disease and to develop new treatments.

Wnt proteins are a family of signaling molecules that play a crucial role in regulating cell proliferation, differentiation, migration, and survival. They are secreted by cells and bind to receptors on the surface of neighboring cells, activating a signaling cascade that regulates gene expression and cellular behavior. In the medical field, Wnt proteins are of great interest because they are involved in a wide range of diseases and conditions, including cancer, developmental disorders, and neurodegenerative diseases. For example, mutations in Wnt signaling pathways have been implicated in the development of colorectal cancer, and dysregulated Wnt signaling has been linked to the progression of other types of cancer as well. Wnt proteins are also being studied as potential therapeutic targets for a variety of diseases. For example, drugs that target Wnt signaling have shown promise in preclinical studies for the treatment of cancer, and there is ongoing research into the use of Wnt signaling inhibitors for the treatment of other conditions, such as inflammatory bowel disease and osteoporosis.

Scleromyxedema is a rare, chronic skin disorder characterized by thick, lumpy skin that is often painful and itchy. It is also known as scleroderma myxedema or myxedematous scleroderma. The condition is caused by an overproduction of a protein called hyaluronic acid, which leads to the accumulation of fluid and swelling in the skin and underlying tissues. Scleromyxedema can affect any part of the body, but it most commonly affects the face, neck, and hands. It can also cause joint pain and stiffness, as well as fatigue and other systemic symptoms. There is no cure for scleromyxedema, but treatment can help to manage symptoms and slow the progression of the disease.

In the medical field, "Neoplasms, Experimental" refers to the study of neoplasms (abnormal growths of cells) in experimental settings, such as in laboratory animals or in vitro cell cultures. These studies are typically conducted to better understand the underlying mechanisms of neoplasms and to develop new treatments for cancer and other types of neoplastic diseases. Experimental neoplasms may be induced by various factors, including genetic mutations, exposure to carcinogens, or other forms of cellular stress. The results of these studies can provide valuable insights into the biology of neoplasms and help to identify potential targets for therapeutic intervention.

In the medical field, the term "cattle" refers to large domesticated animals that are raised for their meat, milk, or other products. Cattle are a common source of food and are also used for labor in agriculture, such as plowing fields or pulling carts. In veterinary medicine, cattle are often referred to as "livestock" and may be treated for a variety of medical conditions, including diseases, injuries, and parasites. Some common medical issues that may affect cattle include respiratory infections, digestive problems, and musculoskeletal disorders. Cattle may also be used in medical research, particularly in the fields of genetics and agriculture. For example, scientists may study the genetics of cattle to develop new breeds with desirable traits, such as increased milk production or resistance to disease.

Green Fluorescent Proteins (GFPs) are a class of proteins that emit green light when excited by blue or ultraviolet light. They were first discovered in the jellyfish Aequorea victoria and have since been widely used as a tool in the field of molecular biology and bioimaging. In the medical field, GFPs are often used as a marker to track the movement and behavior of cells and proteins within living organisms. For example, scientists can insert a gene for GFP into a cell or organism, allowing them to visualize the cell or protein in real-time using a fluorescent microscope. This can be particularly useful in studying the development and function of cells, as well as in the diagnosis and treatment of diseases. GFPs have also been used to develop biosensors, which can detect the presence of specific molecules or changes in cellular environment. For example, researchers have developed GFP-based sensors that can detect the presence of certain drugs or toxins, or changes in pH or calcium levels within cells. Overall, GFPs have become a valuable tool in the medical field, allowing researchers to study cellular processes and diseases in new and innovative ways.

Notch1 is a type of receptor protein that plays a critical role in cell signaling and differentiation. It is a transmembrane protein that is expressed on the surface of many different types of cells, including neurons, immune cells, and cancer cells. In the medical field, Notch1 is of particular interest because it is involved in a number of important biological processes, including cell proliferation, differentiation, and apoptosis (programmed cell death). Abnormalities in Notch1 signaling have been linked to a variety of diseases, including cancer, developmental disorders, and immune system disorders. Notch1 signaling occurs when the receptor protein binds to a ligand protein on the surface of another cell. This binding event triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression and cellular behavior. In some cases, Notch1 signaling can promote cell proliferation and survival, while in other cases it can promote cell differentiation and death. In the context of cancer, Notch1 signaling has been implicated in the development and progression of a variety of different types of tumors, including breast cancer, lung cancer, and leukemia. In these cases, abnormal Notch1 signaling can contribute to the growth and spread of cancer cells, making it an important target for cancer therapy.

Leukemia, Myelogenous, Chronic, BCR-ABL Positive is a type of cancer that affects the bone marrow and blood cells. It is also known as Chronic Myeloid Leukemia (CML) and is characterized by the presence of an abnormal Philadelphia chromosome, which is caused by a genetic mutation. This mutation results in the production of an abnormal protein called BCR-ABL, which promotes the uncontrolled growth and division of white blood cells. CML is typically diagnosed in adults and is treatable with medications that target the BCR-ABL protein. However, it is a chronic condition that requires lifelong treatment and monitoring.

MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression at the post-transcriptional level. They are typically 18-24 nucleotides in length and are transcribed from endogenous genes. In the medical field, miRNAs have been found to be involved in a wide range of biological processes, including cell growth, differentiation, apoptosis, and metabolism. Dysregulation of miRNA expression has been implicated in various diseases, including cancer, cardiovascular disease, neurological disorders, and infectious diseases. MiRNAs can act as either oncogenes or tumor suppressors, depending on the target gene they regulate. They can also be used as diagnostic and prognostic markers for various diseases, as well as therapeutic targets for the development of new drugs.

GP100 is a protein that is expressed on the surface of melanoma cells, which are a type of cancer that originates in the cells that produce pigment in the skin, hair, and eyes. The GP100 protein is a type of melanoma antigen, which is a protein that is found on the surface of cancer cells and can be recognized by the immune system as foreign. Melanoma antigens are being studied as potential targets for cancer immunotherapy, which is a type of treatment that uses the body's own immune system to fight cancer.

Calcification, physiologic refers to the normal process of calcium deposition in tissues and organs throughout the body. This process is essential for the development and maintenance of many structures, such as bones, teeth, and blood vessels. In the context of the medical field, physiologic calcification is generally considered to be a normal and healthy process. However, excessive or abnormal calcification can lead to a variety of health problems, such as atherosclerosis (hardening of the arteries), kidney stones, and calcification of soft tissues. Physiologic calcification is typically the result of the deposition of calcium and other minerals in response to various stimuli, such as hormonal changes, aging, and injury. It is a complex process that involves the interaction of multiple factors, including calcium and phosphate levels in the blood, vitamin D metabolism, and the activity of various enzymes and proteins. Overall, physiologic calcification is an important aspect of human physiology and plays a critical role in the development and maintenance of many structures and functions throughout the body.

SOX9 (SRY-related HMG-box 9) is a transcription factor that plays a critical role in the development of several organs and tissues in the human body, including the testes, ovaries, and cartilage. In the medical field, SOX9 is often studied in the context of various diseases and conditions, including: 1. Testicular development: SOX9 is a key regulator of testicular development, and mutations in the SOX9 gene can lead to disorders such as campomelic dysplasia, a severe skeletal disorder that affects the development of the limbs and other body parts. 2. Ovarian development: SOX9 is also involved in the development of the ovaries, and its expression is necessary for the proper differentiation of ovarian granulosa cells. 3. Cartilage development: SOX9 plays a critical role in the development of cartilage, and mutations in the SOX9 gene can lead to disorders such as achondroplasia, a form of dwarfism characterized by short stature and abnormal bone growth. 4. Cancer: SOX9 has been implicated in the development and progression of several types of cancer, including prostate cancer, breast cancer, and ovarian cancer. In these contexts, SOX9 may act as a tumor suppressor or as a driver of cancer growth, depending on the specific context and the type of cancer being studied. Overall, SOX9 is a highly conserved transcription factor that plays a critical role in the development and function of several organs and tissues in the human body, and its dysregulation has been implicated in a variety of diseases and conditions.

CD95, also known as Fas or Apo-1, is a cell surface protein that plays a role in the regulation of immune responses and cell death. Antigens, CD95 refers to molecules that bind to the CD95 protein on the surface of immune cells, triggering a cascade of events that can lead to cell death. This process is known as apoptosis and is an important mechanism for eliminating damaged or infected cells from the body. CD95 antigens are also involved in the regulation of immune responses, including the activation and differentiation of T cells and B cells. In the medical field, CD95 antigens are often studied as potential targets for the treatment of various diseases, including cancer, autoimmune disorders, and viral infections.

Prostatic neoplasms refer to tumors that develop in the prostate gland, which is a small gland located in the male reproductive system. These tumors can be either benign (non-cancerous) or malignant (cancerous). Benign prostatic neoplasms, also known as benign prostatic hyperplasia (BPH), are the most common type of prostatic neoplasm and are typically associated with an increase in the size of the prostate gland. Malignant prostatic neoplasms, on the other hand, are more serious and can spread to other parts of the body if left untreated. The most common type of prostate cancer is adenocarcinoma, which starts in the glandular cells of the prostate. Other types of prostatic neoplasms include sarcomas, which are rare and start in the connective tissue of the prostate, and carcinoid tumors, which are rare and start in the neuroendocrine cells of the prostate.

Beta-catenin is a protein that plays a crucial role in the regulation of cell adhesion and signaling pathways in the body. In the medical field, beta-catenin is often studied in the context of cancer, as mutations in the beta-catenin gene (CTNNB1) can lead to the development of various types of cancer, including colorectal cancer, endometrial cancer, and ovarian cancer. In normal cells, beta-catenin is a component of the cadherin adhesion complex, which helps cells stick together and maintain tissue integrity. However, in cancer cells, mutations in the beta-catenin gene can lead to the accumulation of beta-catenin in the cytoplasm and nucleus, where it can activate downstream signaling pathways that promote cell proliferation and survival. Beta-catenin is also involved in the regulation of other cellular processes, such as cell migration, differentiation, and apoptosis. As such, it is a potential target for the development of new cancer therapies.

Blotting, Southern is a laboratory technique used to detect specific DNA sequences in a sample. It is named after Edwin Southern, who developed the technique in the 1970s. The technique involves transferring DNA from a gel onto a membrane, such as nitrocellulose or nylon, and then using labeled probes to detect specific DNA sequences. The blotting process is often used in molecular biology research to study gene expression, genetic variation, and other aspects of DNA biology.

Neurofibromatosis 1 (NF1) is a genetic disorder that affects the development of nerve tissue. It is caused by a mutation in the NF1 gene, which is located on chromosome 17. NF1 is inherited in an autosomal dominant pattern, which means that a person only needs to inherit one copy of the mutated gene from one parent to develop the condition. The symptoms of NF1 can vary widely and may include the development of benign tumors called neurofibromas, which are usually found on the skin and in the nervous system. These tumors can cause pain, discomfort, and cosmetic concerns. Other common symptoms of NF1 include freckling on the skin, learning disabilities, and skeletal abnormalities. In addition to these physical symptoms, people with NF1 may also be at an increased risk of developing certain types of cancer, including glioblastoma, a type of brain tumor, and pheochromocytoma, a type of adrenal gland tumor. There is currently no cure for NF1, but treatment is focused on managing the symptoms and complications of the condition. This may include medications to control pain and seizures, surgery to remove tumors, and physical therapy to address skeletal abnormalities.

In the medical field, cell communication refers to the process by which cells exchange information and signals with each other. This communication is essential for the proper functioning of the body's tissues and organs, as it allows cells to coordinate their activities and respond to changes in their environment. There are several types of cell communication, including direct communication between neighboring cells, as well as communication through the bloodstream or lymphatic system. Some of the key mechanisms of cell communication include the release of signaling molecules, such as hormones and neurotransmitters, as well as the exchange of ions and other small molecules across cell membranes. Disruptions in cell communication can lead to a variety of medical conditions, including cancer, autoimmune diseases, and neurological disorders. Therefore, understanding the mechanisms of cell communication is an important area of research in medicine, with potential applications in the development of new treatments and therapies.

Phosphoproteins are proteins that have been modified by the addition of a phosphate group to one or more of their amino acid residues. This modification is known as phosphorylation, and it is a common post-translational modification that plays a critical role in regulating many cellular processes, including signal transduction, metabolism, and gene expression. Phosphoproteins are involved in a wide range of biological functions, including cell growth and division, cell migration and differentiation, and the regulation of gene expression. They are also involved in many diseases, including cancer, diabetes, and cardiovascular disease. Phosphoproteins can be detected and studied using a variety of techniques, including mass spectrometry, Western blotting, and immunoprecipitation. These techniques allow researchers to identify and quantify the phosphorylation status of specific proteins in cells and tissues, and to study the effects of changes in phosphorylation on protein function and cellular processes.

Antigens, T-independent, are molecules that can stimulate the production of antibodies by B cells without the involvement of T cells. T-independent antigens are typically small, simple molecules such as polysaccharides, lipopolysaccharides, and lipoteichoic acids, which are found on the surface of many bacteria. These antigens are recognized by B cells through their B cell receptors (BCRs), which bind to the antigens and activate the B cells to produce antibodies. The antibodies produced in response to T-independent antigens are generally of low affinity and do not provide long-lasting immunity. However, they can provide a rapid and initial response to bacterial infections.

Bacterial proteins are proteins that are synthesized by bacteria. They are essential for the survival and function of bacteria, and play a variety of roles in bacterial metabolism, growth, and pathogenicity. Bacterial proteins can be classified into several categories based on their function, including structural proteins, metabolic enzymes, regulatory proteins, and toxins. Structural proteins provide support and shape to the bacterial cell, while metabolic enzymes are involved in the breakdown of nutrients and the synthesis of new molecules. Regulatory proteins control the expression of other genes, and toxins can cause damage to host cells and tissues. Bacterial proteins are of interest in the medical field because they can be used as targets for the development of antibiotics and other antimicrobial agents. They can also be used as diagnostic markers for bacterial infections, and as vaccines to prevent bacterial diseases. Additionally, some bacterial proteins have been shown to have therapeutic potential, such as enzymes that can break down harmful substances in the body or proteins that can stimulate the immune system.

Bone marrow transplantation (BMT) is a medical procedure in which healthy bone marrow is transplanted into a patient who has damaged or diseased bone marrow. The bone marrow is the spongy tissue found inside bones that produces blood cells, including red blood cells, white blood cells, and platelets. There are two main types of bone marrow transplantation: autologous and allogeneic. Autologous BMT involves transplanting bone marrow from the patient's own body, usually after it has been harvested and stored before the patient undergoes high-dose chemotherapy or radiation therapy to destroy their diseased bone marrow. Allogeneic BMT involves transplanting bone marrow from a donor who is a genetic match for the patient. BMT is used to treat a variety of conditions, including leukemia, lymphoma, multiple myeloma, sickle cell anemia, and some inherited blood disorders. The procedure can also be used to treat certain immune system disorders and some genetic diseases. The success of BMT depends on several factors, including the type and stage of the patient's disease, the patient's overall health, and the availability of a suitable donor. The procedure can be complex and may involve several stages, including preparatory treatment, the actual transplantation, and post-transplantation care.

CD2 is a protein found on the surface of certain types of immune cells, such as T cells and natural killer cells. It is a member of the immunoglobulin superfamily of cell surface receptors and plays a role in the activation and signaling of these cells. Antigens, CD2 are molecules that bind to the CD2 protein on the surface of immune cells. When an antigen binds to CD2, it can trigger a series of signaling events within the immune cell that can lead to the activation and proliferation of the cell, as well as the production of immune molecules such as cytokines and antibodies. CD2 antigens are often used as targets for immunotherapy, a type of cancer treatment that uses the body's immune system to attack cancer cells. In these therapies, drugs or other agents are used to stimulate the immune system to recognize and attack cancer cells that express CD2 antigens on their surface.

Octamer Transcription Factor-3 (Oct3/4) is a transcription factor that plays a crucial role in the regulation of gene expression during embryonic development and stem cell maintenance. It is a member of the POU family of transcription factors, which are characterized by a conserved DNA-binding domain called the POU domain. Oct3/4 is expressed in the inner cell mass of the blastocyst, which gives rise to the embryo proper, and in the embryonic stem cells that can differentiate into all cell types of the body. It is also expressed in some adult tissues, such as the brain and testes. In stem cells, Oct3/4 is essential for maintaining their self-renewal capacity and pluripotency, which allows them to differentiate into any cell type in the body. It does this by binding to specific DNA sequences called Octamer boxes, which are located in the promoter regions of genes that are important for stem cell maintenance and differentiation. In addition to its role in stem cells, Oct3/4 has also been implicated in the development of various diseases, including cancer. For example, some cancer cells can reprogram themselves to express Oct3/4, which allows them to evade immune surveillance and continue to grow and divide uncontrollably. Therefore, targeting Oct3/4 may be a promising strategy for the treatment of certain types of cancer.

CA-19-9 Antigen is a protein that is found on the surface of certain cells in the body, including cells in the pancreas, bile ducts, and colon. It is also found in some types of cancer cells, such as those in pancreatic and ovarian cancer. In the medical field, the CA-19-9 antigen is often used as a tumor marker, which means that it can be measured in the blood to help diagnose and monitor certain types of cancer. High levels of CA-19-9 in the blood may indicate the presence of cancer, while low levels may indicate that the cancer is in remission or has not spread. However, it is important to note that the CA-19-9 antigen is not specific to cancer and can also be elevated in other conditions, such as chronic pancreatitis and inflammatory bowel disease.

In the medical field, "Disease Models, Animal" refers to the use of animals to study and understand human diseases. These models are created by introducing a disease or condition into an animal, either naturally or through experimental manipulation, in order to study its progression, symptoms, and potential treatments. Animal models are used in medical research because they allow scientists to study diseases in a controlled environment and to test potential treatments before they are tested in humans. They can also provide insights into the underlying mechanisms of a disease and help to identify new therapeutic targets. There are many different types of animal models used in medical research, including mice, rats, rabbits, dogs, and monkeys. Each type of animal has its own advantages and disadvantages, and the choice of model depends on the specific disease being studied and the research question being addressed.

Retinoic acid receptors (RARs) are a family of nuclear receptors that play a critical role in the regulation of gene expression in response to the hormone retinoic acid (RA). RA is a metabolite of vitamin A and is involved in a wide range of biological processes, including cell differentiation, proliferation, and apoptosis. RARs are encoded by three genes, RARA, RARB, and RARγ, and are expressed as multiple isoforms through alternative splicing. These receptors bind to RA with high affinity and activate or repress the transcription of target genes by interacting with specific DNA sequences in the promoter regions of these genes. RARs are involved in the development and function of many tissues and organs, including the brain, heart, lungs, skin, and eyes. They have been implicated in a variety of diseases, including cancer, inflammatory disorders, and neurological disorders. In the medical field, RARs are the target of several drugs, including retinoids, which are used to treat a variety of conditions, including acne, psoriasis, and certain types of cancer. Understanding the role of RARs in health and disease is an active area of research, with potential implications for the development of new therapeutic strategies.

In the medical field, "dog diseases" refers to any illness or condition that affects dogs. These diseases can be caused by a variety of factors, including genetics, infections, environmental factors, and lifestyle. Some common examples of dog diseases include: 1. Canine Influenza: A highly contagious respiratory disease caused by the influenza virus. 2. Canine Distemper: A highly contagious viral disease that affects the respiratory, gastrointestinal, and central nervous systems. 3. Canine Leukemia: A type of cancer that affects the white blood cells. 4. Canine Hip Dysplasia: A genetic disorder that affects the development of the hip joint. 5. Canine Heartworm: A parasitic disease that affects the heart and blood vessels. 6. Canine Cancers: A group of diseases that affect the body's cells and tissues. 7. Canine Arthritis: A joint disease that causes inflammation and pain. 8. Canine Allergies: A condition in which the immune system overreacts to certain substances, such as pollen or food. 9. Canine Eye Diseases: A group of conditions that affect the eyes, including cataracts, glaucoma, and retinal detachment. 10. Canine Skin Diseases: A group of conditions that affect the skin, including allergies, mange, and acne. These are just a few examples of the many diseases that can affect dogs. It is important for pet owners to be aware of the common diseases that affect their dogs and to take steps to prevent and treat them.

Calgranulin B, also known as S100A9, is a protein that is expressed in a variety of cells, including neutrophils, monocytes, and macrophages. It is a member of the S100 family of calcium-binding proteins, which are involved in a wide range of cellular processes, including cell signaling, cytoskeletal organization, and immune response. In the context of the medical field, Calgranulin B has been implicated in a number of diseases and conditions, including inflammatory disorders, cancer, and neurodegenerative diseases. For example, elevated levels of Calgranulin B have been observed in the serum and cerebrospinal fluid of patients with Alzheimer's disease, suggesting that it may play a role in the pathogenesis of this condition. Similarly, Calgranulin B has been shown to be upregulated in various types of cancer, including breast, prostate, and lung cancer, and may contribute to tumor growth and progression. Overall, Calgranulin B is a protein of interest in the medical field due to its potential role in a variety of diseases and conditions, and ongoing research is aimed at further elucidating its function and potential therapeutic applications.

Antibodies, Protozoan refers to a type of antibody that is produced by the immune system in response to infections caused by protozoan parasites. Protozoan parasites are single-celled organisms that can cause a variety of diseases in humans and animals, including malaria, sleeping sickness, and giardiasis. Antibodies are proteins that are produced by immune cells called B cells. They are designed to recognize and bind to specific molecules on the surface of pathogens, such as viruses, bacteria, and parasites. When an antibody binds to a pathogen, it can help to neutralize the pathogen or mark it for destruction by other immune cells. Antibodies, Protozoan are specific to the antigens found on the surface of protozoan parasites. They are produced in response to an infection with a specific protozoan parasite and can help to protect the body against future infections with that parasite.

Neuroblastoma is a type of cancer that develops from immature nerve cells, called neuroblasts, in the sympathetic nervous system. It is most commonly found in children, although it can also occur in adults. Neuroblastoma can occur anywhere in the body where neuroblasts are present, but it most often affects the adrenal glands, the neck, and the chest. The symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include abdominal pain, swelling, and a lump or mass in the abdomen or neck. Treatment for neuroblastoma typically involves a combination of surgery, chemotherapy, radiation therapy, and stem cell transplantation.

