Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Substances that are recognized by the immune system and induce an immune reaction.
Substances elaborated by bacteria that have antigenic activity.
Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Substances elaborated by viruses that have antigenic activity.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Established cell cultures that have the potential to propagate indefinitely.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Substances of fungal origin that have antigenic activity.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Any part or derivative of a helminth that elicits an immune reaction. The most commonly seen helminth antigens are those of the schistosomes.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The major group of transplantation antigens in the mouse.
The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Antibodies produced by a single clone of cells.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
A glycoprotein that is secreted into the luminal surface of the epithelia in the gastrointestinal tract. It is found in the feces and pancreaticobiliary secretions and is used to monitor the response to colon cancer treatment.
Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (ANTIGENS, CD3). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains.
Those proteins recognized by antibodies from serum of animals bearing tumors induced by viruses; these proteins are presumably coded for by the nucleic acids of the same viruses that caused the neoplastic transformation.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A subclass of HLA-D antigens that consist of alpha and beta chains. The inheritance of HLA-DR antigens differs from that of the HLA-DQ ANTIGENS and HLA-DP ANTIGENS.
Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. PCNA is required for the coordinated synthesis of both leading and lagging strands at the replication fork during DNA replication. PCNA expression correlates with the proliferation activity of several malignant and non-malignant cell types.
An important regulator of GENE EXPRESSION during growth and development, and in NEOPLASMS. Tretinoin, also known as retinoic acid and derived from maternal VITAMIN A, is essential for normal GROWTH; and EMBRYONIC DEVELOPMENT. An excess of tretinoin can be teratogenic. It is used in the treatment of PSORIASIS; ACNE VULGARIS; and several other SKIN DISEASES. It has also been approved for use in promyelocytic leukemia (LEUKEMIA, PROMYELOCYTIC, ACUTE).
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, CD15 antigen is a stage-specific embryonic antigen.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
Sites on an antigen that interact with specific antibodies.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A glycoprotein that is a kallikrein-like serine proteinase and an esterase, produced by epithelial cells of both normal and malignant prostate tissue. It is an important marker for the diagnosis of prostate cancer.
Differentiation antigens found on thymocytes and on cytotoxic and suppressor T-lymphocytes. CD8 antigens are members of the immunoglobulin supergene family and are associative recognition elements in MHC (Major Histocompatibility Complex) Class I-restricted interactions.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
The lipopolysaccharide-protein somatic antigens, usually from gram-negative bacteria, important in the serological classification of enteric bacilli. The O-specific chains determine the specificity of the O antigens of a given serotype. O antigens are the immunodominant part of the lipopolysaccharide molecule in the intact bacterial cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
Elements of limited time intervals, contributing to particular results or situations.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The process of bone formation. Histogenesis of bone including ossification.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Carbohydrate antigens expressed by malignant tissue. They are useful as tumor markers and are measured in the serum by means of a radioimmunoassay employing monoclonal antibodies.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Bone-marrow-derived, non-hematopoietic cells that support HEMATOPOETIC STEM CELLS. They have also been isolated from other organs and tissues such as UMBILICAL CORD BLOOD, umbilical vein subendothelium, and WHARTON JELLY. These cells are considered to be a source of multipotent stem cells because they include subpopulations of mesenchymal stem cells.
Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA).
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
A specific HLA-A surface antigen subtype. Members of this subtype contain alpha chains that are encoded by the HLA-A*02 allele family.
The differentiation of pre-adipocytes into mature ADIPOCYTES.
High-molecular weight glycoproteins uniquely expressed on the surface of LEUKOCYTES and their hemopoietic progenitors. They contain a cytoplasmic protein tyrosine phosphatase activity which plays a role in intracellular signaling from the CELL SURFACE RECEPTORS. The CD45 antigens occur as multiple isoforms that result from alternative mRNA splicing and differential usage of three exons.
Methods for maintaining or growing CELLS in vitro.
Progenitor cells from which all blood cells derive.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Sets of cell surface antigens located on BLOOD CELLS. They are usually membrane GLYCOPROTEINS or GLYCOLIPIDS that are antigenically distinguished by their carbohydrate moieties.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Proteins prepared by recombinant DNA technology.
Embryonic (precursor) cells of the myogenic lineage that develop from the MESODERM. They undergo proliferation, migrate to their various sites, and then differentiate into the appropriate form of myocytes (MYOCYTES, SKELETAL; MYOCYTES, CARDIAC; MYOCYTES, SMOOTH MUSCLE).
Those hepatitis B antigens found on the surface of the Dane particle and on the 20 nm spherical and tubular particles. Several subspecificities of the surface antigen are known. These were formerly called the Australia antigen.
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
55-kDa antigens found on HELPER-INDUCER T-LYMPHOCYTES and on a variety of other immune cell types. CD4 antigens are members of the immunoglobulin supergene family and are implicated as associative recognition elements in MAJOR HISTOCOMPATIBILITY COMPLEX class II-restricted immune responses. On T-lymphocytes they define the helper/inducer subset. CD4 antigens also serve as INTERLEUKIN-15 receptors and bind to the HIV receptors, binding directly to the HIV ENVELOPE PROTEIN GP120.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Polymorphic class I human histocompatibility (HLA) surface antigens present on almost all nucleated cells. At least 20 antigens have been identified which are encoded by the A locus of multiple alleles on chromosome 6. They serve as targets for T-cell cytolytic responses and are involved with acceptance or rejection of tissue/organ grafts.
Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
Glycoproteins expressed on cortical thymocytes and on some dendritic cells and B-cells. Their structure is similar to that of MHC Class I and their function has been postulated as similar also. CD1 antigens are highly specific markers for human LANGERHANS CELLS.
Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
An encapsulated lymphatic organ through which venous blood filters.
A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8)
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Molecules on the surface of B- and T-lymphocytes that recognize and combine with specific antigens.
Glycoproteins found on the membrane or surface of cells.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Antigens of the virion of the HEPATITIS B VIRUS or the Dane particle, its surface (HEPATITIS B SURFACE ANTIGENS), core (HEPATITIS B CORE ANTIGENS), and other associated antigens, including the HEPATITIS B E ANTIGENS.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
A cell line derived from cultured tumor cells.
A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell.
A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.
Class I human histocompatibility (HLA) surface antigens encoded by more than 30 detectable alleles on locus B of the HLA complex, the most polymorphic of all the HLA specificities. Several of these antigens (e.g., HLA-B27, -B7, -B8) are strongly associated with predisposition to rheumatoid and other autoimmune disorders. Like other class I HLA determinants, they are involved in the cellular immune reactivity of cytolytic T lymphocytes.
A melanosome-specific protein that plays a role in the expression, stability, trafficking, and processing of GP100 MELANOMA ANTIGEN, which is critical to the formation of Stage II MELANOSOMES. The protein is used as an antigen marker for MELANOMA cells.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
A technique of culturing mixed cell types in vitro to allow their synergistic or antagonistic interactions, such as on CELL DIFFERENTIATION or APOPTOSIS. Coculture can be of different types of cells, tissues, or organs from normal or disease states.
A costimulatory ligand expressed by ANTIGEN-PRESENTING CELLS that binds to CTLA-4 ANTIGEN with high specificity and to CD28 ANTIGEN with low specificity. The interaction of CD80 with CD28 ANTIGEN provides a costimulatory signal to T-LYMPHOCYTES, while its interaction with CTLA-4 ANTIGEN may play a role in inducing PERIPHERAL TOLERANCE.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
Differentiation antigens expressed on B-lymphocytes and B-cell precursors. They are involved in regulation of B-cell proliferation.
The sum of the weight of all the atoms in a molecule.
A potent osteoinductive protein that plays a critical role in the differentiation of osteoprogenitor cells into OSTEOBLASTS.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A group of differentiation surface antigens, among the first to be discovered on thymocytes and T-lymphocytes. Originally identified in the mouse, they are also found in other species including humans, and are expressed on brain neurons and other cells.
A member of the tumor necrosis factor receptor superfamily with specificity for CD40 LIGAND. It is found on mature B-LYMPHOCYTES and some EPITHELIAL CELLS, lymphoid DENDRITIC CELLS. Evidence suggests that CD40-dependent activation of B-cells is important for generation of memory B-cells within the germinal centers. Mutations of the gene for CD40 antigen result in HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 3. Signaling of the receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Transport proteins that carry specific substances in the blood or across cell membranes.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
A critical subpopulation of regulatory T-lymphocytes involved in MHC Class I-restricted interactions. They include both cytotoxic T-lymphocytes (T-LYMPHOCYTES, CYTOTOXIC) and CD8+ suppressor T-lymphocytes.
A myogenic regulatory factor that controls myogenesis. Myogenin is induced during differentiation of every skeletal muscle cell line that has been investigated, in contrast to the other myogenic regulatory factors that only appear in certain cell types.
A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN repeats in their cytoplasmic domains. The cytoplasmic domain of notch receptors is released upon ligand binding and translocates to the CELL NUCLEUS where it acts as transcription factor.
A transcription factor that dimerizes with CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain and is involved in genetic regulation of skeletal development and CELL DIFFERENTIATION.
The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both NEURONS and NEUROGLIA.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
The formation of cartilage. This process is directed by CHONDROCYTES which continually divide and lay down matrix during development. It is sometimes a precursor to OSTEOGENESIS.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Inhibitor of differentiation proteins are negative regulators of BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTORS. They inhibit CELL DIFFERENTIATION and induce CELL PROLIFERATION by modulating different CELL CYCLE regulators.
A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Antigens associated with specific proteins of the human adult T-cell immunodeficiency virus (HIV); also called HTLV-III-associated and lymphadenopathy-associated virus (LAV) antigens.
Cells that can give rise to cells of the three different GERM LAYERS.
A negative regulator of BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTORS. It plays a role in regulating IMMUNOGLOBULIN E expression.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The inner of the three germ layers of an embryo.
A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
A negative regulator of BASIC HELIX-LOOP-HELIX TRANSCRIPTION FACTORS that blocks activation of CYCLIN-DEPENDENT KINASE INHIBITOR P16 and is de-regulated in a variety of NEOPLASMS.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
Nuclear antigens encoded by VIRAL GENES found in HUMAN HERPESVIRUS 4. At least six nuclear antigens have been identified.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.

Novel regulation of the homeotic gene Scr associated with a crustacean leg-to-maxilliped appendage transformation. (1/4207)

Homeotic genes are known to be involved in patterning morphological structures along the antero-posterior axis of insects and vertebrates. Because of their important roles in development, changes in the function and expression patterns of homeotic genes may have played a major role in the evolution of different body plans. For example, it has been proposed that during the evolution of several crustacean lineages, changes in the expression patterns of the homeotic genes Ultrabithorax and abdominal-A have played a role in transformation of the anterior thoracic appendages into mouthparts termed maxillipeds. This homeotic-like transformation is recapitulated at the late stages of the direct embryonic development of the crustacean Porcellio scaber (Oniscidea, Isopoda). Interestingly, this morphological change is associated with apparent novelties both in the transcriptional and post-transcriptional regulation of the Porcellio scaber ortholog of the Drosophila homeotic gene, Sex combs reduced (Scr). Specifically, we find that Scr mRNA is present in the second maxillary segment and the first pair of thoracic legs (T1) in early embryos, whereas protein accumulates only in the second maxillae. In later stages, however, high levels of SCR appear in the T1 legs, which correlates temporally with the transformation of these appendages into maxillipeds. Our observations provide further insight into the process of the homeotic leg-to-maxilliped transformation in the evolution of crustaceans and suggest a novel regulatory mechanism for this process in this group of arthropods.  (+info)

Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. (2/4207)

In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dolle, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  (+info)

Purification and characterization of ADP-ribosyl cyclase from Euglena gracilis. (3/4207)

ADP-ribosyl cyclase, which catalyzes the conversion from NAD+ to cyclic adenosine diphosphoribose (cADPR), is proposed to participate in cell cycle regulation in Euglena gracilis. This enzyme, which was found as a membrane-bound protein, was purified almost the homogeneity after solubilization with deoxycholate, and found to be a monomeric protein with a molecular mass of 40 kDa. Its Km value for NAD+ was estimated to be 0.4 mM, and cADPR, a product of the enzyme, inhibited the enzyme competitively with respect to NAD+ whereas another product, nicotinamide, showed noncompetitive (mixed-type) inhibition. In contrast to mammalian CD38 and BST-1, Euglena ADP-ribosyl cyclase lacked cADPR hydrolase activity.  (+info)

The CTLA-4 gene is expressed in placental fibroblasts. (4/4207)

In order to elucidate the mechanisms that ensure survival of the allogeneic fetus, we are investigating the expression pattern of genes that are involved in peripheral self-tolerance in tissues at the maternal-fetal interface. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a negative regulator of T cell activation and may modulate peripheral self-tolerance. Previously, we reported the preferential transmission of maternally-inherited shorter alleles at a 3'-UTR microsatellite locus to liveborn children, but random transmission of paternally-inherited alleles, suggesting that CTLA-4 may be involved in the maintenance of tolerance at the maternal-fetal interface. In this report, we demonstrate that CTLA-4 mRNA and protein are indeed expressed in fetal tissues at the maternal-fetal interface throughout gestation.  (+info)

Characterization of viral dynamics in human immunodeficiency virus type 1-infected patients treated with combination antiretroviral therapy: relationships to host factors, cellular restoration, and virologic end points. (5/4207)

Biphasic plasma viral decays were modeled in 48 patients treated with ritonavir, zidovudine, and lamivudine. Estimated first- and second-phase decay rates were d1 as 0.47/day and d2 as 0.04/day. Interpatient differences in both decay rates were significant. The d1 was directly correlated with baseline CD4+, CD4+CD28+, and CD8+CD28+ T lymphocyte counts (P<.05) and inversely correlated with baseline virus load (P=.044) and the magnitude of CD4+ and CD8+ T lymphocyte recovery (P<.01). The d2 was directly correlated with baseline percentage of CD8+ T lymphocytes (P=.023), the CD8+CD38+ cell number (P=.024), and the level of IgG that binds to human immunodeficiency virus (HIV) type 1 gp120 (P=.02). Viral decay rates were not predictive of treatment failure or durability of viral suppression. These exploratory findings are consistent with a model in which immunologic factors contribute to elimination of HIV-infected cells and suggest a dynamic interplay between regulation of HIV expression and lymphocyte activation and recovery.  (+info)

Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. (6/4207)

To define predictors of survival time in late human immunodeficiency virus type 1 (HIV-1) disease, long- and short-duration survivors were studied after their CD4+ T cells fell to +info)

Cellular and molecular characterization of the scurfy mouse mutant. (7/4207)

Mice hemizygous (Xsf/Y) for the X-linked mutation scurfy (sf) develop a severe and rapidly fatal lymphoproliferative disease mediated by CD4+CD8- T lymphocytes. We have undertaken phenotypic and functional studies to more accurately identify the immunologic pathway(s) affected by this important mutation. Flow cytometric analyses of lymphoid cell populations reveal that scurfy syndrome is characterized by changes in several phenotypic parameters, including an increase in Mac-1+ cells and a decrease in B220+ cells, changes that may result from the production of extremely high levels of the cytokine granulocyte-macrophage CSF by scurfy T cells. Scurfy T cells also exhibit strong up-regulation of cell surface Ags indicative of in vivo activation, including CD69, CD25, CD80, and CD86. Both scurfy and normal T cells are responsive to two distinct signals provided by the TCR and by ligation of CD28; scurfy cells, however, are hyperresponsive to TCR ligation and exhibit a decreased requirement for costimulation through CD28 relative to normal controls. This hypersensitivity may result, in part, from increased costimulation through B7-1 and B7-2, whose expression is up-regulated on scurfy T cells. Although the specific defect leading to this hyperactivation has not been identified, we also demonstrate that scurfy T cells are less sensitive than normal controls to inhibitors of tyrosine kinases such as genistein and herbimycin A, and the immunosuppressant cyclosporin A. One interpretation of our data would suggest that the scurfy mutation results in a defect, which interferes with the normal down-regulation of T cell activation.  (+info)

IL-5 induces IgG1 isotype switch recombination in mouse CD38-activated sIgD-positive B lymphocytes. (8/4207)

Mouse B cells express CD38, whose ligation by anti-CD38 Ab induces their proliferation and protection from apoptosis. We previously showed that stimulation of mouse splenic B cells with IL-5 together with CS/2, an anti-mouse CD38 mAb, induces production of IgG1 and IgM. Here we examined the role of IL-5 and CS/2 in the expression of germline gamma1 transcripts and the generation of reciprocal products forming DNA circles as byproducts of mu-gamma1 switch recombination. By itself, CS/2 induced significant expression of germline gamma1 transcripts in splenic naive B cells, whereas IL-5 neither induced nor enhanced germline gamma1 expression. Increased cellular content of reciprocal product, which is characteristic of mu-gamma1 recombination, was not observed after culturing B cells with CS/2, but increased reciprocal product, along with high levels of lgG1 secretion, was found when B cells were cultured with CS/2 plus IL-5. Although IL-4 did not, by itself, induce mu-gamma1 recombination in B cells stimulated with CS/2, in conjunction with CS/2 plus IL-5, IL-4 dramatically enhanced sterile gamma1 transcription and IgG1 production. These results demonstrate that CD38 ligation induces only germline gamma1 transcription and that IL-5 promotes both mu-gamma1 switch recombination and lgG1 secretion in an IL-4-independent manner.  (+info)

Erythroleukemia typically affects adults in their 50s and 60s, although it can occur at any age. Symptoms may include fever, night sweats, weight loss, and fatigue. The cancer cells can spread to other parts of the body, including the spleen, liver, and lymph nodes.

Erythroleukemia is diagnosed through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment typically involves chemotherapy and/or radiation therapy to kill cancer cells and restore normal blood cell production. In some cases, a bone marrow transplant may be necessary. The prognosis for erythroleukemia is generally poor, with a five-year survival rate of about 20%.

Erythroleukemia is classified as an acute leukemia, meaning it progresses rapidly and can lead to life-threatening complications if left untreated. It is important for patients to receive prompt and appropriate treatment to improve their chances of survival and quality of life.

Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.

Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.

In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.

It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.

See also: Cancer, Tumor

Word count: 190

PALL is a rare form of leukemia, accounting for only about 5-10% of all cases of acute leukemia. It is most commonly seen in adults between the ages of 40 and 60, although it can occur at any age.

The symptoms of PALL are similar to those of other types of leukemia and may include fatigue, fever, night sweats, weight loss, and an enlarged spleen. The diagnosis of PALL is typically made through a combination of physical examination, medical history, and laboratory tests, including a bone marrow biopsy.

Treatment for PALL usually involves chemotherapy, which can be effective in achieving a complete remission in many cases. In some instances, bone marrow transplantation may also be considered as a form of treatment. The prognosis for PALL is generally poor, with a five-year survival rate of about 20-30%. However, with prompt and appropriate treatment, many people with PALL can achieve long-term remission and a good quality of life.

There are several types of teratomas, including:

1. Mature teratoma: This type of teratoma is made up of well-differentiated tissues that resemble normal tissues. It can contain structures such as hair follicles, sweat glands, and sebaceous glands.
2. Immature teratoma: This type of teratoma is made up of poorly differentiated cells that do not resemble normal tissues. It can contain structures such as cartilage, bone, and nervous tissue.
3. Teratoid mesodermal tumor: This type of teratoma arises from the mesoderm, which is one of the three primary layers of cells in the embryo. It can contain structures such as muscle, bone, and connective tissue.
4. Teratoid endodermal tumor: This type of teratoma arises from the endoderm, which is another primary layer of cells in the embryo. It can contain structures such as glandular tissue and epithelial tissue.

Teratomas are usually benign, but they can sometimes be malignant. Malignant teratomas can spread to other parts of the body and cause serious complications. The treatment of teratomas depends on their type, size, and location, as well as the patient's overall health. Treatment options can include surgery, chemotherapy, and radiation therapy.

In summary, a teratoma is a type of tumor that contains abnormal cells that grow and multiply in an uncontrolled manner, often forming masses or lumps. There are several types of teratomas, and they can occur in various parts of the body. Treatment options depend on the type, size, location, and patient's overall health.

Embryonal carcinoma is thought to be caused by genetic mutations that occur during fetal development. These mutations can disrupt the normal growth and development of cells, leading to the formation of abnormal tissue and eventually cancer.

Symptoms of embryonal carcinoma vary depending on the location of the tumor. They may include skin lesions, seizures, developmental delays, and gastrointestinal problems. Diagnosis is typically made through a combination of imaging tests such as ultrasound, CT scans, and MRI scans, as well as biopsy to confirm the presence of cancer cells.

Treatment for embryonal carcinoma usually involves surgery to remove the tumor, as well as chemotherapy and/or radiation therapy to destroy any remaining cancer cells. In some cases, bone marrow or stem cell transplantation may be necessary. Prognosis for this disease is generally poor, as it is often diagnosed at a late stage and can be difficult to treat effectively.

Embryonal carcinoma is different from other types of cancer in that it arises from embryonic tissue rather than adult tissue. It is also characterized by the presence of immature cells, which are not found in more advanced cancers. Overall, embryonal carcinoma is a rare and aggressive form of cancer that requires specialized treatment and management.

Myeloid leukemia can be classified into several subtypes based on the type of cell involved and the degree of maturity of the abnormal cells. The most common types of myeloid leukemia include:

1. Acute Myeloid Leukemia (AML): This is the most aggressive form of myeloid leukemia, characterized by a rapid progression of immature cells that do not mature or differentiate into normal cells. AML can be further divided into several subtypes based on the presence of certain genetic mutations or chromosomal abnormalities.
2. Chronic Myeloid Leukemia (CML): This is a slower-growing form of myeloid leukemia, characterized by the presence of a genetic abnormality known as the Philadelphia chromosome. CML is typically treated with targeted therapies or bone marrow transplantation.
3. Myelodysplastic Syndrome (MDS): This is a group of disorders characterized by the impaired development of immature blood cells in the bone marrow. MDS can progress to AML if left untreated.
4. Chronic Myelomonocytic Leukemia (CMML): This is a rare form of myeloid leukemia that is characterized by the accumulation of immature monocytes in the blood and bone marrow. CMML can be treated with chemotherapy or bone marrow transplantation.

The symptoms of myeloid leukemia can vary depending on the subtype and severity of the disease. Common symptoms include fatigue, weakness, fever, night sweats, and weight loss. Diagnosis is typically made through a combination of physical examination, blood tests, and bone marrow biopsy. Treatment options for myeloid leukemia can include chemotherapy, targeted therapies, bone marrow transplantation, and supportive care to manage symptoms and prevent complications. The prognosis for myeloid leukemia varies depending on the subtype of the disease and the patient's overall health. With current treatments, many patients with myeloid leukemia can achieve long-term remission or even be cured.

Examples of experimental leukemias include:

1. X-linked agammaglobulinemia (XLA): A rare inherited disorder that leads to a lack of antibody production and an increased risk of infections.
2. Diamond-Blackfan anemia (DBA): A rare inherited disorder characterized by a failure of red blood cells to mature in the bone marrow.
3. Fanconi anemia: A rare inherited disorder that leads to a defect in DNA repair and an increased risk of cancer, particularly leukemia.
4. Ataxia-telangiectasia (AT): A rare inherited disorder characterized by progressive loss of coordination, balance, and speech, as well as an increased risk of cancer, particularly lymphoma.
5. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21, which increases the risk of developing leukemia, particularly acute myeloid leukemia (AML).

These experimental leukemias are often used in research studies to better understand the biology of leukemia and to develop new treatments.

Malignant prostatic neoplasms are cancerous tumors that can be aggressive and spread to other parts of the body (metastasize). The most common type of malignant prostatic neoplasm is adenocarcinoma of the prostate, which accounts for approximately 95% of all prostate cancers. Other types of malignant prostatic neoplasms include sarcomas and small cell carcinomas.

Prostatic neoplasms can be diagnosed through a variety of tests such as digital rectal examination (DRE), prostate-specific antigen (PSA) test, imaging studies (ultrasound, CT scan or MRI), and biopsy. Treatment options for prostatic neoplasms depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health. Treatment options can include active surveillance, surgery (robotic-assisted laparoscopic prostatectomy or open prostatectomy), radiation therapy (external beam radiation therapy or brachytherapy), and hormone therapy.

In summary, Prostatic Neoplasms are tumors that occur in the prostate gland, which can be benign or malignant. The most common types of malignant prostatic neoplasms are adenocarcinoma of the prostate, and other types include sarcomas and small cell carcinomas. Diagnosis is done through a variety of tests, and treatment options depend on the type, stage, and grade of the tumor, as well as the patient's age and overall health.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

Neuroblastoma is caused by a genetic mutation that affects the development and growth of nerve cells. The cancerous cells are often sensitive to chemotherapy, but they can be difficult to remove surgically because they are deeply embedded in the nervous system.

There are several different types of neuroblastoma, including:

1. Infantile neuroblastoma: This type of neuroblastoma occurs in children under the age of one and is often more aggressive than other types of the cancer.
2. Juvenile neuroblastoma: This type of neuroblastoma occurs in children between the ages of one and five and tends to be less aggressive than infantile neuroblastoma.
3. Adult neuroblastoma: This type of neuroblastoma occurs in adults and is rare.
4. Metastatic neuroblastoma: This type of neuroblastoma has spread to other parts of the body, such as the bones or liver.

Symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include:

* Abdominal pain
* Fever
* Loss of appetite
* Weight loss
* Fatigue
* Bone pain
* Swelling in the abdomen or neck
* Constipation
* Increased heart rate

Diagnosis of neuroblastoma typically involves a combination of imaging tests, such as CT scans and MRI scans, and biopsies to confirm the presence of cancerous cells. Treatment for neuroblastoma usually involves a combination of chemotherapy, surgery, and radiation therapy. The prognosis for neuroblastoma varies depending on the type of cancer, the age of the child, and the stage of the disease. In general, the younger the child and the more aggressive the treatment, the better the prognosis.

There are several different types of leukemia, including:

1. Acute Lymphoblastic Leukemia (ALL): This is the most common type of leukemia in children, but it can also occur in adults. It is characterized by an overproduction of immature white blood cells called lymphoblasts.
2. Acute Myeloid Leukemia (AML): This type of leukemia affects the bone marrow's ability to produce red blood cells, platelets, and other white blood cells. It can occur at any age but is most common in adults.
3. Chronic Lymphocytic Leukemia (CLL): This type of leukemia affects older adults and is characterized by the slow growth of abnormal white blood cells called lymphocytes.
4. Chronic Myeloid Leukemia (CML): This type of leukemia is caused by a genetic mutation in a gene called BCR-ABL. It can occur at any age but is most common in adults.
5. Hairy Cell Leukemia: This is a rare type of leukemia that affects older adults and is characterized by the presence of abnormal white blood cells called hairy cells.
6. Myelodysplastic Syndrome (MDS): This is a group of disorders that occur when the bone marrow is unable to produce healthy blood cells. It can lead to leukemia if left untreated.

Treatment for leukemia depends on the type and severity of the disease, but may include chemotherapy, radiation therapy, targeted therapy, or stem cell transplantation.

AML is a fast-growing and aggressive form of leukemia that can spread to other parts of the body through the bloodstream. It is most commonly seen in adults over the age of 60, but it can also occur in children.

There are several subtypes of AML, including:

1. Acute promyelocytic leukemia (APL): This is a subtype of AML that is characterized by the presence of a specific genetic abnormality called the PML-RARA fusion gene. It is usually responsive to treatment with chemotherapy and has a good prognosis.
2. Acute myeloid leukemia, not otherwise specified (NOS): This is the most common subtype of AML and does not have any specific genetic abnormalities. It can be more difficult to treat and has a poorer prognosis than other subtypes.
3. Chronic myelomonocytic leukemia (CMML): This is a subtype of AML that is characterized by the presence of too many immature white blood cells called monocytes in the blood and bone marrow. It can progress slowly over time and may require ongoing treatment.
4. Juvenile myeloid leukemia (JMML): This is a rare subtype of AML that occurs in children under the age of 18. It is characterized by the presence of too many immature white blood cells called blasts in the blood and bone marrow.

The symptoms of AML can vary depending on the subtype and the severity of the disease, but they may include:

* Fatigue
* Weakness
* Shortness of breath
* Pale skin
* Easy bruising or bleeding
* Swollen lymph nodes, liver, or spleen
* Bone pain
* Headache
* Confusion or seizures

AML is diagnosed through a combination of physical examination, medical history, and diagnostic tests such as:

1. Complete blood count (CBC): This test measures the number and types of cells in the blood, including red blood cells, white blood cells, and platelets.
2. Bone marrow biopsy: This test involves removing a small sample of bone marrow tissue from the hipbone or breastbone to examine under a microscope for signs of leukemia cells.
3. Genetic testing: This test can help identify specific genetic abnormalities that are associated with AML.
4. Immunophenotyping: This test uses antibodies to identify the surface proteins on leukemia cells, which can help diagnose the subtype of AML.
5. Cytogenetics: This test involves staining the bone marrow cells with dyes to look for specific changes in the chromosomes that are associated with AML.

Treatment for AML typically involves a combination of chemotherapy, targeted therapy, and in some cases, bone marrow transplantation. The specific treatment plan will depend on the subtype of AML, the patient's age and overall health, and other factors. Some common treatments for AML include:

1. Chemotherapy: This involves using drugs to kill cancer cells. The most commonly used chemotherapy drugs for AML are cytarabine (Ara-C) and anthracyclines such as daunorubicin (DaunoXome) and idarubicin (Idamycin).
2. Targeted therapy: This involves using drugs that specifically target the genetic abnormalities that are causing the cancer. Examples of targeted therapies used for AML include midostaurin (Rydapt) and gilteritinib (Xospata).
3. Bone marrow transplantation: This involves replacing the diseased bone marrow with healthy bone marrow from a donor. This is typically done after high-dose chemotherapy to destroy the cancer cells.
4. Supportive care: This includes treatments to manage symptoms and side effects of the disease and its treatment, such as anemia, infection, and bleeding. Examples of supportive care for AML include blood transfusions, antibiotics, and platelet transfusions.
5. Clinical trials: These are research studies that involve testing new treatments for AML. Participating in a clinical trial may give patients access to innovative therapies that are not yet widely available.

It's important to note that the treatment plan for AML is highly individualized, and the specific treatments used will depend on the patient's age, overall health, and other factors. Patients should work closely with their healthcare team to determine the best course of treatment for their specific needs.

There are several types of melanoma, including:

1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.

The risk factors for developing melanoma include:

1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma

The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:

1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole

If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.

In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.

Examples of delayed hypersensitivity reactions include contact dermatitis (a skin reaction to an allergic substance), tuberculin reactivity (a reaction to the bacteria that cause tuberculosis), and sarcoidosis (a condition characterized by inflammation in various organs, including the lungs and lymph nodes).

Delayed hypersensitivity reactions are important in the diagnosis and management of allergic disorders and other immune-related conditions. They can be detected through a variety of tests, including skin prick testing, patch testing, and blood tests. Treatment for delayed hypersensitivity reactions depends on the underlying cause and may involve medications such as antihistamines, corticosteroids, or immunosuppressants.

Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:

1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)

The symptoms of adenocarcinoma depend on the location of the cancer and can include:

1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)

The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.

Treatment options for adenocarcinoma depend on the location of the cancer and can include:

1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.

The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.

There are several types of colonic neoplasms, including:

1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.

Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

Examples of autoimmune diseases include:

1. Rheumatoid arthritis (RA): A condition where the immune system attacks the joints, leading to inflammation, pain, and joint damage.
2. Lupus: A condition where the immune system attacks various body parts, including the skin, joints, and organs.
3. Hashimoto's thyroiditis: A condition where the immune system attacks the thyroid gland, leading to hypothyroidism.
4. Multiple sclerosis (MS): A condition where the immune system attacks the protective covering of nerve fibers in the central nervous system, leading to communication problems between the brain and the rest of the body.
5. Type 1 diabetes: A condition where the immune system attacks the insulin-producing cells in the pancreas, leading to high blood sugar levels.
6. Guillain-Barré syndrome: A condition where the immune system attacks the nerves, leading to muscle weakness and paralysis.
7. Psoriasis: A condition where the immune system attacks the skin, leading to red, scaly patches.
8. Crohn's disease and ulcerative colitis: Conditions where the immune system attacks the digestive tract, leading to inflammation and damage to the gut.
9. Sjögren's syndrome: A condition where the immune system attacks the glands that produce tears and saliva, leading to dry eyes and mouth.
10. Vasculitis: A condition where the immune system attacks the blood vessels, leading to inflammation and damage to the blood vessels.

The symptoms of autoimmune diseases vary depending on the specific disease and the organs or tissues affected. Common symptoms include fatigue, fever, joint pain, skin rashes, and swollen lymph nodes. Treatment for autoimmune diseases typically involves medication to suppress the immune system and reduce inflammation, as well as lifestyle changes such as dietary changes and stress management techniques.

There are several types of lymphoma, including:

1. Hodgkin lymphoma: This is a type of lymphoma that originates in the white blood cells called Reed-Sternberg cells. It is characterized by the presence of giant cells with multiple nucleoli.
2. Non-Hodgkin lymphoma (NHL): This is a type of lymphoma that does not meet the criteria for Hodgkin lymphoma. There are many subtypes of NHL, each with its own unique characteristics and behaviors.
3. Cutaneous lymphoma: This type of lymphoma affects the skin and can take several forms, including cutaneous B-cell lymphoma and cutaneous T-cell lymphoma.
4. Primary central nervous system (CNS) lymphoma: This is a rare type of lymphoma that develops in the brain or spinal cord.
5. Post-transplantation lymphoproliferative disorder (PTLD): This is a type of lymphoma that develops in people who have undergone an organ transplant, often as a result of immunosuppressive therapy.

The symptoms of lymphoma can vary depending on the type and location of the cancer. Some common symptoms include:

* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching

Lymphoma is diagnosed through a combination of physical examination, imaging tests (such as CT scans or PET scans), and biopsies. Treatment options for lymphoma depend on the type and stage of the cancer, and may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation.

Overall, lymphoma is a complex and diverse group of cancers that can affect people of all ages and backgrounds. While it can be challenging to diagnose and treat, advances in medical technology and research have improved the outlook for many patients with lymphoma.

Types of experimental neoplasms include:

* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.

The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.

Teratocarcinomas can arise from any of the three layers of germ cells: the spermatogonia, the oögonia, or the primordial germ cells. These tumors are often characterized by a mixture of normal and abnormal tissue, including skin, gastrointestinal tract, and other organs. They can also contain teratomy, which is the presence of immature tissue resembling embryonic tissue.

The diagnosis of teratocarcinoma is based on a combination of clinical, radiological, and pathological findings. Treatment options for teratocarcinoma depend on the location, size, and aggressiveness of the tumor, as well as the patient's age and overall health. Surgery is usually the first line of treatment, followed by radiation therapy or chemotherapy if necessary.

In summary, teratocarcinoma is a rare and complex type of cancer that arises from germ cells and can be either malignant or benign. It is characterized by a mixture of normal and abnormal tissue and requires careful diagnosis and treatment planning to ensure the best possible outcome for the patient.

The two main types of lymphoid leukemia are:

1. Acute Lymphoblastic Leukemia (ALL): This type of leukemia is most commonly seen in children, but it can also occur in adults. It is characterized by a rapid increase in the number of immature white blood cells in the blood and bone marrow.
2. Chronic Lymphocytic Leukemia (CLL): This type of leukemia usually affects older adults and is characterized by the gradual buildup of abnormal white blood cells in the blood, bone marrow, and lymph nodes.

Symptoms of lymphoid leukemia include fatigue, fever, night sweats, weight loss, and swollen lymph nodes. Treatment options for lymphoid leukemia can vary depending on the type of cancer and the severity of symptoms, but may include chemotherapy, radiation therapy, or bone marrow transplantation.

The symptoms of hepatitis B can range from mild to severe and may include fatigue, loss of appetite, nausea, vomiting, abdominal pain, dark urine, pale stools, joint pain, and jaundice (yellowing of the skin and eyes). In some cases, hepatitis B can be asymptomatic, meaning that individuals may not experience any symptoms at all.

Hepatitis B is diagnosed through blood tests that detect the presence of HBV antigens or antibodies in the body. Treatment for acute hepatitis B typically involves rest, hydration, and medication to manage symptoms, while chronic hepatitis B may require ongoing therapy with antiviral drugs to suppress the virus and prevent liver damage.

Preventive measures for hepatitis B include vaccination, which is recommended for individuals at high risk of infection, such as healthcare workers, sexually active individuals, and those traveling to areas where HBV is common. In addition, safe sex practices, avoiding sharing of needles or other bodily fluids, and proper sterilization of medical equipment can help reduce the risk of transmission.

Overall, hepatitis B is a serious infection that can have long-term consequences for liver health, and it is important to take preventive measures and seek medical attention if symptoms persist or worsen over time.

Liver neoplasms, also known as liver tumors or hepatic tumors, are abnormal growths of tissue in the liver. These growths can be benign (non-cancerous) or malignant (cancerous). Malignant liver tumors can be primary, meaning they originate in the liver, or metastatic, meaning they spread to the liver from another part of the body.

There are several types of liver neoplasms, including:

1. Hepatocellular carcinoma (HCC): This is the most common type of primary liver cancer and arises from the main cells of the liver (hepatocytes). HCC is often associated with cirrhosis and can be caused by viral hepatitis or alcohol abuse.
2. Cholangiocarcinoma: This type of cancer arises from the cells lining the bile ducts within the liver (cholangiocytes). Cholangiocarcinoma is rare and often diagnosed at an advanced stage.
3. Hemangiosarcoma: This is a rare type of cancer that originates in the blood vessels of the liver. It is most commonly seen in dogs but can also occur in humans.
4. Fibromas: These are benign tumors that arise from the connective tissue of the liver (fibrocytes). Fibromas are usually small and do not spread to other parts of the body.
5. Adenomas: These are benign tumors that arise from the glandular cells of the liver (hepatocytes). Adenomas are usually small and do not spread to other parts of the body.

The symptoms of liver neoplasms vary depending on their size, location, and whether they are benign or malignant. Common symptoms include abdominal pain, fatigue, weight loss, and jaundice (yellowing of the skin and eyes). Diagnosis is typically made through a combination of imaging tests such as CT scans, MRI scans, and ultrasound, and a biopsy to confirm the presence of cancer cells.

Treatment options for liver neoplasms depend on the type, size, location, and stage of the tumor, as well as the patient's overall health. Surgery may be an option for some patients with small, localized tumors, while others may require chemotherapy or radiation therapy to shrink the tumor before surgery can be performed. In some cases, liver transplantation may be necessary.

Prognosis for liver neoplasms varies depending on the type and stage of the cancer. In general, early detection and treatment improve the prognosis, while advanced-stage disease is associated with a poorer prognosis.

There are several factors that can contribute to bone resorption, including:

1. Hormonal changes: Hormones such as parathyroid hormone (PTH) and calcitonin can regulate bone resorption. Imbalances in these hormones can lead to excessive bone resorption.
2. Aging: As we age, our bones undergo remodeling more frequently, leading to increased bone resorption.
3. Nutrient deficiencies: Deficiencies in calcium, vitamin D, and other nutrients can impair bone health and lead to excessive bone resorption.
4. Inflammation: Chronic inflammation can increase bone resorption, leading to bone loss and weakening.
5. Genetics: Some genetic disorders can affect bone metabolism and lead to abnormal bone resorption.
6. Medications: Certain medications, such as glucocorticoids and anticonvulsants, can increase bone resorption.
7. Diseases: Conditions such as osteoporosis, Paget's disease of bone, and bone cancer can lead to abnormal bone resorption.

Bone resorption can be diagnosed through a range of tests, including:

1. Bone mineral density (BMD) testing: This test measures the density of bone in specific areas of the body. Low BMD can indicate bone loss and excessive bone resorption.
2. X-rays and imaging studies: These tests can help identify abnormal bone growth or other signs of bone resorption.
3. Blood tests: Blood tests can measure levels of certain hormones and nutrients that are involved in bone metabolism.
4. Bone biopsy: A bone biopsy can provide a direct view of the bone tissue and help diagnose conditions such as Paget's disease or bone cancer.

Treatment for bone resorption depends on the underlying cause and may include:

1. Medications: Bisphosphonates, hormone therapy, and other medications can help slow or stop bone resorption.
2. Diet and exercise: A healthy diet rich in calcium and vitamin D, along with regular exercise, can help maintain strong bones.
3. Physical therapy: In some cases, physical therapy may be recommended to improve bone strength and mobility.
4. Surgery: In severe cases of bone resorption, surgery may be necessary to repair or replace damaged bone tissue.

There are several types of skin neoplasms, including:

1. Basal cell carcinoma (BCC): This is the most common type of skin cancer, and it usually appears as a small, fleshy bump or a flat, scaly patch. BCC is highly treatable, but if left untreated, it can grow and invade surrounding tissue.
2. Squamous cell carcinoma (SCC): This type of skin cancer is less common than BCC but more aggressive. It typically appears as a firm, flat, or raised bump on sun-exposed areas. SCC can spread to other parts of the body if left untreated.
3. Melanoma: This is the most serious type of skin cancer, accounting for only 1% of all skin neoplasms but responsible for the majority of skin cancer deaths. Melanoma can appear as a new or changing mole, and it's essential to recognize the ABCDE signs (Asymmetry, Border irregularity, Color variation, Diameter >6mm, Evolving size, shape, or color) to detect it early.
4. Sebaceous gland carcinoma: This rare type of skin cancer originates in the oil-producing glands of the skin and can appear as a firm, painless nodule on the forehead, nose, or other oily areas.
5. Merkel cell carcinoma: This is a rare and aggressive skin cancer that typically appears as a firm, shiny bump on the skin. It's more common in older adults and those with a history of sun exposure.
6. Cutaneous lymphoma: This type of cancer affects the immune system and can appear as a rash, nodules, or tumors on the skin.
7. Kaposi sarcoma: This is a rare type of skin cancer that affects people with weakened immune systems, such as those with HIV/AIDS. It typically appears as a flat, red or purple lesion on the skin.

While skin cancers are generally curable when detected early, it's important to be aware of your skin and notice any changes or unusual spots, especially if you have a history of sun exposure or other risk factors. If you suspect anything suspicious, see a dermatologist for an evaluation and potential biopsy. Remember, prevention is key to avoiding the harmful effects of UV radiation and reducing your risk of developing skin cancer.

There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

There are several types of lung neoplasms, including:

1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.

Lung diseases can also be classified based on their cause, such as:

1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.

Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.

Examples of acute diseases include:

1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.

Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.

There are different types of Breast Neoplasms such as:

1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.

2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.

3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.

4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.

5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.

Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.

Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.

It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.

SCC typically appears as a firm, flat, or raised bump on the skin, and may be pink, red, or scaly. The cancer cells are usually well-differentiated, meaning they resemble normal squamous cells, but they can grow rapidly and invade surrounding tissues if left untreated.

SCC is more common in fair-skinned individuals and those who spend a lot of time in the sun, as UV radiation can damage the skin cells and increase the risk of cancer. The cancer can also spread to other parts of the body, such as lymph nodes or organs, and can be life-threatening if not treated promptly and effectively.

Treatment for SCC usually involves surgery to remove the cancerous tissue, and may also include radiation therapy or chemotherapy to kill any remaining cancer cells. Early detection and treatment are important to improve outcomes for patients with SCC.

The exact cause of RMS is not known, but it is believed to be linked to genetic mutations that occur during fetal development. These mutations can lead to the growth of abnormal cells that can eventually form a tumor.

There are several subtypes of RMS, including:

1. Embryonal rhabdomyosarcoma: This is the most common type of RMS and typically affects children under the age of 6.
2. Alveolar rhabdomyosarcoma: This type of RMS is more aggressive than embryonal RMS and tends to affect older children and teenagers.
3. Pleomorphic rhabdomyosarcoma: This is the least common subtype of RMS and can occur in any age group.

The symptoms of RMS vary depending on the location of the tumor, but may include:

* Lumps or swelling in the neck, abdomen, or extremities
* Painless lumps or swelling in the scrotum (in boys)
* Difficulty swallowing or breathing (if the tumor is located in the throat)
* Abdominal pain (if the tumor is located in the abdomen)
* Fever
* Fatigue
* Weight loss

If RMS is suspected, a doctor may perform a physical exam, take a medical history, and order imaging tests such as X-rays, CT scans, or MRI scans to confirm the diagnosis. A biopsy, in which a small sample of tissue is removed from the body and examined under a microscope, may also be performed to confirm the presence of cancer cells.

Treatment for RMS typically involves a combination of surgery, chemotherapy, and radiation therapy. The specific treatment plan will depend on the location and size of the tumor, as well as the age and overall health of the patient. In some cases, the tumor may be completely removed with surgery, while in other cases, the cancer cells may be difficult to remove and may require ongoing treatment to manage the disease.

Overall, RMS is a rare and aggressive form of cancer that can affect children and adults. While the prognosis for RMS varies depending on the location and size of the tumor, early diagnosis and treatment are critical for improving outcomes.

Also known as Burkitt's Lymphoma.

1. Parvovirus (Parvo): A highly contagious viral disease that affects dogs of all ages and breeds, causing symptoms such as vomiting, diarrhea, and severe dehydration.
2. Distemper: A serious viral disease that can affect dogs of all ages and breeds, causing symptoms such as fever, coughing, and seizures.
3. Rabies: A deadly viral disease that affects dogs and other animals, transmitted through the saliva of infected animals, and causing symptoms such as aggression, confusion, and paralysis.
4. Heartworms: A common condition caused by a parasitic worm that infects the heart and lungs of dogs, leading to symptoms such as coughing, fatigue, and difficulty breathing.
5. Ticks and fleas: These external parasites can cause skin irritation, infection, and disease in dogs, including Lyme disease and tick-borne encephalitis.
6. Canine hip dysplasia (CHD): A genetic condition that affects the hip joint of dogs, causing symptoms such as arthritis, pain, and mobility issues.
7. Osteosarcoma: A type of bone cancer that affects dogs, often diagnosed in older dogs and causing symptoms such as lameness, swelling, and pain.
8. Allergies: Dog allergies can cause skin irritation, ear infections, and other health issues, and may be triggered by environmental factors or specific ingredients in their diet.
9. Gastric dilatation-volvulus (GDV): A life-threatening condition that occurs when a dog's stomach twists and fills with gas, causing symptoms such as vomiting, pain, and difficulty breathing.
10. Cruciate ligament injuries: Common in active dogs, these injuries can cause joint instability, pain, and mobility issues.

It is important to monitor your dog's health regularly and seek veterinary care if you notice any changes or abnormalities in their behavior, appetite, or physical condition.

There are several risk factors for developing HCC, including:

* Cirrhosis, which can be caused by heavy alcohol consumption, viral hepatitis (such as hepatitis B and C), or fatty liver disease
* Family history of liver disease
* Chronic obstructive pulmonary disease (COPD)
* Diabetes
* Obesity

HCC can be challenging to diagnose, as the symptoms are non-specific and can be similar to those of other conditions. However, some common symptoms of HCC include:

* Yellowing of the skin and eyes (jaundice)
* Fatigue
* Loss of appetite
* Abdominal pain or discomfort
* Weight loss

If HCC is suspected, a doctor may perform several tests to confirm the diagnosis, including:

* Imaging tests, such as ultrasound, CT scan, or MRI, to look for tumors in the liver
* Blood tests to check for liver function and detect certain substances that are produced by the liver
* Biopsy, which involves removing a small sample of tissue from the liver to examine under a microscope

Once HCC is diagnosed, treatment options will depend on several factors, including the stage and location of the cancer, the patient's overall health, and their personal preferences. Treatment options may include:

* Surgery to remove the tumor or parts of the liver
* Ablation, which involves destroying the cancer cells using heat or cold
* Chemoembolization, which involves injecting chemotherapy drugs into the hepatic artery to reach the cancer cells
* Targeted therapy, which uses drugs or other substances to target specific molecules that are involved in the growth and spread of the cancer

Overall, the prognosis for HCC is poor, with a 5-year survival rate of approximately 20%. However, early detection and treatment can improve outcomes. It is important for individuals at high risk for HCC to be monitored regularly by a healthcare provider, and to seek medical attention if they experience any symptoms.

There are different types of hyperplasia, depending on the location and cause of the condition. Some examples include:

1. Benign hyperplasia: This type of hyperplasia is non-cancerous and does not spread to other parts of the body. It can occur in various tissues and organs, such as the uterus (fibroids), breast tissue (fibrocystic changes), or prostate gland (benign prostatic hyperplasia).
2. Malignant hyperplasia: This type of hyperplasia is cancerous and can invade nearby tissues and organs, leading to serious health problems. Examples include skin cancer, breast cancer, and colon cancer.
3. Hyperplastic polyps: These are abnormal growths that occur in the gastrointestinal tract and can be precancerous.
4. Adenomatous hyperplasia: This type of hyperplasia is characterized by an increase in the number of glandular cells in a specific organ, such as the colon or breast. It can be a precursor to cancer.

The symptoms of hyperplasia depend on the location and severity of the condition. In general, they may include:

* Enlargement or swelling of the affected tissue or organ
* Pain or discomfort in the affected area
* Abnormal bleeding or discharge
* Changes in bowel or bladder habits
* Unexplained weight loss or gain

Hyperplasia is diagnosed through a combination of physical examination, imaging tests such as ultrasound or MRI, and biopsy. Treatment options depend on the underlying cause and severity of the condition, and may include medication, surgery, or other interventions.

2. Our research focuses on identifying the genetic mutations that contribute to experimental melanoma and developing targeted therapies.
3. The patient's experimental melanoma had spread to her lungs and liver, so we recommended chemotherapy and immunotherapy treatments.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

Cattle diseases refer to any health issues that affect cattle, including bacterial, viral, and parasitic infections, as well as genetic disorders and environmental factors. These diseases can have a significant impact on the health and productivity of cattle, as well as the livelihoods of farmers and ranchers who rely on them for their livelihood.

Types of Cattle Diseases

There are many different types of cattle diseases, including:

1. Bacterial diseases, such as brucellosis, anthrax, and botulism.
2. Viral diseases, such as bovine viral diarrhea (BVD) and bluetongue.
3. Parasitic diseases, such as heartwater and gapeworm.
4. Genetic disorders, such as polledness and cleft palate.
5. Environmental factors, such as heat stress and nutritional deficiencies.

Symptoms of Cattle Diseases

The symptoms of cattle diseases can vary depending on the specific disease, but may include:

1. Fever and respiratory problems
2. Diarrhea and vomiting
3. Weight loss and depression
4. Swelling and pain in joints or limbs
5. Discharge from the eyes or nose
6. Coughing or difficulty breathing
7. Lameness or reluctance to move
8. Changes in behavior, such as aggression or lethargy

Diagnosis and Treatment of Cattle Diseases

Diagnosing cattle diseases can be challenging, as the symptoms may be similar for different conditions. However, veterinarians use a combination of physical examination, laboratory tests, and medical history to make a diagnosis. Treatment options vary depending on the specific disease and may include antibiotics, vaccines, anti-inflammatory drugs, and supportive care such as fluids and nutritional supplements.

Prevention of Cattle Diseases

Preventing cattle diseases is essential for maintaining the health and productivity of your herd. Some preventative measures include:

1. Proper nutrition and hydration
2. Regular vaccinations and parasite control
3. Sanitary living conditions and frequent cleaning
4. Monitoring for signs of illness and seeking prompt veterinary care if symptoms arise
5. Implementing biosecurity measures such as isolating sick animals and quarantining new animals before introduction to the herd.

It is important to work closely with a veterinarian to develop a comprehensive health plan for your cattle herd, as they can provide guidance on vaccination schedules, parasite control methods, and disease prevention strategies tailored to your specific needs.

Conclusion
Cattle diseases can have a significant impact on the productivity and profitability of your herd, as well as the overall health of your animals. It is essential to be aware of the common cattle diseases, their symptoms, diagnosis, treatment, and prevention methods to ensure the health and well-being of your herd.

By working closely with a veterinarian and implementing preventative measures such as proper nutrition and sanitary living conditions, you can help protect your cattle from disease and maintain a productive and profitable herd. Remember, prevention is key when it comes to managing cattle diseases.

Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.

Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.

There are several types of hypersensitivity reactions, including:

1. Type I hypersensitivity: This is also known as immediate hypersensitivity and occurs within minutes to hours after exposure to the allergen. It is characterized by the release of histamine and other chemical mediators from immune cells, leading to symptoms such as hives, itching, swelling, and difficulty breathing. Examples of Type I hypersensitivity reactions include allergies to pollen, dust mites, or certain foods.
2. Type II hypersensitivity: This is also known as cytotoxic hypersensitivity and occurs within days to weeks after exposure to the allergen. It is characterized by the immune system producing antibodies against specific proteins on the surface of cells, leading to their destruction. Examples of Type II hypersensitivity reactions include blood transfusion reactions and serum sickness.
3. Type III hypersensitivity: This is also known as immune complex hypersensitivity and occurs when antigens bind to immune complexes, leading to the formation of deposits in tissues. Examples of Type III hypersensitivity reactions include rheumatoid arthritis and systemic lupus erythematosus.
4. Type IV hypersensitivity: This is also known as delayed-type hypersensitivity and occurs within weeks to months after exposure to the allergen. It is characterized by the activation of T cells, leading to inflammation and tissue damage. Examples of Type IV hypersensitivity reactions include contact dermatitis and toxic epidermal necrolysis.

The diagnosis of hypersensitivity often involves a combination of medical history, physical examination, laboratory tests, and elimination diets or challenges. Treatment depends on the specific type of hypersensitivity reaction and may include avoidance of the allergen, medications such as antihistamines or corticosteroids, and immunomodulatory therapy.

There are several subtypes of lymphoma, B-cell, including:

1. Diffuse large B-cell lymphoma (DLBCL): This is the most common type of B-cell lymphoma and typically affects older adults.
2. Follicular lymphoma: This type of lymphoma grows slowly and often does not require treatment for several years.
3. Marginal zone lymphoma: This type of lymphoma develops in the marginal zone of the spleen or other lymphoid tissues.
4. Hodgkin lymphoma: This is a type of B-cell lymphoma that is characterized by the presence of Reed-Sternberg cells, which are abnormal cells that can be identified under a microscope.

The symptoms of lymphoma, B-cell can vary depending on the subtype and the location of the tumor. Common symptoms include swollen lymph nodes, fatigue, fever, night sweats, and weight loss.

Treatment for lymphoma, B-cell usually involves chemotherapy, which is a type of cancer treatment that uses drugs to kill cancer cells. Radiation therapy may also be used in some cases. In some cases, bone marrow or stem cell transplantation may be recommended.

Prognosis for lymphoma, B-cell depends on the subtype and the stage of the disease at the time of diagnosis. In general, the prognosis is good for patients with early-stage disease, but the cancer can be more difficult to treat if it has spread to other parts of the body.

Prevention of lymphoma, B-cell is not possible, as the exact cause of the disease is not known. However, avoiding exposure to certain risk factors, such as viral infections and pesticides, may help reduce the risk of developing the disease. Early detection and treatment can also improve outcomes for patients with lymphoma, B-cell.

Lymphoma, B-cell is a type of cancer that affects the immune system and can be treated with chemotherapy and other therapies. The prognosis varies depending on the subtype and stage of the disease at diagnosis. Prevention is not possible, but early detection and treatment can improve outcomes for patients with this condition.

The causes of colorectal neoplasms are not fully understood, but factors such as age, genetics, diet, and lifestyle have been implicated. Symptoms of colorectal cancer can include changes in bowel habits, blood in the stool, abdominal pain, and weight loss. Screening for colorectal cancer is recommended for adults over the age of 50, as it can help detect early-stage tumors and improve survival rates.

There are several subtypes of colorectal neoplasms, including adenomas (which are precancerous polyps), carcinomas (which are malignant tumors), and lymphomas (which are cancers of the immune system). Treatment options for colorectal cancer depend on the stage and location of the tumor, but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Research into the causes and treatment of colorectal neoplasms is ongoing, and there has been significant progress in recent years. Advances in screening and treatment have improved survival rates for patients with colorectal cancer, and there is hope that continued research will lead to even more effective treatments in the future.