In the medical field, cell shape refers to the three-dimensional structure of a cell, including its size, shape, and overall configuration. The shape of a cell can vary depending on its function and the environment in which it exists. For example, red blood cells are disc-shaped to maximize their surface area for oxygen exchange, while nerve cells have long, branching extensions called dendrites and axons to facilitate communication with other cells. Changes in cell shape can be indicative of disease or abnormal cell function, and are often studied in the context of cancer, inflammation, and other medical conditions.

Interleukin-2 (IL-2) is a cytokine, a type of signaling molecule that plays a crucial role in the immune system. It is produced by activated T cells, a type of white blood cell that plays a central role in the body's defense against infection and disease. IL-2 has several important functions in the immune system. It promotes the growth and differentiation of T cells, which helps to increase the number of immune cells available to fight infection. It also stimulates the production of other cytokines, which can help to amplify the immune response. IL-2 is used in the treatment of certain types of cancer, such as melanoma and kidney cancer. It works by stimulating the immune system to attack cancer cells. It is typically given as an injection or infusion, and can cause side effects such as fever, chills, and flu-like symptoms. In addition to its use in cancer treatment, IL-2 has also been studied for its potential role in treating other conditions, such as autoimmune diseases and viral infections.

Protein isoforms refer to different forms of a protein that are produced by alternative splicing of the same gene. Alternative splicing is a process by which different combinations of exons (coding regions) are selected from the pre-mRNA transcript of a gene, resulting in the production of different protein isoforms with slightly different amino acid sequences. Protein isoforms can have different functions, localization, and stability, and can play distinct roles in cellular processes. For example, the same gene may produce a protein isoform that is expressed in the nucleus and another isoform that is expressed in the cytoplasm. Alternatively, different isoforms of the same protein may have different substrate specificity or binding affinity for other molecules. Dysregulation of alternative splicing can lead to the production of abnormal protein isoforms, which can contribute to the development of various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the mechanisms of alternative splicing and the functional consequences of protein isoforms is an important area of research in the medical field.

Avian leukosis virus (ALV) is a type of retrovirus that infects birds, including chickens, turkeys, and ducks. It is a highly contagious virus that can cause a range of diseases in birds, including leukosis (cancer), lymphoid hyperplasia (enlargement of the lymph nodes), and immunosuppression (weakening of the immune system). There are several different subtypes of ALV, including avian leukosis virus subgroup J (ALV-J), which is the most common subtype found in chickens and turkeys. ALV-J can cause a variety of diseases in birds, including leukosis, lymphoid hyperplasia, and immunosuppression. It can also be transmitted to humans through contact with infected birds or their products, although human infections are rare. In the medical field, ALV is studied as a model for retroviral infections and as a potential source of therapeutic agents, such as antiviral drugs and vaccines. It is also an important consideration for the poultry industry, as ALV infections can cause significant economic losses through reduced productivity and increased mortality in infected birds.

In the medical field, antigens are substances that can trigger an immune response in the body. Antigens can be found on the surface of cells or in the body's fluids, and they can be foreign substances like bacteria or viruses, or they can be part of the body's own cells, such as antigens found in the nucleus of cells. Nuclear antigens are antigens that are found within the nucleus of cells. These antigens are typically not exposed on the surface of cells, and they are not usually recognized by the immune system unless there is damage to the cell or the nucleus. In some cases, the immune system may mistakenly recognize nuclear antigens as foreign and mount an immune response against them, which can lead to autoimmune diseases.

In the medical field, RANK ligand, also known as osteoprotegerin ligand (OPGL), is a protein that plays a crucial role in bone remodeling and the regulation of bone homeostasis. It is a member of the tumor necrosis factor (TNF) superfamily of cytokines and is primarily produced by osteoblasts, which are cells responsible for bone formation. RANK ligand binds to a receptor called RANK (receptor activator of nuclear factor kappa-B) on the surface of osteoclasts, which are cells responsible for bone resorption or breakdown. The binding of RANK ligand to RANK triggers a signaling cascade that leads to the activation and differentiation of osteoclasts, promoting bone resorption. In addition to its role in bone remodeling, RANK ligand has been implicated in various other physiological and pathological processes, including inflammation, cancer, and autoimmune diseases. Therefore, targeting RANK ligand has become an attractive therapeutic strategy for the treatment of these conditions.

Autoantibodies are antibodies that are produced by the immune system against the body's own cells, tissues, or organs. In other words, they are antibodies that mistakenly target and attack the body's own components instead of foreign invaders like viruses or bacteria. Autoantibodies can be present in people with various medical conditions, including autoimmune diseases such as rheumatoid arthritis, lupus, and multiple sclerosis. They can also be found in people with certain infections, cancer, and other diseases. Autoantibodies can cause damage to the body's own cells, tissues, or organs, leading to inflammation, tissue destruction, and other symptoms. They can also interfere with the normal functioning of the body's systems, such as the nervous system, digestive system, and cardiovascular system. Diagnosis of autoantibodies is typically done through blood tests, which can detect the presence of specific autoantibodies in the blood. Treatment for autoimmune diseases that involve autoantibodies may include medications to suppress the immune system, such as corticosteroids or immunosuppressants, as well as other therapies to manage symptoms and prevent complications.

In the medical field, cytoplasm refers to the gel-like substance that fills the cell membrane of a living cell. It is composed of various organelles, such as mitochondria, ribosomes, and the endoplasmic reticulum, as well as various dissolved molecules, including proteins, lipids, and carbohydrates. The cytoplasm plays a crucial role in many cellular processes, including metabolism, protein synthesis, and cell division. It also serves as a site for various cellular activities, such as the movement of organelles within the cell and the transport of molecules across the cell membrane. In addition, the cytoplasm is involved in maintaining the structural integrity of the cell and protecting it from external stressors, such as toxins and pathogens. Overall, the cytoplasm is a vital component of the cell and plays a critical role in its function and survival.

Hedgehog proteins are a family of signaling molecules that play important roles in the development and maintenance of various tissues and organs in the body. They are named after the hedgehog animal because of their shape and the way they move around. In the medical field, hedgehog proteins are of particular interest because they have been implicated in the development of certain types of cancer, including basal cell carcinoma and medulloblastoma. These proteins are involved in regulating cell growth and differentiation, and when they are overactive or mutated, they can lead to uncontrolled cell proliferation and the formation of tumors. Hedgehog proteins are also involved in the development of other diseases, such as liver fibrosis and osteoarthritis. In addition, they have been studied as potential targets for the development of new treatments for these conditions. Overall, hedgehog proteins are an important area of research in the medical field, and understanding their role in health and disease is critical for developing new therapies and improving patient outcomes.

SOXB1 transcription factors are a family of proteins that play a crucial role in regulating gene expression in various biological processes, including development, differentiation, and homeostasis. The SOXB1 family includes three members: SOX9, SOX8, and SOX10. SOX9 is primarily expressed in the developing testis and is essential for the development of male sexual characteristics. It also plays a role in the development of the skeleton, cartilage, and bone. SOX8 is expressed in a variety of tissues, including the brain, heart, and skeletal muscle. It is involved in the regulation of cell proliferation and differentiation, as well as the development of the nervous system. SOX10 is expressed in neural crest cells, which give rise to a variety of cell types, including melanocytes, Schwann cells, and neurons. It is involved in the development of the peripheral nervous system, as well as the development of the skin and eyes. Mutations in SOXB1 transcription factors have been associated with a variety of human diseases, including developmental disorders, cancers, and neurological disorders. Understanding the function of these transcription factors is important for developing new treatments for these diseases.

Leukemia Inhibitory Factor (LIF) is a cytokine protein that plays a role in the regulation of hematopoiesis, which is the process of blood cell formation. It is produced by a variety of cells, including macrophages, monocytes, and some types of cancer cells. LIF has several functions in the body, including promoting the survival and proliferation of hematopoietic stem cells, which are the cells that give rise to all types of blood cells. It also plays a role in the differentiation of these cells into specific types of blood cells, such as red blood cells, white blood cells, and platelets. In the medical field, LIF is being studied as a potential therapeutic agent for a variety of conditions, including cancer, autoimmune diseases, and neurological disorders. It has also been shown to have anti-inflammatory effects and may be useful in treating inflammatory diseases such as rheumatoid arthritis.

Growth Differentiation Factor 5 (GDF5) is a protein that plays a role in the development and maintenance of cartilage and bone tissue in the human body. It is a member of the transforming growth factor-beta (TGF-beta) superfamily of proteins, which are involved in a wide range of cellular processes, including cell growth, differentiation, and migration. GDF5 is primarily expressed in chondrocytes, the cells that produce cartilage, and osteoblasts, the cells that produce bone. It has been shown to play a role in the development of the skeletal system during embryonic development, as well as in the maintenance of cartilage and bone tissue in adults. In the medical field, GDF5 has been studied as a potential therapeutic target for a number of conditions that affect the skeletal system, including osteoporosis, osteoarthritis, and cartilage damage. It has also been studied in the context of tissue engineering and regenerative medicine, as it has been shown to promote the growth and differentiation of chondrocytes and osteoblasts in vitro.

Osteocalcin is a protein that is primarily produced by osteoblasts, which are cells responsible for bone formation. It is a marker of bone formation and is often used as a diagnostic tool in the medical field to assess bone health. Osteocalcin is also involved in regulating glucose metabolism and insulin sensitivity. Studies have shown that low levels of osteocalcin are associated with an increased risk of type 2 diabetes and other metabolic disorders. In addition, osteocalcin has been shown to have anti-inflammatory properties and may play a role in regulating the immune system. It has also been suggested that osteocalcin may have a role in the development of certain types of cancer, although more research is needed to confirm this. Overall, osteocalcin is an important protein in bone health and metabolism, and its study is ongoing in the medical field.

The Platelet-Derived Growth Factor beta (PDGF beta) receptor is a protein that is found on the surface of cells in the body. It is a type of receptor that is activated by the binding of PDGF beta, a growth factor that is produced by cells in response to injury or other stimuli. Activation of the PDGF beta receptor can stimulate cell growth, division, and survival, and it plays a role in the development and repair of tissues in the body. The PDGF beta receptor is also involved in the development of certain types of cancer, and it is a target for some cancer treatments.

Adjuvants, immunologic are substances that are added to vaccines or other immunotherapeutic agents to enhance the body's immune response to the antigen being administered. They work by stimulating the immune system to produce a stronger and more durable immune response, which can help to improve the effectiveness of the vaccine or immunotherapeutic agent. There are several different types of adjuvants that are used in vaccines and other immunotherapeutic agents, including aluminum salts, oil-based emulsions, and certain types of bacteria or viruses. These adjuvants work by activating immune cells called dendritic cells, which then present the antigen to other immune cells and stimulate an immune response. Adjuvants are an important part of vaccine development and have been used for many years to improve the effectiveness of vaccines and reduce the amount of antigen that is needed to elicit a protective immune response. They are also being studied for their potential to be used in other types of immunotherapeutic agents, such as cancer vaccines.

Lymphokines are a type of cytokine, which are signaling molecules secreted by immune cells such as T cells and B cells. They play a crucial role in regulating the immune response and are involved in various immune-related processes, including inflammation, cell proliferation, and differentiation. Lymphokines are produced in response to infections, injuries, or other stimuli that activate the immune system. They can be classified into several categories based on their function, including interleukins, interferons, and tumor necrosis factors. Interleukins are a group of lymphokines that regulate the activity of immune cells, including T cells, B cells, and macrophages. They are involved in various immune responses, including inflammation, cell proliferation, and differentiation. Interferons are another group of lymphokines that are produced in response to viral infections. They have antiviral properties and can also stimulate the immune system to fight off infections. Tumor necrosis factors are a group of lymphokines that are involved in the immune response to infections and tumors. They can stimulate the production of other cytokines and chemokines, which help to recruit immune cells to the site of infection or tumor. Overall, lymphokines play a critical role in the immune response and are involved in many different aspects of immune function.

Chromosomes, Human, Pair 7 refers to the seventh pair of chromosomes in the human genome. Each chromosome is a long, coiled-up strand of DNA that contains genetic information. Humans have 23 pairs of chromosomes, and each pair consists of one chromosome from the mother and one chromosome from the father. Chromosome 7 is one of the largest human chromosomes, containing over 140 million base pairs of DNA. It is located on the long (q) arm of the chromosome and contains over 1,000 genes that are involved in a wide range of biological processes, including development, metabolism, and immune function. Mutations or abnormalities in chromosome 7 can lead to a variety of genetic disorders, such as cri du chat syndrome, which is characterized by intellectual disability, delayed development, and distinctive facial features. Other disorders associated with chromosome 7 include Charcot-Marie-Tooth disease, Fanconi anemia, and some forms of cancer.

CA-125 antigen is a protein that is produced by some types of ovarian cancer cells. It is also produced by other types of cancer cells, as well as by non-cancerous cells in the body. The CA-125 antigen is measured in the blood to help diagnose and monitor ovarian cancer. A high level of CA-125 in the blood may indicate the presence of ovarian cancer, but it can also be elevated in other conditions, such as endometriosis, pelvic inflammatory disease, and pregnancy. Therefore, the CA-125 test is not used alone to diagnose ovarian cancer, but rather as part of a larger diagnostic workup.

Antibodies, Helminth refers to a type of immune response that occurs when the body is exposed to helminth parasites, which are a group of large, multicellular worms that can cause various diseases in humans and animals. Helminths can infect different parts of the body, including the lungs, intestines, liver, and brain. When the body is exposed to helminth parasites, it produces antibodies to fight off the infection. These antibodies are specific to the antigens present on the surface of the helminth and can help to neutralize the parasite or mark it for destruction by other immune cells. The production of antibodies in response to helminth infections is an important part of the immune response and can help to protect the body from future infections. However, in some cases, the immune response to helminth infections can also cause damage to the body, leading to symptoms such as inflammation, tissue damage, and organ dysfunction.

RNA, or ribonucleic acid, is a type of nucleic acid that is involved in the process of protein synthesis in cells. It is composed of a chain of nucleotides, which are made up of a sugar molecule, a phosphate group, and a nitrogenous base. There are three types of RNA: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). In the medical field, RNA is often studied as a potential target for the development of new drugs and therapies. For example, some researchers are exploring the use of RNA interference (RNAi) to silence specific genes and treat diseases such as cancer and viral infections. Additionally, RNA is being studied as a potential biomarker for various diseases, as changes in the levels or structure of certain RNA molecules can indicate the presence of a particular condition.

Melanoma is a type of skin cancer that begins in the cells that produce the pigment melanin. It is the most dangerous type of skin cancer, as it has the potential to spread to other parts of the body and be difficult to treat. Melanoma can occur in any part of the body, but it most commonly appears on the skin as a new mole or a change in an existing mole. Other signs of melanoma may include a mole that is asymmetrical, has irregular borders, is a different color than the surrounding skin, is larger than a pencil eraser, or has a raised or scaly surface. Melanoma can also occur in the eye, mouth, and other parts of the body, and it is important to see a doctor if you have any concerning changes in your skin or other parts of your body.

In the medical field, "culture techniques" refer to the methods used to grow and isolate microorganisms, such as bacteria, viruses, and fungi, from clinical samples. These techniques are essential for diagnosing infectious diseases and determining the most effective treatment options. Culture techniques typically involve collecting a sample from a patient, such as blood, urine, or sputum, and then transferring it to a nutrient-rich medium where the microorganisms can grow. The medium is incubated in a controlled environment, and the growth of the microorganisms is monitored over time. There are several types of culture techniques, including: 1. Direct microscopy: This technique involves examining a sample under a microscope to identify microorganisms without the need for culturing. 2. Culture on solid media: This technique involves growing microorganisms on a solid surface, such as agar, where they can be observed and identified. 3. Culture in liquid media: This technique involves growing microorganisms in a liquid medium, where they can be observed and identified using various techniques, such as spectrophotometry or enzyme assays. 4. Molecular techniques: This technique involves using DNA or RNA analysis to identify microorganisms without the need for culturing. Overall, culture techniques are a critical part of medical diagnosis and treatment, allowing healthcare providers to identify and treat infectious diseases effectively.

Granulocyte Colony-Stimulating Factor (G-CSF) is a protein that stimulates the production and differentiation of granulocytes (a type of white blood cell) in the bone marrow. It is primarily used to treat neutropenia (a condition characterized by a low number of neutrophils in the blood), which can occur as a side effect of chemotherapy or radiation therapy for cancer, or as a result of certain infections or autoimmune disorders. G-CSF is typically administered as a daily injection for several days, and it works by binding to specific receptors on the surface of bone marrow cells, which triggers a signaling cascade that leads to the production and release of granulocytes into the bloodstream. This helps to increase the number of neutrophils in the blood and reduce the risk of infection. In addition to its use in treating neutropenia, G-CSF has also been studied for its potential use in other medical conditions, such as bone marrow transplantation, chronic granulomatous disease, and some types of anemia. However, more research is needed to determine its effectiveness and safety in these settings.

Mucinosis, follicular is a condition characterized by the accumulation of mucus-secreting cells in the follicles of the skin. It is a rare disorder that can affect various parts of the body, including the skin, respiratory tract, and gastrointestinal tract. In the skin, mucinosis, follicular typically presents as small, raised bumps or papules that are usually asymptomatic. These bumps may be flesh-colored, pink, or red and can occur on the face, neck, trunk, or extremities. In some cases, the bumps may become inflamed or infected, leading to pain, swelling, and pus formation. The exact cause of mucinosis, follicular is not well understood, but it is believed to be related to an abnormality in the production or accumulation of mucus-secreting cells. The condition is more common in women than in men and is often associated with other autoimmune disorders, such as lupus or rheumatoid arthritis. Treatment for mucinosis, follicular typically involves the use of topical or oral medications to reduce inflammation and promote the shedding of the affected skin cells. In severe cases, surgical removal of the affected tissue may be necessary.

Cell adhesion molecules (CAMs) are proteins that mediate the attachment of cells to each other or to the extracellular matrix. They play a crucial role in various physiological processes, including tissue development, wound healing, immune response, and cancer progression. There are several types of CAMs, including cadherins, integrins, selectins, and immunoglobulin superfamily members. Each type of CAM has a unique structure and function, and they can interact with other molecules to form complex networks that regulate cell behavior. In the medical field, CAMs are often studied as potential targets for therapeutic interventions. For example, drugs that block specific CAMs have been developed to treat cancer, autoimmune diseases, and cardiovascular disorders. Additionally, CAMs are used as diagnostic markers to identify and monitor various diseases, including cancer, inflammation, and neurodegenerative disorders.

In the medical field, a peptide fragment refers to a short chain of amino acids that are derived from a larger peptide or protein molecule. Peptide fragments can be generated through various techniques, such as enzymatic digestion or chemical cleavage, and are often used in diagnostic and therapeutic applications. Peptide fragments can be used as biomarkers for various diseases, as they may be present in the body at elevated levels in response to specific conditions. For example, certain peptide fragments have been identified as potential biomarkers for cancer, neurodegenerative diseases, and cardiovascular disease. In addition, peptide fragments can be used as therapeutic agents themselves. For example, some peptide fragments have been shown to have anti-inflammatory or anti-cancer properties, and are being investigated as potential treatments for various diseases. Overall, peptide fragments play an important role in the medical field, both as diagnostic tools and as potential therapeutic agents.

Drosophila proteins are proteins that are found in the fruit fly Drosophila melanogaster, which is a widely used model organism in genetics and molecular biology research. These proteins have been studied extensively because they share many similarities with human proteins, making them useful for understanding the function and regulation of human genes and proteins. In the medical field, Drosophila proteins are often used as a model for studying human diseases, particularly those that are caused by genetic mutations. By studying the effects of these mutations on Drosophila proteins, researchers can gain insights into the underlying mechanisms of these diseases and potentially identify new therapeutic targets. Drosophila proteins have also been used to study a wide range of biological processes, including development, aging, and neurobiology. For example, researchers have used Drosophila to study the role of specific genes and proteins in the development of the nervous system, as well as the mechanisms underlying age-related diseases such as Alzheimer's and Parkinson's.

Actins are a family of globular, cytoskeletal proteins that are essential for the maintenance of cell shape and motility. They are found in all eukaryotic cells and are involved in a wide range of cellular processes, including cell division, muscle contraction, and intracellular transport. Actins are composed of two globular domains, the N-terminal and C-terminal domains, which are connected by a flexible linker region. They are capable of polymerizing into long, filamentous structures called actin filaments, which are the main component of the cytoskeleton. Actin filaments are dynamic structures that can be rapidly assembled and disassembled in response to changes in the cellular environment. They are involved in a variety of cellular processes, including the formation of cellular structures such as the cell membrane, the cytoplasmic cortex, and the contractile ring during cell division. In addition to their role in maintaining cell shape and motility, actins are also involved in a number of other cellular processes, including the regulation of cell signaling, the organization of the cytoplasm, and the movement of organelles within the cell.

Receptors, Interleukin-3 (IL-3) are proteins found on the surface of certain cells in the immune system. They are responsible for binding to the cytokine Interleukin-3 (IL-3), which is a signaling molecule that plays a role in the growth and differentiation of immune cells, particularly white blood cells called granulocytes and monocytes. Activation of IL-3 receptors can lead to the proliferation and survival of these cells, as well as the production of other immune molecules. IL-3 receptors are also expressed on some non-immune cells, such as endothelial cells and fibroblasts, and may play a role in regulating their function. In the medical field, IL-3 and its receptors are studied in the context of various diseases, including cancer, anemia, and immune disorders.

Hypersensitivity, delayed, also known as type IV hypersensitivity or cell-mediated hypersensitivity, is a type of immune response that occurs after an initial exposure to a foreign substance, such as a protein or a drug. Unlike immediate hypersensitivity, which occurs within minutes or hours of exposure, delayed hypersensitivity takes several days to develop. In delayed hypersensitivity, immune cells called T cells recognize and remember the foreign substance. When the immune system encounters the same substance again, the T cells become activated and release chemicals that cause inflammation and damage to the tissue where the substance is located. This can lead to symptoms such as redness, swelling, and itching, and in severe cases, can cause tissue damage or even organ failure. Delayed hypersensitivity is often associated with allergic reactions to certain drugs, metals, or chemicals, as well as with certain infections, such as tuberculosis and leprosy. It is also a key component of the immune response to transplanted organs, as the immune system recognizes the foreign tissue and mounts an attack against it.