Benign ovarian neoplasms include:

1. Serous cystadenoma: A fluid-filled sac that develops on the surface of the ovary.
2. Mucinous cystadenoma: A tumor that is filled with mucin, a type of protein.
3. Endometrioid tumors: Tumors that are similar to endometrial tissue (the lining of the uterus).
4. Theca cell tumors: Tumors that develop in the supportive tissue of the ovary called theca cells.

Malignant ovarian neoplasms include:

1. Epithelial ovarian cancer (EOC): The most common type of ovarian cancer, which arises from the surface epithelium of the ovary.
2. Germ cell tumors: Tumors that develop from germ cells, which are the cells that give rise to eggs.
3. Stromal sarcomas: Tumors that develop in the supportive tissue of the ovary.

Ovarian neoplasms can cause symptoms such as pelvic pain, abnormal bleeding, and abdominal swelling. They can also be detected through pelvic examination, imaging tests such as ultrasound and CT scan, and biopsy. Treatment options for ovarian neoplasms depend on the type, stage, and location of the tumor, and may include surgery, chemotherapy, and radiation therapy.

The term "Disorders of Sex Development" was introduced in the early 2000s as a more inclusive and neutral way to describe these conditions, replacing outdated and stigmatizing terms such as "intersex." DSD includes a wide range of conditions, some of which may be genetic in origin, while others may result from hormonal or environmental factors.

The diagnosis and management of DSD can be complex and require a multidisciplinary team of healthcare providers, including endocrinologists, geneticists, urologists, and psychologists. Treatment options may include hormone therapy, surgery, and counseling, and the goals of treatment are to alleviate symptoms, improve quality of life, and support the individual's self-identification and gender expression.

It is important to note that DSD is a medical term and does not have any implications for an individual's gender identity or expression. All individuals with DSD have the right to live as their authentic selves, regardless of their gender identity or expression.

Brain neoplasms can arise from various types of cells in the brain, including glial cells (such as astrocytes and oligodendrocytes), neurons, and vascular tissues. The symptoms of brain neoplasms vary depending on their size, location, and type, but may include headaches, seizures, weakness or numbness in the limbs, and changes in personality or cognitive function.

There are several different types of brain neoplasms, including:

1. Meningiomas: These are benign tumors that arise from the meninges, the thin layers of tissue that cover the brain and spinal cord.
2. Gliomas: These are malignant tumors that arise from glial cells in the brain. The most common type of glioma is a glioblastoma, which is aggressive and hard to treat.
3. Pineal parenchymal tumors: These are rare tumors that arise in the pineal gland, a small endocrine gland in the brain.
4. Craniopharyngiomas: These are benign tumors that arise from the epithelial cells of the pituitary gland and the hypothalamus.
5. Medulloblastomas: These are malignant tumors that arise in the cerebellum, specifically in the medulla oblongata. They are most common in children.
6. Acoustic neurinomas: These are benign tumors that arise on the nerve that connects the inner ear to the brain.
7. Oligodendrogliomas: These are malignant tumors that arise from oligodendrocytes, the cells that produce the fatty substance called myelin that insulates nerve fibers.
8. Lymphomas: These are cancers of the immune system that can arise in the brain and spinal cord. The most common type of lymphoma in the CNS is primary central nervous system (CNS) lymphoma, which is usually a type of B-cell non-Hodgkin lymphoma.
9. Metastatic tumors: These are tumors that have spread to the brain from another part of the body. The most common types of metastatic tumors in the CNS are breast cancer, lung cancer, and melanoma.

These are just a few examples of the many types of brain and spinal cord tumors that can occur. Each type of tumor has its own unique characteristics, such as its location, size, growth rate, and biological behavior. These factors can help doctors determine the best course of treatment for each patient.

The term "systemic" refers to the fact that the disease affects multiple organ systems, including the skin, joints, kidneys, lungs, and nervous system. LES is a complex condition, and its symptoms can vary widely depending on which organs are affected. Common symptoms include fatigue, fever, joint pain, rashes, and swelling in the extremities.

There are several subtypes of LES, including:

1. Systemic lupus erythematosus (SLE): This is the most common form of the disease, and it can affect anyone, regardless of age or gender.
2. Discoid lupus erythematosus (DLE): This subtype typically affects the skin, causing a red, scaly rash that does not go away.
3. Drug-induced lupus erythematosus: This form of the disease is caused by certain medications, and it usually resolves once the medication is stopped.
4. Neonatal lupus erythematosus: This rare condition affects newborn babies of mothers with SLE, and it can cause liver and heart problems.

There is no cure for LES, but treatment options are available to manage the symptoms and prevent flares. Treatment may include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, immunosuppressive medications, and antimalarial drugs. In severe cases, hospitalization may be necessary to monitor and treat the disease.

It is important for people with LES to work closely with their healthcare providers to manage their condition and prevent complications. With proper treatment and self-care, many people with LES can lead active and fulfilling lives.

The infection occurs when the parasitic worm enters the body through the skin, usually during contact with infected water. The schistosomes migrate to the liver and intestines, where they cause inflammation and damage to the host tissues.

Symptoms of schistosomiasis mansoni can include abdominal pain, diarrhea, fatigue, and weight loss. If left untreated, it can lead to serious complications such as anemia, liver and kidney damage, and even death.

Diagnosis is based on the presence of schistosome eggs in the urine or stool, and treatment typically involves a combination of antiparasitic drugs and supportive care to manage symptoms. Prevention measures include avoiding contact with contaminated water and using snail-killing agents to reduce the number of intermediate hosts.

There are two main forms of TB:

1. Active TB: This is the form of the disease where the bacteria are actively growing and causing symptoms such as coughing, fever, chest pain, and fatigue. Active TB can be contagious and can spread to others if not treated properly.
2. Latent TB: This is the form of the disease where the bacteria are present in the body but are not actively growing or causing symptoms. People with latent TB do not feel sick and are not contagious, but they can still become sick with active TB if their immune system is weakened.

TB is a major public health concern, especially in developing countries where access to healthcare may be limited. The disease is diagnosed through a combination of physical examination, medical imaging, and laboratory tests such as skin tests or blood tests. Treatment for TB typically involves a course of antibiotics, which can be effective in curing the disease if taken properly. However, drug-resistant forms of TB have emerged in some parts of the world, making treatment more challenging.

Preventive measures against TB include:

1. Vaccination with BCG (Bacille Calmette-Guérin) vaccine, which can provide some protection against severe forms of the disease but not against latent TB.
2. Avoiding close contact with people who have active TB, especially if they are coughing or sneezing.
3. Practicing good hygiene, such as covering one's mouth when coughing or sneezing and regularly washing hands.
4. Getting regular screenings for TB if you are in a high-risk group, such as healthcare workers or people with weakened immune systems.
5. Avoiding sharing personal items such as towels, utensils, or drinking glasses with people who have active TB.

Overall, while TB is a serious disease that can be challenging to treat and prevent, with the right measures in place, it is possible to reduce its impact on public health and improve outcomes for those affected by the disease.

Examples and Observations:

1. Gastric metaplasia: This is a condition where the stomach lining is replaced by cells that are similar to those found in the esophagus. This can occur as a result of chronic acid reflux, leading to an increased risk of developing esophageal cancer.
2. Bronchial metaplasia: This is a condition where the airways in the lungs are replaced by cells that are similar to those found in the trachea. This can occur as a result of chronic inflammation, leading to an increased risk of developing lung cancer.
3. Pancreatic metaplasia: This is a condition where the pancreas is replaced by cells that are similar to those found in the ducts of the pancreas. This can occur as a result of chronic inflammation, leading to an increased risk of developing pancreatic cancer.
4. Breast metaplasia: This is a condition where the breast tissue is replaced by cells that are similar to those found in the salivary glands. This can occur as a result of chronic inflammation, leading to an increased risk of developing salivary gland cancer.

Etiology and Pathophysiology:

Metaplasia is thought to be caused by chronic inflammation, which can lead to the replacement of one type of cell or tissue with another. This can occur as a result of a variety of factors, including infection, injury, or exposure to carcinogens. Once the metaplastic changes have occurred, there is an increased risk of developing cancer if the underlying cause is not addressed.

Clinical Presentation:

Patients with metaplasia may present with a variety of symptoms, depending on the location and extent of the condition. These can include pain, difficulty swallowing or breathing, coughing up blood, and weight loss. In some cases, patients may be asymptomatic and the condition may be detected incidentally during diagnostic testing for another condition.

Diagnosis:

The diagnosis of metaplasia is typically made based on a combination of clinical findings, radiologic imaging (such as CT scans or endoscopies), and histopathological examination of biopsy specimens. Imaging studies can help to identify the location and extent of the metaplastic changes, while histopathology can confirm the presence of the metaplastic cells and rule out other potential diagnoses.

Treatment:

Treatment for metaplasia depends on the underlying cause and the severity of the condition. In some cases, treatment may involve addressing the underlying cause, such as removing a tumor or treating an infection. In other cases, treatment may be directed at managing symptoms and preventing complications. This can include medications to reduce inflammation and pain, as well as surgery to remove affected tissue.

Prognosis:

The prognosis for metaplasia varies depending on the underlying cause and the severity of the condition. In general, the prognosis is good for patients with benign metaplastic changes, while those with malignant changes may have a poorer prognosis if the cancer is not treated promptly and effectively.

Complications:

Metaplasia can lead to a number of complications, including:

1. Cancer: Metaplastic changes can sometimes progress to cancer, which can be life-threatening.
2. Obstruction: The growth of metaplastic cells can block the normal functioning of the organ or gland, leading to obstruction and potentially life-threatening complications.
3. Inflammation: Metaplasia can lead to chronic inflammation, which can cause scarring and further damage to the affected tissue.
4. Bleeding: Metaplastic changes can increase the risk of bleeding, particularly if they occur in the digestive tract or other organs.

Example sentence: The patient was diagnosed with experimental sarcoma and underwent a novel chemotherapy regimen that included a targeted therapy drug.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

1. Tumor size and location: Larger tumors that have spread to nearby tissues or organs are generally considered more invasive than smaller tumors that are confined to the original site.
2. Cellular growth patterns: The way in which cancer cells grow and divide can also contribute to the overall invasiveness of a neoplasm. For example, cells that grow in a disorganized or chaotic manner may be more likely to invade surrounding tissues.
3. Mitotic index: The mitotic index is a measure of how quickly the cancer cells are dividing. A higher mitotic index is generally associated with more aggressive and invasive cancers.
4. Necrosis: Necrosis, or the death of cells, can be an indication of the level of invasiveness of a neoplasm. The presence of significant necrosis in a tumor is often a sign that the cancer has invaded surrounding tissues and organs.
5. Lymphovascular invasion: Cancer cells that have invaded lymphatic vessels or blood vessels are considered more invasive than those that have not.
6. Perineural invasion: Cancer cells that have invaded nerve fibers are also considered more invasive.
7. Histological grade: The histological grade of a neoplasm is a measure of how abnormal the cancer cells look under a microscope. Higher-grade cancers are generally considered more aggressive and invasive than lower-grade cancers.
8. Immunohistochemical markers: Certain immunohistochemical markers, such as Ki-67, can be used to evaluate the proliferative activity of cancer cells. Higher levels of these markers are generally associated with more aggressive and invasive cancers.

Overall, the degree of neoplasm invasiveness is an important factor in determining the likelihood of the cancer spreading to other parts of the body (metastasizing) and in determining the appropriate treatment strategy for the patient.

Leprosy can cause a range of symptoms, including:

1. Skin lesions: Leprosy can cause skin lesions, including lighter or darker patches on the skin, and thickening of the skin.
2. Nerve damage: The bacteria can damage the nerves, leading to numbness, pain, and muscle weakness.
3. Eye problems: Leprosy can cause eye inflammation, vision loss, and dryness of the eyes.
4. Respiratory problems: In severe cases, leprosy can cause breathing difficulties and respiratory failure.
5. Enlarged lymph nodes: The lymph nodes may become enlarged in some cases.
6. Joint pain and swelling: Leprosy can cause joint pain and swelling.
7. Neuritis: Inflammation of the nerves can occur, leading to pain, numbness, and tingling sensations.
8. Ulcers: Leprosy can cause ulcers on the skin and mucous membranes.

Leprosy is diagnosed through a combination of physical examination, laboratory tests, and medical imaging. Treatment typically involves a combination of antibiotics and other medications to manage symptoms. In some cases, surgery may be necessary to remove infected tissue or repair damaged nerves.

Leprosy can be transmitted through respiratory droplets, close contact with an infected person, or through contaminated objects such as clothing or bedding. However, leprosy is not highly contagious and the risk of transmission is low if proper precautions are taken.

While there is no cure for leprosy, early diagnosis and treatment can prevent complications and disability. However, due to the stigma surrounding the disease, many people may delay seeking medical attention, leading to a higher risk of long-term complications.

Overall, while leprosy is a serious disease, it is also a preventable and treatable one. With proper awareness and education, we can work towards reducing the stigma surrounding leprosy and ensuring that those affected receive the medical attention they need.

There are several types of disease susceptibility, including:

1. Genetic predisposition: This refers to the inherent tendency of an individual to develop a particular disease due to their genetic makeup. For example, some families may have a higher risk of developing certain diseases such as cancer or heart disease due to inherited genetic mutations.
2. Environmental susceptibility: This refers to the increased risk of developing a disease due to exposure to environmental factors such as pollutants, toxins, or infectious agents. For example, someone who lives in an area with high levels of air pollution may be more susceptible to developing respiratory problems.
3. Lifestyle susceptibility: This refers to the increased risk of developing a disease due to unhealthy lifestyle choices such as smoking, lack of exercise, or poor diet. For example, someone who smokes and is overweight may be more susceptible to developing heart disease or lung cancer.
4. Immune system susceptibility: This refers to the increased risk of developing a disease due to an impaired immune system. For example, people with autoimmune disorders such as HIV/AIDS or rheumatoid arthritis may be more susceptible to opportunistic infections.

Understanding disease susceptibility can help healthcare providers identify individuals who are at risk of developing certain diseases and provide preventive measures or early intervention to reduce the risk of disease progression. Additionally, genetic testing can help identify individuals with a high risk of developing certain diseases, allowing for earlier diagnosis and treatment.

In summary, disease susceptibility refers to the predisposition of an individual to develop a particular disease or condition due to various factors such as genetics, environment, lifestyle choices, and immune system function. Understanding disease susceptibility can help healthcare providers identify individuals at risk and provide appropriate preventive measures or early intervention to reduce the risk of disease progression.

There are several types of stomach neoplasms, including:

1. Adenocarcinoma: This is the most common type of stomach cancer, accounting for approximately 90% of all cases. It begins in the glandular cells that line the stomach and can spread to other parts of the body.
2. Squamous cell carcinoma: This type of cancer begins in the squamous cells that cover the outer layer of the stomach. It is less common than adenocarcinoma but more likely to be found in the upper part of the stomach.
3. Gastric mixed adenocarcinomasquamous cell carcinoma: This type of cancer is a combination of adenocarcinoma and squamous cell carcinoma.
4. Lymphoma: This is a cancer of the immune system that can occur in the stomach. It is less common than other types of stomach cancer but can be more aggressive.
5. Carcinomas of the stomach: These are malignant tumors that arise from the epithelial cells lining the stomach. They can be subdivided into adenocarcinoma, squamous cell carcinoma, and others.
6. Gastric brunner's gland adenoma: This is a rare type of benign tumor that arises from the Brunner's glands in the stomach.
7. Gastric polyps: These are growths that occur on the lining of the stomach and can be either benign or malignant.

The symptoms of stomach neoplasms vary depending on the location, size, and type of tumor. Common symptoms include abdominal pain, nausea, vomiting, weight loss, and difficulty swallowing. Diagnosis is usually made through a combination of endoscopy, imaging studies (such as CT or PET scans), and biopsy. Treatment depends on the type and stage of the tumor and may include surgery, chemotherapy, radiation therapy, or a combination of these. The prognosis for stomach neoplasms varies depending on the type and stage of the tumor, but early detection and treatment can improve outcomes.

Pancreatic adenocarcinoma is the most common type of malignant pancreatic neoplasm and accounts for approximately 85% of all pancreatic cancers. It originates in the glandular tissue of the pancreas and has a poor prognosis, with a five-year survival rate of less than 10%.

Pancreatic neuroendocrine tumors (PNETs) are less common but more treatable than pancreatic adenocarcinoma. These tumors originate in the hormone-producing cells of the pancreas and can produce excess hormones that cause a variety of symptoms, such as diabetes or high blood sugar. PNETs are classified into two main types: functional and non-functional. Functional PNETs produce excess hormones and are more aggressive than non-functional tumors.

Other rare types of pancreatic neoplasms include acinar cell carcinoma, ampullary cancer, and oncocytic pancreatic neuroendocrine tumors. These tumors are less common than pancreatic adenocarcinoma and PNETs but can be equally aggressive and difficult to treat.

The symptoms of pancreatic neoplasms vary depending on the type and location of the tumor, but they often include abdominal pain, weight loss, jaundice, and fatigue. Diagnosis is typically made through a combination of imaging tests such as CT scans, endoscopic ultrasound, and biopsy. Treatment options for pancreatic neoplasms depend on the type and stage of the tumor but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Prognosis for patients with pancreatic neoplasms is generally poor, especially for those with advanced stages of disease. However, early detection and treatment can improve survival rates. Research into the causes and mechanisms of pancreatic neoplasms is ongoing, with a focus on developing new and more effective treatments for these devastating diseases.




There are several different types of tumor viruses, including:

1. Human papillomavirus (HPV): This virus is responsible for causing cervical cancer and other types of cancer, such as anal, vulvar, vaginal, and penile cancer.
2. Hepatitis B virus (HBV): This virus can cause liver cancer, known as hepatocellular carcinoma (HCC).
3. Human immunodeficiency virus (HIV): This virus can increase the risk of developing certain types of cancer, such as Kaposi's sarcoma and lymphoma.
4. Epstein-Barr virus (EBV): This virus has been linked to the development of Burkitt lymphoma and Hodgkin's lymphoma.
5. Merkel cell polyomavirus (MCPyV): This virus is responsible for causing Merkel cell carcinoma, a rare type of skin cancer.
6. Human T-lymphotropic virus (HTLV-1): This virus has been linked to the development of adult T-cell leukemia/lymphoma (ATLL).

Tumor virus infections can be diagnosed through a variety of methods, including blood tests, imaging studies, and biopsies. Treatment for these infections often involves antiviral medications, chemotherapy, and surgery. In some cases, tumors may also be removed through radiation therapy.

It's important to note that not all tumors or cancers are caused by viruses, and that many other factors, such as genetics and environmental exposures, can also play a role in the development of cancer. However, for those tumor virus infections that are caused by a specific virus, early diagnosis and treatment can improve outcomes and reduce the risk of complications.

Overall, tumor virus infections are a complex and diverse group of conditions, and further research is needed to better understand their causes and develop effective treatments.

There are several symptoms of RA, including:

1. Joint pain and stiffness, especially in the hands and feet
2. Swollen and warm joints
3. Redness and tenderness in the affected areas
4. Fatigue, fever, and loss of appetite
5. Loss of range of motion in the affected joints
6. Firm bumps of tissue under the skin (rheumatoid nodules)

RA can be diagnosed through a combination of physical examination, medical history, blood tests, and imaging studies such as X-rays or ultrasound. Treatment typically involves a combination of medications, including nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic agents. Lifestyle modifications such as exercise and physical therapy can also be helpful in managing symptoms and improving quality of life.

There is no cure for RA, but early diagnosis and aggressive treatment can help to slow the progression of the disease and reduce symptoms. With proper management, many people with RA are able to lead active and fulfilling lives.

There are several types of osteosarcomas, including:

1. High-grade osteosarcoma: This is the most common type of osteosarcoma and tends to grow quickly.
2. Low-grade osteosarcoma: This type of osteosarcoma grows more slowly than high-grade osteosarcoma.
3. Chondrosarcoma: This is a type of osteosarcoma that arises in the cartilage cells of the bone.
4. Ewing's family of tumors: These are rare types of osteosarcoma that can occur in any bone of the body.

The exact cause of osteosarcoma is not known, but certain risk factors may increase the likelihood of developing the disease. These include:

1. Previous radiation exposure
2. Paget's disease of bone
3. Li-Fraumeni syndrome (a genetic disorder that increases the risk of certain types of cancer)
4. Familial retinoblastoma (a rare inherited condition)
5. Exposure to certain chemicals, such as herbicides and industrial chemicals.

Symptoms of osteosarcoma may include:

1. Pain in the affected bone, which may be worse at night or with activity
2. Swelling and redness around the affected area
3. Limited mobility or stiffness in the affected limb
4. A visible lump or mass on the affected bone
5. Fractures or breaks in the affected bone

If osteosarcoma is suspected, a doctor may perform several tests to confirm the diagnosis and determine the extent of the disease. These may include:

1. Imaging studies, such as X-rays, CT scans, or MRI scans
2. Biopsy, in which a sample of tissue is removed from the affected bone and examined under a microscope for cancer cells
3. Blood tests to check for elevated levels of certain enzymes that are produced by osteosarcoma cells
4. Bone scans to look for areas of increased activity or metabolism in the bones.

The disease is typically induced in laboratory animals such as mice or rats by immunizing them with myelin proteins, such as myelin basic protein (MBP) or proteolipid protein (PLP), emulsified in adjuvants. The resulting immune response leads to the production of autoantibodies and activated T cells that cross the blood-brain barrier and attack the CNS.

EAE is used as a model for MS because it shares many similarities with the human disease, including:

1. Demyelination: EAE induces demyelination of nerve fibers in the CNS, which is also a hallmark of MS.
2. Autoimmune response: The immune response in EAE is triggered by autoantigens, similar to MS.
3. Chronic course: EAE is a chronic disease with recurrent relapses, similar to MS.
4. Lesion distribution: EAE lesions are distributed throughout the CNS, including the cerebral cortex, cerebellum, brainstem, and spinal cord, which is also true for MS.

EAE has been used extensively in the study of MS to investigate the immunopathogenesis of the disease, to develop new diagnostic markers and treatments, and to test the efficacy of potential therapeutic agents.

Plasmacytoma is a type of plasma cell dyscrasia, which is a group of diseases that affect the production and function of plasma cells. Plasma cells are a type of white blood cell that produces antibodies to fight infections. In plasmacytoma, the abnormal plasma cells grow and multiply out of control, leading to a tumor.

There are several subtypes of plasmacytoma, including:

* solitary plasmacytoma: A single tumor that occurs in one location.
* multiple myeloma: A type of cancer that affects the bones and is characterized by an overgrowth of malignant plasma cells in the bone marrow.
* extramedullary plasmacytoma: A tumor that occurs outside of the bone marrow, such as in soft tissue or organs.

Plasmacytoma is usually diagnosed through a combination of physical examination, imaging tests such as X-rays or CT scans, and biopsy. Treatment typically involves chemotherapy and/or radiation therapy to destroy the abnormal cells. In some cases, surgery may be necessary to remove the tumor.

Plasmacytoma is a relatively rare cancer, but it can be aggressive and potentially life-threatening if left untreated. It is important for patients with symptoms of plasmacytoma to seek medical attention as soon as possible to receive an accurate diagnosis and appropriate treatment.

The symptoms of toxoplasmosis can vary depending on the severity of the infection and the individual's overall health. In some cases, it may cause mild flu-like symptoms or no symptoms at all. However, in severe cases, it can lead to complications such as brain inflammation, eye infections, and pneumonia.

Toxoplasmosis is a significant public health concern due to its potential to affect anyone and its ability to cause serious complications, especially in certain populations such as pregnant women, people with weakened immune systems, and the elderly. It is important for individuals who may be at risk of contracting the disease to take preventive measures such as avoiding undercooked meat, washing hands frequently, and avoiding contact with cat feces.

Diagnosis of toxoplasmosis typically involves a combination of physical examination, laboratory tests, and imaging studies. Laboratory tests may include blood tests or polymerase chain reaction (PCR) to detect the parasite's DNA in the body. Imaging studies such as ultrasound or computerized tomography (CT) scans may be used to evaluate any complications of the disease.

Treatment for toxoplasmosis typically involves antibiotics to control the infection and manage symptoms. In severe cases, hospitalization may be necessary to monitor and treat any complications. Prevention is key to avoiding this disease, as there is no vaccine available to protect against it.

Examples of 'Mammary Neoplasms, Experimental' in a sentence:

1. The researchers studied the effects of hormone therapy on mammary neoplasms in experimental animals to better understand its potential role in human breast cancer.
2. The lab used mice with genetic mutations that predispose them to developing mammary neoplasms to test the efficacy of new cancer drugs.
3. In order to investigate the link between obesity and breast cancer, the researchers conducted experiments on mammary neoplasms in rats with diet-induced obesity.

A disease that affects pigs, including viral, bacterial, and parasitic infections, as well as genetic disorders and nutritional deficiencies. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): A highly contagious viral disease that can cause reproductive failure, respiratory problems, and death.
2. Swine Influenza: A viral infection similar to human influenza, which can cause fever, coughing, and pneumonia in pigs.
3. Erysipelas: A bacterial infection that causes high fever, loss of appetite, and skin lesions in pigs.
4. Actinobacillosis: A bacterial infection that can cause pneumonia, arthritis, and abscesses in pigs.
5. Parasitic infections: Such as gastrointestinal parasites like roundworms and tapeworms, which can cause diarrhea, anemia, and weight loss in pigs.
6. Scrapie: A degenerative neurological disorder that affects pigs and other animals, causing confusion, aggression, and eventually death.
7. Nutritional deficiencies: Such as a lack of vitamin E or selenium, which can cause a range of health problems in pigs, including muscular dystrophy and anemia.
8. Genetic disorders: Such as achondroplasia, a condition that causes dwarfism and deformities in pigs.
9. Environmental diseases: Such as heat stress, which can cause a range of health problems in pigs, including respiratory distress and death.

It's important to note that many swine diseases have similar symptoms, making accurate diagnosis by a veterinarian essential for effective treatment and control.

Psoriasis can affect any part of the body, including the scalp, elbows, knees, and lower back. The symptoms of psoriasis can vary in severity, and the condition can have a significant impact on quality of life. In addition to physical discomfort, psoriasis can also cause emotional distress and stigma.

There is no cure for psoriasis, but there are several treatment options available, including topical creams and ointments, light therapy, and systemic medications such as biologic drugs. With proper treatment, many people with psoriasis are able to manage their symptoms and improve their quality of life.

Psoriasis is relatively common, affecting approximately 2-3% of the global population, with a higher prevalence in Caucasians than in other races. It can occur at any age, but typically starts in the late teenage years or early adulthood. Psoriasis is often associated with other health conditions, such as diabetes, heart disease, and depression.

Overall, psoriasis is a complex and multifactorial condition that requires a comprehensive approach to management, including both physical and emotional support. With appropriate treatment and self-care, people with psoriasis can lead full and active lives.

Falciparum malaria can cause a range of symptoms, including fever, chills, headache, muscle and joint pain, fatigue, nausea, and vomiting. In severe cases, the disease can lead to anemia, organ failure, and death.

Diagnosis of falciparum malaria typically involves a physical examination, medical history, and laboratory tests to detect the presence of parasites in the blood or other bodily fluids. Treatment usually involves the use of antimalarial drugs, such as artemisinin-based combination therapies (ACTs) or quinine, which can effectively cure the disease if administered promptly.

Prevention of falciparum malaria is critical to reducing the risk of infection, and this includes the use of insecticide-treated bed nets, indoor residual spraying (IRS), and preventive medications for travelers to high-risk areas. Eliminating standing water around homes and communities can also help reduce the number of mosquitoes and the spread of the disease.

In summary, falciparum malaria is a severe and life-threatening form of malaria caused by the Plasmodium falciparum parasite, which is responsible for the majority of malaria-related deaths worldwide. Prompt diagnosis and treatment are essential to prevent complications and death from this disease. Prevention measures include the use of bed nets, indoor spraying, and preventive medications, as well as reducing standing water around homes and communities.