Cartilage is a type of connective tissue that is found in various parts of the body, including the joints, ears, nose, and larynx. It is a flexible and resilient tissue that provides support and cushioning to bones and other structures. In the medical field, cartilage is often used to refer specifically to the type of connective tissue that lines the surfaces of joints, such as the knee and hip. This type of cartilage, called articular cartilage, is smooth and slippery, allowing bones to glide over each other with minimal friction. It also helps to distribute the forces of movement across the joint, reducing the risk of injury. Cartilage can also become damaged or diseased, leading to conditions such as osteoarthritis, where the cartilage breaks down and the bones of the joint rub against each other, causing pain and inflammation. In such cases, medical treatments such as physical therapy, medications, or surgery may be used to manage the condition and alleviate symptoms.

T-Box Domain Proteins are a family of transcription factors that play important roles in the development and differentiation of various cell types in the body. They are characterized by the presence of a conserved T-box DNA binding domain, which allows them to interact with specific DNA sequences and regulate gene expression. T-Box Domain Proteins are involved in a wide range of biological processes, including cell proliferation, differentiation, migration, and apoptosis. They have been implicated in the development and progression of various diseases, including cancer, cardiovascular disease, and neurological disorders. In the medical field, T-Box Domain Proteins are the subject of ongoing research, with the goal of understanding their roles in disease pathogenesis and developing targeted therapies for the treatment of these conditions.

CD5 is a protein that is found on the surface of certain types of immune cells, including B cells and T cells. It is a member of the immunoglobulin superfamily of proteins and plays a role in the activation and differentiation of these cells. Antigens, CD5 are molecules that bind to the CD5 protein on the surface of immune cells. When an antigen binds to CD5, it can trigger a series of events that lead to the activation and differentiation of the immune cells. This can help the immune system to respond to infections and other threats to the body. CD5 antigens are often used as markers to identify specific types of immune cells and to study the function of these cells. They are also used in the development of diagnostic tests and as targets for the development of new therapies for a variety of diseases.

Chromosome banding is a technique used in cytogenetics to visualize the structure of chromosomes. It involves staining the chromosomes with special dyes that highlight specific regions of the chromosome, creating a pattern of dark and light bands. This technique allows scientists to identify and analyze specific genetic material on the chromosomes, which can be useful in diagnosing genetic disorders and studying the genetic basis of diseases. Chromosome banding is often used in conjunction with other techniques, such as fluorescent in situ hybridization (FISH), to provide more detailed information about the genetic material on the chromosomes.

Chromosomes, Human, Pair 11 refers to the 11th pair of chromosomes in the human genome. Each pair of chromosomes contains a specific set of genes that are responsible for various traits and characteristics of an individual. Chromosome 11 is one of the largest human chromosomes, containing over 150 million base pairs of DNA and more than 1,000 genes. It is located on the long (q) arm of the chromosome and is known to be involved in the development and function of various organs and tissues, including the immune system, brain, and reproductive system. Mutations or abnormalities in chromosome 11 can lead to a variety of genetic disorders, such as cri du chat syndrome, velocardiofacial syndrome, and Smith-Magenis syndrome.

Proto-oncogene proteins c-myc is a family of proteins that play a role in regulating cell growth and division. They are also known as myc proteins. The c-myc protein is encoded by the MYC gene, which is located on chromosome 8. The c-myc protein is a transcription factor, which means that it helps to regulate the expression of other genes. When the c-myc protein is overexpressed or mutated, it can contribute to the development of cancer. In normal cells, the c-myc protein helps to control the cell cycle and prevent uncontrolled cell growth. However, in cancer cells, the c-myc protein may be overactive or mutated, leading to uncontrolled cell growth and the formation of tumors.

Chromosome mapping is a technique used in genetics to identify the location of genes on chromosomes. It involves analyzing the physical and genetic characteristics of chromosomes to determine their structure and organization. This information can be used to identify genetic disorders, understand the inheritance patterns of traits, and develop new treatments for genetic diseases. Chromosome mapping can be done using various techniques, including karyotyping, fluorescence in situ hybridization (FISH), and array comparative genomic hybridization (array CGH).

CD38 is a protein that is expressed on the surface of certain immune cells, including T cells, B cells, and natural killer cells. It is also found on some non-immune cells, such as endothelial cells and platelets. CD38 plays a role in the regulation of immune cell activation and function. It is involved in the metabolism of certain signaling molecules, such as cyclic adenosine monophosphate (cAMP) and nicotinamide adenine dinucleotide (NAD+), which can affect the activity of immune cells. Antigens, CD38 are molecules that bind to the CD38 protein on the surface of immune cells. These antigens can trigger an immune response, leading to the activation and proliferation of immune cells. CD38 antigens are often used as targets in the development of immunotherapies for various diseases, including cancer and autoimmune disorders.

CD44 is a cell surface glycoprotein that is expressed on many different types of cells, including immune cells, epithelial cells, and cancer cells. It is a member of the immunoglobulin superfamily of cell adhesion molecules and plays a role in cell-cell interactions, cell migration, and signaling. In the context of the immune system, CD44 is a receptor for hyaluronic acid, a large glycosaminoglycan that is found in the extracellular matrix. CD44 is expressed on the surface of many immune cells, including T cells, B cells, and macrophages, and is involved in the adhesion and migration of these cells to sites of inflammation or infection. CD44 is also expressed on many types of cancer cells, where it can play a role in tumor growth, invasion, and metastasis. In some cases, CD44 can be used as a marker to identify and target cancer cells for therapy.

PPAR gamma, also known as peroxisome proliferator-activated receptor gamma, is a type of nuclear receptor that plays a critical role in regulating glucose and lipid metabolism in the body. It is a transcription factor that is activated by certain hormones and lipids, and it regulates the expression of genes involved in fatty acid synthesis, glucose uptake, and insulin sensitivity. In the medical field, PPAR gamma is an important target for the treatment of a variety of metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Drugs that activate PPAR gamma, known as PPAR gamma agonists, have been developed and are used to improve insulin sensitivity and reduce blood sugar levels in people with type 2 diabetes. They can also help to reduce body weight and improve lipid profiles, which can help to reduce the risk of heart disease. PPAR gamma is also being studied as a potential target for the treatment of other conditions, such as non-alcoholic fatty liver disease, inflammatory bowel disease, and certain types of cancer.

CCAAT-Enhancer-Binding Protein-alpha (C/EBPα) is a transcription factor that plays a crucial role in regulating gene expression in various biological processes, including cell differentiation, proliferation, and metabolism. It is a member of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors, which are characterized by their ability to bind to specific DNA sequences called CCAAT boxes. In the medical field, C/EBPα is involved in the regulation of various cellular processes, including adipogenesis (the formation of fat cells), liver metabolism, and immune response. It has been implicated in the development of various diseases, including diabetes, obesity, and cancer. C/EBPα is activated by various signaling pathways, including the insulin signaling pathway, and it can regulate the expression of genes involved in glucose metabolism, lipid metabolism, and inflammation. It can also interact with other transcription factors and co-regulators to modulate gene expression. Overall, C/EBPα is a key regulator of cellular metabolism and differentiation, and its dysregulation has been linked to various diseases.

Oligodeoxyribonucleotides (ODNs) are short chains of DNA or RNA that are synthesized in the laboratory. They are typically used as tools in molecular biology research, as well as in therapeutic applications such as gene therapy. ODNs can be designed to bind to specific DNA or RNA sequences, and can be used to modulate gene expression or to introduce genetic changes into cells. They can also be used as primers in PCR (polymerase chain reaction) to amplify specific DNA sequences. In the medical field, ODNs are being studied for their potential use in treating a variety of diseases, including cancer, viral infections, and genetic disorders. For example, ODNs can be used to silence specific genes that are involved in disease progression, or to stimulate the immune system to attack cancer cells.

Disease progression refers to the worsening or progression of a disease over time. It is a natural course of events that occurs in many chronic illnesses, such as cancer, heart disease, and diabetes. Disease progression can be measured in various ways, such as changes in symptoms, physical examination findings, laboratory test results, or imaging studies. In some cases, disease progression can be slowed or stopped through medical treatment, such as medications, surgery, or radiation therapy. However, in other cases, disease progression may be inevitable, and the focus of treatment may shift from trying to cure the disease to managing symptoms and improving quality of life. Understanding disease progression is important for healthcare providers to develop effective treatment plans and to communicate with patients about their condition and prognosis. It can also help patients and their families make informed decisions about their care and treatment options.

CD58, also known as LFA-3 (lymphocyte function-associated antigen 3), is a cell surface protein that plays a role in the immune system. It is expressed on activated T cells, B cells, and natural killer (NK) cells, as well as on some types of dendritic cells and macrophages. CD58 functions as a ligand for the integrin CD2, which is expressed on the surface of activated T cells, B cells, and NK cells. The interaction between CD58 and CD2 is important for the activation and proliferation of these immune cells, as well as for the formation of immune synapses between T cells and antigen-presenting cells. In the medical field, CD58 is often studied in the context of autoimmune diseases, infectious diseases, and cancer. For example, CD58 has been shown to play a role in the pathogenesis of multiple sclerosis, and it is also involved in the regulation of immune responses to viral infections. In cancer, CD58 has been implicated in the immune evasion of tumors, as it can help tumor cells to avoid detection and destruction by the immune system.

CD7 is a protein that is found on the surface of certain types of immune cells, including T cells and natural killer cells. It is a member of the immunoglobulin superfamily of proteins and plays a role in the development and function of these immune cells. Antigens, CD7 are molecules that bind to the CD7 protein on the surface of immune cells. These antigens can be found on the surface of viruses, bacteria, and other pathogens, as well as on cancer cells and other abnormal cells in the body. When an immune cell recognizes an antigen, it can become activated and begin to attack the cell that is displaying the antigen. In the medical field, CD7 antigens are often used as targets for immunotherapy, which is a type of treatment that uses the body's own immune system to fight cancer and other diseases. By targeting CD7 antigens, immunotherapy drugs can help to activate and enhance the immune response against cancer cells or other abnormal cells in the body.

Dactinomycin is a chemotherapy drug that is used to treat various types of cancer, including Wilms' tumor, Ewing's sarcoma, and Hodgkin's lymphoma. It works by interfering with the production of DNA and RNA, which are essential for the growth and division of cancer cells. Dactinomycin is usually given intravenously or intramuscularly, and it can also be administered as a cream or ointment to treat skin cancer. Common side effects of dactinomycin include nausea, vomiting, hair loss, and damage to the lining of the mouth and throat.

Protein Tyrosine Phosphatases (PTPs) are a family of enzymes that play a crucial role in regulating cellular signaling pathways by removing phosphate groups from tyrosine residues on proteins. These enzymes are involved in a wide range of cellular processes, including cell growth, differentiation, migration, and apoptosis. PTPs are classified into two main groups: receptor-type PTPs (RPTPs) and non-receptor-type PTPs (NPTPs). RPTPs are transmembrane proteins that are anchored to the cell surface and are involved in cell-cell communication and signaling. NPTPs are cytoplasmic proteins that are involved in intracellular signaling pathways. PTPs are important regulators of many signaling pathways, including the insulin, growth factor, and cytokine signaling pathways. Dysregulation of PTP activity has been implicated in a variety of diseases, including cancer, diabetes, and cardiovascular disease. In the medical field, PTPs are being studied as potential therapeutic targets for the treatment of various diseases. For example, inhibitors of PTPs have been shown to have anti-cancer activity by blocking the growth and survival of cancer cells. Additionally, PTPs are being studied as potential targets for the treatment of autoimmune diseases, such as rheumatoid arthritis and lupus.

CD1d is a type of antigen-presenting molecule found on the surface of certain cells in the immune system. It plays a role in the activation of a specific type of immune cell called natural killer T (NKT) cells. NKT cells are a unique subset of T cells that recognize and respond to certain types of antigens, including those presented by CD1d molecules. CD1d antigens are found on a variety of cells, including antigen-presenting cells such as dendritic cells and macrophages, as well as on some cancer cells and infected cells. When NKT cells recognize an antigen presented by CD1d, they become activated and release cytokines, which can help to stimulate an immune response against the antigen. CD1d antigens are also being studied as potential targets for the development of new immunotherapies for cancer and other diseases.

Receptors, Complement 3b (CR3b) are a type of immune cell receptor found on the surface of certain white blood cells, such as neutrophils and macrophages. These receptors bind to complement protein C3b, which is a component of the complement system, a part of the immune system that helps to identify and destroy pathogens. CR3b receptors play an important role in the immune response by recognizing and binding to C3b-coated pathogens, such as bacteria and viruses. This binding triggers a series of events that lead to the destruction of the pathogen, including the release of chemicals that attract other immune cells to the site of infection and the formation of a membrane attack complex that can directly damage the pathogen. CR3b receptors are also involved in the process of phagocytosis, in which immune cells engulf and destroy pathogens. By binding to C3b-coated pathogens, CR3b receptors help to facilitate the engulfment of the pathogen by the immune cell. In addition to their role in the immune response, CR3b receptors have been implicated in a number of other physiological processes, including the regulation of blood clotting and the clearance of apoptotic cells (cells that are undergoing programmed cell death).

CD20 is a protein found on the surface of certain types of white blood cells, including B cells. Antigens, CD20 refers to molecules that bind specifically to the CD20 protein on the surface of these cells. These antigens can be used as targets for immunotherapy, which is a type of cancer treatment that uses the body's immune system to fight cancer cells. One example of a drug that targets CD20 is rituximab (Rituxan), which is used to treat certain types of non-Hodgkin's lymphoma and chronic lymphocytic leukemia.

Mastocytosis is a rare disorder characterized by the proliferation and accumulation of mast cells in various tissues throughout the body. Mast cells are immune cells that play a role in the body's response to injury and infection. In mastocytosis, the excessive number of mast cells can lead to a variety of symptoms and complications, depending on the affected organs and tissues. There are several types of mastocytosis, including: 1. Cutaneous mastocytosis: This form of mastocytosis affects the skin and can cause itchy rashes, hives, and other skin symptoms. 2. Systemic mastocytosis: This form of mastocytosis affects multiple organs and tissues throughout the body and can cause a wide range of symptoms, including fatigue, bone pain, abdominal pain, and anemia. 3. Mast cell leukemia: This is a rare and aggressive form of mastocytosis that affects the bone marrow and can lead to the production of abnormal white blood cells. Mastocytosis can be diagnosed through a combination of physical examination, blood tests, skin biopsies, and imaging studies. Treatment for mastocytosis depends on the type and severity of the disorder, and may include medications to manage symptoms, targeted therapies to reduce the number of mast cells, and in some cases, stem cell transplantation.

Adenocarcinoma is a type of cancer that starts in the glandular cells of an organ or tissue. It is one of the most common types of cancer and can occur in many different parts of the body, including the lungs, breast, colon, rectum, pancreas, stomach, and thyroid gland. Adenocarcinomas typically grow slowly and may not cause symptoms in the early stages. However, as the cancer grows, it can invade nearby tissues and spread to other parts of the body through the bloodstream or lymphatic system. This can lead to more serious symptoms and a higher risk of complications. Treatment for adenocarcinoma depends on the location and stage of the cancer, as well as the overall health of the patient. Options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. The goal of treatment is to remove or destroy the cancer cells and prevent them from spreading further.

Smad proteins are a family of intracellular signaling molecules that play a crucial role in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis. They are primarily involved in the transmission of signals from the cell surface to the nucleus, where they modulate the activity of specific genes. Smad proteins are activated by the binding of ligands, such as transforming growth factor-beta (TGF-β), to specific cell surface receptors. This binding triggers a cascade of intracellular signaling events that ultimately lead to the phosphorylation and activation of Smad proteins. Activated Smad proteins then form complexes with other proteins, such as Smad4, and translocate to the nucleus, where they interact with specific DNA sequences to regulate gene expression. Abnormal regulation of Smad proteins has been implicated in a variety of diseases, including cancer, fibrosis, and autoimmune disorders. For example, mutations in Smad4 have been associated with an increased risk of colon cancer, while dysregulated TGF-β signaling has been implicated in the development of fibrosis in various organs. Therefore, understanding the role of Smad proteins in cellular signaling and disease pathogenesis is an important area of ongoing research in the medical field.

Binding sites, antibody, refer to the specific regions on the surface of an antibody molecule that are responsible for recognizing and binding to a particular antigen or foreign substance. These binding sites are highly specific and complementary in shape and charge to the antigen they recognize, allowing for a strong and stable interaction between the antibody and antigen. The binding of an antibody to its specific antigen is a key step in the immune response, as it allows the immune system to identify and neutralize foreign invaders such as viruses and bacteria.

In the medical field, "Culture Media, Serum-Free" refers to a type of growth medium used to culture and grow microorganisms, such as bacteria or fungi, in the laboratory. Unlike traditional culture media that contain serum or other animal products, serum-free culture media are designed to support the growth of microorganisms without the use of serum or other animal products. This type of media is often used in research settings to study the growth and behavior of microorganisms in a controlled environment, and to develop new treatments or vaccines.

Nestin is a type of intermediate filament protein that is expressed in various types of stem cells, including neural stem cells, muscle stem cells, and hematopoietic stem cells. It is a marker of neural progenitor cells and is often used to identify and isolate these cells for research and therapeutic purposes. In the medical field, Nestin is also used as a diagnostic tool to identify certain types of tumors, such as gliomas and neuroblastomas, which often express high levels of Nestin. Additionally, Nestin has been shown to play a role in the development and maintenance of neural stem cells, making it a potential target for therapies aimed at promoting neural regeneration and repair.

Acetamides are a class of organic compounds that contain a carbonyl group (C=O) bonded to an amide group (-CONH2). They are commonly used as drugs and as intermediates in the synthesis of other drugs. In the medical field, acetamides are used as analgesics, antipyretics, and anti-inflammatory agents. One example of an acetamide drug is acetaminophen (also known as paracetamol), which is used to relieve pain and reduce fever. Other examples of acetamide drugs include amantadine, which is used to treat Parkinson's disease and influenza, and acetazolamide, which is used to treat glaucoma and altitude sickness. Acetamides can also be used as intermediates in the synthesis of other drugs. For example, they can be converted into amides, which are important components of many drugs, including antibiotics, antidepressants, and anticonvulsants.

Retinoblastoma protein (pRb) is a tumor suppressor protein that plays a critical role in regulating cell cycle progression and preventing the development of cancer. It is encoded by the RB1 gene, which is located on chromosome 13. In normal cells, pRb functions as a regulator of the cell cycle by binding to and inhibiting the activity of the E2F family of transcription factors. When cells are damaged or under stress, pRb is phosphorylated, which leads to its release from E2F and allows the cell to proceed through the cell cycle and divide. However, in cells with a mutated RB1 gene, pRb is unable to function properly, leading to uncontrolled cell division and the formation of tumors. Retinoblastoma is a type of eye cancer that occurs almost exclusively in children and is caused by mutations in the RB1 gene. Other types of cancer, such as osteosarcoma and small cell lung cancer, can also be associated with mutations in the RB1 gene.

In the medical field, alleles refer to the different forms of a gene that exist at a particular genetic locus (location) on a chromosome. Each gene has two alleles, one inherited from each parent. These alleles can be either dominant or recessive, and their combination determines the expression of the trait associated with that gene. For example, the gene for blood type has three alleles: A, B, and O. A person can inherit one or two copies of each allele, resulting in different blood types (A, B, AB, or O). The dominant allele is the one that is expressed when present in one copy, while the recessive allele is only expressed when present in two copies. Understanding the different alleles of a gene is important in medical genetics because it can help diagnose genetic disorders, predict disease risk, and guide treatment decisions. For example, mutations in certain alleles can cause genetic diseases such as sickle cell anemia or cystic fibrosis. By identifying the specific alleles involved in a genetic disorder, doctors can develop targeted therapies or genetic counseling to help affected individuals and their families.

Noonan syndrome is a genetic disorder that affects many parts of the body, including the face, heart, and skeletal system. It is caused by mutations in the PTPN11 gene, which is responsible for producing a protein that helps regulate cell growth and development. People with Noonan syndrome may have distinctive facial features, such as a prominent forehead, upturned nose, and short stature. They may also have heart defects, such as a hole in the heart or an abnormality in the valves, and skeletal abnormalities, such as scoliosis or a curved spine. Other symptoms may include learning difficulties, developmental delays, and an increased risk of certain types of cancer. Noonan syndrome is usually diagnosed through a combination of physical examination, medical history, and genetic testing. There is no cure for Noonan syndrome, but treatment is available to manage the symptoms and improve quality of life.

Kruppel-like transcription factors (KLFs) are a family of transcription factors that play important roles in various biological processes, including development, differentiation, and homeostasis. They are characterized by a conserved DNA-binding domain called the Kruppel-associated box (KRAB) domain, which is involved in repression of gene expression. KLFs are expressed in a wide range of tissues and cell types, and they regulate the expression of numerous target genes by binding to specific DNA sequences. Some KLFs have been implicated in the regulation of cell proliferation, differentiation, and apoptosis, while others have been linked to the development of various diseases, including cancer, cardiovascular disease, and diabetes. Overall, KLFs are an important class of transcription factors that play critical roles in many biological processes, and their dysregulation has been linked to a variety of diseases.

Forkhead transcription factors (Fox proteins) are a family of transcription factors that play important roles in regulating gene expression in various biological processes, including development, metabolism, and cell proliferation. They are characterized by a conserved DNA-binding domain called the forkhead domain, which is responsible for recognizing and binding to specific DNA sequences. Fox proteins are involved in a wide range of diseases, including cancer, diabetes, and neurodegenerative disorders. For example, mutations in FoxA2, a member of the Fox family, have been linked to the development of type 2 diabetes. In cancer, Fox proteins can act as oncogenes or tumor suppressors, depending on the specific gene and the context in which it is expressed. In the medical field, understanding the role of Fox proteins in disease can provide insights into the underlying mechanisms of disease and may lead to the development of new therapeutic strategies. For example, targeting specific Fox proteins with small molecules or other drugs may be a promising approach for treating cancer or other diseases.

HLA-C antigens are a group of proteins that are expressed on the surface of cells in the human body. These proteins are part of the human leukocyte antigen (HLA) system, which plays a critical role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. HLA-C antigens are encoded by a group of genes located on chromosome 6. There are several different HLA-C alleles, which are variations of the HLA-C protein that are determined by differences in the DNA sequence of the HLA-C gene. These alleles can be classified into different supertypes based on their structural and functional similarities. HLA-C antigens are expressed on the surface of cells in the body, where they can be recognized by immune cells such as T cells and natural killer (NK) cells. These immune cells use the HLA-C antigens to distinguish between "self" cells (which are normal, healthy cells of the body) and "non-self" cells (which are foreign substances or infected cells). In the context of transplantation, HLA-C antigens are an important factor to consider because they can affect the success of a transplant. If the donor and recipient have different HLA-C antigens, the immune system of the recipient may recognize the donor cells as foreign and attack them, leading to rejection of the transplant. Therefore, it is important to match the HLA-C antigens of the donor and recipient as closely as possible in order to increase the chances of a successful transplant.

Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative is a type of chronic myeloid leukemia (CML) that is characterized by the presence of abnormal white blood cells in the bone marrow and blood. Unlike classic CML, which is caused by a specific genetic abnormality called the Philadelphia chromosome, atypical CML is not associated with this abnormality. Instead, it is characterized by the presence of a different genetic abnormality called the JAK2 V617F mutation. Atypical CML is a rare and aggressive form of leukemia that typically affects older adults and has a poor prognosis. Treatment options for atypical CML include chemotherapy, targeted therapy, and stem cell transplantation.

Adult stem cells are a type of stem cell that are found in various tissues and organs of the adult body. These cells have the ability to self-renew and differentiate into specialized cell types, such as muscle cells, nerve cells, or blood cells, depending on the signals they receive from their environment. There are several types of adult stem cells, including hematopoietic stem cells, mesenchymal stem cells, and neural stem cells. Hematopoietic stem cells are responsible for producing all types of blood cells, while mesenchymal stem cells can differentiate into a variety of cell types, including bone, cartilage, and fat cells. Neural stem cells can differentiate into neurons and glial cells, which support and protect neurons in the brain and spinal cord. Adult stem cells have potential therapeutic applications in regenerative medicine, as they can be used to repair or replace damaged or diseased tissues and organs. For example, mesenchymal stem cells have been used in clinical trials to treat a variety of conditions, including heart disease, diabetes, and spinal cord injuries. However, more research is needed to fully understand the potential of adult stem cells and to develop safe and effective treatments using these cells.

Collagen is a protein that is found in the extracellular matrix of connective tissues throughout the body. It is the most abundant protein in the human body and is responsible for providing strength and support to tissues such as skin, bones, tendons, ligaments, and cartilage. In the medical field, collagen is often used in various medical treatments and therapies. For example, it is used in dermal fillers to plump up wrinkles and improve skin texture, and it is also used in wound healing to promote tissue regeneration and reduce scarring. Collagen-based products are also used in orthopedic and dental applications, such as in the production of artificial joints and dental implants. In addition, collagen is an important biomarker for various medical conditions, including osteoporosis, rheumatoid arthritis, and liver disease. It is also used in research to study the mechanisms of tissue repair and regeneration, as well as to develop new treatments for various diseases and conditions.

In the medical field, isoenzymes refer to different forms of enzymes that have the same chemical structure and catalytic activity, but differ in their amino acid sequence. These differences can arise due to genetic variations or post-translational modifications, such as phosphorylation or glycosylation. Isoenzymes are often used in medical diagnosis and treatment because they can provide information about the function and health of specific organs or tissues. For example, the presence of certain isoenzymes in the blood can indicate liver or kidney disease, while changes in the levels of specific isoenzymes in the brain can be indicative of neurological disorders. In addition, isoenzymes can be used as biomarkers for certain diseases or conditions, and can be targeted for therapeutic intervention. For example, drugs that inhibit specific isoenzymes can be used to treat certain types of cancer or heart disease.

Growth Differentiation Factors (GDFs) are a family of proteins that play a crucial role in the regulation of cell growth, differentiation, and migration during embryonic development and tissue repair in the adult body. GDFs are members of the transforming growth factor-beta (TGF-beta) superfamily and are secreted by various cell types, including mesenchymal cells, epithelial cells, and neural cells. GDFs act by binding to specific cell surface receptors, which then activate intracellular signaling pathways that regulate gene expression and cellular behavior. These signaling pathways can promote cell proliferation, differentiation, migration, and apoptosis, depending on the specific GDF and the context in which it is expressed. In the medical field, GDFs have been studied for their potential therapeutic applications in various diseases and conditions, including bone and cartilage repair, wound healing, and cancer. For example, GDF-5 has been shown to promote the differentiation of mesenchymal stem cells into chondrocytes, which are the cells that form cartilage, and has been used in clinical trials for the treatment of osteoarthritis. GDF-15 has been shown to have anti-cancer properties and has been studied as a potential therapeutic target in various types of cancer.

Protein-Serine-Threonine Kinases (PSTKs) are a family of enzymes that play a crucial role in regulating various cellular processes, including cell growth, differentiation, metabolism, and apoptosis. These enzymes phosphorylate specific amino acids, such as serine and threonine, on target proteins, thereby altering their activity, stability, or localization within the cell. PSTKs are involved in a wide range of diseases, including cancer, diabetes, cardiovascular disease, and neurodegenerative disorders. Therefore, understanding the function and regulation of PSTKs is important for developing new therapeutic strategies for these diseases.

Zebrafish proteins refer to proteins that are expressed in the zebrafish, a small freshwater fish that is commonly used as a model organism in biomedical research. These proteins can be studied to gain insights into the function and regulation of proteins in humans and other organisms. Zebrafish are particularly useful as a model organism because they have a similar genetic makeup to humans and other vertebrates, and they develop externally, making it easy to observe and manipulate their development. Additionally, zebrafish embryos are transparent, allowing researchers to visualize the development of their organs and tissues in real-time. Zebrafish proteins have been studied in a variety of contexts, including the development of diseases such as cancer, cardiovascular disease, and neurodegenerative disorders. By studying zebrafish proteins, researchers can identify potential therapeutic targets and develop new treatments for these diseases.

Agglutination tests are a type of diagnostic test used in the medical field to detect the presence of specific antigens or antibodies in a patient's blood or other bodily fluids. These tests work by causing the clumping or agglutination of red blood cells or other cells in the presence of specific antibodies or antigens. There are several types of agglutination tests, including direct agglutination tests, indirect agglutination tests, and counterimmunoelectrophoresis (CIE) tests. Direct agglutination tests involve mixing a patient's blood or other bodily fluids with a known antigen or antibody, and observing whether the cells clump together. Indirect agglutination tests involve using an intermediate substance, such as an antiserum, to bind the antigen or antibody to the cells, and then observing whether the cells clump together. CIE tests involve separating antibodies and antigens by charge and then observing whether they react with each other. Agglutination tests are commonly used to diagnose a variety of medical conditions, including infectious diseases, autoimmune disorders, and blood disorders. They are often used in conjunction with other diagnostic tests, such as serological tests and immunofluorescence assays, to provide a more complete picture of a patient's health.

HLA-B27 antigen is a protein found on the surface of cells in the human body. It is a type of molecule called a major histocompatibility complex (MHC) molecule, which plays a crucial role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. The HLA-B27 antigen is primarily associated with an increased risk of developing ankylosing spondylitis, a type of inflammatory arthritis that primarily affects the spine. It is also associated with other autoimmune diseases, such as psoriasis and reactive arthritis, as well as an increased risk of developing certain types of cancer, such as non-Hodgkin's lymphoma. In addition to its role in autoimmune diseases, the HLA-B27 antigen is also important in the immune system's ability to recognize and respond to infections. It plays a role in presenting antigens, or foreign substances, to immune cells, which then mount an immune response to eliminate the infection. Overall, the HLA-B27 antigen is an important molecule in the immune system that plays a role in both autoimmune diseases and infections.

In the medical field, "Culture Media, Conditioned" refers to a type of growth medium that has been prepared by adding nutrients and other components to a basic medium, such as agar, to support the growth of specific microorganisms. The term "conditioned" indicates that the medium has been treated or modified in some way to enhance the growth of the target microorganisms. Conditioned culture media are often used in diagnostic microbiology to isolate and identify specific microorganisms from clinical samples, such as blood, urine, or sputum. The medium may be further conditioned by adding specific supplements or antibiotics to inhibit the growth of unwanted microorganisms and promote the growth of the target organism. Overall, conditioned culture media are an important tool in the diagnosis and treatment of infectious diseases, as they allow healthcare professionals to accurately identify the causative agent and select the most effective antimicrobial therapy.

Chromosome disorders are genetic conditions that occur when there is a change in the number or structure of chromosomes. Chromosomes are the structures that carry genetic information in the form of DNA. Each human cell contains 23 pairs of chromosomes, for a total of 46 chromosomes. Chromosome disorders can be caused by a variety of factors, including errors that occur during cell division, exposure to certain chemicals or radiation, or inherited from a parent. Some chromosome disorders are caused by a deletion or duplication of a portion of a chromosome, while others are caused by an inversion or translocation of two chromosomes. Chromosome disorders can have a wide range of effects on an individual, depending on the specific disorder and the severity of the changes in the chromosomes. Some chromosome disorders can cause physical abnormalities, such as intellectual disability, developmental delays, and birth defects. Others can cause more subtle effects, such as an increased risk of certain medical conditions or an increased risk of certain types of cancer. There are many different types of chromosome disorders, including Down syndrome, Turner syndrome, Klinefelter syndrome, and Cri-du-chat syndrome. These disorders are typically diagnosed through genetic testing, such as karyotyping, which involves analyzing the chromosomes in a person's cells to look for abnormalities. Treatment for chromosome disorders may involve medical management, therapy, and support services to help individuals with the condition live as healthy and fulfilling lives as possible.

The ABO blood group system is a classification system used to identify different types of human blood. It is based on the presence or absence of certain antigens (proteins) on the surface of red blood cells. There are four main blood groups in the ABO system: A, B, AB, and O. Each blood group is determined by the presence or absence of two specific antigens, A and B. People with blood group A have the A antigen on their red blood cells, while people with blood group B have the B antigen. People with blood group AB have both the A and B antigens, and people with blood group O have neither of these antigens. The ABO blood group system is important in blood transfusions, as people with certain blood types can only receive blood from people with compatible blood types.

Fibroblast Growth Factors (FGFs) are a family of proteins that play important roles in cell growth, differentiation, and tissue repair. They are produced by a variety of cells, including fibroblasts, endothelial cells, and neurons, and act on a wide range of cell types, including epithelial cells, muscle cells, and bone cells. FGFs are involved in many physiological processes, including embryonic development, wound healing, and tissue regeneration. They also play a role in the development of certain diseases, such as cancer and fibrosis. There are 23 known members of the FGF family, and they act by binding to specific receptors on the surface of cells, which then activate intracellular signaling pathways that regulate cell growth and other cellular processes. FGFs are often used as therapeutic agents in clinical trials for the treatment of various diseases, including cancer, heart disease, and neurological disorders.

DNA, or deoxyribonucleic acid, is a molecule that carries genetic information in living organisms. It is composed of four types of nitrogen-containing molecules called nucleotides, which are arranged in a specific sequence to form the genetic code. Neoplasm refers to an abnormal growth of cells in the body, which can be either benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can be caused by a variety of factors, including genetic mutations, exposure to carcinogens, and hormonal imbalances. In the medical field, DNA and neoplasms are closely related because many types of cancer are caused by mutations in the DNA of cells. These mutations can lead to uncontrolled cell growth and the formation of tumors. DNA analysis is often used to diagnose and treat cancer, as well as to identify individuals who are at increased risk of developing the disease.

Receptors, Antigen, T-Cell, gamma-delta are a type of T-cell receptor (TCR) found on the surface of certain T cells. These receptors are composed of two chains, gamma and delta, that are encoded by the TCR gamma and TCR delta genes, respectively. T cells are a type of white blood cell that play a critical role in the immune system by recognizing and responding to foreign substances, such as viruses and bacteria. The gamma-delta T cells are a subset of T cells that have a unique set of TCRs and are thought to play a role in the immune response to certain infections and tumors. The gamma-delta T cells recognize antigens, which are molecules that are foreign to the body and can trigger an immune response. When a gamma-delta T cell encounters an antigen, it binds to it through its TCR and becomes activated, leading to the production of immune cells and molecules that help to fight off the infection or tumor. Overall, the gamma-delta T cells and their receptors play an important role in the immune system and are the subject of ongoing research in the field of immunology.

GATA3 transcription factor is a protein that plays a crucial role in regulating gene expression in various cell types, including immune cells, epithelial cells, and smooth muscle cells. It belongs to the GATA family of transcription factors, which are characterized by their ability to bind to DNA sequences containing the consensus sequence of GATA. In the medical field, GATA3 is known to be involved in the development and function of T helper 2 (Th2) cells, a type of immune cell that plays a critical role in the immune response against parasitic infections and allergies. GATA3 is also involved in the development and function of other immune cells, such as eosinophils and mast cells. In addition to its role in the immune system, GATA3 is also involved in the development and function of various epithelial tissues, including the skin, lung, and breast. Mutations in the GATA3 gene have been associated with several human diseases, including T-cell acute lymphoblastic leukemia, hypoparathyroidism, and autoimmune disorders such as alopecia areata and vitiligo.

Histones are proteins that play a crucial role in the structure and function of DNA in cells. They are small, positively charged proteins that help to package and organize DNA into a compact structure called chromatin. Histones are found in the nucleus of eukaryotic cells and are essential for the proper functioning of genes. There are five main types of histones: H1, H2A, H2B, H3, and H4. Each type of histone has a specific role in the packaging and organization of DNA. For example, H3 and H4 are the most abundant histones and are responsible for the formation of nucleosomes, which are the basic unit of chromatin. H1 is a linker histone that helps to compact chromatin into a more condensed structure. In the medical field, histones have been studied in relation to various diseases, including cancer, autoimmune disorders, and neurodegenerative diseases. For example, changes in the levels or modifications of histones have been linked to the development of certain types of cancer, such as breast cancer and prostate cancer. Additionally, histones have been shown to play a role in the regulation of gene expression, which is important for the proper functioning of cells.

Blast crisis is a phase of acute myeloid leukemia (AML) that occurs when the cancer cells in the bone marrow produce a large number of immature white blood cells called blasts. These blasts are not fully developed and are unable to function properly, leading to a decrease in the production of normal blood cells. In blast crisis, the number of blasts in the bone marrow can exceed 20% of all cells, and the patient may experience symptoms such as fever, fatigue, weakness, and easy bruising. The blast crisis can also lead to anemia, which is a deficiency in red blood cells, and thrombocytopenia, which is a deficiency in platelets. Blast crisis is a serious complication of AML and requires prompt medical attention. Treatment options may include chemotherapy, radiation therapy, stem cell transplantation, or targeted therapies. The goal of treatment is to reduce the number of blasts in the bone marrow and restore the production of normal blood cells.

Cytarabine, also known as cytosine arabinoside, is an antineoplastic medication used to treat various types of cancer, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and non-Hodgkin's lymphoma. It works by inhibiting the growth and division of cancer cells, thereby slowing or stopping their growth and spread. Cytarabine is typically administered intravenously or intramuscularly, and its dosage and duration of treatment depend on the type and stage of cancer being treated, as well as the patient's overall health. Common side effects of cytarabine include nausea, vomiting, fatigue, fever, and low blood cell counts, which can increase the risk of infection and bleeding. It is important to note that cytarabine is a chemotherapy drug and can cause serious side effects, so it is typically administered under the supervision of a healthcare professional in a hospital or clinic setting.

Polysaccharides, bacterial are complex carbohydrates that are produced by bacteria. They are composed of long chains of sugar molecules and can be found in the cell walls of many bacterial species. Some common examples of bacterial polysaccharides include peptidoglycan, lipopolysaccharide, and teichoic acid. These molecules play important roles in the structure and function of bacterial cells, and they can also have medical significance. For example, lipopolysaccharide is a component of the outer membrane of certain gram-negative bacteria and can trigger an immune response in the body. In some cases, bacterial polysaccharides can also be used as vaccines to protect against bacterial infections.

Receptors, IgG are a type of immune system receptor that recognizes and binds to the Fc region of immunoglobulin G (IgG) antibodies. These receptors are found on the surface of various immune cells, including macrophages, neutrophils, and dendritic cells. When an IgG antibody binds to its specific antigen, it can activate these immune cells through the interaction with their IgG receptors. This activation can lead to the destruction of the antigen-antibody complex, as well as the recruitment of additional immune cells to the site of infection or inflammation. Receptors, IgG play an important role in the immune response to infections and other diseases, and their dysfunction can contribute to various immune disorders.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the body's immune system. It is the most abundant antibody in the mucous membranes, which line the surfaces of the respiratory, gastrointestinal, and genitourinary tracts. IgA is produced by plasma cells in the bone marrow and is secreted into the bloodstream and mucous membranes. It is particularly important in protecting against infections in the respiratory and gastrointestinal tracts, where it helps to neutralize and eliminate pathogens such as bacteria, viruses, and fungi. IgA can also be found in tears, saliva, and breast milk, where it provides protection against infections in the eyes, mouth, and digestive tract. In addition, IgA plays a role in the immune response to certain types of cancer and autoimmune diseases. Overall, IgA is a critical component of the body's immune system and plays a vital role in protecting against infections and diseases.

Colonic neoplasms refer to abnormal growths or tumors that develop in the colon, which is the final part of the large intestine. These growths can be either benign (non-cancerous) or malignant (cancerous). Benign colonic neoplasms include polyps, which are small, non-cancerous growths that can develop on the inner lining of the colon. Polyps can be further classified as adenomas, which are made up of glandular tissue, or hyperplastic polyps, which are non-glandular. Malignant colonic neoplasms, on the other hand, are cancerous tumors that can invade nearby tissues and spread to other parts of the body. The most common type of colon cancer is adenocarcinoma, which starts in the glandular tissue of the colon. Colonic neoplasms can be detected through various diagnostic tests, including colonoscopy, sigmoidoscopy, and fecal occult blood testing. Treatment options for colonic neoplasms depend on the type, size, and location of the growth, as well as the overall health of the patient. Early detection and treatment of colonic neoplasms can significantly improve the chances of a successful outcome.

Paired box transcription factors (PAX genes) are a family of transcription factors that play important roles in the development and differentiation of various tissues and organs in the body. These proteins are characterized by a highly conserved DNA-binding domain called the paired box, which allows them to recognize and bind to specific DNA sequences. PAX genes are involved in a wide range of biological processes, including cell proliferation, differentiation, migration, and apoptosis. They are expressed in many different tissues and organs throughout the body, including the brain, heart, lungs, kidneys, and reproductive organs. Mutations in PAX genes can lead to a variety of developmental disorders and diseases, including eye disorders, brain malformations, and certain types of cancer. Understanding the role of PAX genes in development and disease is an active area of research in the medical field.

Cell cycle proteins are a group of proteins that play a crucial role in regulating the progression of the cell cycle. The cell cycle is a series of events that a cell goes through in order to divide and produce two daughter cells. It consists of four main phases: G1 (Gap 1), S (Synthesis), G2 (Gap 2), and M (Mitosis). Cell cycle proteins are involved in regulating the progression of each phase of the cell cycle, ensuring that the cell divides correctly and that the daughter cells have the correct number of chromosomes. Some of the key cell cycle proteins include cyclins, cyclin-dependent kinases (CDKs), and checkpoint proteins. Cyclins are proteins that are synthesized and degraded in a cyclic manner throughout the cell cycle. They bind to CDKs, which are enzymes that regulate cell cycle progression by phosphorylating target proteins. The activity of CDKs is tightly regulated by cyclins, ensuring that the cell cycle progresses in a controlled manner. Checkpoint proteins are proteins that monitor the cell cycle and ensure that the cell does not proceed to the next phase until all the necessary conditions are met. If any errors are detected, checkpoint proteins can halt the cell cycle and activate repair mechanisms to correct the problem. Overall, cell cycle proteins play a critical role in maintaining the integrity of the cell cycle and ensuring that cells divide correctly. Disruptions in the regulation of cell cycle proteins can lead to a variety of diseases, including cancer.

In the medical field, neoplasms refer to abnormal growths or tumors of cells that can occur in any part of the body. These growths can be either benign (non-cancerous) or malignant (cancerous). Benign neoplasms are usually slow-growing and do not spread to other parts of the body. They can cause symptoms such as pain, swelling, or difficulty moving the affected area. Examples of benign neoplasms include lipomas (fatty tumors), hemangiomas (vascular tumors), and fibromas (fibrous tumors). Malignant neoplasms, on the other hand, are cancerous and can spread to other parts of the body through the bloodstream or lymphatic system. They can cause a wide range of symptoms, depending on the location and stage of the cancer. Examples of malignant neoplasms include carcinomas (cancers that start in epithelial cells), sarcomas (cancers that start in connective tissue), and leukemias (cancers that start in blood cells). The diagnosis of neoplasms typically involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy (the removal of a small sample of tissue for examination under a microscope). Treatment options for neoplasms depend on the type, stage, and location of the cancer, as well as the patient's overall health and preferences.

Chromatin Immunoprecipitation (ChIP) is a laboratory technique used to study the interactions between DNA and proteins, particularly transcription factors, in the context of the chromatin structure. In the medical field, ChIP is commonly used to investigate the role of specific proteins in gene regulation and to identify the binding sites of transcription factors on DNA. This information can be used to better understand the molecular mechanisms underlying various diseases, including cancer, and to identify potential therapeutic targets.

Oligonucleotides, antisense are short, synthetic DNA or RNA molecules that are designed to bind to specific messenger RNA (mRNA) molecules and prevent them from being translated into proteins. This process is called antisense inhibition and can be used to regulate gene expression in cells. Antisense oligonucleotides are typically designed to target specific sequences within a gene's mRNA, and they work by binding to complementary sequences on the mRNA molecule, causing it to be degraded or prevented from being translated into protein. This can be used to either silence or activate specific genes, depending on the desired effect. Antisense oligonucleotides have been used in a variety of medical applications, including the treatment of genetic disorders, cancer, and viral infections. They are also being studied as potential therapeutic agents for a wide range of other diseases and conditions.