Thymoma can be broadly classified into two main types:

1. Benign thymoma: This type of thymoma is non-cancerous and does not spread to other parts of the body. It is usually small in size and may not cause any symptoms.
2. Malignant thymoma: This type of thymoma is cancerous and can spread to other parts of the body, including the lungs, liver, and bone marrow. Malignant thymomas are more aggressive than benign thymomas and can be life-threatening if not treated promptly.

The exact cause of thymoma is not known, but it is believed to arise from abnormal cell growth in the thymus gland. Some risk factors that may increase the likelihood of developing thymoma include:

1. Genetic mutations: Certain genetic mutations, such as those affecting the TREX1 gene, can increase the risk of developing thymoma.
2. Radiation exposure: Exposure to radiation, such as from radiation therapy, may increase the risk of developing thymoma.
3. Thymic hyperplasia: Enlargement of the thymus gland, known as thymic hyperplasia, may increase the risk of developing thymoma.

The symptoms of thymoma can vary depending on the size and location of the tumor. Some common symptoms include:

1. Chest pain or discomfort
2. Shortness of breath
3. Coughing
4. Fatigue
5. Weight loss
6. Fever
7. Night sweats
8. Pain in the arm or shoulder

Thymoma is diagnosed through a combination of imaging tests, such as computed tomography (CT) scans and magnetic resonance imaging (MRI), and biopsy, which involves removing a sample of tissue from the thymus gland for examination under a microscope. Treatment options for thymoma depend on the stage and aggressiveness of the tumor, and may include:

1. Surgery: Removing the tumor through surgery is often the first line of treatment for thymoma.
2. Radiation therapy: High-energy beams can be used to kill cancer cells and shrink the tumor.
3. Chemotherapy: Drugs can be used to kill cancer cells and shrink the tumor.
4. Targeted therapy: Drugs that target specific molecules involved in the growth and spread of cancer cells can be used to treat thymoma.
5. Immunotherapy: Treatments that use the body's immune system to fight cancer, such as checkpoint inhibitors, can be effective for some people with thymoma.

Overall, the prognosis for thymoma is generally good, with a 5-year survival rate of about 70% for people with localized disease. However, the prognosis can vary depending on the stage and aggressiveness of the tumor, as well as the effectiveness of treatment.

https://www.medicinenet.com › Medical Dictionary › G

A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.

Genetic Translocation | Definition & Facts | Britannica
https://www.britannica.com › science › Genetic-tr...

Genetic translocation, also called chromosomal translocation, a type of chromosomal aberration in which a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material. Genetic translocations are often found in cancer cells and may play a role in the development and progression of cancer.

Translocation, Genetic | health Encyclopedia - UPMC
https://www.upmc.com › health-library › gene...

A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.

Genetic Translocation | Genetics Home Reference - NIH
https://ghr.nlm.nih.gov › condition › ge...

A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.

In conclusion, Genetic Translocation is an abnormality in the number or arrangement of chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome, resulting in a gain or loss of genetic material that can have significant effects on the individual.

There are several types of hypertrophy, including:

1. Muscle hypertrophy: The enlargement of muscle fibers due to increased protein synthesis and cell growth, often seen in individuals who engage in resistance training exercises.
2. Cardiac hypertrophy: The enlargement of the heart due to an increase in cardiac workload, often seen in individuals with high blood pressure or other cardiovascular conditions.
3. Adipose tissue hypertrophy: The excessive growth of fat cells, often seen in individuals who are obese or have insulin resistance.
4. Neurological hypertrophy: The enlargement of neural structures such as brain or spinal cord due to an increase in the number of neurons or glial cells, often seen in individuals with neurodegenerative diseases such as Alzheimer's or Parkinson's.
5. Hepatic hypertrophy: The enlargement of the liver due to an increase in the number of liver cells, often seen in individuals with liver disease or cirrhosis.
6. Renal hypertrophy: The enlargement of the kidneys due to an increase in blood flow and filtration, often seen in individuals with kidney disease or hypertension.
7. Ovarian hypertrophy: The enlargement of the ovaries due to an increase in the number of follicles or hormonal imbalances, often seen in individuals with polycystic ovary syndrome (PCOS).

Hypertrophy can be diagnosed through various medical tests such as imaging studies (e.g., CT scans, MRI), biopsies, and blood tests. Treatment options for hypertrophy depend on the underlying cause and may include medications, lifestyle changes, and surgery.

In conclusion, hypertrophy is a growth or enlargement of cells, tissues, or organs in response to an excessive stimulus. It can occur in various parts of the body, including the brain, liver, kidneys, heart, muscles, and ovaries. Understanding the underlying causes and diagnosis of hypertrophy is crucial for effective treatment and management of related health conditions.

Some common types of skin diseases include:

1. Acne: a condition characterized by oil clogged pores, pimples, and other blemishes on the skin.
2. Eczema: a chronic inflammatory skin condition that causes dry, itchy, and scaly patches on the skin.
3. Psoriasis: a chronic autoimmune skin condition characterized by red, scaly patches on the skin.
4. Dermatitis: a term used to describe inflammation of the skin, often caused by allergies or irritants.
5. Skin cancer: a type of cancer that affects the skin cells, often caused by exposure to UV radiation from the sun or tanning beds.
6. Melanoma: the most serious type of skin cancer, characterized by a mole that changes in size, shape, or color.
7. Vitiligo: a condition in which white patches develop on the skin due to the loss of pigment-producing cells.
8. Alopecia: a condition characterized by hair loss, often caused by autoimmune disorders or genetics.
9. Nail diseases: conditions that affect the nails, such as fungal infections, brittleness, and thickening.
10. Mucous membrane diseases: conditions that affect the mucous membranes, such as ulcers, inflammation, and cancer.

Skin diseases can be diagnosed through a combination of physical examination, medical history, and diagnostic tests such as biopsies or blood tests. Treatment options vary depending on the specific condition and may include topical creams or ointments, oral medications, light therapy, or surgery.

Preventive measures to reduce the risk of skin diseases include protecting the skin from UV radiation, using sunscreen, wearing protective clothing, and avoiding exposure to known allergens or irritants. Early detection and treatment can help prevent complications and improve outcomes for many skin conditions.

There are several different types of malaria, including:

1. Plasmodium falciparum: This is the most severe form of malaria, and it can be fatal if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
2. Plasmodium vivax: This type of malaria is less severe than P. falciparum, but it can still cause serious complications if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
3. Plasmodium ovale: This type of malaria is similar to P. vivax, but it can cause more severe symptoms in some people. It is found primarily in West Africa.
4. Plasmodium malariae: This type of malaria is less common than the other three types, and it tends to cause milder symptoms. It is found primarily in parts of Africa and Asia.

The symptoms of malaria can vary depending on the type of parasite that is causing the infection, but they typically include:

1. Fever
2. Chills
3. Headache
4. Muscle and joint pain
5. Fatigue
6. Nausea and vomiting
7. Diarrhea
8. Anemia (low red blood cell count)

If malaria is not treated promptly, it can lead to more severe complications, such as:

1. Seizures
2. Coma
3. Respiratory failure
4. Kidney failure
5. Liver failure
6. Anemia (low red blood cell count)

Malaria is typically diagnosed through a combination of physical examination, medical history, and laboratory tests, such as blood smears or polymerase chain reaction (PCR) tests. Treatment for malaria typically involves the use of antimalarial drugs, such as chloroquine or artemisinin-based combination therapies. In severe cases, hospitalization may be necessary to manage complications and provide supportive care.

Prevention is an important aspect of managing malaria, and this can include:

1. Using insecticide-treated bed nets
2. Wearing protective clothing and applying insect repellent when outdoors
3. Eliminating standing water around homes and communities to reduce the number of mosquito breeding sites
4. Using indoor residual spraying (IRS) or insecticide-treated wall lining to kill mosquitoes
5. Implementing malaria control measures in areas where malaria is common, such as distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)
6. Improving access to healthcare services, particularly in rural and remote areas
7. Providing education and awareness about malaria prevention and control
8. Encouraging the use of preventive medications, such as intermittent preventive treatment (IPT) for pregnant women and children under the age of five.

Early diagnosis and prompt treatment are critical in preventing the progression of malaria and reducing the risk of complications and death. In areas where malaria is common, it is essential to have access to reliable diagnostic tools and effective antimalarial drugs.

There are several subtypes of carcinoma, including:

1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.

The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:

* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding

The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.

In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.

References:

1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from

1. Bubonic plague: This is the most common form of the disease and is characterized by the development of swollen and painful lymph nodes (called buboes) in the groin, armpits, or neck.
2. Pneumonic plague: This form of the disease affects the lungs and can be transmitted from person to person through respiratory droplets. It is highly contagious and can be fatal if left untreated.
3. Septicemic plague: This form of the disease occurs when the bacteria enter the bloodstream directly, without going through the lymph nodes or lungs. It can cause fever, chills, abdominal pain, and bleeding into the skin and organs.

Plague has a long history of being a major public health threat, with pandemics occurring in the Middle Ages and other times throughout history. In modern times, plague is still present in some parts of the world, particularly in rural areas of the western United States and in parts of Africa and Asia.

Treatment of plague typically involves antibiotics, which can be effective if started early in the course of the illness. However, resistance to these antibiotics has been a growing concern in recent years, making it increasingly difficult to treat the disease effectively.

Prevention of plague primarily involves controlling the population of infected fleas and other vectors, as well as avoiding contact with infected animals or people. This can be achieved through measures such as using insecticides, wearing protective clothing and gear, and practicing good hygiene. Vaccines are also available for some forms of the disease, but they are not widely used due to their limited effectiveness and the availability of other treatment options.

Overall, plague is a serious and potentially deadly disease that requires prompt medical attention if symptoms persist or worsen over time. While treatment options exist, prevention is key to avoiding infection and controlling the spread of the disease.

Multiple myeloma is the second most common type of hematologic cancer after non-Hodgkin's lymphoma, accounting for approximately 1% of all cancer deaths worldwide. It is more common in older adults, with most patients being diagnosed over the age of 65.

The exact cause of multiple myeloma is not known, but it is believed to be linked to genetic mutations that occur in the plasma cells. There are several risk factors that have been associated with an increased risk of developing multiple myeloma, including:

1. Family history: Having a family history of multiple myeloma or other plasma cell disorders increases the risk of developing the disease.
2. Age: The risk of developing multiple myeloma increases with age, with most patients being diagnosed over the age of 65.
3. Race: African Americans are at higher risk of developing multiple myeloma than other races.
4. Obesity: Being overweight or obese may increase the risk of developing multiple myeloma.
5. Exposure to certain chemicals: Exposure to certain chemicals such as pesticides, solvents, and heavy metals has been linked to an increased risk of developing multiple myeloma.

The symptoms of multiple myeloma can vary depending on the severity of the disease and the organs affected. Common symptoms include:

1. Bone pain: Pain in the bones, particularly in the spine, ribs, or long bones, is a common symptom of multiple myeloma.
2. Fatigue: Feeling tired or weak is another common symptom of the disease.
3. Infections: Patients with multiple myeloma may be more susceptible to infections due to the impaired functioning of their immune system.
4. Bone fractures: Weakened bones can lead to an increased risk of fractures, particularly in the spine, hips, or ribs.
5. Kidney problems: Multiple myeloma can cause damage to the kidneys, leading to problems such as kidney failure or proteinuria (excess protein in the urine).
6. Anemia: A low red blood cell count can cause anemia, which can lead to fatigue, weakness, and shortness of breath.
7. Increased calcium levels: High levels of calcium in the blood can cause symptoms such as nausea, vomiting, constipation, and confusion.
8. Neurological problems: Multiple myeloma can cause neurological problems such as headaches, numbness or tingling in the arms and legs, and difficulty with coordination and balance.

The diagnosis of multiple myeloma typically involves a combination of physical examination, medical history, and laboratory tests. These may include:

1. Complete blood count (CBC): A CBC can help identify abnormalities in the numbers and characteristics of different types of blood cells, including red blood cells, white blood cells, and platelets.
2. Serum protein electrophoresis (SPEP): This test measures the levels of different proteins in the blood, including immunoglobulins (antibodies) and abnormal proteins produced by myeloma cells.
3. Urine protein electrophoresis (UPEP): This test measures the levels of different proteins in the urine.
4. Immunofixation: This test is used to identify the type of antibody produced by myeloma cells and to rule out other conditions that may cause similar symptoms.
5. Bone marrow biopsy: A bone marrow biopsy involves removing a sample of tissue from the bone marrow for examination under a microscope. This can help confirm the diagnosis of multiple myeloma and determine the extent of the disease.
6. Imaging tests: Imaging tests such as X-rays, CT scans, or MRI scans may be used to assess the extent of bone damage or other complications of multiple myeloma.
7. Genetic testing: Genetic testing may be used to identify specific genetic abnormalities that are associated with multiple myeloma and to monitor the response of the disease to treatment.

It's important to note that not all patients with MGUS or smoldering myeloma will develop multiple myeloma, and some patients with multiple myeloma may not have any symptoms at all. However, if you are experiencing any of the symptoms listed above or have a family history of multiple myeloma, it's important to talk to your doctor about your risk and any tests that may be appropriate for you.

There are three main forms of anthrax:

1. Cutaneous (skin) anthrax: This is the most common form of the disease and causes skin lesions that can progress to severe inflammation and scarring.
2. Inhalational (lung) anthrax: This is the most deadly form of the disease and causes serious respiratory problems, including fever, chills, and difficulty breathing.
3. Gastrointestinal (GI) anthrax: This form of the disease causes symptoms such as diarrhea, abdominal pain, and vomiting.

Anthrax can be diagnosed through a variety of tests, including blood tests and imaging studies. Treatment typically involves antibiotics, but the effectiveness of treatment depends on the severity of the infection and the timing of treatment.

Prevention of anthrax primarily involves vaccination of animals and control of animal products to prevent the spread of the bacteria. In addition, public health measures such as surveillance and quarantine can help prevent the spread of the disease to humans.

The medical management of anthrax involves a combination of antibiotics, supportive care, and wound management. Early diagnosis and treatment are critical to preventing serious complications and death.

Some common types of bone neoplasms include:

* Osteochondromas: These are benign tumors that grow on the surface of a bone.
* Giant cell tumors: These are benign tumors that can occur in any bone of the body.
* Chondromyxoid fibromas: These are rare, benign tumors that develop in the cartilage of a bone.
* Ewing's sarcoma: This is a malignant tumor that usually occurs in the long bones of the arms and legs.
* Multiple myeloma: This is a type of cancer that affects the plasma cells in the bone marrow.

Symptoms of bone neoplasms can include pain, swelling, or deformity of the affected bone, as well as weakness or fatigue. Treatment options depend on the type and location of the tumor, as well as the severity of the symptoms. Treatment may involve surgery, radiation therapy, chemotherapy, or a combination of these.

The symptoms of MM can vary depending on the severity of the disease and may include fever, night sweats, fatigue, weight loss, bone pain, and an enlarged spleen. The diagnosis of MM is typically made by a combination of physical examination, medical history, and laboratory tests, such as blood counts and bone marrow biopsy.

Treatment options for MM include chemotherapy, targeted therapy, and bone marrow transplantation. The prognosis for MM is generally poor, with a five-year survival rate of less than 50%. However, the outlook can vary depending on factors such as the patient's age and overall health, the severity of the disease, and the response to treatment.

In summary, myelomonocytic leukemia is a rare and aggressive form of cancer that affects the myeloid cells in the bone marrow. The symptoms can vary depending on the severity of the disease, and the diagnosis is typically made by laboratory tests. Treatment options include chemotherapy, targeted therapy, and bone marrow transplantation, and the prognosis can vary depending on several factors.

A thymus neoplasm is a type of cancer that originates in the thymus gland, which is located in the chest behind the sternum and is responsible for the development and maturation of T-lymphocytes (T-cells) of the immune system.

Types of Thymus Neoplasms

There are several types of thymus neoplasms, including:

1. Thymoma: A slow-growing tumor that is usually benign but can sometimes be malignant.
2. Thymic carcinoma: A more aggressive type of cancer that is less common than thymoma.
3. Thymic lymphoma: A type of cancer that arises from the T-cells in the thymus gland and can be either B-cell or T-cell derived.

Symptoms of Thymus Neoplasms

The symptoms of thymus neoplasms can vary depending on the location and size of the tumor, but they may include:

1. Chest pain or discomfort
2. Coughing or shortness of breath
3. Fatigue or fever
4. Swelling in the neck or face
5. Weight loss or loss of appetite

Diagnosis of Thymus Neoplasms

The diagnosis of a thymus neoplasm typically involves a combination of imaging tests such as chest X-rays, computed tomography (CT) scans, and positron emission tomography (PET) scans, as well as a biopsy to confirm the presence of cancer cells.

Treatment of Thymus Neoplasms

The treatment of thymus neoplasms depends on the type and stage of the cancer, but may include:

1. Surgery to remove the tumor
2. Radiation therapy to kill any remaining cancer cells
3. Chemotherapy to destroy cancer cells
4. Targeted therapy to specific molecules involved in the growth and progression of the cancer.

Prognosis of Thymus Neoplasms

The prognosis for thymus neoplasms depends on the type and stage of the cancer at the time of diagnosis. In general, the earlier the cancer is detected and treated, the better the prognosis.

Prevention of Thymus Neoplasms

There is no known way to prevent thymus neoplasms, as they are rare and can occur in people of all ages. However, early detection and treatment of the cancer can improve the chances of a successful outcome.

Current Research on Thymus Neoplasms

Researchers are currently studying new treatments for thymus neoplasms, such as targeted therapies and immunotherapy, which use the body's own immune system to fight cancer. Additionally, researchers are working to develop better diagnostic tests to detect thymus neoplasms at an earlier stage, when they are more treatable.

Conclusion

Thymus neoplasms are rare and complex cancers that require specialized care and treatment. While the prognosis for these cancers can be challenging, advances in diagnosis and treatment have improved outcomes for many patients. Researchers continue to study new treatments and diagnostic tools to improve the chances of a successful outcome for those affected by thymus neoplasms.

The symptoms of retinoblastoma can vary depending on the location and size of the tumor, but may include:

* A white or colored mass in one eye
* Redness or swelling of the eye
* Sensitivity to light
* Blurred vision or vision loss
* Crossed eyes (strabismus)
* Eye pain or discomfort

Retinoblastoma is usually diagnosed with a combination of physical examination, imaging tests such as ultrasound and MRI, and genetic testing. Treatment options depend on the stage and location of the tumor, but may include:

* Chemotherapy to shrink the tumor before surgery
* Surgery to remove the tumor and/or the affected eye (enucleation)
* Radiation therapy to kill any remaining cancer cells
* Targeted therapy with drugs that specifically target cancer cells

The prognosis for retinoblastoma depends on the stage of the disease at diagnosis. If the tumor is confined to one eye and has not spread to other parts of the body, the 5-year survival rate is high (around 90%). However, if the tumor has spread to other parts of the body (known as metastatic retinoblastoma), the prognosis is much poorer.

Retinoblastoma can be inherited in an autosomal dominant pattern, meaning that a single copy of the mutated RB1 gene is enough to cause the condition. Families with a history of retinoblastoma may undergo genetic testing and counseling to determine their risk of developing the disease.

Polyploidy is a condition where an organism has more than two sets of chromosomes, which are the thread-like structures that carry genetic information. It can occur in both plants and animals, although it is relatively rare in most species. In humans, polyploidy is extremely rare and usually occurs as a result of errors during cell division or abnormal fertilization.

In medicine, polyploidy is often used to describe certain types of cancer, such as breast cancer or colon cancer, that have extra sets of chromosomes. This can lead to the development of more aggressive and difficult-to-treat tumors.

However, not all cases of polyploidy are cancerous. Some individuals with Down syndrome, for example, have an extra copy of chromosome 21, which is a non-cancerous form of polyploidy. Additionally, some people may be born with extra copies of certain genes or chromosomal regions due to errors during embryonic development, which can lead to various health problems but are not cancerous.

Overall, the term "polyploidy" in medicine is used to describe any condition where an organism has more than two sets of chromosomes, regardless of whether it is cancerous or non-cancerous.

There are several types of gliomas, including:

1. Astrocytoma: This is the most common type of glioma, accounting for about 50% of all cases. It arises from the star-shaped cells called astrocytes that provide support and nutrients to the brain's nerve cells.
2. Oligodendroglioma: This type of glioma originates from the oligodendrocytes, which are responsible for producing the fatty substance called myelin that insulates the nerve fibers.
3. Glioblastoma (GBM): This is the most aggressive and malignant type of glioma, accounting for about 70% of all cases. It is fast-growing and often spreads to other parts of the brain.
4. Brain stem glioma: This type of glioma arises in the brain stem, which is responsible for controlling many of the body's vital functions such as breathing, heart rate, and blood pressure.

The symptoms of glioma depend on the location and size of the tumor. Common symptoms include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality, memory, or speech.

Gliomas are diagnosed through a combination of imaging tests such as CT or MRI scans, and tissue biopsy to confirm the presence of cancer cells. Treatment options for glioma depend on the type and location of the tumor, as well as the patient's overall health. Surgery is often the first line of treatment to remove as much of the tumor as possible, followed by radiation therapy and/or chemotherapy to kill any remaining cancer cells.

The prognosis for glioma patients varies depending on the type and location of the tumor, as well as the patient's overall health. In general, the prognosis is better for patients with slow-growing, low-grade tumors, while those with fast-growing, high-grade tumors have a poorer prognosis. Overall, the 5-year survival rate for glioma patients is around 30-40%.

Neoplasms, nerve tissue can be caused by a variety of factors, such as genetic mutations, exposure to certain chemicals or radiation, or viral infections. Some common types of neoplasms, nerve tissue include:

1. Neurofibromas: These are benign tumors that grow on the nerve sheath and can cause symptoms such as numbness, weakness, or pain.
2. Schwannomas: These are benign tumors that grow on the covering of the nerves and can cause similar symptoms as neurofibromas.
3. Meningiomas: These are benign tumors that grow on the membranes that cover the brain and spinal cord.
4. Neurilemmomas: These are rare, benign tumors that grow on the covering of the nerves.
5. Malignant peripheral nerve sheath tumors (MPNSTs): These are rare, malignant tumors that can grow on the nerve sheath and can cause symptoms such as pain, weakness, or numbness.
6. Gangliocytomas: These are rare, benign tumors that grow on the nerve cells.
7. Plexiform neurofibromas: These are rare, benign tumors that grow on the nerve cells and can cause symptoms such as pain, weakness, or numbness.

Neoplasms, nerve tissue can be diagnosed through a variety of methods, including imaging tests such as MRI or CT scans, and tissue biopsy. Treatment options depend on the type and location of the tumor, and may include surgery, radiation therapy, or chemotherapy.

The word "osteopetrosis" comes from the Greek words "osteon," meaning bone, and "petros," meaning rock or stone. This name reflects the dense and hard nature of the bones affected by the disorder.

Osteopetrosis can be caused by mutations in several genes that are involved in bone development and growth. The condition is usually inherited in an autosomal dominant pattern, meaning that a single copy of the mutated gene is enough to cause the disorder. However, some cases may be caused by spontaneous mutations or other factors.

Symptoms of osteopetrosis can vary depending on the severity of the disorder and the specific affected bones. Common symptoms include bone pain, limited mobility, and an increased risk of fractures. Other symptoms may include fatigue, fever, and difficulty swallowing or breathing.

Treatment for osteopetrosis usually involves a combination of medications and surgery. Medications such as bisphosphonates and denintuzumab mafodotin can help reduce bone pain and the risk of fractures, while surgery may be necessary to correct deformities or repair broken bones. In some cases, bone marrow transplantation may be recommended to replace damaged bone marrow with healthy cells.

Overall, osteopetrosis is a rare and debilitating disorder that can have a significant impact on quality of life. Early diagnosis and appropriate treatment are important for managing symptoms and preventing complications.

Treatment options include medications such as alpha-blockers and 5-alpha-reductase inhibitors, minimally invasive therapies such as transurethral microwave therapy or laser therapy, and surgical intervention such as a transurethral resection of the prostate (TURP) or robotic-assisted laparoscopic surgery.

There are also lifestyle changes that can help manage Prostatic Hyperplasia, including limiting fluid intake before bedtime, avoiding caffeine and alcohol, and following a healthy diet. It is important to consult with a healthcare professional for proper diagnosis and treatment of this condition.

In simpler terms, Prostatic Hyperplasia is an enlargement of the prostate gland which can cause urinary problems and discomfort. Treatment options include medication, minimally invasive therapies, and surgery, and lifestyle changes can also help manage the condition.

Examples of precancerous conditions include:

1. Dysplasia: This is a condition where abnormal cells are present in the tissue, but have not yet invaded surrounding tissues. Dysplasia can be found in organs such as the cervix, colon, and breast.
2. Carcinoma in situ (CIS): This is a condition where cancer cells are present in the tissue, but have not yet invaded surrounding tissues. CIS is often found in organs such as the breast, prostate, and cervix.
3. Atypical hyperplasia: This is a condition where abnormal cells are present in the tissue, but they are not yet cancerous. Atypical hyperplasia can be found in organs such as the breast and uterus.
4. Lobular carcinoma in situ (LCIS): This is a condition where cancer cells are present in the milk-producing glands of the breasts, but have not yet invaded surrounding tissues. LCIS is often found in both breasts and can increase the risk of developing breast cancer.
5. Adenomas: These are small growths on the surface of the colon that can become malignant over time if left untreated.
6. Leukoplakia: This is a condition where thick, white patches develop on the tongue or inside the mouth. Leukoplakia can be a precancerous condition and may increase the risk of developing oral cancer.
7. Oral subsquamous carcinoma: This is a type of precancerous lesion that develops in the mouth and can progress to squamous cell carcinoma if left untreated.
8. Cervical intraepithelial neoplasia (CIN): This is a condition where abnormal cells are present on the surface of the cervix, but have not yet invaded surrounding tissues. CIN can progress to cancer over time if left untreated.
9. Vulvar intraepithelial neoplasia (VIN): This is a condition where abnormal cells are present on the vulva, but have not yet invaded surrounding tissues. VIN can progress to cancer over time if left untreated.
10. Penile intraepithelial neoplasia (PIN): This is a condition where abnormal cells are present on the penis, but have not yet invaded surrounding tissues. PIN can progress to cancer over time if left untreated.

It is important to note that not all precancerous conditions will develop into cancer, and some may resolve on their own without treatment. However, it is important to follow up with a healthcare provider to monitor any changes and determine the best course of treatment.

Symptoms of Kidney Neoplasms can include blood in the urine, pain in the flank or abdomen, weight loss, fever, and fatigue. Diagnosis is made through a combination of physical examination, imaging studies such as CT scans or ultrasound, and tissue biopsy. Treatment options vary depending on the type and stage of the neoplasm, but may include surgery, ablation therapy, targeted therapy, or chemotherapy.

It is important for individuals with a history of Kidney Neoplasms to follow up with their healthcare provider regularly for monitoring and check-ups to ensure early detection of any recurrences or new tumors.

HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.

There are several ways that HIV can be transmitted, including:

1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)

The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:

1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss

If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:

1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)

HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.

Prevention methods for HIV infection include:

1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.

It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.

Herpesviridae infections are caused by the Herpesviridae family of viruses and can be transmitted through skin-to-skin contact, sexual contact, or from mother to child during pregnancy or childbirth. Symptoms of herpesviridae infections can vary depending on the type of virus and the individual infected, but may include fever, fatigue, muscle aches, and skin sores or rashes.

There is no cure for herpesviridae infections, but antiviral medications can help manage symptoms and reduce the risk of transmission to others. Good hygiene practices, such as washing hands regularly and avoiding close contact with those who are infected, can also help prevent the spread of these viruses.

Some common types of herpesviridae infections include:

* Herpes simplex virus (HSV) - Causes cold sores and genital herpes.
* Varicella-zoster virus (VZV) - Causes chickenpox and shingles.
* Human herpesvirus 8 (HHV-8) - Associated with certain types of cancer, such as Kaposi's sarcoma.