Fibroblast Growth Factor 2 (FGF2) is a protein that plays a crucial role in the growth and development of various tissues in the human body. It is a member of the fibroblast growth factor family of proteins, which are involved in a wide range of biological processes, including cell proliferation, differentiation, migration, and survival. In the medical field, FGF2 is often studied in relation to various diseases and conditions, including cancer, cardiovascular disease, and neurological disorders. For example, FGF2 has been shown to promote the growth and survival of cancer cells, making it a potential target for cancer therapy. It has also been implicated in the development of cardiovascular disease, as it can stimulate the growth of blood vessels and contribute to the formation of atherosclerotic plaques. In addition, FGF2 plays a role in the development and maintenance of the nervous system, and has been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. It is also involved in the regulation of bone growth and remodeling, and has been studied in the context of osteoporosis and other bone diseases. Overall, FGF2 is a complex and multifaceted protein that plays a critical role in many different biological processes, and its function and regulation are the subject of ongoing research in the medical field.

Myeloid Differentiation Factor 88 (MyD88) is a protein that plays a crucial role in the innate immune system. It is a signaling molecule that is activated by various types of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that are recognized by pattern recognition receptors (PRRs) on immune cells. When activated, MyD88 triggers a signaling cascade that leads to the production of pro-inflammatory cytokines and chemokines, which help to recruit immune cells to the site of infection or injury. MyD88 is also involved in the activation of TLR4, which is a PRR that recognizes lipopolysaccharide (LPS) on the surface of Gram-negative bacteria. In addition to its role in the innate immune system, MyD88 has also been implicated in the development of various inflammatory and autoimmune diseases, such as rheumatoid arthritis, lupus, and inflammatory bowel disease.

Cancer vaccines are a type of vaccine designed to stimulate the immune system to recognize and attack cancer cells. They work by introducing cancer-specific antigens, which are proteins or other molecules found on the surface of cancer cells, into the body. The immune system recognizes these antigens as foreign and mounts an immune response against them, which can help to slow the growth of cancer cells or even eliminate them entirely. There are several different types of cancer vaccines, including prophylactic vaccines, which are designed to prevent cancer from developing in the first place, and therapeutic vaccines, which are designed to treat existing cancer. Prophylactic vaccines are typically given to people who are at high risk of developing certain types of cancer, such as those with a family history of the disease or those who have certain genetic mutations. Therapeutic vaccines are given to people who have already been diagnosed with cancer, with the goal of boosting their immune system and helping it to attack cancer cells more effectively. Cancer vaccines are still an active area of research, and while some have shown promise in clinical trials, they are not yet widely available for use in the general population. However, they hold great potential for improving cancer treatment and prevention, and ongoing research is expected to lead to the development of more effective cancer vaccines in the future.

Activins are a family of signaling proteins that play important roles in various biological processes, including embryonic development, cell differentiation, and tissue repair. They are composed of two chains, alpha and beta, that are encoded by different genes and can form either homodimers or heterodimers. Activins are secreted by cells and bind to specific receptors on the surface of target cells, triggering a signaling cascade that regulates gene expression and cellular activity. In the medical field, activins have been studied for their potential therapeutic applications in a variety of diseases, including infertility, cancer, and autoimmune disorders.

Interleukin-1 (IL-1) is a type of cytokine, which is a signaling molecule that plays a crucial role in the immune system. IL-1 is produced by various types of immune cells, including macrophages, monocytes, and dendritic cells, in response to infection, injury, or inflammation. IL-1 has multiple functions in the immune system, including promoting the activation and proliferation of immune cells, enhancing the production of other cytokines, and regulating the inflammatory response. It can also stimulate the production of fever, which helps to fight off infections. In the medical field, IL-1 is often studied in the context of various diseases, including autoimmune disorders, inflammatory bowel disease, and rheumatoid arthritis. It is also being investigated as a potential target for the development of new treatments for these conditions.

Butyrates are a group of fatty acids that are derived from butyric acid. They are commonly used in the medical field as a source of energy for the body, particularly for patients who are unable to digest other types of fats. Butyrates are also used in the treatment of certain medical conditions, such as inflammatory bowel disease and liver disease. They have been shown to have anti-inflammatory and immunomodulatory effects, and may help to improve gut health and reduce symptoms of these conditions.

Trisomy is a genetic condition in which an individual has three copies of a particular chromosome instead of the usual two copies. This extra chromosome can result in a variety of health problems and developmental issues, depending on which chromosome is affected and how many extra copies are present. Trisomy is typically caused by errors in cell division during the formation of an embryo or fetus. There are several types of trisomy, including: 1. Trisomy 21: This is the most common type of trisomy, and it is also known as Down syndrome. It occurs when an individual has an extra copy of chromosome 21. 2. Trisomy 18: This type of trisomy occurs when an individual has an extra copy of chromosome 18. 3. Trisomy 13: This type of trisomy occurs when an individual has an extra copy of chromosome 13. Trisomy can cause a range of health problems, including intellectual disability, developmental delays, heart defects, and other physical abnormalities. Treatment for trisomy depends on the specific type and severity of the condition, and may include medical interventions, therapy, and support services.

HLA-A1 antigen is a protein found on the surface of cells in the human body. It is part of the human leukocyte antigen (HLA) system, which plays a crucial role in the immune system's ability to recognize and respond to foreign substances, such as viruses and bacteria. The HLA-A1 antigen is encoded by the HLA-A1 gene, which is located on chromosome 6. There are many different variations of the HLA-A1 antigen, each with slightly different amino acid sequences. These variations are known as alleles, and they can affect an individual's susceptibility to certain diseases and their response to certain medications. In the medical field, the HLA-A1 antigen is often tested as part of organ transplantation. Because the immune system can recognize and attack foreign tissue, it is important to match the HLA antigens of the donor and recipient as closely as possible to reduce the risk of rejection. The HLA-A1 antigen is just one of many antigens that are tested in this context.

CD11c is a type of antigen that is expressed on the surface of immune cells called dendritic cells. Dendritic cells are a type of white blood cell that play a crucial role in the immune system by capturing and presenting antigens to T cells, which are another type of immune cell. CD11c is a member of the integrin family of proteins, which are involved in cell adhesion and migration. In the medical field, CD11c is often used as a marker to identify and study dendritic cells, as well as to monitor the activity of the immune system in various diseases and conditions.

In the medical field, the brain is the most complex and vital organ in the human body. It is responsible for controlling and coordinating all bodily functions, including movement, sensation, thought, emotion, and memory. The brain is located in the skull and is protected by the skull bones and cerebrospinal fluid. The brain is composed of billions of nerve cells, or neurons, which communicate with each other through electrical and chemical signals. These neurons are organized into different regions of the brain, each with its own specific functions. The brain is also divided into two hemispheres, the left and right, which are connected by a bundle of nerve fibers called the corpus callosum. Damage to the brain can result in a wide range of neurological disorders, including stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and epilepsy. Treatment for brain disorders often involves medications, surgery, and rehabilitation therapies to help restore function and improve quality of life.

CD24 is a type of antigen, which is a molecule that is present on the surface of cells and can be recognized by the immune system. CD24 is a transmembrane glycoprotein that is expressed on a variety of cells, including epithelial cells, endothelial cells, and immune cells. It is also known as sialomucin or cluster of differentiation 24. CD24 plays a role in cell adhesion and signaling, and it has been implicated in a number of different biological processes, including cell proliferation, differentiation, and migration. It is also involved in the regulation of immune responses, and it has been shown to play a role in the development and function of various immune cells, including T cells, B cells, and dendritic cells. In the medical field, CD24 is often studied in the context of cancer. It has been found to be overexpressed in a number of different types of cancer, including breast cancer, ovarian cancer, and lung cancer. This overexpression has been associated with poor prognosis and increased risk of recurrence. As a result, CD24 has been proposed as a potential target for cancer therapy, and there are ongoing efforts to develop drugs that can specifically target CD24 on cancer cells.

HLA-B7 is a human leukocyte antigen (HLA) molecule that plays a crucial role in the immune system. It is a type of protein found on the surface of most cells in the body, and it helps the immune system recognize and respond to foreign substances, such as viruses and bacteria. HLA-B7 is a member of the HLA-B group of antigens, which are a subset of the HLA class I antigens. HLA-B7 is encoded by the HLA-B*07 gene, which is located on chromosome 6. There are several different variants of the HLA-B7 antigen, each with slightly different amino acid sequences and properties. The HLA-B7 antigen is expressed on the surface of cells that are infected with viruses or bacteria, and it is recognized by T cells, a type of white blood cell that plays a key role in the immune response. When a T cell recognizes an HLA-B7 molecule on the surface of an infected cell, it becomes activated and releases chemicals that can kill the infected cell or help other immune cells respond to the infection. In addition to its role in the immune response, HLA-B7 has also been implicated in the development of certain autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis. In these conditions, the immune system mistakenly attacks healthy cells that express the HLA-B7 antigen, leading to inflammation and tissue damage.

Growth Differentiation Factor 9 (GDF9) is a protein that plays a role in the development and maintenance of the female reproductive system. It is produced by the ovaries and is involved in the regulation of follicle development and ovulation. GDF9 is also important for the maintenance of the uterine lining and the development of the placenta during pregnancy. In addition, GDF9 has been shown to have potential therapeutic applications in the treatment of infertility and other reproductive disorders.

HLA-DR4 Antigen is a type of protein found on the surface of cells in the human immune system. It is a member of the major histocompatibility complex (MHC) class II family of proteins, which play a crucial role in the immune response by presenting foreign antigens to immune cells. The HLA-DR4 antigen is encoded by the HLA-DRB1 gene, which is located on chromosome 6. There are several different alleles of the HLA-DRB1 gene, each of which can produce a slightly different version of the HLA-DR4 antigen. The HLA-DR4 antigen is expressed on the surface of antigen-presenting cells, such as dendritic cells, macrophages, and B cells. When these cells encounter a foreign antigen, they process it and present it to T cells, which then initiate an immune response. The HLA-DR4 antigen is also associated with certain autoimmune diseases, such as rheumatoid arthritis, psoriasis, and celiac disease. In these conditions, the immune system mistakenly attacks the body's own tissues, and the HLA-DR4 antigen may play a role in triggering or exacerbating the immune response.

In the medical field, "Vaccines, Synthetic" refers to vaccines that are made using synthetic or man-made methods, rather than being derived from natural sources such as live or attenuated viruses or bacteria. These vaccines are typically made using recombinant DNA technology, which involves inserting a small piece of genetic material from the pathogen into a harmless host cell, such as a yeast or bacteria, that is then grown in large quantities. The resulting protein is then purified and used to make the vaccine. Synthetic vaccines have several advantages over traditional vaccines, including the ability to produce vaccines quickly and efficiently, the ability to produce vaccines for diseases that are difficult to grow in the laboratory, and the ability to produce vaccines that are safe and effective for people with weakened immune systems or other health conditions. Some examples of synthetic vaccines include the hepatitis B vaccine, the human papillomavirus (HPV) vaccine, and the influenza vaccine.

Laminin is a type of protein that is found in the basement membrane, which is a thin layer of extracellular matrix that separates tissues and organs in the body. It is a major component of the extracellular matrix and plays a crucial role in maintaining the structural integrity of tissues and organs. Laminin is a large, complex protein that is composed of several subunits. It is synthesized by cells in the basement membrane and is secreted into the extracellular space, where it forms a network that provides support and stability to cells. In the medical field, laminin is of great interest because it is involved in a number of important biological processes, including cell adhesion, migration, and differentiation. It is also involved in the development and maintenance of many different types of tissues, including the nervous system, skeletal muscle, and the cardiovascular system. Laminin has been the subject of extensive research in the medical field, and its role in various diseases and conditions is being increasingly understood. For example, laminin has been implicated in the development of certain types of cancer, as well as in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. As a result, laminin is a potential target for the development of new therapies for these and other diseases.

Anemia, sideroblastic is a type of anemia characterized by the presence of abnormal red blood cells (erythrocytes) that contain excessive amounts of iron (siderosis) in the form of hemosiderin. This type of anemia is caused by defects in the enzymes involved in the metabolism of iron in the bone marrow, which leads to the accumulation of iron in the mitochondria of red blood cells. Sideroblastic anemia can be inherited or acquired, and it can be classified into several subtypes based on the specific enzyme defect involved. Some common symptoms of sideroblastic anemia include fatigue, weakness, shortness of breath, pale skin, and an enlarged spleen. Treatment for sideroblastic anemia typically involves addressing the underlying cause of the condition, such as treating an underlying infection or removing a source of excess iron. In some cases, iron chelation therapy may be used to remove excess iron from the body.

Cell fusion is a process in which two or more cells combine to form a single cell. This process can occur naturally in the body, such as during fertilization, or it can be induced artificially for research or therapeutic purposes. In the medical field, cell fusion is often used to create hybrid cells that have the properties of both parent cells. For example, researchers may fuse a cancer cell with a normal cell to create a hybrid cell that has the ability to detect and destroy cancer cells. This technique is known as somatic cell nuclear transfer (SCNT) and has been used to create cloned animals. Cell fusion can also be used to create stem cells, which are cells that have the ability to differentiate into any type of cell in the body. Researchers may fuse two different types of stem cells to create a hybrid stem cell that has the ability to differentiate into a wider range of cell types. Overall, cell fusion is a powerful tool in the medical field that has the potential to revolutionize the way we treat diseases and injuries.

Mitogen-Activated Protein Kinases (MAPKs) are a family of enzymes that play a crucial role in cellular signaling pathways. They are involved in regulating various cellular processes such as cell growth, differentiation, proliferation, survival, and apoptosis. MAPKs are activated by extracellular signals such as growth factors, cytokines, and hormones, which bind to specific receptors on the cell surface. This activation leads to a cascade of phosphorylation events, where MAPKs phosphorylate and activate downstream effector molecules, such as transcription factors, that regulate gene expression. In the medical field, MAPKs are of great interest due to their involvement in various diseases, including cancer, inflammatory disorders, and neurological disorders. For example, mutations in MAPK signaling pathways are commonly found in many types of cancer, and targeting these pathways has become an important strategy for cancer therapy. Additionally, MAPKs are involved in the regulation of immune responses, and dysregulation of these pathways has been implicated in various inflammatory disorders. Finally, MAPKs play a role in the development and maintenance of the nervous system, and dysfunction of these pathways has been linked to neurological disorders such as Alzheimer's disease and Parkinson's disease.

In the medical field, a chimera refers to a person or animal that has two or more genetically distinct cell lines within their body. This can occur naturally or as a result of medical treatment, such as bone marrow transplantation. For example, a person who has received a bone marrow transplant from a donor with a different blood type may have chimerism, meaning that some of their blood cells are from the donor and some are from their own body. Similarly, a person who has undergone in vitro fertilization and has two or more embryos implanted may have chimerism if the embryos have different genetic profiles. Chimerism can also occur in animals, such as when a twin embryo develops from two separate fertilized eggs and the resulting animal has cells from both embryos. In some cases, chimerism can cause health problems, such as immune system disorders or cancer, but it can also be a natural and harmless condition.

HLA-DR3 Antigen is a type of protein found on the surface of cells in the human immune system. It is a member of the major histocompatibility complex (MHC) class II family of antigens, which play a crucial role in the immune response by presenting foreign substances (antigens) to immune cells. HLA-DR3 Antigen is encoded by the HLA-DRB1 gene and is expressed primarily on the surface of antigen-presenting cells (APCs), such as dendritic cells, macrophages, and B cells. It is one of the most common HLA-DR antigens in the human population, with an estimated frequency of 10-20%. The HLA-DR3 Antigen plays a role in the immune response by presenting antigens to T cells, which are a type of immune cell that can recognize and respond to foreign substances. T cells that recognize antigens presented by HLA-DR3 Antigen are called CD4+ T cells, and they play a key role in the adaptive immune response by activating other immune cells and producing cytokines, which are signaling molecules that help coordinate the immune response. HLA-DR3 Antigen is also associated with certain autoimmune diseases, such as rheumatoid arthritis and type 1 diabetes, as well as with some infectious diseases, such as Epstein-Barr virus and human immunodeficiency virus (HIV).

Cytotoxicity tests, immunologic, are a type of laboratory test used to evaluate the ability of immune cells, such as T cells or natural killer (NK) cells, to kill cancer cells or other abnormal cells. These tests are often used to assess the effectiveness of cancer treatments, such as chemotherapy or immunotherapy, or to monitor the progression of a disease. There are several different types of cytotoxicity tests, including the 51Cr release assay, the lactate dehydrogenase (LDH) release assay, and the Annexin V/propidium iodide (PI) assay. In these tests, immune cells are incubated with cancer cells or other target cells, and the amount of cytotoxic activity is measured by assessing the release of a radioactive substance (in the 51Cr release assay), the release of lactate dehydrogenase (in the LDH release assay), or the binding of Annexin V and PI to the surface of the target cells (in the Annexin V/PI assay). Cytotoxicity tests, immunologic, are an important tool in the diagnosis and treatment of cancer and other diseases, as they can provide valuable information about the effectiveness of immune cells in killing cancer cells or other abnormal cells.

Nerve growth factors (NGFs) are a group of proteins that play a crucial role in the development, maintenance, and repair of the nervous system. They are primarily produced by neurons and Schwann cells, which are glial cells that wrap around and support neurons. NGFs are involved in a variety of processes related to the nervous system, including the growth and survival of neurons, the regulation of synaptic plasticity, and the modulation of pain perception. They also play a role in the development of the peripheral nervous system, including the formation of sensory and motor neurons. In the medical field, NGFs have been studied for their potential therapeutic applications in a variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, and traumatic brain injury. They have also been investigated as a potential treatment for peripheral neuropathy, a condition characterized by damage to the nerves that carry sensory and motor signals to and from the body's extremities.

In the medical field, "src-family kinases" (SFKs) refer to a group of non-receptor tyrosine kinases that are involved in a variety of cellular processes, including cell growth, differentiation, migration, and survival. SFKs are activated by a variety of stimuli, including growth factors, cytokines, and hormones, and they play a critical role in regulating cell signaling pathways. SFKs are a subfamily of the larger tyrosine kinase family, which includes over 90 different kinases that are involved in a wide range of cellular processes. SFKs are characterized by their unique domain structure, which includes an N-terminal myristoylation site, a src homology 2 (SH2) domain, and a src homology 3 (SH3) domain. SFKs are involved in a variety of diseases, including cancer, cardiovascular disease, and inflammatory disorders. In cancer, SFKs are often overexpressed or activated, leading to uncontrolled cell growth and proliferation. In cardiovascular disease, SFKs are involved in the regulation of blood vessel function and the development of atherosclerosis. In inflammatory disorders, SFKs play a role in the activation of immune cells and the production of inflammatory mediators. Overall, SFKs are an important group of kinases that play a critical role in regulating cellular signaling pathways and are involved in a variety of diseases.

Bone marrow diseases refer to a group of disorders that affect the bone marrow, which is the spongy tissue inside bones that produces blood cells. The bone marrow produces red blood cells, white blood cells, and platelets, which are essential for the proper functioning of the immune system, oxygen transport, and blood clotting, respectively. There are several types of bone marrow diseases, including: 1. Leukemia: A type of cancer that affects the bone marrow and blood cells. It is characterized by the uncontrolled growth and division of abnormal white blood cells. 2. Lymphoma: A type of cancer that affects the lymphatic system, which is part of the immune system. It can also affect the bone marrow and produce abnormal white blood cells. 3. Myelodysplastic syndromes (MDS): A group of disorders that affect the bone marrow's ability to produce healthy blood cells. MDS can progress to leukemia. 4. Multiple myeloma: A type of cancer that affects plasma cells, which are a type of white blood cell that produces antibodies. It is characterized by the overproduction of abnormal plasma cells in the bone marrow. 5. Polycythemia vera: A type of blood disorder that causes the bone marrow to produce too many red blood cells. 6. Thalassemia: A group of genetic disorders that affect the production of hemoglobin, a protein found in red blood cells that carries oxygen throughout the body. Treatment for bone marrow diseases depends on the specific type and severity of the disorder. It may include chemotherapy, radiation therapy, stem cell transplantation, or supportive care to manage symptoms and complications.

Antibody-producing cells, also known as B cells, are a type of white blood cell that plays a crucial role in the immune system. These cells are responsible for producing antibodies, which are proteins that help the body fight off infections and diseases. B cells are produced in the bone marrow and mature in the spleen. When a B cell encounters a foreign substance, such as a virus or bacteria, it becomes activated and begins to divide rapidly. As the B cells divide, they differentiate into plasma cells, which are specialized cells that produce large amounts of antibodies. The antibodies produced by B cells are specific to the foreign substance that triggered their activation. They bind to the substance and mark it for destruction by other immune cells, such as macrophages and neutrophils. This process helps to neutralize the foreign substance and prevent it from causing harm to the body. In summary, antibody-producing cells, or B cells, are an essential component of the immune system that play a critical role in protecting the body against infections and diseases.

Cell transformation by viruses refers to the process by which viruses alter the normal functioning of host cells, leading to uncontrolled cell growth and division. This can result in the development of cancerous tumors. Viruses can cause cell transformation by introducing genetic material into the host cell, which can disrupt normal cellular processes and lead to the activation of oncogenes (genes that promote cell growth) or the inactivation of tumor suppressor genes (genes that prevent uncontrolled cell growth). There are several types of viruses that can cause cell transformation, including retroviruses (such as HIV), oncoviruses (such as hepatitis B and C viruses), and papillomaviruses (such as the human papillomavirus, which can cause cervical cancer). Cell transformation by viruses is an important area of research in the field of cancer biology, as it helps to identify the molecular mechanisms underlying cancer development and can lead to the development of new treatments for cancer.

Autoimmune diseases are a group of disorders in which the immune system mistakenly attacks healthy cells and tissues in the body. In a healthy immune system, the body recognizes and attacks foreign substances, such as viruses and bacteria, to protect itself. However, in autoimmune diseases, the immune system becomes overactive and begins to attack the body's own cells and tissues. There are over 80 different types of autoimmune diseases, and they can affect various parts of the body, including the joints, skin, muscles, blood vessels, and organs such as the thyroid gland, pancreas, and liver. Some common examples of autoimmune diseases include rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, and inflammatory bowel disease. The exact cause of autoimmune diseases is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Treatment for autoimmune diseases typically involves managing symptoms and reducing inflammation, and may include medications, lifestyle changes, and in some cases, surgery.

Receptors, Cytoplasmic and Nuclear are proteins that are found within the cytoplasm and nucleus of cells. These receptors are responsible for binding to specific molecules, such as hormones or neurotransmitters, and triggering a response within the cell. This response can include changes in gene expression, enzyme activity, or other cellular processes. In the medical field, understanding the function and regulation of these receptors is important for understanding how cells respond to various stimuli and for developing treatments for a wide range of diseases.

Tumor suppressor proteins are a group of proteins that play a crucial role in regulating cell growth and preventing the development of cancer. These proteins act as brakes on the cell cycle, preventing cells from dividing and multiplying uncontrollably. They also help to repair damaged DNA and prevent the formation of tumors. Tumor suppressor proteins are encoded by genes that are located on specific chromosomes. When these genes are functioning properly, they produce proteins that help to regulate cell growth and prevent the development of cancer. However, when these genes are mutated or damaged, the proteins they produce may not function properly, leading to uncontrolled cell growth and the development of cancer. There are many different tumor suppressor proteins, each with its own specific function. Some of the most well-known tumor suppressor proteins include p53, BRCA1, and BRCA2. These proteins are involved in regulating cell cycle checkpoints, repairing damaged DNA, and preventing the formation of tumors. In summary, tumor suppressor proteins are a group of proteins that play a critical role in regulating cell growth and preventing the development of cancer. When these proteins are functioning properly, they help to maintain the normal balance of cell growth and division, but when they are mutated or damaged, they can contribute to the development of cancer.

Adipose tissue, also known as body fat or adipose tissue, is a specialized type of connective tissue that is found throughout the body. It is composed of adipocytes, which are cells that store energy in the form of fat. Adipose tissue plays a number of important roles in the body, including insulation, energy storage, and hormone regulation. It is also an important component of the immune system and helps to regulate blood pressure and blood sugar levels. In addition to its physiological functions, adipose tissue also plays a role in the development of certain diseases, such as obesity and type 2 diabetes.

Chromatin is a complex of DNA, RNA, and proteins that makes up the chromosomes in the nucleus of a cell. It plays a crucial role in regulating gene expression and maintaining the structure of the genome. In the medical field, chromatin is studied in relation to various diseases, including cancer, genetic disorders, and neurological conditions. For example, chromatin remodeling is a process that can alter the structure of chromatin and affect gene expression, and it has been implicated in the development of certain types of cancer. Additionally, chromatin-based therapies are being explored as potential treatments for diseases such as Alzheimer's and Parkinson's.

HLA-A24 is a human leukocyte antigen (HLA) that is expressed on the surface of cells in the immune system. It is a type of protein that plays a critical role in the immune response by helping the body to recognize and respond to foreign substances, such as viruses and bacteria. HLA-A24 is a member of the HLA-A serotype, which is one of the three major serotypes of HLA antigens. HLA antigens are encoded by a group of genes located on chromosome 6 and are highly polymorphic, meaning that there are many different variations of these antigens. This polymorphism allows the immune system to recognize a wide variety of different foreign substances. HLA-A24 has been associated with a number of different diseases and conditions, including certain types of cancer, autoimmune disorders, and infectious diseases. For example, HLA-A24 has been found to be overrepresented in patients with certain types of cancer, such as melanoma and lung cancer. It has also been associated with an increased risk of developing certain autoimmune disorders, such as rheumatoid arthritis and multiple sclerosis. In the medical field, HLA-A24 is often used as a marker to identify individuals who may be at increased risk for certain diseases or conditions. It is also used in the development of vaccines and other therapeutic strategies for these diseases.

Cytogenetics is the study of the structure and function of chromosomes, the genetic material that carries the instructions for the development, function, and reproduction of living organisms. In the medical field, cytogenetics is used to diagnose and treat genetic disorders, such as cancer, by analyzing changes in the chromosomes of cells. This can involve looking for specific abnormalities, such as deletions, duplications, or rearrangements of chromosomes, or for changes in the number of chromosomes in a cell. Cytogenetic techniques can also be used to identify genetic markers that are associated with certain diseases or conditions, and to study the inheritance of genetic traits.

Cadherins are a family of transmembrane proteins that play a crucial role in cell-cell adhesion in the human body. They are responsible for the formation and maintenance of tissues and organs by linking neighboring cells together. There are over 20 different types of cadherins, each with its own unique function and distribution in the body. Cadherins are involved in a wide range of biological processes, including embryonic development, tissue repair, and cancer progression. In the medical field, cadherins are often studied as potential targets for therapeutic interventions. For example, some researchers are exploring the use of cadherin inhibitors to treat cancer by disrupting the adhesion between cancer cells and normal cells, which can help prevent the spread of the disease. Additionally, cadherins are being studied as potential biomarkers for various diseases, including cancer, cardiovascular disease, and neurological disorders.

In the medical field, "bone and bones" typically refers to the skeletal system, which is made up of bones, cartilage, ligaments, tendons, and other connective tissues. The skeletal system provides support and structure to the body, protects vital organs, and allows for movement through the use of muscles. Bones are the main component of the skeletal system and are responsible for providing support and protection to the body. There are 206 bones in the human body, which are classified into four types: long bones, short bones, flat bones, and irregular bones. Long bones, such as the femur and humerus, are cylindrical in shape and are found in the arms and legs. Short bones, such as the carpals and tarsals, are cube-shaped and are found in the wrists and ankles. Flat bones, such as the skull and ribs, are thin and flat and provide protection to vital organs. Irregular bones, such as the vertebrae and pelvis, have complex shapes that allow for specific functions. Overall, the bone and bones of the skeletal system play a crucial role in maintaining the health and function of the human body.

Cell transdifferentiation is a biological process in which a mature cell type transforms into a different mature cell type. This process involves a change in the cell's gene expression pattern, leading to the acquisition of new characteristics and functions of the differentiated cell type. In the medical field, cell transdifferentiation has potential applications in tissue regeneration, disease treatment, and drug discovery. For example, researchers are exploring the possibility of using cell transdifferentiation to generate new functional cells to replace damaged or diseased cells in the body. Additionally, cell transdifferentiation can be used to study the underlying mechanisms of cell differentiation and development, which can lead to the development of new therapeutic strategies for various diseases.

Adaptor proteins, signal transducing are a class of proteins that play a crucial role in transmitting signals from the cell surface to the interior of the cell. These proteins are involved in various cellular processes such as cell growth, differentiation, and apoptosis. Adaptor proteins function as molecular bridges that connect signaling receptors on the cell surface to downstream signaling molecules inside the cell. They are characterized by their ability to bind to both the receptor and the signaling molecule, allowing them to transmit the signal from the receptor to the signaling molecule. There are several types of adaptor proteins, including SH2 domain-containing adaptor proteins, phosphotyrosine-binding (PTB) domain-containing adaptor proteins, and WW domain-containing adaptor proteins. These proteins are involved in a wide range of signaling pathways, including the insulin, growth factor, and cytokine signaling pathways. Disruptions in the function of adaptor proteins can lead to various diseases, including cancer, diabetes, and immune disorders. Therefore, understanding the role of adaptor proteins in signal transduction is important for the development of new therapeutic strategies for these diseases.

Eye proteins are proteins that are found in the eye and play important roles in maintaining the structure and function of the eye. These proteins can be found in various parts of the eye, including the cornea, lens, retina, and vitreous humor. Some examples of eye proteins include: 1. Collagen: This is a protein that provides strength and support to the cornea and lens. 2. Alpha-crystallin: This protein is found in the lens and helps to maintain its shape and transparency. 3. Rhodopsin: This protein is found in the retina and is responsible for vision in low light conditions. 4. Vitreous humor proteins: These proteins are found in the vitreous humor, a clear gel-like substance that fills the space between the lens and the retina. They help to maintain the shape of the eye and provide support to the retina. Disruptions in the production or function of these proteins can lead to various eye diseases and conditions, such as cataracts, glaucoma, and age-related macular degeneration. Therefore, understanding the structure and function of eye proteins is important for the development of effective treatments for these conditions.

Abelson murine leukemia virus (A-MuLV) is a type of retrovirus that infects mice and causes a form of leukemia. It was the first retrovirus to be discovered and was named after Dr. David Baltimore, who first identified it in 1970. A-MuLV is a type of helper virus, which means that it relies on another virus, called a packaging virus, to produce infectious particles. It is also a type of oncovirus, which means that it has the ability to cause cancer. Infection with A-MuLV can lead to the development of various types of leukemia, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML).

Antibodies, Anti-Idiotypic, also known as Ab2 antibodies, are a type of antibody that is produced in response to the binding of an antigen to an Ab1 antibody. Ab2 antibodies recognize and bind to the unique epitopes on the Ab1 antibody, rather than the original antigen. This type of immune response is known as an anti-idiotypic response, because Ab2 antibodies are directed against the idiotypes of Ab1 antibodies. Anti-idiotypic antibodies can play a role in the regulation of the immune system, as they can bind to and neutralize Ab1 antibodies, preventing them from binding to their target antigens. This can help to prevent an overactive immune response and reduce the risk of autoimmune diseases. Anti-idiotypic antibodies can also be used as a diagnostic tool, as they can be detected in the blood of individuals with certain diseases. In summary, Antibodies, Anti-Idiotypic are a type of antibody that is produced in response to the binding of an antigen to an Ab1 antibody, they recognize and bind to the unique epitopes on the Ab1 antibody, and they play a role in the regulation of the immune system and can be used as a diagnostic tool.

Calcium is a chemical element with the symbol Ca and atomic number 20. It is a vital mineral for the human body and is essential for many bodily functions, including bone health, muscle function, nerve transmission, and blood clotting. In the medical field, calcium is often used to diagnose and treat conditions related to calcium deficiency or excess. For example, low levels of calcium in the blood (hypocalcemia) can cause muscle cramps, numbness, and tingling, while high levels (hypercalcemia) can lead to kidney stones, bone loss, and other complications. Calcium supplements are often prescribed to people who are at risk of developing calcium deficiency, such as older adults, vegetarians, and people with certain medical conditions. However, it is important to note that excessive calcium intake can also be harmful, and it is important to follow recommended dosages and consult with a healthcare provider before taking any supplements.

In the medical field, "body patterning" refers to the study of the distribution and arrangement of body structures, such as bones, muscles, and organs, within an individual's body. This can include the analysis of the shape, size, and orientation of these structures, as well as their relationships to one another. Body patterning is an important aspect of medical diagnosis and treatment, as it can provide valuable information about an individual's overall health and the potential causes of any health problems they may be experiencing. For example, a doctor may use body patterning to identify structural abnormalities or imbalances that may be contributing to a patient's pain or other symptoms. Body patterning can be studied using a variety of techniques, including medical imaging, physical examination, and anthropological analysis. It is an interdisciplinary field that draws on knowledge from a range of medical and scientific disciplines, including anatomy, physiology, genetics, and biomechanics.

Myogenic Regulatory Factors (MRFs) are a group of transcription factors that play a critical role in the development and maintenance of muscle tissue. These factors are essential for the differentiation of muscle precursor cells, or myoblasts, into mature muscle fibers. There are four main MRFs: MyoD, Myf5, Myogenin, and MRF4 (also known as Myf6). These factors are expressed at different stages of muscle development and work together to regulate the expression of other genes involved in muscle differentiation and growth. MyoD and Myf5 are typically the first MRFs to be expressed in myoblasts, and they are responsible for initiating the differentiation process. Myogenin is then expressed later in the process and is necessary for the final stages of muscle differentiation and the formation of mature muscle fibers. MRF4 is thought to play a role in muscle maintenance and repair. MRFs are also involved in the regulation of muscle cell proliferation and apoptosis (cell death), and they have been implicated in a number of muscle-related diseases and disorders, including muscular dystrophy, myopathy, and cancer.

The Central Nervous System (CNS) is a complex network of nerves and neurons that controls and coordinates all bodily functions in the human body. It is composed of the brain and spinal cord, which are protected by the skull and vertebral column, respectively. The brain is the control center of the CNS and is responsible for processing sensory information, controlling movement, regulating bodily functions, and governing emotions and thoughts. It is divided into several regions, including the cerebrum, cerebellum, and brainstem. The spinal cord is a long, thin, tubular structure that extends from the base of the brain down through the vertebral column. It serves as a communication pathway between the brain and the rest of the body, transmitting signals from the body's sensory receptors to the brain and from the brain to the body's muscles and glands. Together, the brain and spinal cord make up the central nervous system, which is responsible for controlling and coordinating all bodily functions, including movement, sensation, thought, and emotion.

I'm sorry, but I couldn't find a specific definition of "Cross-Priming" in the medical field. It's possible that you may have misspelled the term or that it is not commonly used in medicine. Can you please provide more context or information about where you heard or saw this term? This may help me to provide a more accurate answer.

In the medical field, "cell aggregation" refers to the process by which cells clump together or aggregate to form a group or mass. This can occur naturally as cells grow and divide, or it can be induced by various factors such as chemical or mechanical stimuli. Cell aggregation is an important process in many areas of medicine, including tissue engineering, regenerative medicine, and cancer research. For example, in tissue engineering, cell aggregation is often used to create three-dimensional tissue constructs by culturing cells in a scaffold or matrix that promotes cell-cell interactions and aggregation. In cancer research, cell aggregation can be used to study the behavior of cancer cells and their interactions with other cells in the tumor microenvironment. For example, cancer cells can aggregate to form spheroids, which are three-dimensional structures that mimic the architecture of solid tumors. Studying cell aggregation in spheroids can provide insights into the mechanisms of cancer progression and the development of new treatments.

Cyclins are a family of proteins that play a critical role in regulating the progression of the cell cycle in eukaryotic cells. They are synthesized and degraded in a cyclic manner, hence their name, and their levels fluctuate throughout the cell cycle. Cyclins interact with cyclin-dependent kinases (CDKs) to form cyclin-CDK complexes, which are responsible for phosphorylating target proteins and regulating cell cycle progression. Different cyclins are associated with different stages of the cell cycle, and their activity is tightly regulated by various mechanisms, including post-translational modifications and proteolysis. Dysregulation of cyclin expression or activity has been implicated in a variety of diseases, including cancer, where it is often associated with uncontrolled cell proliferation and tumor growth. Therefore, understanding the mechanisms that regulate cyclin expression and activity is important for developing new therapeutic strategies for cancer and other diseases.

Extracellular Signal-Regulated MAP Kinases (ERKs) are a family of protein kinases that play a crucial role in cellular signaling pathways. They are activated by various extracellular signals, such as growth factors, cytokines, and hormones, and regulate a wide range of cellular processes, including cell proliferation, differentiation, survival, and migration. ERKs are part of the mitogen-activated protein kinase (MAPK) signaling pathway, which is a highly conserved signaling cascade that is involved in the regulation of many cellular processes. The MAPK pathway consists of three main kinase modules: the MAPK kinase kinase (MAP3K), the MAPK kinase (MAP2K), and the MAPK. ERKs are the downstream effector kinases of the MAPK pathway and are activated by phosphorylation by MAP2Ks in response to extracellular signals. ERKs are widely expressed in many different cell types and tissues, and their activity is tightly regulated by various mechanisms, including feedback inhibition by phosphatases and protein-protein interactions. Dysregulation of ERK signaling has been implicated in many human diseases, including cancer, neurodegenerative disorders, and inflammatory diseases. Therefore, understanding the mechanisms of ERK signaling and developing targeted therapies to modulate ERK activity are important areas of ongoing research in the medical field.

Hemocyanin is a respiratory pigment found in the hemolymph (the circulatory fluid in invertebrates) of certain mollusks, crustaceans, and some arthropods. It is responsible for the transport of oxygen from the gills to the tissues of these organisms. In contrast to hemoglobin, which is the respiratory pigment found in the red blood cells of vertebrates, hemocyanin does not contain iron but instead contains copper ions. It is a large protein complex made up of two subunits, each of which contains a copper ion coordinated by histidine residues. The copper ions in hemocyanin are capable of binding to oxygen molecules, allowing the protein to transport oxygen throughout the body. When oxygen is not needed, the copper ions are released from the protein, allowing it to return to its original form. Hemocyanin is an important biomolecule in the study of comparative physiology and evolution, as it is found in a wide range of invertebrates and has evolved independently in different lineages.

Dexamethasone is a synthetic glucocorticoid hormone that is used in the medical field as an anti-inflammatory, immunosuppressive, and antipyretic agent. It is a potent corticosteroid that has a wide range of therapeutic applications, including the treatment of allergic reactions, inflammatory diseases, autoimmune disorders, and cancer. Dexamethasone is available in various forms, including tablets, injections, and inhalers, and is used to treat a variety of conditions, such as asthma, COPD, rheumatoid arthritis, lupus, multiple sclerosis, and inflammatory bowel disease. It is also used to treat severe cases of COVID-19, as it has been shown to reduce inflammation and improve outcomes in patients with severe illness. However, dexamethasone is a potent drug that can have significant side effects, including weight gain, fluid retention, high blood pressure, increased risk of infection, and mood changes. Therefore, it is typically prescribed only when other treatments have failed or when the potential benefits outweigh the risks.

Cricetinae is a subfamily of rodents that includes hamsters, voles, and lemmings. These animals are typically small to medium-sized and have a broad, flat head and a short, thick body. They are found in a variety of habitats around the world, including grasslands, forests, and deserts. In the medical field, Cricetinae are often used as laboratory animals for research purposes, as they are easy to care for and breed, and have a relatively short lifespan. They are also used in studies of genetics, physiology, and behavior.

Muscle proteins are proteins that are found in muscle tissue. They are responsible for the structure, function, and repair of muscle fibers. There are two main types of muscle proteins: contractile proteins and regulatory proteins. Contractile proteins are responsible for the contraction of muscle fibers. The most important contractile protein is actin, which is found in the cytoplasm of muscle fibers. Actin interacts with another protein called myosin, which is found in the sarcomeres (the functional units of muscle fibers). When myosin binds to actin, it causes the muscle fiber to contract. Regulatory proteins are responsible for controlling the contraction of muscle fibers. They include troponin and tropomyosin, which regulate the interaction between actin and myosin. Calcium ions also play a role in regulating muscle contraction by binding to troponin and causing it to change shape, allowing myosin to bind to actin. Muscle proteins are important for maintaining muscle strength and function. They are also involved in muscle growth and repair, and can be affected by various medical conditions and diseases, such as muscular dystrophy, sarcopenia, and cancer.

CD11b is a type of protein found on the surface of certain immune cells, such as neutrophils and monocytes. It is a member of the integrin family of proteins, which are involved in cell adhesion and signaling. CD11b is also known as the alpha chain of the integrin receptor Mac-1 (Macrophage-1 antigen). Antigens, CD11b are molecules that bind to CD11b on the surface of immune cells. These antigens can be foreign substances, such as bacteria or viruses, or they can be self-molecules that have been altered in some way. When CD11b binds to an antigen, it triggers a series of signaling events that activate the immune cell and cause it to respond to the presence of the antigen. This response can include the production of inflammatory molecules, the recruitment of other immune cells to the site of the antigen, and the destruction of the antigen. CD11b and its antigens play an important role in the immune response and are the subject of ongoing research in the field of immunology.

In the medical field, "Chromosomes, Human, Pair 8" refers to the 8th pair of chromosomes in the human genome. Each pair of chromosomes contains a set of genes that are responsible for various traits and characteristics of an individual. The 8th pair of chromosomes is also known as chromosome 8 or chromosome 8p. Chromosome 8 is one of the largest human chromosomes, containing over 190 million base pairs of DNA. It is composed of two homologous chromosomes, one inherited from each parent. The genes located on chromosome 8 are involved in a wide range of biological processes, including cell growth and division, immune system function, and the development of certain diseases. Mutations or abnormalities in chromosome 8 can lead to a variety of genetic disorders, such as cri du chat syndrome, which is characterized by intellectual disability, delayed development, and a high-pitched cry. Additionally, certain genetic variations on chromosome 8 have been associated with an increased risk of certain types of cancer, such as breast and ovarian cancer.

In the medical field, "DNA, Viral" refers to the genetic material of viruses, which is composed of deoxyribonucleic acid (DNA). Viruses are infectious agents that can only replicate inside living cells of organisms, including humans. The genetic material of viruses is different from that of cells, as viruses do not have a cellular structure and cannot carry out metabolic processes on their own. Instead, they rely on the host cell's machinery to replicate and produce new viral particles. Understanding the genetic material of viruses is important for developing treatments and vaccines against viral infections. By studying the DNA or RNA (ribonucleic acid) of viruses, researchers can identify potential targets for antiviral drugs and design vaccines that stimulate the immune system to recognize and fight off viral infections.

Nerve Growth Factor (NGF) is a protein that plays a crucial role in the development and maintenance of the nervous system. It is produced by various cells, including neurons, glial cells, and some immune cells. NGF is involved in the survival, growth, and differentiation of neurons, particularly sensory neurons in the peripheral nervous system. It also plays a role in the development of the sympathetic nervous system and the enteric nervous system. In addition to its role in the nervous system, NGF has been shown to have anti-inflammatory and neuroprotective effects, and it has been studied for its potential therapeutic applications in various neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. NGF is also involved in the development and progression of cancer, and it has been shown to promote the growth and survival of some cancer cells. As a result, it has been targeted as a potential therapeutic target in cancer treatment.

Butyric acid is a short-chain fatty acid that is produced by the breakdown of dietary fiber in the large intestine by gut bacteria. It is a major constituent of the gut microbiota and plays an important role in maintaining gut health. In the medical field, butyric acid has been studied for its potential therapeutic effects in a variety of conditions, including inflammatory bowel disease, obesity, diabetes, and cancer. It has been shown to have anti-inflammatory, anti-cancer, and anti-diabetic properties, and may help to regulate the immune system and improve gut barrier function. Butyric acid is also used as a food additive and is found in a variety of foods, including cheese, butter, and yogurt. It has a distinctive sour or rancid smell and taste, and is often used to add flavor to foods.

High Mobility Group Proteins (HMG proteins) are a family of non-histone proteins that are involved in DNA packaging and regulation of gene expression. They are characterized by their ability to bind to DNA and move along it, hence their name. HMG proteins are found in all eukaryotic cells and play important roles in various cellular processes, including DNA replication, transcription, and repair. In the medical field, HMG proteins have been studied for their potential roles in various diseases, including cancer, neurological disorders, and cardiovascular disease. Some HMG proteins have also been developed as therapeutic targets for the treatment of these diseases.