Osteoarthritis (OA) is a degenerative condition that occurs when the cartilage that cushions the joints breaks down over time, causing the bones to rub together. It is the most common form of arthritis and typically affects older adults.

Rheumatoid arthritis (RA) is an autoimmune condition that occurs when the body's immune system attacks the lining of the joints, leading to inflammation and pain. It can affect anyone, regardless of age, and is typically seen in women.

Other types of arthritis include psoriatic arthritis, gouty arthritis, and lupus-related arthritis. Treatment for arthritis depends on the type and severity of the condition, but can include medications such as pain relievers, anti-inflammatory drugs, and disease-modifying anti-rheumatic drugs (DMARDs). Physical therapy and lifestyle changes, such as exercise and weight loss, can also be helpful. In severe cases, surgery may be necessary to repair or replace damaged joints.

Arthritis is a leading cause of disability worldwide, affecting over 50 million adults in the United States alone. It can have a significant impact on a person's quality of life, making everyday activities such as walking, dressing, and grooming difficult and painful. Early diagnosis and treatment are important to help manage symptoms and slow the progression of the disease.

1. Common cold: A viral infection that affects the upper respiratory tract and causes symptoms such as sneezing, running nose, coughing, and mild fever.
2. Influenza (flu): A viral infection that can cause severe respiratory illness, including pneumonia, bronchitis, and sinus and ear infections.
3. Measles: A highly contagious viral infection that causes fever, rashes, coughing, and redness of the eyes.
4. Rubella (German measles): A mild viral infection that can cause fever, rashes, headache, and swollen lymph nodes.
5. Chickenpox: A highly contagious viral infection that causes fever, itching, and a characteristic rash of small blisters on the skin.
6. Herpes simplex virus (HSV): A viral infection that can cause genital herpes, cold sores, or other skin lesions.
7. Human immunodeficiency virus (HIV): A viral infection that attacks the immune system and can lead to acquired immunodeficiency syndrome (AIDS).
8. Hepatitis B: A viral infection that affects the liver, causing inflammation and damage to liver cells.
9. Hepatitis C: Another viral infection that affects the liver, often leading to chronic liver disease and liver cancer.
10. Ebola: A deadly viral infection that causes fever, vomiting, diarrhea, and internal bleeding.
11. SARS (severe acute respiratory syndrome): A viral infection that can cause severe respiratory illness, including pneumonia and respiratory failure.
12. West Nile virus: A viral infection that can cause fever, headache, and muscle pain, as well as more severe symptoms such as meningitis or encephalitis.

Viral infections can be spread through contact with an infected person or contaminated surfaces, objects, or insects such as mosquitoes. Prevention strategies include:

1. Practicing good hygiene, such as washing hands frequently and thoroughly.
2. Avoiding close contact with people who are sick.
3. Covering the mouth and nose when coughing or sneezing.
4. Avoiding sharing personal items such as towels or utensils.
5. Using condoms or other barrier methods during sexual activity.
6. Getting vaccinated against certain viral infections, such as HPV and hepatitis B.
7. Using insect repellents to prevent mosquito bites.
8. Screening blood products and organs for certain viruses before transfusion or transplantation.

Treatment for viral infections depends on the specific virus and the severity of the illness. Antiviral medications may be used to reduce the replication of the virus and alleviate symptoms. In severe cases, hospitalization may be necessary to provide supportive care such as intravenous fluids, oxygen therapy, or mechanical ventilation.

Prevention is key in avoiding viral infections, so taking the necessary precautions and practicing good hygiene can go a long way in protecting oneself and others from these common and potentially debilitating illnesses.

The symptoms of visceral leishmaniasis can vary depending on the severity of the infection, but may include:

* Fever
* Fatigue
* Loss of appetite
* Weight loss
* Enlargement of the liver and spleen
* Pain in the abdomen
* Anemia
* Low blood platelet count
* Low white blood cell count

If left untreated, visceral leishmaniasis can be fatal. Treatment is typically with antiparasitic drugs, such as miltefosine or amphotericin B, and supportive care to manage symptoms and prevent complications.

It is important to note that visceral leishmaniasis is a serious and potentially life-threatening condition, and prompt medical attention is necessary for effective treatment and management.

The symptoms of glomerulonephritis can vary depending on the underlying cause of the disease, but may include:

* Blood in the urine (hematuria)
* Proteinuria (excess protein in the urine)
* Reduced kidney function
* Swelling in the legs and ankles (edema)
* High blood pressure

Glomerulonephritis can be caused by a variety of factors, including:

* Infections such as staphylococcal or streptococcal infections
* Autoimmune disorders such as lupus or rheumatoid arthritis
* Allergic reactions to certain medications
* Genetic defects
* Certain diseases such as diabetes, high blood pressure, and sickle cell anemia

The diagnosis of glomerulonephritis typically involves a physical examination, medical history, and laboratory tests such as urinalysis, blood tests, and kidney biopsy.

Treatment for glomerulonephritis depends on the underlying cause of the disease and may include:

* Antibiotics to treat infections
* Medications to reduce inflammation and swelling
* Diuretics to reduce fluid buildup in the body
* Immunosuppressive medications to suppress the immune system in cases of autoimmune disorders
* Dialysis in severe cases

The prognosis for glomerulonephritis depends on the underlying cause of the disease and the severity of the inflammation. In some cases, the disease may progress to end-stage renal disease, which requires dialysis or a kidney transplant. With proper treatment, however, many people with glomerulonephritis can experience a good outcome and maintain their kidney function over time.

Adenomas are caused by genetic mutations that occur in the DNA of the affected cells. These mutations can be inherited or acquired through exposure to environmental factors such as tobacco smoke, radiation, or certain chemicals.

The symptoms of an adenoma can vary depending on its location and size. In general, they may include abdominal pain, bleeding, or changes in bowel movements. If the adenoma becomes large enough, it can obstruct the normal functioning of the affected organ or cause a blockage that can lead to severe health complications.

Adenomas are usually diagnosed through endoscopy, which involves inserting a flexible tube with a camera into the affected organ to visualize the inside. Biopsies may also be taken to confirm the presence of cancerous cells.

Treatment for adenomas depends on their size, location, and severity. Small, non-pedunculated adenomas can often be removed during endoscopy through a procedure called endoscopic mucosal resection (EMR). Larger adenomas may require surgical resection, and in some cases, chemotherapy or radiation therapy may also be necessary.

In summary, adenoma is a type of benign tumor that can occur in glandular tissue throughout the body. While they are not cancerous, they have the potential to become malignant over time if left untreated. Therefore, it is important to seek medical attention if symptoms persist or worsen over time. Early detection and treatment can help prevent complications and improve outcomes for patients with adenomas.

Definition:
A type of cancer that arises from cells of the neuroendocrine system, which are cells that produce hormones and neurotransmitters. These tumors can occur in various parts of the body, such as the lungs, digestive tract, and pancreas. They tend to grow slowly and can produce excess hormones or neurotransmitters, leading to a variety of symptoms. Carcinoma, neuroendocrine tumors are relatively rare but are becoming more commonly diagnosed.

Synonyms:

* Neuroendocrine carcinoma
* Neuroendocrine tumor
* Carcinoid tumor

Note: The term "carcinoma" refers to a type of cancer that arises from epithelial cells, while the term "neuroendocrine" refers to the fact that these tumors originate in cells of the neuroendocrine system.

Translation:

English: Neuroendocrine carcinoma
German: Neuroendokrines Karzinom
French: Tumeur carcinoïde neuroendocrine
Spanish: Carcinoma neuendocrino
Italian: Carcinoma neuroendocrino

The exact cause of vitiligo is still unknown, but it is believed to involve a combination of genetic and environmental factors. In people with vitiligo, the immune system mistakenly attacks and destroys melanocytes, leading to a loss of skin pigmentation. The disease can also be triggered by physical or emotional stress, sun exposure, and certain medications.

The symptoms of vitiligo can vary in severity and progression. They may include:

1. White patches on the skin, which can appear suddenly or gradually over time.
2. Loss of skin pigmentation in specific areas, such as the face, hands, or limbs.
3. Thinning or loss of hair on affected areas.
4. Premature whitening or graying of the hair.
5. Itching, pain, or sensitivity in the affected areas.
6. Emotional distress and reduced quality of life due to the visible appearance of the disease.

There is no cure for vitiligo, but various treatments can help manage the symptoms and slow down its progression. These may include:

1. Topical corticosteroids to reduce inflammation and suppress the immune system.
2. Topical immunomodulators to suppress the immune system and promote skin repigmentation.
3. Narrowband ultraviolet B (UVB) phototherapy to slow down the progression of the disease and improve skin appearance.
4. Psoralen photochemotherapy to promote skin repigmentation and reduce inflammation.
5. Surgical skin grafting or blister grafting to cover small areas of depigmentation.
6. Camouflage makeup to cover the affected areas and improve self-esteem.

In addition to these treatments, it is essential for patients with vitiligo to protect their skin from the sun by using broad-spectrum sunscreens, wearing protective clothing, and seeking shade when the sun is strongest.

Early diagnosis and appropriate treatment can help improve the quality of life for patients with vitiligo. However, the emotional and psychological impact of the disease should not be underestimated, and patients may require long-term support and counseling to cope with the challenges of living with this condition.

Some common types of streptococcal infections include:

1. Strep throat (pharyngitis): an infection of the throat and tonsils that can cause fever, sore throat, and swollen lymph nodes.
2. Sinusitis: an infection of the sinuses (air-filled cavities in the skull) that can cause headache, facial pain, and nasal congestion.
3. Pneumonia: an infection of the lungs that can cause cough, fever, chills, and shortness of breath.
4. Cellulitis: an infection of the skin and underlying tissue that can cause redness, swelling, and warmth over the affected area.
5. Endocarditis: an infection of the heart valves, which can cause fever, fatigue, and swelling in the legs and abdomen.
6. Meningitis: an infection of the membranes covering the brain and spinal cord that can cause fever, headache, stiff neck, and confusion.
7. Septicemia (blood poisoning): an infection of the bloodstream that can cause fever, chills, rapid heart rate, and low blood pressure.

Streptococcal infections are usually treated with antibiotics, which can help clear the infection and prevent complications. In some cases, hospitalization may be necessary to monitor and treat the infection.

Prevention measures for streptococcal infections include:

1. Good hygiene practices, such as washing hands frequently, especially after contact with someone who is sick.
2. Avoiding close contact with people who have streptococcal infections.
3. Keeping wounds and cuts clean and covered to prevent bacterial entry.
4. Practicing safe sex to prevent the spread of streptococcal infections through sexual contact.
5. Getting vaccinated against streptococcus pneumoniae, which can help prevent pneumonia and other infections caused by this bacterium.

It is important to seek medical attention if you suspect you or someone else may have a streptococcal infection, as early diagnosis and treatment can help prevent complications and improve outcomes.

The symptoms of Chagas disease can vary depending on the severity of the infection and the location of the parasites in the body. In the acute phase, which typically lasts for weeks to months after infection, symptoms may include fever, fatigue, headache, joint pain, and swelling of the eyelids and neck. In some cases, the infection can spread to the heart and digestive system, leading to life-threatening complications such as heart failure, arrhythmias, and intestinal obstruction.

If left untreated, Chagas disease can enter a chronic phase, which can last for years or even decades. During this phase, symptoms may be less severe but can still include fatigue, joint pain, and cardiac problems. In some cases, the infection can reactivate during pregnancy or after exposure to stress, leading to relapses of acute symptoms.

Chagas disease is diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood tests and imaging studies. Treatment typically involves antiparasitic drugs, which can be effective in reducing the severity of symptoms and preventing complications. However, the disease can be difficult to diagnose and treat, particularly in remote areas where medical resources are limited.

Prevention is an important aspect of managing Chagas disease. This includes controlling the population of triatomine bugs through measures such as insecticide spraying and sealing homes, as well as educating people about the risks of the disease and how to avoid infection. In addition, blood banks in areas where Chagas disease is common screen donated blood for the parasite to prevent transmission through blood transfusions.

Overall, Chagas disease is a significant public health problem in Latin America and can have severe consequences if left untreated. Early diagnosis and treatment are important to prevent complications and improve outcomes for those infected with this disease.

Pathologic neovascularization can be seen in a variety of conditions, including cancer, diabetic retinopathy, and age-related macular degeneration. In cancer, for example, the formation of new blood vessels can help the tumor grow and spread to other parts of the body. In diabetic retinopathy, the growth of new blood vessels in the retina can cause vision loss and other complications.

There are several different types of pathologic neovascularization, including:

* Angiosarcoma: a type of cancer that arises from the cells lining blood vessels
* Hemangiomas: benign tumors that are composed of blood vessels
* Cavernous malformations: abnormal collections of blood vessels in the brain or other parts of the body
* Pyogenic granulomas: inflammatory lesions that can form in response to trauma or infection.

The diagnosis of pathologic neovascularization is typically made through a combination of physical examination, imaging studies (such as ultrasound, CT scans, or MRI), and biopsy. Treatment options vary depending on the underlying cause of the condition, but may include medications, surgery, or radiation therapy.

In summary, pathologic neovascularization is a process that occurs in response to injury or disease, and it can lead to serious complications. It is important for healthcare professionals to be aware of this condition and its various forms in order to provide appropriate diagnosis and treatment.

Glioblastomas are highly malignant tumors that can grow rapidly and infiltrate surrounding brain tissue, making them difficult to remove surgically. They often recur after treatment and are usually fatal within a few years of diagnosis.

The symptoms of glioblastoma can vary depending on the location and size of the tumor but may include headaches, seizures, weakness or numbness in the arms or legs, and changes in personality, memory or cognitive function.

Glioblastomas are diagnosed through a combination of imaging tests such as CT or MRI scans, and a biopsy to confirm the presence of cancerous cells. Treatment typically involves surgery to remove as much of the tumor as possible, followed by radiation therapy and chemotherapy to slow the growth of any remaining cancerous cells.

Prognosis for glioblastoma is generally poor, with a five-year survival rate of around 5% for newly diagnosed patients. However, the prognosis can vary depending on factors such as the location and size of the tumor, the patient's age and overall health, and the effectiveness of treatment.

Epidemiology:

* Incidence: Small cell carcinoma (SCC) accounts for approximately 10%-15% of all skin cancers, but it is more common in certain populations such as fair-skinned individuals and those with a history of sun exposure.
* Prevalence: The prevalence of SCC is difficult to determine due to its rarity, but it is believed to be more common in certain geographic regions such as Australia and New Zealand.

Clinical features:

* Appearance: Small cell carcinoma usually appears as a firm, shiny nodule or plaque on sun-exposed areas of the skin, such as the face, ears, lips, and hands. It can also occur in other parts of the body, including the mucous membranes.
* Color: The color of SCC can range from pink to red to purple, and it may be covered with a crust or scab.
* Dimensions: SCC usually measures between 1-5 cm in diameter, but it can be larger in some cases.
* Surface: The surface of SCC may be smooth or rough, and it may have a "pearly" appearance due to the presence of small, white, and shiny nodules called "heidlebergs."

Differential diagnosis:

* Other types of skin cancer, such as basal cell carcinoma and squamous cell carcinoma.
* Other diseases that can cause similar symptoms and appearance, such as psoriasis, eczema, and actinic keratosis.

Treatment:

* Surgical excision: Small cell carcinoma is usually treated with surgical excision, which involves removing the tumor and some surrounding tissue.
* Radiation therapy: In some cases, radiation therapy may be used after surgical excision to ensure that all cancer cells are eliminated.
* Topical treatments: For more superficial SCC, topical treatments such as imiquimod cream or podofilox solution may be effective.

Prognosis:

* The prognosis for small cell carcinoma is generally good if it is detected and treated early.
* However, if left untreated, SCC can invade surrounding tissues and organs, leading to serious complications and potentially fatal outcomes.

Complications:

* Invasion of surrounding tissues and organs.
* Spread of cancer cells to other parts of the body (metastasis).
* Scarring and disfigurement.
* Infection and inflammation.

Here are 10 key points to remember about histoplasmosis:

1) Histoplasmosis is a fungal disease caused by Histoplasma capsulatum.
2) It primarily affects the lungs and can disseminate to other organs.
3) Inhalation of spores from contaminated soil or bird droppings leads to infection.
4) Symptoms range from mild to severe, including fever, cough, chest pain, fatigue, and difficulty breathing.
5) Diagnosis is based on clinical findings, laboratory tests, and imaging studies.
6) Treatment is primarily supportive, with antifungal medications for severe cases.
7) Prevention includes avoiding exposure to contaminated environments and wearing protective clothing during cleanup or construction activities.
8) Histoplasmosis has a global distribution and is found in many parts of the United States.
9) It is an important occupational hazard for workers involved in construction, mining, and agriculture.
10) In severe cases, histoplasmosis can lead to chronic lung disease, heart problems, and meningitis.

The symptoms of coccidioidomycosis can vary depending on the severity of the infection and the individual's immune response. Some people may experience mild symptoms, such as fever, cough, and fatigue, while others may develop more severe symptoms, including pneumonia, meningitis, and bone or skin infections. Skin lesions and rashes are also common.

Diagnosis of coccidioidomycosis typically involves a combination of physical examination, laboratory tests, and imaging studies. Treatment may involve antifungal medications and supportive care to manage symptoms. In severe cases, hospitalization may be necessary.

Prevention is key in avoiding coccidioidomycosis, which includes avoiding areas with high concentrations of the fungus, using respiratory protection when working in areas where the fungus is present, and taking antifungal medications prophylactically for those who are at high risk.

Prognosis for coccidioidomycosis is generally good for those with mild infections, but can be poor for those with severe infections or underlying conditions such as HIV/AIDS or cancer. Long-term effects of the infection can include lung scarring and joint damage.

The symptoms of choriocarcinoma can vary depending on the location and size of the tumor, but they may include:

* Abnormal vaginal bleeding
* Pelvic pain
* Abdominal pain
* Weakness and fatigue
* Shortness of breath
* Nausea and vomiting

If choriocarcinoma is suspected, a variety of tests may be performed to confirm the diagnosis. These may include:

* Ultrasound: This imaging test uses high-frequency sound waves to create pictures of the uterus and ovaries. It can help doctors identify any abnormal growths or tumors in the area.
* Hysteroscopy: This procedure involves inserting a thin, lighted tube through the cervix to visualize the inside of the uterus. Doctors may use hysteroscopy to collect samples of tissue for testing.
* Laparoscopy: This procedure involves making small incisions in the abdomen and using a thin, lighted tube to visualize the inside of the pelvis. Doctors may use laparoscopy to collect samples of tissue for testing or to remove any tumors that are found.
* Biopsy: In this test, doctors take a small sample of tissue from the uterus and examine it under a microscope for cancer cells.

If choriocarcinoma is confirmed, treatment may involve a combination of surgery, chemotherapy, and radiation therapy. The specific treatment plan will depend on the stage and location of the cancer, as well as the patient's overall health.

Prognosis for choriocarcinoma varies depending on the stage of the cancer when it is diagnosed. In general, the prognosis is good if the cancer is caught early and treated promptly. However, if the cancer has spread to other parts of the body (metastasized), the prognosis may be poorer.

It's important for women who have had a molar pregnancy or choriocarcinoma to follow up with their healthcare provider regularly to ensure that any remaining tissue is removed and to monitor for any signs of recurrence.

Lymphatic metastasis occurs when cancer cells enter the lymphatic vessels and are carried through the lymphatic system to other parts of the body. This can happen through several mechanisms, including:

1. Direct invasion: Cancer cells can invade the nearby lymphatic vessels and spread through them.
2. Lymphatic vessel embolization: Cancer cells can block the flow of lymphatic fluid and cause the formation of a clot-like structure, which can trap cancer cells and allow them to grow.
3. Lymphatic vessel invasion: Cancer cells can infiltrate the walls of lymphatic vessels and spread through them.

Lymphatic metastasis is a common mechanism for the spread of cancer, particularly in the breast, melanoma, and other cancers that have a high risk of lymphatic invasion. The presence of lymphatic metastasis in a patient's body can indicate a more aggressive cancer and a poorer prognosis.

Treatment for lymphatic metastasis typically involves a combination of surgery, chemotherapy, and radiation therapy. Surgery may be used to remove any affected lymph nodes or other tumors that have spread through the lymphatic system. Chemotherapy may be used to kill any remaining cancer cells, while radiation therapy may be used to shrink the tumors and relieve symptoms.

In summary, lymphatic metastasis is a common mechanism for the spread of cancer through the body, particularly in cancers that originate in organs with a high lymphatic drainage. Treatment typically involves a combination of surgery, chemotherapy, and radiation therapy to remove or shrink the tumors and relieve symptoms.

Some common horse diseases include:

1. Equine Influenza (EI): A highly contagious respiratory disease caused by the equine influenza virus. It can cause fever, coughing, and nasal discharge.
2. Strangles: A bacterial infection of the lymph nodes, which can cause swelling of the neck and difficulty breathing.
3. West Nile Virus (WNV): A viral infection that can cause fever, weakness, and loss of coordination. It is transmitted by mosquitoes and can be fatal in some cases.
4. Tetanus: A bacterial infection caused by Clostridium tetani, which can cause muscle stiffness, spasms, and rigidity.
5. Rabies: A viral infection that affects the central nervous system and can be fatal if left untreated. It is transmitted through the saliva of infected animals, usually through a bite.
6. Cushing's Disease: A hormonal disorder caused by an overproduction of cortisol, which can cause weight gain, muscle wasting, and other health issues.
7. Laminitis: An inflammation of the laminae, the tissues that connect the hoof to the bone. It can be caused by obesity, overeating, or excessive exercise.
8. Navicular Syndrome: A condition that affects the navicular bone and surrounding tissue, causing pain and lameness in the foot.
9. Pneumonia: An inflammation of the lungs, which can be caused by bacteria, viruses, or fungi.
10. Colic: A general term for abdominal pain, which can be caused by a variety of factors, including gas, impaction, or twisting of the intestines.

These are just a few examples of the many potential health issues that can affect horses. Regular veterinary care and proper management can help prevent many of these conditions, and early diagnosis and treatment can improve the chances of a successful outcome.

A parasitic disease caused by a protozoan of the genus Leishmania, which is transmitted to humans by the bite of an infected sandfly. The most common form of the disease is characterized by skin lesions, which may be painful and disfiguring.

Other forms of leishmaniasis include:

1. Visceral leishmaniasis (kala-azar): A severe and potentially fatal form of the disease that affects several internal organs, including the spleen, liver, and bone marrow.
2. Mucocutaneous leishmaniasis: A form of the disease characterized by skin lesions and mucosal involvement, such as nose ulcers and mouth sores.
3. Diffuse cutaneous leishmaniasis: A form of the disease characterized by widespread skin involvement, often with a diffuse, papular rash.
4. Recidivans leishmaniasis: A form of the disease characterized by repeated episodes of skin lesions, often triggered by exposure to sandflies.

Symptoms of cutaneous leishmaniasis may include:

* Skin lesions, which may be painful and disfiguring
* Swelling of the affected limb
* Fever
* Fatigue
* Weight loss

Diagnosis is made by identifying the parasite in a skin scraping or biopsy specimen. Treatment typically involves antiparasitic medications, such as pentavalent antimonials or amphotericin B.

Preventive measures include avoiding sandfly bites, wearing protective clothing and insect repellents, and using screens on windows and doors to prevent sandflies from entering homes.

The BCR-ABL gene is a fusion gene that is present in the majority of cases of CML. It is created by the translocation of two genes, called BCR and ABL, which leads to the production of a constitutively active tyrosine kinase protein that promotes the growth and proliferation of abnormal white blood cells.

There are three main phases of CML, each with distinct clinical and laboratory features:

1. Chronic phase: This is the earliest phase of CML, where patients may be asymptomatic or have mild symptoms such as fatigue, night sweats, and splenomegaly (enlargement of the spleen). The peripheral blood count typically shows a high number of blasts in the blood, but the bone marrow is still functional.
2. Accelerated phase: In this phase, the disease progresses to a higher number of blasts in the blood and bone marrow, with evidence of more aggressive disease. Patients may experience symptoms such as fever, weight loss, and pain in the joints or abdomen.
3. Blast phase: This is the most advanced phase of CML, where there is a high number of blasts in the blood and bone marrow, with significant loss of function of the bone marrow. Patients are often symptomatic and may have evidence of spread of the disease to other organs, such as the liver or spleen.

Treatment for CML typically involves targeted therapy with drugs that inhibit the activity of the BCR-ABL protein, such as imatinib (Gleevec), dasatinib (Sprycel), or nilotinib (Tasigna). These drugs can slow or stop the progression of the disease, and may also produce a complete cytogenetic response, which is defined as the absence of all Ph+ metaphases in the bone marrow. However, these drugs are not curative and may have significant side effects. Allogenic hematopoietic stem cell transplantation (HSCT) is also a potential treatment option for CML, but it carries significant risks and is usually reserved for patients who are in the blast phase of the disease or have failed other treatments.

In summary, the clinical course of CML can be divided into three phases based on the number of blasts in the blood and bone marrow, and treatment options vary depending on the phase of the disease. It is important for patients with CML to receive regular monitoring and follow-up care to assess their response to treatment and detect any signs of disease progression.

There are two main types of schistosomiasis:

1. Schistosoma haematobium: This type is most commonly found in Africa and the Middle East, and affects the urinary tract, causing bleeding, kidney damage, and bladder problems.
2. Schistosoma japonicum: This type is found in Asia, and affects the intestines, causing abdominal pain, diarrhea, and rectal bleeding.
3. Schistosoma mansoni: This type is found in sub-Saharan Africa, and affects both the intestines and the liver, causing abdominal pain, diarrhea, and liver damage.

Symptoms of schistosomiasis can include:

* Bloody urine
* Abdominal pain
* Diarrhea
* Rectal bleeding
* Fatigue
* Anemia
* Weight loss

If left untreated, schistosomiasis can lead to serious complications such as kidney damage, bladder cancer, and infertility.

Treatment of schistosomiasis typically involves the use of praziquantel, an antiparasitic drug that is effective against all species of Schistosoma. In addition to treatment, preventive measures such as avoiding contact with contaminated water and using protective clothing when swimming or bathing in areas where the disease is common can help reduce the risk of infection.

Preventive measures for schistosomiasis include:

* Avoiding contact with contaminated water
* Using protective clothing such as long sleeves and pants when swimming or bathing in areas where the disease is common
* Avoiding activities that involve exposure to water, such as swimming or fishing, in areas where the disease is common
* Using clean water for drinking, cooking, and personal hygiene
* Implementing sanitation measures such as building latrines and improving sewage systems in areas where the disease is common

It is important to note that schistosomiasis is a preventable and treatable disease, but it requires awareness and action from individuals, communities, and governments to control and eliminate the disease.

Papillomas can occur anywhere on the body, but they are most commonly found on the face, neck, and scalp. They may appear as small bumps or growths that look like a wart. In some cases, papillomas may be associated with human papillomavirus (HPV) infection.

Papillomas are typically diagnosed through a physical examination of the affected area. In some cases, a biopsy may be performed to confirm the diagnosis and rule out other potential causes. Treatment for papillomas usually involves removal of the growth through a minor surgical procedure or cryotherapy (freezing).

Papillomas are not cancerous and do not typically pose any long-term health risks. However, they may be unsightly and can cause psychological distress for some people. In these cases, treatment may be sought for cosmetic reasons. It is important to note that papillomas should not be confused with squamous cell carcinoma, a type of skin cancer that can resemble a papilloma in appearance but has the potential to be more aggressive and harmful.

There are several subtypes of B-cell leukemia, including:

1. Chronic lymphocytic leukemia (CLL): This is the most common type of B-cell leukemia, and it typically affects older adults. CLL is a slow-growing cancer that can progress over time.
2. Acute lymphoblastic leukemia (ALL): This is a fast-growing and aggressive form of B-cell leukemia that can affect people of all ages. ALL is often treated with chemotherapy and sometimes with bone marrow transplantation.
3. Burkitt lymphoma: This is an aggressive form of B-cell leukemia that typically affects older adults in Africa and Asia. Burkitt lymphoma can be treated with chemotherapy and sometimes with bone marrow transplantation.
4. Hairy cell leukemia: This is a rare type of B-cell leukemia that is characterized by the presence of hair-like projections on the surface of cancer cells. Hairy cell leukemia can be treated with chemotherapy and sometimes with bone marrow transplantation.

The diagnosis of B-cell leukemia is based on a combination of physical examination, medical history, laboratory tests, and biopsies. Treatment options for B-cell leukemia include chemotherapy, bone marrow transplantation, and in some cases, targeted therapy with drugs that specifically target cancer cells. The prognosis for B-cell leukemia varies depending on the subtype of the disease and the patient's overall health.

1. Activation of oncogenes: Some viruses contain genes that code for proteins that can activate existing oncogenes in the host cell, leading to uncontrolled cell growth.
2. Inactivation of tumor suppressor genes: Other viruses may contain genes that inhibit the expression of tumor suppressor genes, allowing cells to grow and divide uncontrollably.
3. Insertional mutagenesis: Some viruses can insert their own DNA into the host cell's genome, leading to disruptions in normal cellular function and potentially causing cancer.
4. Epigenetic changes: Viral infection can also cause epigenetic changes, such as DNA methylation or histone modification, that can lead to the silencing of tumor suppressor genes and the activation of oncogenes.

Viral cell transformation is a key factor in the development of many types of cancer, including cervical cancer caused by human papillomavirus (HPV), and liver cancer caused by hepatitis B virus (HBV). In addition, some viruses are specifically known to cause cancer, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus (MCV).

Early detection and treatment of viral infections can help prevent the development of cancer. Vaccines are also available for some viruses that are known to cause cancer, such as HPV and hepatitis B. Additionally, antiviral therapy can be used to treat existing infections and may help reduce the risk of cancer development.

The symptoms of ganglioneuroma vary depending on the size and location of the tumor. Large tumors can cause pressure effects on surrounding tissues and organs, leading to symptoms such as abdominal pain, nausea, vomiting, and difficulty urinating. Smaller tumors may not cause any symptoms and are often discovered incidentally during a routine medical exam or imaging test.

The diagnosis of ganglioneuroma is based on a combination of clinical findings, laboratory tests, and imaging studies. A biopsy may be performed to confirm the diagnosis and rule out other conditions. Treatment options for ganglioneuroma include observation, surgery, and radiation therapy. The choice of treatment depends on the size and location of the tumor, as well as the patient's overall health and symptoms.

Ganglioneuroma is a rare condition, and there is limited research on its incidence and prevalence. It is estimated to occur in approximately 1 in 1 million people per year. The cause of ganglioneuroma is not well understood, but it is thought to be related to genetic mutations that occur during fetal development. There is no known way to prevent the condition, and treatment is focused on managing symptoms and removing the tumor.

In conclusion, ganglioneuroma is a rare benign tumor that originates from the sympathetic nervous system. It can cause a variety of symptoms depending on its size and location, and diagnosis is based on a combination of clinical findings, laboratory tests, and imaging studies. Treatment options include observation, surgery, and radiation therapy, and the prognosis for patients with ganglioneuroma is generally good if the tumor is removed successfully.

CMV infections are more common in people with weakened immune systems, such as those with HIV/AIDS, cancer, or taking immunosuppressive drugs after an organ transplant. In these individuals, CMV can cause severe and life-threatening complications, such as pneumonia, retinitis (inflammation of the retina), and gastrointestinal disease.

In healthy individuals, CMV infections are usually mild and may not cause any symptoms at all. However, in some cases, CMV can cause a mononucleosis-like illness with fever, fatigue, and swollen lymph nodes.

CMV infections are diagnosed through a combination of physical examination, blood tests, and imaging studies such as CT scans or MRI. Treatment is generally not necessary for mild cases, but may include antiviral medications for more severe infections. Prevention strategies include avoiding close contact with individuals who have CMV, practicing good hygiene, and considering immunoprophylaxis (prevention of infection through the use of immune globulin) for high-risk individuals.

Overall, while CMV infections can be serious and life-threatening, they are relatively rare in healthy individuals and can often be treated effectively with supportive care and antiviral medications.

Symptoms of type 1 diabetes can include increased thirst and urination, blurred vision, fatigue, weight loss, and skin infections. If left untreated, type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, and blindness.

Type 1 diabetes is diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood glucose measurements and autoantibody tests. Treatment typically involves insulin therapy, which can be administered via injections or an insulin pump, as well as regular monitoring of blood glucose levels and appropriate lifestyle modifications such as a healthy diet and regular exercise.

There are several types of hepatitis, including:

1. Hepatitis A: This type is caused by the hepatitis A virus (HAV) and is usually transmitted through contaminated food or water or through close contact with someone who has the infection.
2. Hepatitis B: This type is caused by the hepatitis B virus (HBV) and can be spread through sexual contact, sharing of needles, or mother-to-child transmission during childbirth.
3. Hepatitis C: This type is caused by the hepatitis C virus (HCV) and is primarily spread through blood-to-blood contact, such as sharing of needles or receiving a tainted blood transfusion.
4. Alcoholic hepatitis: This type is caused by excessive alcohol consumption and can lead to inflammation and scarring in the liver.
5. Drug-induced hepatitis: This type is caused by certain medications, such as antidepressants, anti-seizure drugs, or chemotherapy agents.
6. Autoimmune hepatitis: This type is caused by an abnormal immune response and can lead to inflammation in the liver.

Symptoms of hepatitis may include fatigue, loss of appetite, nausea, vomiting, abdominal pain, dark urine, pale stools, and yellowing of the skin (jaundice). In severe cases, it can lead to liver failure or even death.

Diagnosis of hepatitis is typically made through a combination of physical examination, laboratory tests such as blood tests and imaging studies like ultrasound or CT scans. Treatment options vary depending on the cause and severity of the condition, but may include medications to manage symptoms, antiviral therapy, or in severe cases, liver transplantation. Prevention measures for hepatitis include vaccination against certain types of the disease, practicing safe sex, avoiding sharing needles or other drug paraphernalia, and following proper hygiene practices.

In conclusion, hepatitis is a serious condition that affects millions of people worldwide. It is important to be aware of the different types of hepatitis and their causes in order to prevent and manage this condition effectively. By taking appropriate measures such as getting vaccinated and practicing safe sex, individuals can reduce their risk of contracting hepatitis. In severe cases, early diagnosis and treatment can help to minimize damage to the liver and improve outcomes for patients.

The symptoms of listeriosis can vary depending on the severity of the infection and the individual's overall health. Mild cases may present with flu-like symptoms, such as fever, headache, and muscle aches, while severe cases can lead to meningitis, encephalitis, and even death.

Diagnosis is typically made through a combination of physical examination, medical history, and laboratory tests, such as blood cultures or PCR (polymerase chain reaction) tests. Treatment typically involves antibiotics, and prompt treatment can significantly reduce the risk of serious complications and death.

Prevention measures include avoiding high-risk foods, such as soft cheeses and hot dogs, and maintaining good hygiene practices, such as washing hands and surfaces regularly. Vaccination against Listeria is not available, but efforts to improve food safety and sanitation can help reduce the risk of listeriosis outbreaks.

Overall, while listeriosis is a serious infection, prompt diagnosis and treatment can significantly improve outcomes for those affected.

Legionnaires' disease is typically acquired by inhaling aerosolized water droplets contaminated with Legionella bacteria. The most common sources of exposure are cooling towers, hot tubs, and plumbing systems in large buildings. The risk of infection increases with age, and people with weakened immune systems, such as those with cancer, HIV/AIDS, or chronic lung disease, are at greater risk for severe illness and death.

The symptoms of Legionnaires' disease can resemble those of pneumonia and include fever, chills, cough, muscle aches, and shortness of breath. In severe cases, the disease can lead to respiratory failure, septic shock, and even death.

Legionnaires' disease is diagnosed through a combination of physical examination, medical history, and laboratory tests, including blood cultures and urinary antigen tests. Treatment typically involves antibiotics, which can be effective if started early in the course of the illness. In severe cases, hospitalization may be required to provide supportive care, such as mechanical ventilation.

Prevention is key to avoiding Legionnaires' disease, and this includes regularly cleaning and disinfecting cooling towers and plumbing systems, maintaining proper water temperatures, and ensuring that the system is properly designed and maintained. Testing for Legionella bacteria can also be performed to ensure that the system is free of contamination.

In summary, Legionnaires' disease is a severe form of pneumonia caused by the bacterium Legionella pneumophila, typically acquired through inhalation of contaminated aerosolized water droplets. Early diagnosis and treatment are critical to preventing severe illness and death, and prevention measures include regular cleaning and maintenance of cooling towers and plumbing systems, as well as testing for Legionella bacteria.

Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.

The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.

Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.

Examples of diseases with a known genetic predisposition:

1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.

Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."


* Peripheral T-cell lymphoma (PTCL): This is a rare type of T-cell lymphoma that can develop in the skin, lymph nodes, or other organs.
* Cutaneous T-cell lymphoma (CTCL): This is a type of PTCL that affects the skin and can cause lesions, rashes, and other skin changes.
* Anaplastic large cell lymphoma (ALCL): This is a rare subtype of PTCL that can develop in the lymph nodes, spleen, or bone marrow.
* Adult T-cell leukemia/lymphoma (ATLL): This is a rare and aggressive subtype of PTCL that is caused by the human T-lymphotropic virus type 1 (HTLV-1).

Symptoms of T-cell lymphoma can include:

* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Skin lesions or rashes

Treatment options for T-cell lymphoma depend on the subtype and stage of the cancer, but may include:

* Chemotherapy
* Radiation therapy
* Immunotherapy
* Targeted therapy

Prognosis for T-cell lymphoma varies depending on the subtype and stage of the cancer, but in general, the prognosis for PTCL is poorer than for other types of non-Hodgkin lymphoma. However, with prompt and appropriate treatment, many people with T-cell lymphoma can achieve long-term remission or even be cured.

The exact cause of fibrosarcoma is not known, but it is believed to be linked to genetic mutations that occur during a person's lifetime. Some risk factors for developing fibrosarcoma include previous radiation exposure, chronic inflammation, and certain inherited conditions such as neurofibromatosis type 1 (NF1).

The symptoms of fibrosarcoma can vary depending on the location and size of the tumor. In some cases, there may be no symptoms until the tumor has grown to a significant size. Common symptoms include pain, swelling, and limited mobility in the affected limb. If the tumor is near a nerve, it can also cause numbness or tingling sensations in the affected area.

Diagnosis of fibrosarcoma typically involves a combination of imaging tests such as X-rays, CT scans, and MRI scans, as well as a biopsy to confirm the presence of cancer cells. Treatment options for fibrosarcoma may include surgery, radiation therapy, and chemotherapy, depending on the size and location of the tumor, as well as the patient's overall health.

Prognosis for fibrosarcoma is generally good if the tumor is caught early and treated aggressively. However, if the cancer has spread to other parts of the body (metastasized), the prognosis is generally poorer. In some cases, the cancer can recur after treatment, so it is important for patients to follow their doctor's recommendations for regular check-ups and follow-up testing.

Overall, fibrosarcoma is a rare and aggressive form of cancer that can be challenging to diagnose and treat. However, with early detection and appropriate treatment, many people with this condition can achieve long-term survival and a good quality of life.

The tumor develops from immature cells in the cerebellum called granule cells, and it can grow rapidly and spread to other parts of the brain. Medulloblastoma is usually diagnosed in the early stages, and treatment typically involves surgery, chemotherapy, and radiation therapy.

There are several subtypes of medulloblastoma, including:

* Winged-helix transcription factor (WHCT) medulloblastoma
* Sonic hedgehog (SHH) medulloblastoma
* Group 3 medulloblastoma
* Group 4 medulloblastoma

Each subtype has a different genetic profile and may require different treatment approaches.

Medulloblastoma is a rare cancer, but it is the most common type of pediatric brain cancer. With current treatments, the prognosis for medulloblastoma is generally good, especially for children who are diagnosed early and receive appropriate treatment. However, the cancer can recur in some cases, and ongoing research is focused on improving treatment outcomes and finding new, less toxic therapies for this disease.

There are several different forms of leishmaniasis, including:

* Cutaneous leishmaniasis: This form of the disease causes skin sores, which can be painful and disfiguring.
* Visceral leishmaniasis: Also known as kala-azar, this form of the disease affects the internal organs and can be fatal if left untreated.
* Mucocutaneous leishmaniasis: This form of the disease causes sores on the skin and mucous membranes.
*Diffuse cutaneous leishmaniasis: This form of the disease causes widespread skin lesions.

Leishmaniasis can be diagnosed through a variety of methods, including:

* Physical examination and medical history: A doctor may look for signs of the disease, such as skin sores or swelling, and ask about the patient's travel history and exposure to sandflies.
* Laboratory tests: Blood and skin samples can be tested for the presence of the parasite using techniques such as microscopy, PCR, and serology.
* Imaging studies: X-rays, CT scans, and MRI scans can be used to visualize the spread of the disease in the body.

Treatment for leishmaniasis typically involves antiparasitic drugs, such as pentavalent antimonials, miltefosine, and amphotericin B. The specific treatment regimen will depend on the severity and location of the disease, as well as the patient's age, health status, and other factors. In some cases, surgery may be necessary to remove affected tissue.

Prevention measures for leishmaniasis include:

* Avoiding sandfly bites: Using insecticides, wearing protective clothing, and staying in well-screened areas can help prevent sandfly bites.
* Eliminating sandfly breeding sites: Removing debris and vegetation, and using insecticides to kill sandflies and their eggs can help reduce the risk of infection.
* Vaccination: There is currently no effective vaccine against leishmaniasis, but research is ongoing to develop one.
* Public education: Raising awareness about the disease and how it is transmitted can help prevent infections and reduce the burden on healthcare systems.

Overall, early diagnosis and treatment are key to preventing complications and improving outcomes for patients with leishmaniasis. In addition, public health measures such as insecticide use and vaccination may help reduce the incidence of the disease.

There are several types of brucellosis, including:

1. Brucella abortus: This type is primarily found in cattle and is the most common form of the disease in humans.
2. Brucella suis: This type is found in pigs and is less common in humans.
3. Brucella melitensis: This type is found in sheep, goats, and other animals, and is more virulent than B. abortus.
4. Brucella canis: This type is found in dogs and is rare in humans.

The symptoms of brucellosis can vary depending on the severity of the infection and the individual's overall health. Common symptoms include:

1. Fever
2. Headache
3. Joint pain
4. Muscle pain
5. Swelling of the lymph nodes and spleen
6. Fatigue
7. Loss of appetite
8. Weight loss

In severe cases, brucellosis can cause complications such as:

1. Endocarditis (infection of the heart valves)
2. Meningitis (inflammation of the lining around the brain and spinal cord)
3. Osteomyelitis (infection of the bone)
4. Testicular inflammation in men
5. Epididymitis (inflammation of the epididymis, a tube that carries sperm from the testicle to the penis)
6. Inflammation of the heart muscle and valves
7. Pneumonia
8. Inflammation of the liver and spleen

Brucellosis is diagnosed through a combination of physical examination, laboratory tests, and imaging studies. Treatment typically involves antibiotics, and early treatment can help prevent complications. Prevention measures include avoiding contact with infected animals and ensuring proper hygiene practices when handling livestock or wild game.

People with SCID are extremely susceptible to infections, particularly those caused by viruses, and often develop symptoms shortly after birth. These may include diarrhea, vomiting, fever, and failure to gain weight or grow at the expected rate. Without treatment, SCID can lead to life-threatening infections and can be fatal within the first year of life.

Treatment for SCID typically involves bone marrow transplantation or enzyme replacement therapy. Bone marrow transplantation involves replacing the patient's faulty immune system with healthy cells from a donor, while enzyme replacement therapy involves replacing the missing or dysfunctional enzymes that cause the immune deficiency. Both of these treatments can help restore the patient's immune system and improve their quality of life.

In summary, severe combined immunodeficiency (SCID) is a rare genetic disorder that impairs the body's ability to fight infections and can be fatal without treatment. Treatment options include bone marrow transplantation and enzyme replacement therapy.

Pulmonary tuberculosis typically affects the lungs but can also spread to other parts of the body, such as the brain, kidneys, or spine. The symptoms of pulmonary TB include coughing for more than three weeks, chest pain, fatigue, fever, night sweats, and weight loss.

Pulmonary tuberculosis is diagnosed by a combination of physical examination, medical history, laboratory tests, and radiologic imaging, such as chest X-rays or computed tomography (CT) scans. Treatment for pulmonary TB usually involves a combination of antibiotics and medications to manage symptoms.

Preventive measures for pulmonary tuberculosis include screening for latent TB infection in high-risk populations, such as healthcare workers and individuals with HIV/AIDS, and vaccination with the bacillus Calmette-Guérin (BCG) vaccine in countries where it is available.

Overall, pulmonary tuberculosis is a serious and potentially life-threatening disease that requires prompt diagnosis and treatment to prevent complications and death.

Symptoms of megakaryoblastic leukemia may include fatigue, fever, night sweats, weight loss, and an enlarged spleen. The disease can progress quickly, and without treatment, it can lead to life-threatening complications such as bleeding, infection, and organ failure.

Treatment for megakaryoblastic leukemia typically involves chemotherapy, which is a type of cancer medication that kills cancer cells. In some cases, bone marrow transplantation may also be recommended. The prognosis for this disease is generally poor, and the 5-year survival rate is less than 30%.

Megakaryoblastic leukemia is a rare condition, accounting for only about 1% to 2% of all cases of acute leukemia. It is most commonly seen in children, but it can also occur in adults. The exact cause of this disease is not known, but genetic mutations and exposure to certain chemicals or radiation have been implicated as potential risk factors.

Overall, megakaryoblastic leukemia is a rare and aggressive form of cancer that can be challenging to diagnose and treat. With current treatment options, the prognosis for this disease is generally poor, but ongoing research is exploring new and innovative approaches to improve outcomes for patients with this condition.

A persistent infection with the hepatitis B virus (HBV) that can lead to liver cirrhosis and hepatocellular carcinoma. HBV is a bloodborne pathogen and can be spread through contact with infected blood, sexual contact, or vertical transmission from mother to child during childbirth.

Chronic hepatitis B is characterized by the presence of HBsAg in the blood for more than 6 months, indicating that the virus is still present in the liver. The disease can be asymptomatic or symptomatic, with symptoms such as fatigue, malaise, loss of appetite, nausea, vomiting, joint pain, and jaundice.

Chronic hepatitis B is diagnosed through serological tests such as HBsAg, anti-HBc, and HBV DNA. Treatment options include interferon alpha and nucleos(t)ide analogues, which can slow the progression of the disease but do not cure it.

Prevention strategies for chronic hepatitis B include vaccination with hepatitis B vaccine, which is effective in preventing acute and chronic HBV infection, as well as avoidance of risky behaviors such as unprotected sex and sharing of needles.

These tumors can be benign or malignant, and their growth and behavior vary depending on the type of cancer. Malignant tumors can invade the surrounding tissues and spread to other parts of the body through the bloodstream or lymphatic system, causing serious complications and potentially life-threatening consequences.

The risk factors for developing urinary bladder neoplasms include smoking, exposure to certain chemicals, recurrent bladder infections, and a family history of bladder cancer. The symptoms of these tumors can include blood in the urine, pain during urination, frequent urination, and abdominal pain.

Diagnosis of urinary bladder neoplasms is typically made through a combination of imaging tests such as ultrasound, computed tomography (CT) scan or magnetic resonance imaging (MRI), and cystoscopy, which involves inserting a flexible tube with a camera into the bladder to visualize the tumor.

Treatment options for urinary bladder neoplasms depend on the type of cancer, stage, and location of the tumor. Treatment may include surgery to remove the tumor, chemotherapy, radiation therapy, or a combination of these modalities. Early detection and treatment can improve the prognosis for patients with urinary bladder neoplasms.

Symptoms of pheochromocytoma can include:

* Rapid heartbeat
* High blood pressure
* Sweating
* Weight loss
* Fatigue
* Headaches
* Nausea and vomiting

If left untreated, pheochromocytoma can lead to complications such as heart failure, stroke, and even death. Therefore, it is important that individuals who experience any of the above symptoms seek medical attention as soon as possible.

Treatment options for pheochromocytoma may include surgery to remove the tumor, medication to manage symptoms, and in some cases, radiation therapy. In rare cases, the tumor may recur after treatment, so regular monitoring is necessary to ensure that any new symptoms are detected early on.

Overall, while pheochromocytoma is a rare and potentially life-threatening condition, prompt medical attention and appropriate treatment can help manage symptoms and prevent complications.

Some common types of skin abnormalities include:

1. Birthmarks: These are benign growths that can be present at birth or appear later in life. They can be flat or raised, and can be made up of different types of cells, such as blood vessels or pigment-producing cells.
2. Moles: These are small, dark spots on the skin that are usually benign but can occasionally become cancerous.
3. Warts: These are small, rough bumps on the skin that are caused by the human papillomavirus (HPV).
4. Psoriasis: This is a chronic condition that causes red, scaly patches on the skin.
5. Eczema: This is a chronic condition that causes dry, itchy skin and can lead to inflammation and skin thickening.
6. Acne: This is a common condition that causes blackheads, whiteheads, and other types of blemishes on the skin.
7. Scars: These are areas of damaged skin that can be caused by injury, surgery, or infection.
8. Vitiligo: This is a condition in which the skin loses its pigment, leading to white patches.
9. Impetigo: This is a bacterial infection that causes red sores on the skin.
10. Molluscum contagiosum: This is a viral infection that causes small, painless bumps on the skin.

Skin abnormalities can be diagnosed through a combination of physical examination, medical history, and diagnostic tests such as biopsies or imaging studies. Treatment options vary depending on the specific type of abnormality and its underlying cause, but may include topical creams or ointments, medications, laser therapy, or surgery. It is important to seek medical attention if you notice any changes in your skin, as early diagnosis and treatment can help prevent complications and improve outcomes.

Dermatitis, contact can be acute or chronic, depending on the severity and duration of the exposure. In acute cases, the symptoms may resolve within a few days after removing the offending substance. Chronic dermatitis, on the other hand, can persist for weeks or even months, and may require ongoing treatment to manage the symptoms.

The symptoms of contact dermatitis can vary depending on the individual and the severity of the exposure. Common symptoms include:

* Redness and inflammation of the skin
* Itching and burning sensations
* Swelling and blistering
* Cracks or fissures in the skin
* Difficulty healing or recurring infections

In severe cases, contact dermatitis can lead to complications such as:

* Infection with bacteria or fungi
* Scarring and disfigurement
* Emotional distress and anxiety

Diagnosis of contact dermatitis is typically made based on the patient's medical history and physical examination. Allergic patch testing may also be performed to identify specific allergens that are causing the condition.

Treatment for contact dermatitis usually involves avoiding the offending substance and using topical or oral medications to manage symptoms. In severe cases, systemic corticosteroids or immunosuppressants may be prescribed. Phototherapy and alternative therapies such as herbal remedies or acupuncture may also be considered.

Prevention of contact dermatitis involves identifying and avoiding substances that cause an allergic reaction or skin irritation. Individuals with a history of contact dermatitis should take precautions when handling new substances, and should be aware of the potential for cross-reactivity between different allergens.

Sheep diseases can be caused by a variety of factors, including bacteria, viruses, parasites, and environmental factors. Here are some common sheep diseases and their meanings:

1. Scrapie: A fatal neurological disorder that affects sheep and goats, caused by a prion.
2. Ovine Progressive Pneumonia (OPP): A contagious respiratory disease caused by Mycobacterium ovipneumoniae.
3. Maedi-Visna: A slow-progressing pneumonia caused by a retrovirus, which can lead to OPP.
4. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hoofed animals, including sheep and goats.
5. Bloat: A condition caused by gas accumulation in the rumen, which can lead to abdominal pain and death if not treated promptly.
6. Pneumonia: An inflammation of the lungs, often caused by bacteria or viruses.
7. Cryptosporidiosis: A diarrheal disease caused by Cryptosporidium parvum, which can be fatal in young lambs.
8. Babesiosis: A blood parasitic disease caused by Babesia oviparasites, which can lead to anemia and death if left untreated.
9. Fascioliasis: A liver fluke infection that can cause anemia, jaundice, and liver damage.
10. Anthrax: A serious bacterial disease caused by Bacillus anthracis, which can be fatal if left untreated.

Sheep diseases can have a significant impact on the health and productivity of flocks, as well as the economy of sheep farming. It is important for sheep farmers to be aware of these diseases and take appropriate measures to prevent and control them.

Entamoebiasis is typically spread through the fecal-oral route, where the parasite is ingested from contaminated food or water. Risk factors for developing entamoebiasis include poor sanitation, lack of access to clean water, and poor hygiene practices.

The diagnosis of entamoebiasis typically involves a combination of clinical symptoms, laboratory tests such as stool samples, and imaging studies such as X-rays or CT scans. Treatment typically involves the use of antiparasitic medications such as metronidazole or tinidazole, which can effectively cure the infection.

Prevention measures for entamoebiasis include avoiding contaminated food and water, practicing good hygiene and sanitation, and avoiding close contact with individuals who are infected with the parasite. Vaccines are also being developed to prevent entamoebiasis, but they are not yet widely available.

Entamoebiasis is a significant public health problem in many developing countries, where it is a leading cause of gastrointestinal illness and death. According to the World Health Organization (WHO), approximately 50 million people worldwide are infected with Entamoeba histolytica each year, resulting in an estimated 4-8% mortality rate.

In summary, entamoebiasis is a serious gastrointestinal disease caused by the parasitic protozoan Entamoeba histolytica, which can lead to severe complications and death if left untreated. Prevention measures include avoiding contaminated food and water, practicing good hygiene and sanitation, and developing vaccines to prevent infection.

Necrosis is a type of cell death that occurs when cells are exposed to excessive stress, injury, or inflammation, leading to damage to the cell membrane and the release of cellular contents into the surrounding tissue. This can lead to the formation of gangrene, which is the death of body tissue due to lack of blood supply.

There are several types of necrosis, including:

1. Coagulative necrosis: This type of necrosis occurs when there is a lack of blood supply to the tissues, leading to the formation of a firm, white plaque on the surface of the affected area.
2. Liquefactive necrosis: This type of necrosis occurs when there is an infection or inflammation that causes the death of cells and the formation of pus.
3. Caseous necrosis: This type of necrosis occurs when there is a chronic infection, such as tuberculosis, and the affected tissue becomes soft and cheese-like.
4. Fat necrosis: This type of necrosis occurs when there is trauma to fatty tissue, leading to the formation of firm, yellowish nodules.
5. Necrotizing fasciitis: This is a severe and life-threatening form of necrosis that affects the skin and underlying tissues, often as a result of bacterial infection.

The diagnosis of necrosis is typically made through a combination of physical examination, imaging studies such as X-rays or CT scans, and laboratory tests such as biopsy. Treatment depends on the underlying cause of the necrosis and may include antibiotics, surgical debridement, or amputation in severe cases.

In LLCB, the B cells undergo a mutation that causes them to become cancerous and multiply rapidly. This can lead to an overproduction of these cells in the bone marrow, causing the bone marrow to become crowded and unable to produce healthy red blood cells, platelets, and white blood cells.

LLCB is typically a slow-growing cancer, and it can take years for symptoms to develop. However, as the cancer progresses, it can lead to a range of symptoms including fatigue, weakness, weight loss, fever, night sweats, and swollen lymph nodes.

LLCB is typically diagnosed through a combination of physical examination, blood tests, bone marrow biopsy, and imaging studies such as X-rays or CT scans. Treatment options for LLCB include chemotherapy, radiation therapy, and in some cases, stem cell transplantation.

Overall, while LLCB is a serious condition, it is typically slow-growing and can be managed with appropriate treatment. With current treatments, many people with LLCB can achieve long-term remission and a good quality of life.

Testicular neoplasms refer to abnormal growths or tumors that develop in the testicles, which are located inside the scrotum. These tumors can be benign (non-cancerous) or malignant (cancerous). Testicular neoplasms can affect men of all ages, but they are more common in younger men between the ages of 20 and 35.