Antigens, Differentiation, T-Lymphocyte refers to a group of proteins that are expressed on the surface of T-lymphocytes, a type of white blood cell that plays a central role in the immune system. These antigens are used by the immune system to distinguish between self and non-self cells, and to identify and target specific pathogens or foreign substances for destruction. The differentiation antigens on T-lymphocytes are proteins that are expressed during the development and maturation of these cells in the thymus gland. These antigens are important for the proper functioning of the immune system, as they allow T-lymphocytes to recognize and respond to specific antigens presented by other cells in the body. There are several different types of differentiation antigens on T-lymphocytes, including CD4 and CD8, which are markers for helper T-cells and cytotoxic T-cells, respectively. Other differentiation antigens include CD28, which is important for T-cell activation, and CD25, which is involved in the regulation of T-cell responses. Overall, the antigens, differentiation, and T-lymphocyte are important components of the immune system, and play a critical role in the body's ability to defend against infection and disease.

STAT3 (Signal Transducer and Activator of Transcription 3) is a transcription factor that plays a critical role in regulating gene expression in response to various signaling pathways, including cytokines, growth factors, and hormones. In the medical field, STAT3 is often studied in the context of cancer, as it is frequently activated in many types of tumors and is involved in promoting cell proliferation, survival, and invasion. Dysregulation of STAT3 signaling has been implicated in the development and progression of various cancers, including breast, prostate, and lung cancer. Additionally, STAT3 has been shown to play a role in other diseases, such as autoimmune disorders and inflammatory diseases. Targeting STAT3 signaling is therefore an active area of research in the development of new cancer therapies and other treatments.

Extracellular matrix (ECM) proteins are a diverse group of proteins that are secreted by cells and form a complex network within the extracellular space. These proteins provide structural support to cells and tissues, regulate cell behavior, and play a crucial role in tissue development, homeostasis, and repair. ECM proteins are found in all tissues and organs of the body and include collagens, elastin, fibronectin, laminins, proteoglycans, and many others. These proteins interact with each other and with cell surface receptors to form a dynamic and highly regulated ECM that provides a physical and chemical environment for cells to thrive. In the medical field, ECM proteins are important for understanding the development and progression of diseases such as cancer, fibrosis, and cardiovascular disease. They are also used in tissue engineering and regenerative medicine to create artificial ECMs that can support the growth and function of cells and tissues. Additionally, ECM proteins are used as diagnostic and prognostic markers in various diseases, and as targets for drug development.

Transforming Growth Factor beta1 (TGF-β1) is a protein that plays a crucial role in regulating cell growth, differentiation, and tissue repair in the human body. It is a member of the transforming growth factor-beta (TGF-β) family of cytokines, which are signaling molecules that help to regulate various cellular processes. TGF-β1 is produced by a variety of cells, including fibroblasts, immune cells, and endothelial cells, and it acts on a wide range of cell types to regulate their behavior. In particular, TGF-β1 is known to play a key role in the regulation of fibrosis, which is the excessive accumulation of extracellular matrix proteins in tissues. TGF-β1 signaling is initiated when the protein binds to specific receptors on the surface of cells, which triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression and cellular behavior. TGF-β1 has been implicated in a wide range of medical conditions, including cancer, fibrosis, and autoimmune diseases, and it is the subject of ongoing research in the field of medicine.

In the medical field, isoantibodies are antibodies that react with specific antigens on red blood cells (RBCs) that are not present on the individual's own RBCs. These antigens are called isoantigens because they are different from the individual's own antigens. Isoantibodies can be produced by the immune system in response to exposure to foreign RBCs, such as during a blood transfusion or pregnancy. When isoantibodies bind to RBCs, they can cause a variety of problems, including hemolysis (the breakdown of RBCs), jaundice, and anemia. There are many different types of isoantibodies, and they can be detected through blood tests. The presence of isoantibodies can be a cause for concern in certain medical situations, such as before a blood transfusion or during pregnancy, and may require special precautions to prevent complications.

Lectins are a class of proteins that are found in many plants, animals, and microorganisms. They are characterized by their ability to bind to specific carbohydrates, such as sugars and starches, on the surface of cells. In the medical field, lectins have been studied for their potential therapeutic applications. For example, some lectins have been shown to have antiviral, antibacterial, and antifungal properties, and may be useful in the development of new drugs to treat infections. Lectins have also been used as research tools to study cell-cell interactions and to identify specific cell surface markers. In addition, some lectins have been used in diagnostic tests to detect specific diseases or conditions, such as cancer or diabetes. However, it is important to note that not all lectins are safe or effective for medical use, and some may even be toxic. Therefore, the use of lectins in medicine requires careful consideration and testing to ensure their safety and efficacy.

Cyclin-dependent kinase inhibitor p21 (p21) is a protein that plays a role in regulating the cell cycle, which is the process by which cells divide and grow. It is encoded by the CDKN1A gene and is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. In the cell cycle, the progression from one phase to the next is controlled by a series of checkpoints that ensure that the cell is ready to proceed. One of the key regulators of these checkpoints is the cyclin-dependent kinase (CDK) family of enzymes. CDKs are activated by binding to cyclins, which are proteins that are synthesized and degraded in a cyclic manner throughout the cell cycle. p21 acts as a CDK inhibitor by binding to and inhibiting the activity of cyclin-CDK complexes. This prevents the complexes from phosphorylating target proteins that are required for the progression of the cell cycle. As a result, p21 helps to prevent the cell from dividing when it is not ready, and it plays a role in preventing the development of cancer. In addition to its role in regulating the cell cycle, p21 has been implicated in a number of other cellular processes, including DNA repair, senescence, and apoptosis (programmed cell death). It is also involved in the response of cells to various stressors, such as DNA damage, oxidative stress, and hypoxia.

In the medical field, "antibody affinity" refers to the strength of the binding between an antibody and its specific antigen. Affinity is a measure of how tightly an antibody binds to its target antigen, and it is an important factor in determining the effectiveness of an antibody in neutralizing or eliminating the antigen. Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a virus or bacteria. Each antibody is designed to recognize and bind to a specific antigen, and the strength of this binding is determined by the affinity of the antibody for the antigen. Antibodies with high affinity for their antigens are more effective at neutralizing or eliminating the antigen, while those with low affinity may be less effective. The affinity of an antibody for its antigen can be influenced by a variety of factors, including the structure of the antibody and the antigen, as well as the conditions under which the binding occurs. In summary, antibody affinity refers to the strength of the binding between an antibody and its specific antigen, and it is an important factor in determining the effectiveness of an antibody in neutralizing or eliminating the antigen.

SOXD transcription factors are a family of proteins that play a crucial role in the development and differentiation of various tissues and organs in the human body. They are involved in the regulation of gene expression and are particularly important in the development of the skeleton, heart, and nervous system. SOXD transcription factors are characterized by a conserved DNA-binding domain called the SRY-related HMG box (SOX) domain, which is responsible for their ability to bind to specific DNA sequences. There are four members of the SOXD family: SOX9, SOX10, SOX11, and SOX12. SOX9 is one of the most well-studied members of the SOXD family and is essential for the development of the skeleton, including the formation of the cartilage and bone. It is also involved in the development of the testes and the central nervous system. SOX10 is involved in the development of the peripheral nervous system, including the formation of the sensory and autonomic ganglia. It is also involved in the development of the skin and the eyes. SOX11 and SOX12 are less well-understood than SOX9 and SOX10, but they are believed to play important roles in the development and differentiation of various tissues and organs in the body. In the medical field, SOXD transcription factors are of interest because they are involved in the development of many different diseases, including skeletal disorders, neurological disorders, and cancers. Understanding the role of SOXD transcription factors in these diseases may lead to the development of new treatments and therapies.

Luciferases are enzymes that catalyze the oxidation of luciferin, a small molecule, to produce light. In the medical field, luciferases are commonly used as reporters in bioluminescence assays, which are used to measure gene expression, protein-protein interactions, and other biological processes. One of the most well-known examples of luciferases in medicine is the green fluorescent protein (GFP) luciferase, which is derived from the jellyfish Aequorea victoria. GFP luciferase is used in a variety of applications, including monitoring gene expression in living cells and tissues, tracking the movement of cells and proteins in vivo, and studying the dynamics of signaling pathways. Another example of a luciferase used in medicine is the firefly luciferase, which is derived from the firefly Photinus pyralis. Firefly luciferase is used in bioluminescence assays to measure the activity of various enzymes and to study the metabolism of drugs and other compounds. Overall, luciferases are valuable tools in the medical field because they allow researchers to visualize and quantify biological processes in a non-invasive and sensitive manner.

Interleukins are a group of signaling proteins that are produced by various cells of the immune system, including white blood cells, and play a crucial role in regulating immune responses. They are also involved in a wide range of other physiological processes, such as cell growth, differentiation, and apoptosis (programmed cell death). Interleukins are classified into different groups based on their structure and function. Some of the most well-known interleukins include interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12). Interleukins can act locally within tissues or be transported through the bloodstream to other parts of the body. They can also bind to specific receptors on the surface of target cells, triggering a signaling cascade that leads to changes in gene expression and cellular function. In the medical field, interleukins are often used as therapeutic agents to treat a variety of conditions, including autoimmune diseases, cancer, and infections. They can also be used as diagnostic tools to help identify and monitor certain diseases.

GATA1 is a transcription factor that plays a critical role in the development and function of blood cells. It is encoded by the GATA1 gene, which is located on chromosome 21. GATA1 is a member of the GATA family of transcription factors, which are proteins that bind to specific DNA sequences and regulate the expression of genes. In the context of blood cell development, GATA1 is expressed in early hematopoietic stem cells and helps to drive the differentiation of these cells into erythrocytes (red blood cells) and megakaryocytes (cells that produce platelets). Mutations in the GATA1 gene can lead to a number of genetic disorders that affect blood cell development and function. For example, mutations in GATA1 can cause Diamond-Blackfan anemia, a rare inherited disorder characterized by a deficiency in red blood cells and platelets. Other disorders that can be caused by GATA1 mutations include thrombocytopenia, a condition characterized by low levels of platelets, and congenital dyserythropoietic anemia, a group of rare inherited disorders that affect the development of red blood cells. Overall, GATA1 is a critical transcription factor that plays a key role in the development and function of blood cells, and mutations in this gene can have significant consequences for human health.

Fetal proteins are proteins that are produced by the developing fetus and are present in the mother's blood during pregnancy. These proteins are not normally present in the mother's blood before pregnancy and are not produced by the mother's body. They are produced by the fetus as it grows and develops, and they can be used to monitor the health and development of the fetus. There are several different types of fetal proteins, including alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), and unconjugated estriol (uE3). These proteins are typically measured in the mother's blood through a blood test called a pregnancy test or a pregnancy screening test. The levels of these proteins can provide information about the health of the fetus and can be used to detect certain conditions, such as neural tube defects, chromosomal abnormalities, and fetal tumors. It is important to note that the levels of fetal proteins in the mother's blood can also be affected by other factors, such as the mother's age, weight, and medical history. Therefore, the results of a pregnancy test or pregnancy screening test should be interpreted in the context of the mother's overall health and medical history.

In the medical field, "COS Cells" typically refers to "cumulus-oocyte complexes." These are clusters of cells that are found in the ovaries of women and are involved in the process of ovulation and fertilization. The cumulus cells are a type of supporting cells that surround the oocyte (egg cell) and help to nourish and protect it. The oocyte is the female reproductive cell that is produced in the ovaries and is capable of being fertilized by a sperm cell to form a zygote, which can develop into a fetus. During the menstrual cycle, the ovaries produce several follicles, each containing an oocyte and surrounding cumulus cells. One follicle will mature and release its oocyte during ovulation, which is triggered by a surge in luteinizing hormone (LH). The released oocyte then travels down the fallopian tube, where it may be fertilized by a sperm cell. COS cells are often used in assisted reproductive technologies (ART), such as in vitro fertilization (IVF), to help facilitate the growth and development of oocytes for use in fertility treatments.

Bacterial vaccines are vaccines that are designed to protect against bacterial infections. They work by stimulating the immune system to recognize and fight off specific bacteria that cause disease. Bacterial vaccines can be made from live, attenuated bacteria (bacteria that have been weakened so they cannot cause disease), inactivated bacteria (bacteria that have been killed), or pieces of bacteria (such as proteins or polysaccharides) that are recognized by the immune system. Bacterial vaccines are used to prevent a wide range of bacterial infections, including diphtheria, tetanus, pertussis, typhoid fever, and meningococcal disease. They are typically given by injection, but some can also be given by mouth. Bacterial vaccines are an important tool in preventing the spread of bacterial infections and reducing the burden of disease in the population.

Antimetabolites, antineoplastic are drugs that mimic the structure of essential cellular building blocks, such as nucleotides or amino acids, and interfere with their metabolism, leading to the death of rapidly dividing cancer cells. These drugs are commonly used in cancer chemotherapy and are classified as either antimetabolites or antimetabolite-like agents. Examples of antimetabolites, antineoplastic include methotrexate, 5-fluorouracil, and mercaptopurine.