Types of Testicular Neoplasms:

There are several types of testicular neoplasms, including:

1. Seminoma: This is a type of malignant tumor that develops from immature cells in the testicles. It is the most common type of testicular cancer and tends to grow slowly.
2. Non-seminomatous germ cell tumors (NSGCT): These are malignant tumors that develop from immature cells in the testicles, but they do not have the characteristic features of seminoma. They can be either heterologous (containing different types of cells) or homologous (containing only one type of cell).
3. Leydig cell tumors: These are rare malignant tumors that develop in the Leydig cells, which produce testosterone in the testicles.
4. Sertoli cell tumors: These are rare malignant tumors that develop in the Sertoli cells, which support the development of sperm in the testicles.
5. Testicular metastasectomy: This is a procedure to remove cancer that has spread to the testicles from another part of the body, such as the lungs or liver.

Causes and Risk Factors:

The exact cause of testicular neoplasms is not known, but there are several risk factors that have been linked to an increased risk of developing these tumors. These include:

1. Undescended testicles (cryptorchidism): This condition occurs when the testicles do not descend into the scrotum during fetal development.
2. Family history: Men with a family history of testicular cancer are at an increased risk of developing these tumors.
3. Previous radiation exposure: Men who have had radiation therapy to the pelvic area, especially during childhood or adolescence, have an increased risk of developing testicular neoplasms.
4. Genetic mutations: Certain genetic mutations, such as those associated with familial testicular cancer syndrome, can increase the risk of developing testicular neoplasms.
5. Infertility: Men who are infertile may have an increased risk of developing testicular cancer.

Symptoms:

The symptoms of testicular neoplasms can vary depending on the type and location of the tumor. Some common symptoms include:

1. A lump or swelling in the testicle
2. Pain or discomfort in the testicle or scrotum
3. Enlargement of the testicle
4. Abnormality in the size or shape of the testicle
5. Pain during ejaculation
6. Difficulty urinating or painful urination
7. Breast tenderness or enlargement
8. Lower back pain
9. Fatigue
10. Weight loss

Diagnosis:

The diagnosis of testicular neoplasms typically involves a combination of physical examination, imaging studies, and biopsy.

1. Physical examination: A doctor will perform a thorough physical examination of the testicles, including checking for any abnormalities in size, shape, or tenderness.
2. Imaging studies: Imaging studies such as ultrasound, CT scans, or MRI may be used to help identify the location and extent of the tumor.
3. Biopsy: A biopsy is a procedure in which a small sample of tissue is removed from the testicle and examined under a microscope for cancer cells.
4. Blood tests: Blood tests may be performed to check for elevated levels of certain substances that can indicate the presence of cancer.

Treatment:

The treatment of testicular neoplasms depends on the type, location, and stage of the tumor. Some common treatments include:

1. Surgery: Surgery is often the first line of treatment for testicular neoplasms. The goal of surgery is to remove the tumor and any affected tissue.
2. Chemotherapy: Chemotherapy may be used in combination with surgery or radiation therapy to treat more advanced cancers.
3. Radiation therapy: Radiation therapy uses high-energy beams to kill cancer cells. It may be used in combination with surgery or chemotherapy.
4. Surveillance: Surveillance is a close monitoring of the patient's condition, including regular check-ups and imaging studies, to detect any recurrences of the tumor.

Prognosis:

The prognosis for testicular neoplasms depends on the type, location, and stage of the tumor. In general, the earlier the cancer is detected and treated, the better the prognosis. Some common types of testicular neoplasms have a good prognosis, while others are more aggressive and may have a poorer prognosis if not treated promptly.

Complications:

Some complications of testicular neoplasms include:

1. Recurrence: The cancer can recur in the testicle or spread to other parts of the body.
2. Spread to other parts of the body: Testicular cancer can spread to other parts of the body, such as the lungs, liver, or brain.
3. Infertility: Some treatments for testicular cancer, such as chemotherapy and radiation therapy, can cause infertility.
4. Hormone imbalance: Some types of testicular cancer can disrupt hormone levels, leading to symptoms such as breast enlargement or low sex drive.
5. Chronic pain: Some men may experience chronic pain in the testicle or scrotum after treatment for testicular cancer.

Lifestyle changes:

There are no specific lifestyle changes that can prevent testicular neoplasms, but some general healthy habits can help reduce the risk of developing these types of tumors. These include:

1. Maintaining a healthy weight and diet
2. Getting regular exercise
3. Limiting alcohol consumption
4. Avoiding smoking and recreational drugs
5. Protecting the testicles from injury or trauma

Screening:

There is no standard screening test for testicular neoplasms, but men can perform a self-exam to check for any abnormalities in their testicles. This involves gently feeling the testicles for any lumps or unusual texture. Men with a family history of testicular cancer should talk to their doctor about whether they should start screening earlier and more frequently.

Treatment:

The treatment of testicular neoplasms depends on the type, stage, and location of the tumor. Some common treatments include:

1. Surgery: This involves removing the affected testicle or tumor.
2. Chemotherapy: This involves using drugs to kill cancer cells.
3. Radiation therapy: This involves using high-energy rays to kill cancer cells.
4. Hormone therapy: This involves taking medications to alter hormone levels and slow the growth of cancer cells.
5. Clinical trials: These involve testing new treatments or combination of treatments for testicular neoplasms.

Prognosis:

The prognosis for testicular neoplasms varies depending on the type, stage, and location of the tumor. In general, the earlier the cancer is detected and treated, the better the prognosis. For example, seminoma has a high cure rate with current treatments, while non-seminomatous germ cell tumors have a lower cure rate but can still be effectively treated. Lymphoma and metastatic testicular cancer have a poorer prognosis and require aggressive treatment.

Lifestyle Changes:

There are no specific lifestyle changes that can prevent testicular neoplasms, but some risk factors such as smoking and alcohol consumption can be reduced to lower the risk of developing these tumors. Maintaining a healthy diet, regular exercise, and avoiding exposure to harmful chemicals can also help improve overall health and well-being.

Complications:

Testicular neoplasms can have several complications, including:

1. Infertility: Some treatments for testicular cancer, such as surgery or chemotherapy, can cause infertility.
2. Pain: Testicular cancer can cause pain in the scrotum, groin, or abdomen.
3. Swelling: Testicular cancer can cause swelling in the scrotum or groin.
4. Hormonal imbalance: Some testicular tumors can produce hormones that can cause an imbalance in the body's hormone levels.
5. Recurrence: Testicular cancer can recur after treatment, and regular follow-up is necessary to detect any signs of recurrence early.
6. Late effects of treatment: Some treatments for testicular cancer, such as chemotherapy, can have long-term effects on the body, including infertility, heart problems, and bone marrow suppression.
7. Metastasis: Testicular cancer can spread to other parts of the body, including the lungs, liver, and bones, which can be life-threatening.

Prevention:

There is no specific prevention for testicular neoplasms, but some risk factors such as undescended testes, family history, and exposure to certain chemicals can be reduced to lower the risk of developing these tumors. Regular self-examination and early detection are crucial in improving outcomes for patients with testicular cancer.

Conclusion:

Testicular neoplasms are a rare but potentially life-threatening condition that requires prompt and accurate diagnosis and treatment. Early detection through regular self-examination and follow-up can improve outcomes, while awareness of risk factors and symptoms is essential in reducing the burden of this disease. A multidisciplinary approach involving urologists, radiologists, pathologists, and oncologists is necessary for optimal management of patients with testicular neoplasms.

Symptoms of anaphylaxis include:

1. Swelling of the face, lips, tongue, and throat
2. Difficulty breathing or swallowing
3. Abdominal cramps
4. Nausea and vomiting
5. Rapid heartbeat
6. Feeling of impending doom or loss of consciousness

Anaphylaxis is diagnosed based on a combination of symptoms, medical history, and physical examination. Treatment for anaphylaxis typically involves administering epinephrine (adrenaline) via an auto-injector, such as an EpiPen or Auvi-Q. Additional treatments may include antihistamines, corticosteroids, and oxygen therapy.

Prevention of anaphylaxis involves avoiding known allergens and being prepared to treat a reaction if it occurs. If you have a history of anaphylaxis, it is important to carry an EpiPen or other emergency medication with you at all times. Wearing a medical alert bracelet or necklace can also help to notify others of your allergy and the need for emergency treatment.

In severe cases, anaphylaxis can lead to unconsciousness, seizures, and even death. Prompt treatment is essential to prevent these complications and ensure a full recovery.

The parasite forms cysts in various organs of the body, including the brain, liver, lungs, and muscles. Symptoms of cysticercosis can vary depending on the location and size of the cysts, and may include seizures, headaches, vision problems, and movement disorders.

Diagnosis of cysticercosis is typically made through a combination of physical examination, imaging studies such as CT or MRI scans, and laboratory tests to detect the presence of antibodies or parasitic elements in the body. Treatment generally involves surgical removal of the cysts, and may also involve antiparasitic drugs to kill any remaining parasites.

In some cases, cysticercosis can lead to serious complications such as inflammation of the brain (meningitis) or blockage of blood vessels, which can be life-threatening. Therefore, early diagnosis and treatment are essential to prevent these complications and improve outcomes for patients with this condition.

Overall, cysticercosis is a significant health problem in many parts of the world, particularly in areas where sanitation and hygiene are poor, and can have serious consequences if left untreated.

DLBCL is characterized by the rapid growth of malignant B cells in the lymph nodes, spleen, bone marrow, and other organs. These cells can also spread to other parts of the body through the bloodstream or lymphatic system. The disease is often aggressive and can progress quickly without treatment.

The symptoms of DLBCL vary depending on the location and extent of the disease, but they may include:

* Swollen lymph nodes in the neck, underarm, or groin
* Fever
* Fatigue
* Night sweats
* Weight loss
* Abdominal pain or discomfort
* Itching

The diagnosis of DLBCL is based on a combination of physical examination findings, imaging studies (such as CT scans or PET scans), and biopsy results. Treatment typically involves a combination of chemotherapy, radiation therapy, and in some cases, immunotherapy or targeted therapy. The prognosis for DLBCL has improved significantly over the past few decades, with overall survival rates ranging from 60% to 80%, depending on the stage and other factors.

There are many different types of liver diseases, including:

1. Alcoholic liver disease (ALD): A condition caused by excessive alcohol consumption that can lead to inflammation, scarring, and cirrhosis.
2. Viral hepatitis: Hepatitis A, B, and C are viral infections that can cause inflammation and damage to the liver.
3. Non-alcoholic fatty liver disease (NAFLD): A condition where there is an accumulation of fat in the liver, which can lead to inflammation and scarring.
4. Cirrhosis: A condition where the liver becomes scarred and cannot function properly.
5. Hemochromatosis: A genetic disorder that causes the body to absorb too much iron, which can damage the liver and other organs.
6. Wilson's disease: A rare genetic disorder that causes copper to accumulate in the liver and brain, leading to damage and scarring.
7. Liver cancer (hepatocellular carcinoma): Cancer that develops in the liver, often as a result of cirrhosis or viral hepatitis.

Symptoms of liver disease can include fatigue, loss of appetite, nausea, abdominal pain, dark urine, pale stools, and swelling in the legs. Treatment options for liver disease depend on the underlying cause and may include lifestyle changes, medication, or surgery. In severe cases, a liver transplant may be necessary.

Prevention of liver disease includes maintaining a healthy diet and lifestyle, avoiding excessive alcohol consumption, getting vaccinated against hepatitis A and B, and managing underlying medical conditions such as obesity and diabetes. Early detection and treatment of liver disease can help to prevent long-term damage and improve outcomes for patients.

There are several different types of uveitis, including:

1. Anterior uveitis: This type affects the front part of the eye and is the most common form of uveitis. It is often caused by an infection or injury.
2. Posterior uveitis: This type affects the back part of the eye and can be caused by a systemic disease such as sarcoidosis or juvenile idiopathic arthritis.
3. Intermediate uveitis: This type affects the middle layer of the eye and is often caused by an autoimmune disorder.
4. Panuveitis: This type affects the entire uvea and can be caused by a systemic disease such as vasculitis or Behçet's disease.

Symptoms of uveitis may include:

* Eye pain
* Redness and swelling in the eye
* Blurred vision
* Sensitivity to light
* Floaters (specks or cobwebs in your vision)
* Flashes of light

If you experience any of these symptoms, it is important to see an eye doctor as soon as possible. Uveitis can be diagnosed with a comprehensive eye exam, which may include imaging tests such as ultrasound or MRI. Treatment for uveitis depends on the cause and severity of the condition, but may include medication to reduce inflammation, antibiotics for infections, or surgery to remove any diseased tissue.

Early diagnosis and treatment are important to prevent complications such as cataracts, glaucoma, and blindness. If you have uveitis, it is important to follow your doctor's recommendations for treatment and monitoring to protect your vision.

In animals, toxoplasmosis can cause a variety of clinical signs depending on the severity of the infection and the immune status of the host. Some common symptoms include diarrhea, lethargy, loss of appetite, weight loss, fever, and enlargement of the liver and spleen. In severe cases, toxoplasmosis can lead to respiratory failure, neurological disorders, and death.

Toxoplasmosis is typically diagnosed through a combination of physical examination, laboratory tests such as polymerase chain reaction (PCR) or serology, and imaging studies such as radiography or ultrasonography. Treatment for toxoplasmosis in animals is largely supportive, aimed at managing symptoms and preventing complications.

Prevention of toxoplasmosis in animals involves good hygiene practices, such as avoiding contact with cat feces and contaminated food or water, and vaccination of cats against toxoplasmosis to reduce the risk of oocyst shedding. In some cases, antibiotics may be used to treat secondary bacterial infections that arise from the immunosuppression caused by the parasite.

In conclusion, toxoplasmosis is a common and widespread infectious disease that affects many animal species, including humans. It can cause a range of clinical signs and symptoms, and diagnosis requires a combination of physical examination, laboratory tests, and imaging studies. Prevention involves good hygiene practices and vaccination of cats against toxoplasmosis.

This definition of 'Neoplasm Recurrence, Local' is from the Healthcare Professionals edition of the Merriam-Webster Medical Dictionary, copyright © 2007 by Merriam-Webster, Inc.

Rectal neoplasms refer to abnormal growths or tumors that occur in the rectum, which is the lower part of the digestive system. These growths can be benign (non-cancerous) or malignant (cancerous).

Types of Rectal Neoplasms:

There are several types of rectal neoplasms, including:

1. Adenoma: A benign growth that is usually found in the colon and rectum. It is a common precursor to colorectal cancer.
2. Carcinoma: A malignant tumor that arises from the epithelial cells lining the rectum. It is the most common type of rectal cancer.
3. Rectal adenocarcinoma: A type of carcinoma that originates in the glandular cells lining the rectum.
4. Rectal squamous cell carcinoma: A type of carcinoma that originates in the squamous cells lining the rectum.
5. Rectal melanoma: A rare type of carcinoma that originates in the pigment-producing cells (melanocytes) of the rectum.

Causes and Risk Factors:

The exact causes of rectal neoplasms are not known, but several factors can increase the risk of developing these growths. These include:

1. Age: The risk of developing rectal neoplasms increases with age, with most cases occurring in people over the age of 50.
2. Family history: Having a family history of colorectal cancer or polyps can increase the risk of developing rectal neoplasms.
3. Inflammatory bowel disease: People with inflammatory bowel disease, such as ulcerative colitis and Crohn's disease, are at higher risk of developing rectal neoplasms.
4. Diet: A diet high in fat and low in fiber may increase the risk of developing rectal neoplasms.
5. Lifestyle factors: Factors such as smoking, obesity, and lack of physical activity may also increase the risk of developing rectal neoplasms.

Symptoms:

The symptoms of rectal neoplasms can vary depending on the type and location of the growth. Some common symptoms include:

1. Blood in the stool
2. Changes in bowel movements (such as diarrhea or constipation)
3. Abdominal pain or discomfort
4. Weakness and fatigue
5. Loss of appetite

Diagnosis:

To diagnose rectal neoplasms, a doctor may perform several tests, including:

1. Digital rectal exam (DRE): A doctor will insert a gloved finger into the rectum to feel for any abnormalities.
2. Colonoscopy: A flexible tube with a camera and light on the end is inserted through the anus and into the rectum to examine the inside of the rectum and colon for polyps or other abnormalities.
3. Imaging tests: Such as X-rays, CT scans, or MRI scans to visualize the growth and determine its location and size.
4. Biopsy: A sample of tissue is removed from the rectum and examined under a microscope for cancer cells.

Treatment:

The treatment of rectal neoplasms depends on the type, location, and stage of the growth. Some common treatments include:

1. Polypectomy: Removal of polyps through a colonoscopy or surgery.
2. Local excision: Surgical removal of the tumor and a small amount of surrounding tissue.
3. Radiation therapy: High-energy beams are used to kill cancer cells.
4. Chemotherapy: Drugs are used to kill cancer cells.
5. Immunotherapy: A treatment that uses the body's immune system to fight cancer.

Prognosis:

The prognosis for rectal neoplasms depends on the type, location, and stage of the growth. In general, the earlier the diagnosis and treatment, the better the prognosis. However, some types of rectal neoplasms can be more aggressive and difficult to treat, and may have a poorer prognosis.

Prevention:

There is no sure way to prevent rectal neoplasms, but there are several screening tests that can help detect them early, including:

1. Colonoscopy: A test in which a flexible tube with a camera and light on the end is inserted into the rectum and colon to examine for polyps or cancer.
2. Fecal occult blood test (FOBT): A test that checks for blood in the stool.
3. Flexible sigmoidoscopy: A test similar to a colonoscopy, but only examines the lower part of the colon and rectum.
4. Digital rectal exam (DRE): An examination of the rectum using a gloved finger to feel for any abnormalities.

It is important to talk to your doctor about your risk for rectal neoplasms and any screening tests that may be appropriate for you. Early detection and treatment can improve the prognosis for these types of growths.

Some common types of eye neoplasms include:

1. Uveal melanoma: This is a malignant tumor that develops in the uvea, the middle layer of the eye. It is the most common primary intraocular cancer in adults and can spread to other parts of the body if left untreated.
2. Retinoblastoma: This is a rare type of cancer that affects children and develops in the retina. It is usually diagnosed before the age of 5 and is highly treatable with surgery, chemotherapy, and radiation therapy.
3. Conjunctival melanoma: This is a malignant tumor that develops in the conjunctiva, the thin membrane that covers the white part of the eye. It is more common in older adults and can be treated with surgery and/or radiation therapy.
4. Ocular sarcomas: These are rare types of cancer that develop in the eye tissues, including the retina, optic nerve, and uvea. They can be benign or malignant and may require surgical removal or radiation therapy.
5. Secondary intraocular tumors: These are tumors that metastasize (spread) to the eye from other parts of the body, such as breast cancer or lung cancer.

The symptoms of eye neoplasms can vary depending on their location and type, but may include:

* Blurred vision
* Eye pain or discomfort
* Redness or inflammation in the eye
* Sensitivity to light
* Floaters (specks or cobwebs in vision)
* Flashes of light
* Abnormal pupil size or shape

Early detection and treatment of eye neoplasms are important to preserve vision and prevent complications. Diagnosis is typically made through a combination of physical examination, imaging tests such as ultrasound or MRI, and biopsy (removing a small sample of tissue for examination under a microscope). Treatment options may include:

* Surgery to remove the tumor
* Radiation therapy to kill cancer cells
* Chemotherapy to destroy cancer cells with medication
* Observation and monitoring if the tumor is slow-growing or benign

It's important to seek medical attention if you experience any unusual symptoms in your eye, as early detection and treatment can improve outcomes.

Granulomas are formed in response to the presence of a foreign substance or an infection, and they serve as a protective barrier to prevent the spread of the infection and to isolate the offending agent. The granuloma is characterized by a central area of necrosis, surrounded by a ring of immune cells, including macrophages and T-lymphocytes.

Granulomas are commonly seen in a variety of inflammatory conditions, such as tuberculosis, leprosy, and sarcoidosis. They can also occur as a result of infections, such as bacterial or fungal infections, and in the context of autoimmune disorders, such as rheumatoid arthritis.

In summary, granuloma is a term used to describe a type of inflammatory lesion that is formed in response to the presence of a foreign substance or an infection, and serves as a protective barrier to prevent the spread of the infection and to isolate the offending agent.

The symptoms of bovine tuberculosis can vary depending on the severity of the infection and the organs affected. Common symptoms include:

* Coughing or difficulty breathing
* Weight loss and loss of condition
* Fever
* Swollen lymph nodes
* Enlarged liver or spleen
* Poor milk production in lactating cows
* Intestinal problems, such as diarrhea or constipation

If left untreated, bovine tuberculosis can lead to serious complications, such as pneumonia, pleurisy, and peritonitis. It can also spread to other animals in the herd, making it important to identify and isolate infected animals promptly.

Diagnosis of bovine tuberculosis typically involves a combination of physical examination, laboratory tests, and imaging studies. Skin tests, such as the Mantoux test or the single-dose intradermal test, can detect exposure to the bacteria, but they may not always provide accurate results in animals with low levels of antibodies. Blood tests, such as the interferon gamma (IFN-γ) test or the QuantiFERON® test, can detect the presence of TB antigens in the blood, but these tests may also have limitations.

Treatment of bovine tuberculosis typically involves a combination of antibiotics and supportive care to manage symptoms and prevent complications. The most commonly used antibiotics include isoniazid, streptomycin, and pyrazinamide. In severe cases, surgical intervention may be necessary to remove infected tissue or repair damaged organs.

Prevention of bovine tuberculosis primarily involves controlling the spread of the disease through control of the mycobacteria that cause it. Measures such as testing and removal of infected animals, use of clean needles and equipment, and proper disposal of animal carcasses can help prevent the spread of the disease. Additionally, vaccination of animals with a live bacille Calmette-Guérin (BCG) vaccine has been shown to be effective in preventing TB infections.

In conclusion, bovine tuberculosis is a significant health concern for cattle and other animals, as well as humans who may be exposed to infected animals or contaminated products. Early diagnosis and treatment are essential to prevent the spread of the disease and manage symptoms in affected animals. Prevention measures such as testing and removal of infected animals, use of clean needles and equipment, and proper disposal of animal carcasses can help control the spread of the disease.

Sarcomas can arise in any part of the body, but they are most common in the arms and legs. They can also occur in the abdomen, chest, or head and neck. There are many different types of sarcoma, each with its own unique characteristics and treatment options.

The causes of sarcoma are not fully understood, but genetic mutations, exposure to radiation, and certain chemicals have been linked to an increased risk of developing the disease. Sarcomas can be challenging to diagnose and treat, as they often grow slowly and may not cause symptoms until they are advanced.

Treatment for sarcoma typically involves a combination of surgery, radiation therapy, and chemotherapy. The specific treatment plan will depend on the type of sarcoma, its location, and the stage of the disease. In some cases, amputation may be necessary to remove the tumor.

Prognosis for sarcoma varies depending on the type of cancer, the size and location of the tumor, and the stage of the disease. In general, the prognosis is best for patients with early-stage sarcoma that is confined to a small area and has not spread to other parts of the body.

Overall, sarcoma is a rare and complex form of cancer that requires specialized treatment and care. While the prognosis can vary depending on the specific type of cancer and the stage of the disease, advances in medical technology and treatment options have improved outcomes for many patients with sarcoma.

Fibrosis can occur in response to a variety of stimuli, including inflammation, infection, injury, or chronic stress. It is a natural healing process that helps to restore tissue function and structure after damage or trauma. However, excessive fibrosis can lead to the loss of tissue function and organ dysfunction.

There are many different types of fibrosis, including:

* Cardiac fibrosis: the accumulation of scar tissue in the heart muscle or walls, leading to decreased heart function and potentially life-threatening complications.
* Pulmonary fibrosis: the accumulation of scar tissue in the lungs, leading to decreased lung function and difficulty breathing.
* Hepatic fibrosis: the accumulation of scar tissue in the liver, leading to decreased liver function and potentially life-threatening complications.
* Neurofibromatosis: a genetic disorder characterized by the growth of benign tumors (neurofibromas) made up of fibrous connective tissue.
* Desmoid tumors: rare, slow-growing tumors that are made up of fibrous connective tissue and can occur in various parts of the body.

Fibrosis can be diagnosed through a variety of methods, including:

* Biopsy: the removal of a small sample of tissue for examination under a microscope.
* Imaging tests: such as X-rays, CT scans, or MRI scans to visualize the accumulation of scar tissue.
* Blood tests: to assess liver function or detect specific proteins or enzymes that are elevated in response to fibrosis.

There is currently no cure for fibrosis, but various treatments can help manage the symptoms and slow the progression of the condition. These may include:

* Medications: such as corticosteroids, immunosuppressants, or chemotherapy to reduce inflammation and slow down the growth of scar tissue.
* Lifestyle modifications: such as quitting smoking, exercising regularly, and maintaining a healthy diet to improve overall health and reduce the progression of fibrosis.
* Surgery: in some cases, surgical removal of the affected tissue or organ may be necessary.

It is important to note that fibrosis can progress over time, leading to further scarring and potentially life-threatening complications. Regular monitoring and follow-up with a healthcare professional are crucial to managing the condition and detecting any changes or progression early on.

1. Autoimmune diseases: These occur when the immune system mistakenly attacks healthy cells and tissues in the body. Examples include rheumatoid arthritis, lupus, multiple sclerosis, and type 1 diabetes.
2. Allergies: An allergic reaction occurs when the immune system overreacts to a harmless substance, such as pollen, dust mites, or certain foods. Symptoms can range from mild hives to life-threatening anaphylaxis.
3. Immunodeficiency disorders: These are conditions that impair the immune system's ability to fight infections. Examples include HIV/AIDS and primary immunodeficiency diseases.
4. Infectious diseases: Certain infections, such as tuberculosis or bacterial meningitis, can cause immune system dysfunction.
5. Cancer: Some types of cancer, such as lymphoma, affect the immune system's ability to fight disease.
6. Immune thrombocytopenic purpura (ITP): This is a rare autoimmune disorder that causes the immune system to attack and destroy platelets, leading to bleeding and bruising.
7. Guillain-Barré syndrome: This is a rare autoimmune disorder that occurs when the immune system attacks the nerves, leading to muscle weakness and paralysis.
8. Chronic fatigue syndrome (CFS): This is a condition characterized by persistent fatigue, muscle pain, and joint pain, which is thought to be related to an immune system imbalance.
9. Fibromyalgia: This is a chronic condition characterized by widespread muscle pain, fatigue, and sleep disturbances, which may be linked to immune system dysfunction.
10. Autoimmune hepatitis: This is a condition in which the immune system attacks the liver, leading to inflammation and damage to the liver cells.

It's important to note that a weakened immune system can increase the risk of infections and other health problems, so it's important to work with your healthcare provider to identify any underlying causes and develop an appropriate treatment plan.

Symptoms of EBV infection can vary widely, ranging from asymptomatic to severe, and may include:

* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Swollen liver or spleen
* Rash
* Headaches
* Muscle weakness

In some cases, EBV can lead to more serious complications such as infectious mononucleosis (IM), also known as glandular fever, which can cause:

* Enlarged liver and spleen
* Splenomegaly (enlargement of the spleen)
* Hepatomegaly (enlargement of the liver)
* Thrombocytopenia (low platelet count)
* Anemia (low red blood cell count)
* Leukopenia (low white blood cell count)

EBV is also associated with an increased risk of developing certain types of cancer, including Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma.

There is no specific treatment for EBV infections, and most cases resolve on their own within a few weeks. Antiviral medications may be prescribed in severe cases or to prevent complications. Rest, hydration, and over-the-counter pain relief medication can help alleviate symptoms.

Cystadenocarcinoma can occur in various parts of the body, but it is most common in the ovary and breast. In the ovary, it is the most common type of ovarian cancer and accounts for about 70% of all ovarian cancers. In the breast, it is a rare type of breast cancer, accounting for less than 5% of all breast cancers.

The symptoms of cystadenocarcinoma can vary depending on the location of the tumor, but they may include:

* Abnormal vaginal bleeding or discharge
* Pelvic pain or discomfort
* Abdominal swelling or bloating
* Painful urination
* Weakness and fatigue

Cystadenocarcinoma is diagnosed through a combination of imaging tests, such as ultrasound, CT scan, or MRI, and biopsy. Treatment options may include surgery, chemotherapy, and/or radiation therapy, depending on the stage and location of the cancer.