T lymphocytes regulate the growth and differentiation of T cells and certain B cells through the release of secreted protein ... IL3 is produced by T lymphocytes and T-cell lymphomas only after stimulation with antigens, mitogens, or chemical activators ... However, IL3 is constitutively expressed in the myelomonocytic leukaemia cell line WEHI-3B. It is thought that the genetic ... It plays an essential role in the final differentiation of B cells into immunoglobulin-secreting cells, as well as inducing ...
... antigens, cd56 MeSH D23.101.100.894.157 - antigens, cd57 MeSH D23.101.100.900 - antigens, differentiation, myelomonocytic MeSH ... antigens, cd57 MeSH D23.050.301.264.900 - antigens, differentiation, myelomonocytic MeSH D23.050.301.264.900.045 - antigens, ... antigens, differentiation, t-lymphocyte MeSH D23.101.100.894.080 - antigens, cd1 MeSH D23.101.100.894.090 - antigens, cd2 MeSH ... antigens, cd29 MeSH D23.050.301.264.894 - antigens, differentiation, t-lymphocyte MeSH D23.050.301.264.894.080 - antigens, cd1 ...
2011 Expression of NOV and BNIP3 gene in mouse myelomonocytic leukemia and its significance 2011 Relationship between WT1- ... differentiation and cell cycle distribution of mouse thymocytes after acute radiation 2011 "CM-DiI labeled mesenchymal stem ... tumor antigen 1-specific T lymphocyte generation soon after nonmyeloablative allergenic stem-cell transplantation in acute and ...
... differentiation and antigen-presenting functions. In: Nature Reviews Immunology. doi:10.1038/nri.2017.28 Nichols, ... "Disappearance of slan-positive non-classical monocytes for diagnosis of chronic myelomonocytic leukemia with an associated ... The intermediate subpopulation is important for antigen presentation and T lymphocyte stimulation. Briefly, antigen ... These are phagocytosis, antigen presentation, and cytokine production. Phagocytosis is the process of uptake of microbes and ...
Hirohashi N, Nakao M, Kubo K, Yamada A, Shichijo S, Hara A, Sagawa K, Itoh K (Dec 1993). "A novel antigen (H47 Ag) on human ... Cluster of differentiation ENSG00000276452, ENSG00000277134, ENSG00000274669, ENSG00000277807 GRCh38: Ensembl release 89: ... "A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells ... The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a ...
"Entrez Gene: SPECC1 sperm antigen with calponin homology and coiled-coil domains 1". Olsen JV, Blagoev B, Gnad F, et al. (2006 ... 2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". ... "HCMOGT-1 is a novel fusion partner to PDGFRB in juvenile myelomonocytic leukemia with t(5;17)(q33;p11.2)". Cancer Res. 64 (8): ...
IL-3 is capable of stimulating differentiation of immature myelomonocytic cells causing changes to the macrophage and ... IL-3 is produced by T cells only after stimulation with antigens or other specific impulses. However, it was observed that IL-3 ... IL-3 receptors can be found on a variety of cell types including many immature myelomonocytic cells in the hemopoietic system ... Activated T cells can either induce their own proliferation and differentiation (autocrine signaling), or that of other T cells ...
Morphine causes inflammation by binding to the protein lymphocyte antigen 96, which, in turn, causes the protein to bind to ... TLR4 has also been designated as CD284 (cluster of differentiation 284). The molecular weight of TLR4 is approximately 95 kDa. ... This receptor is most abundantly expressed in placenta, and in myelomonocytic subpopulation of the leukocytes. It cooperates ... TLR4 has been shown to interact with: Lymphocyte antigen 96, Myd88, and TOLLIP. Nickel, Intracellular trafficking of TLR4 is ...
April 1998). "Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules". ... Cluster of differentiation ENSG00000275463, ENSG00000131042, ENSG00000276146, ENSG00000277751 GRCh38: Ensembl release 89: ... April 1999). "Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood ... April 1998). "Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules". ...
Leukocyte immunoglobulin-like receptor subfamily A member 3 (LILR-A3) also known as CD85 antigen-like family member E (CD85e), ... with a preference for free heavy chains of HLA-C alleles Cluster of differentiation "Human PubMed Reference:". National Center ... "A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells ... and can bind human leukocyte antigen (HLA) class I. Therefore, if secreted, the LILRA3 might impair interactions of membrane- ...
Cluster of differentiation ENSG00000274587, ENSG00000277816, ENSG00000204577 GRCh38: Ensembl release 89: ENSG00000275019, ... 1997). "A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen ... "A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells ... Clusters of differentiation, Immunoglobulin superfamily, All stub articles, Immunology stubs, Membrane protein stubs). ...
... antigen - antigen-presenting cell - antigen-presenting cell vaccine - antiglobulin test - antihormone therapy - antimetabolite ... chronic myelomonocytic leukemia - chronic phase - chronic phase chronic myelogenous leukemia - CHS 828 - CI-1033 - CI-958 - CI- ... cell differentiation - cell motility - cell proliferation - cell respiration - cell adhesion - cellular adoptive immunotherapy ... human leukocyte antigen - human lymphocyte antigen - human papillomavirus - human T-cell leukemia virus type 1 - Hürthle cell ...
For example, the presence of Sialyl-Lewisx antigen (cluster of differentiation 15s (CD15s)), which is one of SeV cell entry ... a novel myelomonocytic cell surface antigen and its distribution on leukemic cells". International Journal of Cancer. 33 (5): ... The presence of Sialyl-Lewisx antigen (cluster of differentiation 15s (CD15s)), which is a fucosylated glycan, on the outer ... which is a glycoprotein that serves as a ligand for macrophage-1 antigen (Mac-1) and lymphocyte function-associated antigen 1 ( ...
The FLT3 gene codes for the cluster of differentiation antigen 135 (i.e. CD135) protein or FLT3 protein. This protein is a ... or chronic myelomonocytic leukemia with involvement of tonsils. Some of these patients may present with little or no ... It mediates at least in part the cell proliferating signaling stimulated by PDGF receptors as well as by antigen receptors on T ... PDGFRA, through its tyrosine kinase activity, contributes to the growth, differentiation, and proliferation of cells. ...
... has also been designated as CD337 (cluster of differentiation 337) and as NKp30. NCR3 belongs to the family of NCR ... May 2005). "Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic ... Tissue Antigens. 58 (4): 255-8. doi:10.1034/j.1399-0039.2001.580406.x. PMID 11782277. "Entrez Gene: NCR3 natural cytotoxicity ... Correia DV, Fogli M, Hudspeth K, da Silva MG, Mavilio D, Silva-Santos B (July 2011). "Differentiation of human peripheral blood ...
... also plays a role in juvenile myelomonocytic leukemia (JMML). Studies have shown the protein's involvement in the disease ... and B-cell antigen receptors". Blood. 93 (6): 1809-16. doi:10.1182/blood.V93.6.1809.406k35_1809_1816. PMID 10068651. "Entrez ... "A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation". The Journal of ... "Regulation of the Erk2-Elk1 signaling pathway and megakaryocytic differentiation of Bcr-Abl(+) K562 leukemic cells by Gab2". ...
Five regions of the 3' UTR that appear to bind proteins were found, one of which is HuR, a tumor antigen. HuR binds to AU-rich ... In addition to neurofibromatosis type I, mutations in NF1 can also lead to juvenile myelomonocytic leukemias (JMML), ... cell differentiation or migration. Neurofibromin is also known to interact with CASK through syndecan, a protein which is ... Haeussler J, Haeusler J, Striebel AM, Assum G, Vogel W, Furneaux H, Krone W (January 2000). "Tumor antigen HuR binds ...
PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, ... "Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules". J. Immunol. ... "SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates ...
CAR-T treatment has significant side effects, and loss of the antigen targeted by the CAR-T cells is a common mechanism for ... Treatment for juvenile myelomonocytic leukemia can include splenectomy, chemotherapy, and bone marrow transplantation. The ... differentiation or division. These mutations may occur spontaneously or as a result of exposure to radiation or carcinogenic ... One such approach used genetically modified T cells, known as chimeric antigen receptor T cells (CAR-T cells), to attack cancer ...
Antigen processing Apoptosis Biogenesis of organelles Cell cycle and division DNA transcription and repair Differentiation and ... "Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia". Nature Genetics. ... Proliferating cell nuclear antigen (PCNA) is a protein involved in DNA synthesis. Under normal physiological conditions PCNA is ... Ishikura S, Weissman AM, Bonifacino JS (July 2010). "Serine residues in the cytosolic tail of the T-cell antigen receptor alpha ...
"Requirement of tyrosine-phosphorylated Vav for morphological differentiation of all-trans-retinoic acid-treated HL-60 cells". ... of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen ... article describing CBL function at PDBe OMIM entries on NOONAN SYNDROME-LIKE DISORDER WITH OR WITHOUT JUVENILE MYELOMONOCYTIC ...
One such antigen was MAGE-A1. The coexistence of a progressing melanoma with melanoma-specific T cells implicitly does not ... Myelomonocytic cell products that cause apoptosis include FasL, TNF-α, and TNF-related apoptosis-inducing ligand (TRAIL). ... February 2015). "Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate ... Preclinical mice studies implicate CAFs, TAMs and myelomonocytic cells (including several myeloid-derived suppressor cells ( ...
... atypical chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, myelodysplastic syndrome, acute myelogenous ... CD140B+Antigen at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (Articles with short ... Similarly, differentiation of adipose from pericytes and mesenchymal cells is suppressed. Misregulation of the PDGFRβ's kinase ... Mice harboring a single activated allele of PDGFRB show a number of postnatal phenotypes including reduced differentiation of ...
Antigens, CD / metabolism* * Antigens, Differentiation, Myelomonocytic / metabolism* * Enzyme-Linked Immunosorbent Assay * ...
T lymphocytes regulate the growth and differentiation of T cells and certain B cells through the release of secreted protein ... IL3 is produced by T lymphocytes and T-cell lymphomas only after stimulation with antigens, mitogens, or chemical activators ... However, IL3 is constitutively expressed in the myelomonocytic leukaemia cell line WEHI-3B. It is thought that the genetic ... It plays an essential role in the final differentiation of B cells into immunoglobulin-secreting cells, as well as inducing ...
Antigens, Differentiation (1988). Antigens, Differentiation, Myelomonocytic (1989-1994). Public MeSH Note:. 2018; see ANTIGENS ... CD13 ANTIGENS was indexed under ANTIGENS, CD 1991-94; ANTIGENS, DIFFERENTIATION, MYELOMONOCYTIC 1989-94; and ANTIGENS, ... Antigen, CD13. Antigens, CD13. CD13 Antigen. Membrane Alanyl Aminopeptidase. Tree number(s):. D08.811.277.656.350.100.160. ... CD13 Antigens - Preferred Concept UI. M0028180. Scope note. Zinc-binding metalloproteases that are members of the type II ...
... by monocytes and neutrophils but absent from leukemic cell lines representing early stages of myelomonocytic differentiation. ... Antigen. CD170 (Siglec F). Classification. Monoclonal. Concentration. 0.2 mg/mL. Formulation. PBS with 0.1% gelatin and ... on eosinophils and alveolar macrophages and lower levels of this receptor have also been reported on immature myelomonocytic ...
... myelomonocytic progenitors, primitive B cell progenitors, and thymocytes. ... Antigen References 1. Rappold I, et al. 1997. Blood 90:111.. 2. Rosnet O, et al. 1996. Acta Haematol. 95:218.. 3. Rosnet O, et ... CD135 is a 130-160 kD type III tyrosine kinase receptor expressed on CD34+ hematopoietic stem cells, myelomonocytic progenitors ... Tyrosine kinase growth factor receptor involved in the growth and differentiation of primitive hematopoietic cells Ligand/ ...
Myeloid cell nuclear differentiation antigen (MNDA) is normally expressed on myelomonocytic cells and a subset of B lymphocytes ... Study of the Utility of Myeloid Cell Nuclear Differentiation Antigen (MNDA) in the Diagnosis of Marginal Zone Lymphoma. ... CD163 (cluster of differentiation 163) is a monocyte/macrophage receptor, and the shed sCD163 (soluble CD163) reflects monocyte ... Dendritic cells (DCs), major antigen-presenting cells, have been proposed to play a central role in the pathogenesis of IDD. ...
... based on the morphology and the state of differentiation of the leukemic cells. Acute myelomonocytic leukemia (AML-M4) and AML- ... one small study of 18 cases of myelomonocytic leukemia cutis patients showed cutaneous lymphocyte-associated antigen (CLA) ... Specific skin lesions in chronic myelomonocytic leukemia: a spectrum of myelomonocytic and dendritic cell proliferations: a ... Evidence also suggests that the presence of T-cell-related antigens on the cell surface of leukemic cells in acute monocytic ...
Antigens, Differentiation, Myelomonocytic, Arthritis, Rheumatoid, Cytokines, Disease Progression, Female, Fluorescent Antibody ... Cytokines, Early Rheumatoid Arthritis, Inflammation, Rheumatoid Arthritis, Synovitis, Adult, Aged, Antigens, CD, ...
Adult, Antigens, CD, Antigens, Differentiation, Myelomonocytic, Arachnoid, Brain, Cadaver, Choroid Plexus, Female, HIV, HIV ...
Table 2. World Health Organization differentiation markers and criteria for AMLs defined by differentiation. (Open Table in a ... Expression of two or more myeloid-associated antigens, such as MPO, CD13, CD33, and CD117 ... Acute myelomonocytic leukemia. • ≥20% monocytes and their precursors. • ≥20% maturing granulocytic cells ... Table 2. World Health Organization differentiation markers and criteria for AMLs defined by differentiation. ...
Abstract , BibTeX , Tags: Adhesion, adhesion molecules, Animals, Antibodies, antibody, Antigen, Antigens, Blocking, C-Type, C- ... keywords = {Activation, Animals, ANTAGONIST, Antibodies, antibody, Antibody Affinity, Apoptosis, Assay, Cell Differentiation, ... Myelomonocytic, Nih 3T3 Cells, Paraffin Embedding, pathogenicity, Protein, Receptor, Receptors, recognition, Skin, Team-Mueller ... keywords = {Adhesion, adhesion molecules, Animals, Antibodies, antibody, Antigen, Antigens, Blocking, C-Type, C-type lectin, CD ...
Antigens, CD29. *Antigens, Differentiation, B-Lymphocyte. *Antigens, Differentiation, Myelomonocytic. *Antigens, ... A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing ... "Antigens, Ly" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical Subject ... This graph shows the total number of publications written about "Antigens, Ly" by people in this website by year, and whether " ...
The expression of myelomonocytic antigen "CD14" above the cutoff value 5 × 109/L was reported in 70% (28/40) of B-CLL patients ... PATIENTS AND METHODS: In this study, we assessed Bcl-2 and cluster of differentiation (CD14) expression in a group of Egyptian ... Acute myelomonocytic leukemia demonstrating erythrophagocytosis on cerebral spinal fluid cytology. Hiu Lam Agnes Yuen, Jake ...
Most of the studies on malignancy immunotherapy using DCs have been carried out for melanoma antigen presentation [9, 20, 34, ... The APCs exhibit costimulator proteins offering the signals necessary for differentiation of Compact disc8+ T-cells into ... that generate Metroprolol succinate myelomonocytic cells, including DC, from individual iPS cells [30]. Equivalent results are ... After intracellular digesting, DCs present peptides produced from tumor-associated antigens in complicated with MHC course I ...
... antigens, cd 2 antigens, differentiation, myelomonocytic 2 anti-hiv agents 2 antimalarials 2 aortic aneurysm, abdominal 2 asian ... Subject Terms: REYNOLDS number, RADIAL basis functions, CHANNEL flow, AUTOMATIC differentiation, FINITE differences, ...
Hepatitis B surface antigen?HBsAG: Hepatitis B surface antigen?HBV: Hepatitis B virus?HC: Head circumference?HCC: ... Chronic myelomonocytic leukemia?CMP: Complete metabolic panel?CMV: Cytomegalovirus?CMV: Controlled mechanical ventilation?CMVIG ... Cluster of differentiation?CDA: Chlorproguanil hydrochloride dapsone-artesunate?CDAD: Difficile-associated diarrhea?CDC: ... Prostate-specific antigen?PSAD: Prostate-specific antigen density?PSC: Primary Sclerosing Cholangitis?PSG: polysomnographic? ...
Integrated Molecular Profiling of Juvenile Myelomonocytic Leukemia. Masahiro Uni, MD, PhD. Department of Transfusion Medicine, ... Antibody-Mediated Immunosuppression Can Result from RBC Antigen Loss Independent of Fcγ Receptors in Mice ... Transcriptome High-Resolution Maps Define the Effects of Epigenetic Modifiers on the Landscape of Hematopoietic Differentiation ...
Background:Morphometric investigations were performed to determine whether mast cells correlate with tubulointerstitial fibrosis in acute renal transplant rejection (ARTR) and to examine the relationship between mast cells, interstitial a-smooth muscle actin (α-SMA) expression, and interstitial infiltrates.Material/Methods: Twenty-four renal allograft biopsy specimens from patients with ARTR were examined quantitatively by means of a computer image analysis system. As a control 11 allograft biopsy specimens were used from patients with no signs of rejection.Results: The morphometric study revealed that the mean values of the interstitial tryptase positive cells, expression of α-SMA, interstitial volume, CD 68+, CD 43+ and CD 20+ cells were significantly increased in ARTR patients in comparison to controls. In the ARTR group there were significant positive correlations between interstitial tryptase positive cells and interstitial expression of α-SMA, interstitial volume, CD 43+ and CD 68+. Moreover,
cytokine, dendritic cells, leukocyte immunoglobulin-like receptor b1, ligation, monocytes, cd80 antigens, molecule, antigens, ... A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. ... The inhibitory receptor LILRB1 modulates the differentiation and regulatory potential of human dendritic cells Neil T. Young, ... Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T ...
Shikami M, Miwa H, Nishii K, Takahashi T, Shiku H, Tsutani H. Myeloid differentiation antigen and cytokine receptor expression ... Acute myelomonocytic leukemia (M4). A strong association between AML-M4 and AML-M5 and deletion or translocations involving ... 4, 5] In memory B-cells with latent EBV infection, expression of Epstein-Barr nuclear antigen-1 (EBNA1) appears to exert a ... ALCL is a subtype of LCL commonly characterized by a T-cell phenotype, expression of the CD30 antigen, and an aggressive ...
NKG2D-based chimeric antigen receptor therapy induced remission in a relapsed/refractory acute myeloid leukemia patient. ... Hypomethylating agent and venetoclax in patients with chronic myelomonocytic leukemia: Is the combination indeed better?. Am J ... Targeting the cluster of differentiation 47/signal-regulatory protein alpha axis in myeloid malignancies. Curr Opin Hematol. ... Somatic TP53 single nucleotide variants, indels and copy number alterations in chronic myelomonocytic leukemia (CMML). Leukemia ...
Chronic myelomonocytic leukemai-10-20% cases, ,20% blasts, AML transformation 20%, greater than 10 the 9th monocytes. ... IDH2 mutations are associated with DNA and histone hypermethylation, altered gene expression, and impaired differentiation of ... programmed death ligand 1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) in MDS CD34+ cells. ... There is clonal proliferation of malignant hematopoietic stem cells, dysregulated cellular differentiation, and compromised ...
Objective: To study the combined diagnostic efficacy of epithelial membrane antigen (EMA), carcinoembryonic antigen (CEA), E- ... Pseudo Chediak-Higashi anomaly in acute myelomonocytic leukemia. p. 255. Seema Rao, Rakhee Kar, Renu Saxena. DOI:10.4103/0377- ... Primary pleomorphic sarcoma of the ovary with rhabdomyosarcomatous differentiation. p. 217. Sumana Mukherjee, Sharmila Sen, ... Intracytoplasmic antigen study by flow cytometry in hematolymphoid neoplasm. p. 135. Sumeet Gujral, Prashant Tembhare, Y ...
AML with minimal differentiation (M0); AML without maturation (M1); AML with maturation (M2); acute myelomonocytic leukemia (M4 ... Whole native AML population or selected cells sorted or purified based on cell surface antigen expression may be used in ... Other examples of differentiation inducing agents include: (1) vitamin analogs: retinoids and vitamin D derivatives (2) ... Other agents such as cytokines also induces leukaemic cell differentiation demonstrated in cells cultured in vitro, making it a ...
Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia ... Antitumor activity of dedicated antimicrobial peptides is described in combination with non-immunogenic tumor antigens.. The ...
A) The morphological changes of THP-1 differentiation into M0 macrophages, the red arrow points to M0 macrophages. (B) The ... M1 macrophages have strong pro-inflammatory and antigen-presenting capabilities. They can inhibit the growth of tumor cells, ... Dnmt3a Arg882 Mutation Drives Chronic Myelomonocytic Leukemia Through Disturbing Gene Expression/DNA Methylation in ... Dnmt3a R882 Mutants Interact With Polycomb Proteins to Block Haematopoietic Stem and Leukaemic Cell Differentiation. Nat Commun ...
Characterization of cross-reacting antigens on the Epstein-Barr virus envelope and plasma membranes of producer cells. Thorley- ... Characterization of a novel Hodgkin cell line, HD-MyZ, with myelomonocytic features mimicking Hodgkins disease in severe ... 4), before and after successful differentiation into neuronal and glial-like cells [4]. ... Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. Granfors, K., Jalkanen, S., von Essen, R., ...
Ductal differentiation: A rare phenomenon in Merkel cell carcinoma. J Cutan Pathol. e-Pub 2022. PMID: 36454019. ... Chronic myelomonocytic leukemia masquerading as cutaneous indeterminate dendritic cell tumor: Expanding the spectrum of skin ... High cytotoxic T-lymphocyte-associated antigen 4 and phospho-Akt expression in tumor samples predicts poor clinical outcomes in ... Immunophenotypic shift of CD4 and CD8 antigen expression in primary cutaneous T-cell lymphomas: a clinicopathologic study of ...
Vaccinia virus serpins B13R and B22R do not inhibit antigen presentation to class I-restricted cytotoxic T lymphocytes. .... ... Terminal cell differentiation is correlated with the extensive sequestering of previously active genes into compact ... and myelomonocytic cell lines. In extracts from these cells, PI-6 bound an endogenous membrane-associated serine proteinase to ... Vaccinia virus serpins B13R and B22R do not inhibit antigen presentation to class I-restricted cytotoxic T lymphocytes. -.... ...
... and B-cell antigens and mature myelomonocytic antigens. Due to their reaction with some monoclonal antibodies recognising ... Establishment and erythroid differentiation of a cytokine-dependent human leukemic cell line F-36: a parental line requiring ... They have been reported to be positive for leukocyte common antigen (CD45) and some multilineage markers such as CD13, CD33 and ...
  • They have been reported to be positive for leukocyte common antigen (CD45) and some multilineage markers such as CD13, CD33 and CD34, but are negative for T- and B-cell antigens and mature myelomonocytic antigens. (addexbio.com)
  • They promote the development and differentiation of T and B lymphocytes, and hematopoietic cells. (wikipedia.org)
  • CD135 is a 130-160 kD type III tyrosine kinase receptor expressed on CD34 + hematopoietic stem cells, myelomonocytic progenitors, primitive B cell progenitors, and thymocytes. (biolegend.com)
  • CD135, also known as FMS-like tyrosine kinase-3, FLT3, STK-1, and Flk-2, is a growth factor receptor that binds the FLT3 ligand to promote the growth and differentiation of primitive hematopoietic cells. (biolegend.com)
  • Expressed on CD34 + hematopoietic stem cells, myelomonocytic progenitors, primitive B cell progenitors, and thymocytes. (biolegend.com)
  • Accumulation of genetic defects in hematopoietic precursors leads to impaired cellular differentiation, increased proliferative potential, unregulated proliferation, and defective apoptosis. (medscape.com)
  • There is clonal proliferation of malignant hematopoietic stem cells, dysregulated cellular differentiation, and compromised tissue function. (standardofcare.com)
  • After intracellular digesting, DCs present peptides produced from tumor-associated antigens in complicated with MHC course I substances to naive Compact disc8+ T-cells. (aboutsciencenow.info)
  • After that, the Compact disc8+ T-cell response is normally particular for tumor antigens and needs cross-presentation from the tumor antigens by professional APCs, such as for example dendritic cells. (aboutsciencenow.info)
  • Antitumor activity of dedicated antimicrobial peptides is described in combination with non-immunogenic tumor antigens. (peptanova.de)
  • Siglec F is expressed mostly on eosinophils and alveolar macrophages and lower levels of this receptor have also been reported on immature myelomonocytic cells. (fishersci.com)
  • We demonstrate that the inhibitory receptor LILRB1 (ILT2, LIR1, CD85j) is selectively up-regulated during DC differentiation from monocyte precursors in culture. (ashpublications.org)
  • It is expressed by monocytes and neutrophils but absent from leukemic cell lines representing early stages of myelomonocytic differentiation. (fishersci.com)
  • Flow cytometric detection of intracellular antigens has become a standard method in establishing proper leukemic cell lineage affiliation. (ijpmonline.org)
  • 1. Chiba S, Takaku F, Tange T, Shibuya K, Misawa C, Sasaki K, Miyagawa K, Yazaki Y, Hirai H. Establishment and erythroid differentiation of a cytokine-dependent human leukemic cell line F-36: a parental line requiring granulocyte-macrophage colony-stimulating factor or interleukin-3, and a subline requiring erythropoietin. (addexbio.com)
  • The iPS cell-derived DCs possess the features of primary DCs like the capacity for T-cell stimulation, digesting and delivering antigens, and the ability of making cytokines. (aboutsciencenow.info)
  • Continuous ligation of LILRB1 modulated cellular differentiation, conferred a unique phenotype upon the resultant cells, induced a profound resistance to CD95-mediated cell death, and inhibited secretion of cytokines IL-10, IL-12p70, and TGF-β. (ashpublications.org)
  • Dendritic cells (DCs), major antigen-presenting cells, have been proposed to play a central role in the pathogenesis of IDD. (bvsalud.org)
  • 1 Activation of DCs through toll-like receptors (TLRs) for "infectious nonself" or other "danger" signals normally initiates a process of cellular differentiation resulting in "mature" DCs capable of stimulating T-cell and natural killer (NK)-cell responses. (ashpublications.org)
  • M1 macrophages have strong pro-inflammatory and antigen-presenting capabilities. (frontiersin.org)
  • This study aimed to investigate whether monocytes and some membrane monocyte proteins, identified as a cluster of differentiation (CD), could be potential non-invasive peripheral biomarkers in identifying and characterizing pain in patients with severe dementia. (bvsalud.org)
  • Due to the nagging complications of culturing and manipulating immune system cellsex vivoex vivoin vitro[27], restriction in the real amount of the attained monocytes, and adjustable potential of differentiation predicated on bloodstream donors [13]. (aboutsciencenow.info)
  • Regarding the detection of intracellular antigens, standardization of the procedure remains, however, a real challenge. (ijpmonline.org)
  • Detection of intracellular antigens by flow cytometry (FCM) requires effective fixation and permeabilization of the cell membrane. (ijpmonline.org)
  • Antigens, Ly" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (wakehealth.edu)
  • World Health Organization differentiation markers and criteria for AMLs defined by differentiation. (medscape.com)
  • Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes. (wakehealth.edu)
  • T lymphocytes regulate the growth and differentiation of T cells and certain B cells through the release of secreted protein factors. (wikipedia.org)
  • Cutaneous infiltration by neoplastic lymphocytes may be seen in acute myeloid leukemia , acute lymphocytic leukemia , chronic myeloid leukemia , chronic lymphoid leukemia , hairy cell leukemia, prolymphocytic leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndromes . (medscape.com)
  • A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. (wakehealth.edu)
  • These factors, which include interleukin 2 (IL2), are secreted by lectin- or antigen-stimulated T cells, and have various physiological effects. (wikipedia.org)
  • that generate Metroprolol succinate myelomonocytic cells, including DC, from individual iPS cells [30]. (aboutsciencenow.info)
  • Combination of analysis of fluorescence labeling and light scatter properties of cells allows rapid and better determination of target cell antigens. (ijpmonline.org)
  • This graph shows the total number of publications written about "Antigens, Ly" by people in this website by year, and whether "Antigens, Ly" was a major or minor topic of these publications. (wakehealth.edu)
  • 2. The human promyelocytic HL60 cell line: a model of myeloid cell differentiation using dimethylsulphoxide, phorbol ester and butyrate. (nih.gov)
  • Class II mutations cause defects in myeloid cell differentiation. (medscape.com)
  • Accumulation of genetic defects in hematopoietic precursors leads to impaired cellular differentiation, increased proliferative potential, unregulated proliferation, and defective apoptosis. (medscape.com)
  • The activated nave cells undergo proliferation and differentiation and yield different subtypes of helper T cells with different functions. (nika-robot.de)
  • DC defects in maturation, cytokine production and antigen presentation 61, 62, 63 and T-cell defects in proliferation 64, 65, 66 have been reported in animal models and humans with chronic infections. (nika-robot.de)
  • Signaling downstream of the TCR is a requisite for the activation, differentiation, and proliferation, which drives adaptive immunity. (nika-robot.de)
  • These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. (nih.gov)
  • It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. (lookformedical.com)
  • 7. Phorbol ester effect on differentiation of human myeloid leukemia cell lines blocked at different stages of maturation. (nih.gov)
  • 20. Terminal differentiation surface antigens of myelomonocytic cells are expressed in human promyelocytic leukemia cells (HL60) treated with chemical inducers. (nih.gov)
  • Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines. (lookformedical.com)
  • Auranofin, an immunosuppressive drug, inhibits MHC class I and MHC class II pathways of antigen presentation in dendritic cells. (nih.gov)
  • 17. 1,25-Dihydroxyvitamin D3 and phorbol esters (TPA) may induce select in vitro differentiation pathways in the HL60 promyelocytic cell line. (nih.gov)
  • The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. (nih.gov)
  • 4. Changes in the translational activity of polyadenylated messenger RNA of HL60 promyelocytic leukemia cells associated with myeloid or macrophage differentiation. (nih.gov)
  • 5. Fibronectin promotes the phorbol 12-myristate 13-acetate-induced macrophage differentiation in myeloid leukemia cells. (nih.gov)
  • 8. Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1,25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. (nih.gov)
  • 9. Antisense inhibition of c-fes proto-oncogene blocks PMA-induced macrophage differentiation in HL60 and in FDC-P1/MAC-11 cells. (nih.gov)
  • 13. Expression of normal monocyte-macrophage differentiation antigens on HL60 promyelocytes undergoing differentiation induced by leukocyte-conditioned medium or phorbol diester. (nih.gov)
  • 14. Induction of macrophage-like differentiation of HL60 human myeloid leukemia cells by phorbol myristate acetate triggers an early decline in inositol lipid breakdown. (nih.gov)
  • 15. Increased glucocorticoid receptor concentration in macrophage differentiation of myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate. (nih.gov)
  • Surface antigens expressed on myeloid cells of the granulocyte-monocyte-histiocyte series during differentiation. (nih.gov)
  • Isolated fractions were examined for their capacity to bind [125I]C1q as a measure of immune complex levels, and for their ability to bind soluble tumour-specific antigen as well as to react with antigens expressed at the surface of viable hepatoma cells. (nih.gov)
  • 18. Acute promyelocytic leukemia mutated to radioresistance suppressed monocyte lineage differentiation by phorbol 12-myristate 13-acetate. (nih.gov)
  • Cutaneous infiltration by neoplastic lymphocytes may be seen in acute myeloid leukemia, acute lymphocytic leukemia, chronic myeloid leukemia, chronic lymphoid leukemia, hairy cell leukemia, prolymphocytic leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndromes. (medscape.com)
  • Three patients had acquired copy-neutral LOH (CN-LOH) on 6p arms, which may disrupt antigen presentation and act as a mechanism for immune system evasion. (oncotarget.com)
  • This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland. (nih.gov)
  • We describe tissues from two immunocompromised patients that stained positive for KIPyV antigen using a newly developed immunohistochemical assay targeting the KIPyV VP1 (KVP1) capsid protein. (nih.gov)