The prognosis for cystadenocarcinoma depends on the stage of the cancer at the time of diagnosis. In general, early detection and treatment improve the chances of a successful outcome. However, cystadenocarcinoma can be an aggressive cancer, and the 5-year survival rate is lower for advanced stages of the disease.

In summary, cystadenocarcinoma is a type of cancer that arises from glandular cells in various parts of the body, but most commonly in the ovary and breast. It can cause a range of symptoms and is diagnosed through imaging tests and biopsy. Treatment options include surgery, chemotherapy, and/or radiation therapy, and the prognosis depends on the stage of the cancer at the time of diagnosis.

There are several subtypes of liposarcoma, including:

1. Well-differentiated liposarcoma (WDLS): This is the most common type of liposarcoma and tends to grow slowly.
2. Dedifferentiated liposarcoma (DDLS): This type of liposarcoma grows more quickly than WDLS and can be more aggressive.
3. Myxoid liposarcoma: This is a rare subtype that tends to grow slowly and has a good prognosis.
4. Pleomorphic liposarcoma: This is the most aggressive type of liposarcoma and can be difficult to treat.

The exact cause of liposarcoma is not known, but it is believed to be linked to genetic mutations that occur in the fat cells. Risk factors for developing liposarcoma include a family history of the condition, previous radiation exposure, and certain inherited conditions such as neurofibromatosis type 1 (NF1) or Li-Fraumeni syndrome.

Symptoms of liposarcoma may include a soft tissue mass, pain, swelling, and limited mobility in the affected area. Diagnosis is typically made through a combination of imaging tests such as CT scans, MRI scans, and PET scans, as well as a biopsy to confirm the presence of cancer cells.

Treatment for liposarcoma depends on the size, location, and stage of the cancer, as well as the patient's overall health. Surgery is the primary treatment, and may involve removing the tumor and some surrounding tissue. In some cases, radiation therapy or chemotherapy may also be used to shrink the tumor before surgery or to kill any remaining cancer cells after surgery. The prognosis for liposarcoma varies depending on the subtype and stage of the cancer, but in general, the earlier the diagnosis and treatment, the better the outlook.

1. Endometrial carcinoma (cancer that starts in the lining of the uterus)
2. Uterine papillary serous carcinoma (cancer that starts in the muscle layer of the uterus)
3. Leiomyosarcoma (cancer that starts in the smooth muscle of the uterus)
4. Adenocarcinoma (cancer that starts in the glands of the endometrium)
5. Clear cell carcinoma (cancer that starts in the cells that resemble the lining of the uterus)
6. Sarcoma (cancer that starts in the connective tissue of the uterus)
7. Mixed tumors (cancers that have features of more than one type of uterine cancer)

These types of cancers can affect women of all ages and are more common in postmenopausal women. Risk factors for developing uterine neoplasms include obesity, tamoxifen use, and a history of endometrial hyperplasia (thickening of the lining of the uterus).

Symptoms of uterine neoplasms can include:

1. Abnormal vaginal bleeding (heavy or prolonged menstrual bleeding, spotting, or postmenopausal bleeding)
2. Postmenopausal bleeding
3. Pelvic pain or discomfort
4. Vaginal discharge
5. Weakness and fatigue
6. Weight loss
7. Pain during sex
8. Increased urination or frequency of urination
9. Abnormal Pap test results (abnormal cells found on the cervix)

If you have any of these symptoms, it is essential to consult your healthcare provider for proper evaluation and treatment. A diagnosis of uterine neoplasms can be made through several methods, including:

1. Endometrial biopsy (a small sample of tissue is removed from the lining of the uterus)
2. Dilation and curettage (D&C; a surgical procedure to remove tissue from the inside of the uterus)
3. Hysteroscopy (a thin, lighted tube with a camera is inserted through the cervix to view the inside of the uterus)
4. Imaging tests (such as ultrasound or MRI)

Treatment for uterine neoplasms depends on the type and stage of cancer. Common treatments include:

1. Hysterectomy (removal of the uterus)
2. Radiation therapy (uses high-energy rays to kill cancer cells)
3. Chemotherapy (uses drugs to kill cancer cells)
4. Targeted therapy (uses drugs to target specific cancer cells)
5. Clinical trials (research studies to test new treatments)

It is essential for women to be aware of their bodies and any changes that occur, particularly after menopause. Regular pelvic exams and screenings can help detect uterine neoplasms at an early stage, when they are more treatable. If you experience any symptoms or have concerns about your health, talk to your healthcare provider. They can help determine the cause of your symptoms and recommend appropriate treatment.

The symptoms of AIDS can vary depending on the individual and the stage of the disease. Common symptoms include:

1. Fever
2. Fatigue
3. Swollen glands
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
9. Memory loss and other neurological problems
10. Cancer and other opportunistic infections.

AIDS is diagnosed through blood tests that detect the presence of HIV antibodies or the virus itself. There is no cure for AIDS, but antiretroviral therapy (ART) can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis (PrEP), and avoiding sharing needles or other injection equipment.

In summary, Acquired Immunodeficiency Syndrome (AIDS) is a severe and life-threatening condition caused by the Human Immunodeficiency Virus (HIV). It is characterized by a severely weakened immune system, which makes it difficult to fight off infections and diseases. While there is no cure for AIDS, antiretroviral therapy can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis, and avoiding sharing needles or other injection equipment.

There are several types of dermatitis, including:

1. Atopic dermatitis: a chronic condition characterized by dry, itchy skin and a tendency to develop allergies.
2. Contact dermatitis: a localized reaction to an allergen or irritant that comes into contact with the skin.
3. Seborrheic dermatitis: a condition characterized by redness, itching, and flaking skin on the scalp, face, or body.
4. Psoriasis: a chronic condition characterized by thick, scaly patches on the skin.
5. Cutaneous lupus erythematosus: a chronic autoimmune disorder that can cause skin rashes and lesions.
6. Dermatitis herpetiformis: a rare condition characterized by itchy blisters or rashes on the skin.

Dermatitis can be diagnosed through a physical examination, medical history, and sometimes laboratory tests such as patch testing or biopsy. Treatment options for dermatitis depend on the cause and severity of the condition, but may include topical creams or ointments, oral medications, phototherapy, or lifestyle changes such as avoiding allergens or irritants.

The symptoms of MS can vary widely depending on the location and severity of the damage to the CNS. Common symptoms include:

* Weakness, numbness, or tingling in the limbs
* Fatigue
* Vision problems, such as blurred vision, double vision, or loss of vision
* Difficulty with balance and coordination
* Tremors or spasticity
* Memory and concentration problems
* Mood changes, such as depression or mood swings
* Bladder and bowel problems

There is no cure for MS, but various treatments can help manage the symptoms and slow the progression of the disease. These treatments include:

* Disease-modifying therapies (DMTs) - These medications are designed to reduce the frequency and severity of relapses, and they can also slow the progression of disability. Examples of DMTs include interferons, glatiramer acetate, natalizumab, fingolimod, dimethyl fumarate, teriflunomide, and alemtuzumab.
* Steroids - Corticosteroids can help reduce inflammation during relapses, but they are not a long-term solution.
* Pain management medications - Pain relievers, such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs), can help manage pain caused by MS.
* Muscle relaxants - These medications can help reduce spasticity and tremors.
* Physical therapy - Physical therapy can help improve mobility, balance, and strength.
* Occupational therapy - Occupational therapy can help with daily activities and assistive devices.
* Speech therapy - Speech therapy can help improve communication and swallowing difficulties.
* Psychological counseling - Counseling can help manage the emotional and psychological aspects of MS.

It's important to note that each person with MS is unique, and the best treatment plan will depend on the individual's specific symptoms, needs, and preferences. It's essential to work closely with a healthcare provider to find the most effective treatment plan.

There are two main forms of echinococcosis: cystic and alveolar. Cystic echinococcosis is the most common form and is characterized by the formation of fluid-filled cysts in the liver, lungs, or other organs. Alveolar echinococcosis is a more aggressive form of the disease and is characterized by the formation of solid tumor-like masses in the liver, lungs, or other organs.

The symptoms of echinococcosis vary depending on the location and size of the cysts or tumors. They may include abdominal pain, weight loss, fever, fatigue, and difficulty breathing. The disease is diagnosed through a combination of imaging tests such as CT scans, MRI scans, and ultrasound, and by examining a sample of the cyst contents under a microscope.

Treatment for echinococcosis usually involves surgery to remove the cysts or tumors, followed by antiparasitic medication to kill any remaining parasites. In some cases, chemotherapy may be necessary to treat the disease. Prevention of echinococcosis primarily involves controlling the spread of dog tapeworms, which can be done through measures such as regularly deworming dogs and avoiding contact with dog feces.

Echinococcosis is a serious and potentially life-threatening disease, but with timely diagnosis and appropriate treatment, many people are able to recover fully or partially.

Examples of 'Adenocarcinoma, Mucinous' in medical literature:

* The patient was diagnosed with adenocarcinoma, mucinous type, in their colon after undergoing a colonoscopy and biopsy. (From the Journal of Clinical Oncology)

* The patient had a history of adenocarcinoma, mucinous type, in their breast and was being monitored for potential recurrence. (From the Journal of Surgical Oncology)

* The tumor was found to be an adenocarcinoma, mucinous type, with a high grade and was treated with surgery and chemotherapy. (From the Journal of Gastrointestinal Oncology)

Synonyms for 'Adenocarcinoma, Mucinous' include:

* Mucinous adenocarcinoma
* Colon adenocarcinoma, mucinous type
* Rectal adenocarcinoma, mucinous type
* Adenocarcinoma of the colon and rectum, mucinous type.

1. Hantavirus pulmonary syndrome (HPS): This is a severe respiratory disease caused by the hantavirus, which is found in the urine and saliva of infected rodents. Symptoms of HPS can include fever, headache, muscle pain, and difficulty breathing.
2. Leptospirosis: This is a bacterial infection caused by the bacterium Leptospira, which is found in the urine of infected rodents. Symptoms can include fever, headache, muscle pain, and jaundice (yellowing of the skin and eyes).
3. Rat-bite fever: This is a bacterial infection caused by the bacterium Streptobacillus moniliformis, which is found in the saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and swollen lymph nodes.
4. Lymphocytic choriomeningitis (LCM): This is a viral infection caused by the lymphocytic choriomeningitis virus (LCMV), which is found in the urine and saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and meningitis (inflammation of the membranes surrounding the brain and spinal cord).
5. Tularemia: This is a bacterial infection caused by the bacterium Francisella tularensis, which is found in the urine and saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and swollen lymph nodes.

These are just a few examples of the many diseases that can be transmitted to humans through contact with rodents. It is important to take precautions when handling or removing rodents, as they can pose a serious health risk. If you suspect that you have been exposed to a rodent-borne disease, it is important to seek medical attention as soon as possible.

Symptoms of cerebellar neoplasms can include:

* Headaches
* Nausea and vomiting
* Dizziness and loss of balance
* Weakness or paralysis in the arms or legs
* Coordination problems and difficulty walking
* Double vision or other visual disturbances
* Speech difficulties
* Seizures

Cerebellar neoplasms can be caused by genetic mutations, exposure to radiation, or viral infections. They can also occur spontaneously without any known cause.

Diagnosis of cerebellar neoplasms usually involves a combination of imaging tests such as CT or MRI scans, and tissue sampling through biopsy. Treatment options for cerebellar neoplasms depend on the type, size, and location of the tumor, as well as the patient's overall health.

Treatment options may include:

* Surgery to remove the tumor
* Radiation therapy to kill remaining cancer cells
* Chemotherapy to kill cancer cells
* Targeted therapy to attack specific molecules that are involved in the growth and spread of the tumor.

Prognosis for cerebellar neoplasms varies depending on the type, size, and location of the tumor, as well as the patient's overall health. In general, the prognosis is better for patients with benign tumors that are located in the outer layers of the cerebellum, and worse for those with malignant tumors that are located in the deeper layers.

Overall, cerebellar neoplasms are a complex and rare type of brain tumor that require specialized care and treatment from a team of medical professionals.

Carcinogenesis is the process by which normal cells are transformed into cancer cells. This complex process involves a series of genetic and molecular changes that can take place over a long period of time. The term "carcinogenesis" is derived from the Greek words "carcinoma," meaning cancer, and "genesis," meaning origin or creation.

Carcinogenesis is a multistep process that involves several stages, including:

1. initiation: This stage involves the activation of oncogenes or the inactivation of tumor suppressor genes, leading to the formation of precancerous cells.
2. promotion: In this stage, the precancerous cells undergo further changes that allow them to grow and divide uncontrollably.
3. progression: This stage is characterized by the spread of cancer cells to other parts of the body (metastasis).

The process of carcinogenesis is influenced by a variety of factors, including genetics, environmental factors, and lifestyle choices. Some of the known risk factors for carcinogenesis include:

1. tobacco use
2. excessive alcohol consumption
3. exposure to certain chemicals and radiation
4. obesity and poor diet
5. lack of physical activity
6. certain viral infections

Understanding the process of carcinogenesis is important for developing effective cancer prevention and treatment strategies. By identifying the early stages of carcinogenesis, researchers may be able to develop interventions that can prevent or reverse the process before cancer develops.

Mast cell sarcoma is most commonly seen in the skin, but it can also arise in other parts of the body such as the spleen, liver, or gastrointestinal tract. The tumors are usually large, irregularly shaped masses that can be firm or soft to the touch. They may ulcerate and bleed easily, leading to swelling and discomfort.

The symptoms of mast cell sarcoma can vary depending on the location and size of the tumor. They may include:

* A lump or mass that may be painless or tender to the touch
* Swelling in the affected area
* Abdominal pain
* Diarrhea or constipation
* Fatigue
* Fevers
* Night sweats

Mast cell sarcoma is rare and accounts for only about 1-2% of all skin tumors. It is more common in dogs than cats and tends to affect older animals. The exact cause of mast cell sarcoma is not known, but genetic factors and environmental triggers may play a role.

Treatment options for mast cell sarcoma depend on the location and stage of the tumor. Surgery is often the first line of treatment to remove the tumor and any affected tissue. Additional therapies such as radiation, chemotherapy, or immunotherapy may be recommended based on the severity of the disease and the patient's overall health.

Prognosis for mast cell sarcoma varies depending on several factors, including the size and location of the tumor, the effectiveness of treatment, and the patient's overall health. In general, the prognosis is guarded and early detection and treatment are important to improve outcomes. With prompt and appropriate therapy, some patients with mast cell sarcoma can achieve long-term remission or even cure. However, in advanced cases or those that are resistant to treatment, the prognosis may be poorer.

Some common types of gastrointestinal neoplasms include:

1. Gastric adenocarcinoma: A type of stomach cancer that starts in the glandular cells of the stomach lining.
2. Colorectal adenocarcinoma: A type of cancer that starts in the glandular cells of the colon or rectum.
3. Esophageal squamous cell carcinoma: A type of cancer that starts in the squamous cells of the esophagus.
4. Small intestine neuroendocrine tumors: Tumors that start in the hormone-producing cells of the small intestine.
5. Gastrointestinal stromal tumors (GISTs): Tumors that start in the connective tissue of the GI tract.

The symptoms of gastrointestinal neoplasms can vary depending on the location and size of the tumor, but they may include:

* Abdominal pain or discomfort
* Changes in bowel habits (such as diarrhea or constipation)
* Weight loss
* Fatigue
* Nausea and vomiting

If you have any of these symptoms, it is important to see a doctor for further evaluation and diagnosis. A gastrointestinal neoplasm can be diagnosed through a combination of endoscopy (insertion of a flexible tube into the GI tract to visualize the inside), imaging tests (such as CT or MRI scans), and biopsy (removal of a small sample of tissue for examination under a microscope).

Treatment options for gastrointestinal neoplasms depend on the type, location, and stage of the tumor, but they may include:

* Surgery to remove the tumor
* Chemotherapy (use of drugs to kill cancer cells)
* Radiation therapy (use of high-energy X-rays or other particles to kill cancer cells)
* Targeted therapy (use of drugs that target specific molecules involved in cancer growth and development)
* Supportive care (such as pain management and nutritional support)

The prognosis for gastrointestinal neoplasms varies depending on the type and stage of the tumor, but in general, early detection and treatment improve outcomes. If you have been diagnosed with a gastrointestinal neoplasm, it is important to work closely with your healthcare team to develop a personalized treatment plan and follow up regularly for monitoring and adjustments as needed.

Precancerous changes in the uterine cervix are called dysplasias, and they can be detected by a Pap smear, which is a routine screening test for women. If dysplasia is found, it can be treated with cryotherapy (freezing), laser therapy, or cone biopsy, which removes the affected cells.

Cervical cancer is rare in developed countries where Pap screening is widely available, but it remains a common cancer in developing countries where access to healthcare and screening is limited. The human papillomavirus (HPV) vaccine has been shown to be effective in preventing cervical precancerous changes and cancer.

Cervical cancer can be treated with surgery, radiation therapy, or chemotherapy, depending on the stage and location of the cancer. The prognosis for early-stage cervical cancer is good, but advanced-stage cancer can be difficult to treat and may have a poor prognosis.

The following are some types of uterine cervical neoplasms:

1. Adenocarcinoma in situ (AIS): This is a precancerous condition that occurs when glandular cells on the surface of the cervix become abnormal and grow out of control.
2. Cervical intraepithelial neoplasia (CIN): This is a precancerous condition that occurs when abnormal cells are found on the surface of the cervix. There are several types of CIN, ranging from mild to severe.
3. Squamous cell carcinoma: This is the most common type of cervical cancer and arises from the squamous cells that line the cervix.
4. Adnexal carcinoma: This is a rare type of cervical cancer that arises from the glands or ducts near the cervix.
5. Small cell carcinoma: This is a rare and aggressive type of cervical cancer that grows rapidly and can spread quickly to other parts of the body.
6. Micropapillary uterine carcinoma: This is a rare type of cervical cancer that grows in a finger-like shape and can be difficult to diagnose.
7. Clear cell carcinoma: This is a rare type of cervical cancer that arises from clear cells and can be more aggressive than other types of cervical cancer.
8. Adenocarcinoma: This is a type of cervical cancer that arises from glandular cells and can be less aggressive than squamous cell carcinoma.
9. Sarcoma: This is a rare type of cervical cancer that arises from the connective tissue of the cervix.

The treatment options for uterine cervical neoplasms depend on the stage and location of the cancer, as well as the patient's overall health and preferences. The following are some common treatments for uterine cervical neoplasms:

1. Hysterectomy: This is a surgical procedure to remove the uterus and may be recommended for early-stage cancers or precancerous changes.
2. Cryotherapy: This is a minimally invasive procedure that uses liquid nitrogen to freeze and destroy abnormal cells in the cervix.
3. Laser therapy: This is a minimally invasive procedure that uses a laser to remove or destroy abnormal cells in the cervix.
4. Cone biopsy: This is a surgical procedure to remove a small cone-shaped sample of tissue from the cervix to diagnose and treat early-stage cancers or precancerous changes.
5. Radiation therapy: This is a non-surgical treatment that uses high-energy rays to kill cancer cells and may be recommended for more advanced cancers or when the cancer has spread to other parts of the body.
6. Chemotherapy: This is a non-surgical treatment that uses drugs to kill cancer cells and may be recommended for more advanced cancers or when the cancer has spread to other parts of the body.
7. Immunotherapy: This is a non-surgical treatment that uses drugs to stimulate the immune system to fight cancer cells and may be recommended for more advanced cancers or when other treatments have failed.
8. Targeted therapy: This is a non-surgical treatment that uses drugs to target specific genes or proteins that contribute to cancer growth and development and may be recommended for more advanced cancers or when other treatments have failed.

It is important to note that the choice of treatment will depend on the stage and location of the cancer, as well as the patient's overall health and preferences. Patients should discuss their treatment options with their doctor and develop a personalized plan that is right for them.

Lyme disease is typically diagnosed based on a combination of physical symptoms, medical history, and laboratory tests. Treatment typically involves antibiotics, which can help to clear the infection and alleviate symptoms.

Prevention of Lyme disease involves protecting against tick bites by using insect repellents, wearing protective clothing when outdoors, and conducting regular tick checks. Early detection and treatment of Lyme disease can help to prevent long-term complications, such as joint inflammation and neurological problems.

In this definition, we have used technical terms such as 'bacterial infection', 'blacklegged tick', 'Borrelia burgdorferi', and 'antibiotics' to provide a more detailed understanding of the medical concept.

The infection occurs when the parasite migrates through the body and reaches the CNS, where it forms cysticerci, which are fluid-filled structures that can cause inflammation and damage to brain tissue. The symptoms of neurocysticercosis can vary depending on the location and size of the cysts, but they often include seizures, headaches, weakness, and vision problems.

Diagnosis of neurocysticercosis is based on a combination of clinical findings, imaging studies (such as CT or MRI scans), and serological tests to detect antibodies against the parasite. Treatment typically involves antiparasitic drugs to kill the parasites, as well as supportive care to manage symptoms and prevent complications.

Prevention of neurocysticercosis primarily involves controlling the transmission of the parasite, which can be done by improving food hygiene and avoiding consumption of undercooked or raw pork. In areas where the infection is common, mass drug administration programs have also been implemented to reduce the prevalence of the parasite.

In summary, neurocysticercosis is a severe and potentially debilitating parasitic infection that affects the central nervous system, with symptoms ranging from seizures to vision problems. Diagnosis is based on a combination of clinical findings and imaging studies, and treatment involves antiparasitic drugs and supportive care. Prevention primarily involves controlling the transmission of the parasite through improved food hygiene and mass drug administration programs.

The infection occurs when a person ingests undercooked or raw meat containing the tapeworm larvae, which then migrate to the intestines and mature into adult worms. The adult tapeworms can live for up to 20 years in the host's intestine, causing no symptoms in some cases, while in others, they may cause abdominal pain, diarrhea, and weight loss.

If left untreated, taeniasis can lead to complications such as intestinal blockages, perforation of the intestines, and anemia due to blood loss. Treatment typically involves anti-parasitic drugs to kill the adult worms and larvae. Prevention measures include proper cooking of meat, especially beef, to an internal temperature of at least 160°F (71°C) for a few minutes, as well as good hygiene practices when handling raw meat.

Recurrence can also refer to the re-emergence of symptoms in a previously treated condition, such as a chronic pain condition that returns after a period of remission.

In medical research, recurrence is often studied to understand the underlying causes of disease progression and to develop new treatments and interventions to prevent or delay its return.

The symptoms of infectious mononucleosis can vary in severity but typically include:

* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Enlarged spleen
* Headache
* Muscle weakness
* Rash
* Swollen liver or spleen

Infectious mononucleosis is usually diagnosed through a combination of physical examination, blood tests, and other laboratory tests. Treatment focuses on relieving symptoms and allowing the body to fight the infection on its own.

Prognosis for infectious mononucleosis is generally good, but it can take several weeks to recover fully. Complications are rare but can include inflammation of the spleen, liver disease, and a condition called splenomegaly (enlargement of the spleen).

Prevention includes avoiding close contact with people who have mononucleosis, washing hands frequently, and not sharing eating or drinking utensils. There is no vaccine available to protect against infectious mononucleosis.

Types of mouth neoplasms include:

1. Oral squamous cell carcinoma (OSCC): This is the most common type of mouth cancer, accounting for about 90% of all cases. It usually occurs on the tongue, lips, or floor of the mouth.
2. Verrucous carcinoma: This type of cancer is slow-growing and typically affects the gums or the outer surface of the tongue.
3. Adenoid cystic carcinoma: This type of cancer is rare and usually affects the salivary glands. It can infiltrate surrounding tissues and cause significant destruction of nearby structures.
4. Mucoepidermoid carcinoma: This type of cancer is relatively rare and occurs most commonly on the tongue or the floor of the mouth. It can be benign or malignant, and its behavior varies depending on the type.
5. Melanotic neuroectodermal tumor: This is a rare type of cancer that affects the melanocytes (pigment-producing cells) in the mouth. It typically occurs in the tongue or the lips.

Symptoms of mouth neoplasms can include:

* A sore or ulcer that does not heal
* A lump or mass in the mouth
* Bleeding or pain in the mouth
* Difficulty swallowing or speaking
* Numbness or tingling in the mouth

Diagnosis of mouth neoplasms typically involves a combination of physical examination, imaging studies (such as X-rays or CT scans), and biopsy. Treatment options vary depending on the type and severity of the cancer, but may include surgery, radiation therapy, chemotherapy, or a combination of these. Early detection and treatment are important for improving outcomes in patients with mouth neoplasms.

Some common effects of chromosomal deletions include:

1. Genetic disorders: Chromosomal deletions can lead to a variety of genetic disorders, such as Down syndrome, which is caused by a deletion of a portion of chromosome 21. Other examples include Prader-Willi syndrome (deletion of chromosome 15), and Williams syndrome (deletion of chromosome 7).
2. Birth defects: Chromosomal deletions can increase the risk of birth defects, such as heart defects, cleft palate, and limb abnormalities.
3. Developmental delays: Children with chromosomal deletions may experience developmental delays, learning disabilities, and intellectual disability.
4. Increased cancer risk: Some chromosomal deletions can increase the risk of developing certain types of cancer, such as chronic myelogenous leukemia (CML) and breast cancer.
5. Reproductive problems: Chromosomal deletions can lead to reproductive problems, such as infertility or recurrent miscarriage.

Chromosomal deletions can be diagnosed through a variety of techniques, including karyotyping (examination of the chromosomes), fluorescence in situ hybridization (FISH), and microarray analysis. Treatment options for chromosomal deletions depend on the specific effects of the deletion and may include medication, surgery, or other forms of therapy.

Peripheral neuroectodermal tumors are those that occur outside of the CNS, typically in the peripheral nervous system (PNS). Examples of peripheral neuroectodermal tumors include:

1. Neuroblastoma: a type of cancer that develops in nerve tissue outside of the brain and spinal cord.
2. Ganglioneuroma: a rare type of tumor that occurs in the peripheral nervous system, typically in the abdomen or extremities.
3. Plexiform neuroectodermal tumor: a rare type of tumor that occurs in the peripheral nervous system, typically in the limbs.
4. Malignant peripheral nerve sheath tumors (MPNST): a type of cancer that develops in the covering of nerves outside of the CNS.

These tumors are rare and can be difficult to diagnose and treat. They often have a poor prognosis, but with early detection and appropriate treatment, outcomes can improve. Treatment options may include surgery, chemotherapy, and radiation therapy.

Here are some common types of E. coli infections:

1. Urinary tract infections (UTIs): E. coli is a leading cause of UTIs, which occur when bacteria enter the urinary tract and cause inflammation. Symptoms include frequent urination, burning during urination, and cloudy or strong-smelling urine.
2. Diarrheal infections: E. coli can cause diarrhea, abdominal cramps, and fever if consumed through contaminated food or water. In severe cases, this type of infection can lead to dehydration and even death, particularly in young children and the elderly.
3. Septicemia (bloodstream infections): If E. coli bacteria enter the bloodstream, they can cause septicemia, a life-threatening condition that requires immediate medical attention. Symptoms include fever, chills, rapid heart rate, and low blood pressure.
4. Meningitis: In rare cases, E. coli infections can spread to the meninges, the protective membranes covering the brain and spinal cord, causing meningitis. This is a serious condition that requires prompt treatment with antibiotics and supportive care.
5. Hemolytic-uremic syndrome (HUS): E. coli infections can sometimes cause HUS, a condition where the bacteria destroy red blood cells, leading to anemia, kidney failure, and other complications. HUS is most common in young children and can be fatal if not treated promptly.

Preventing E. coli infections primarily involves practicing good hygiene, such as washing hands regularly, especially after using the bathroom or before handling food. It's also essential to cook meat thoroughly, especially ground beef, to avoid cross-contamination with other foods. Avoiding unpasteurized dairy products and drinking contaminated water can also help prevent E. coli infections.

If you suspect an E. coli infection, seek medical attention immediately. Your healthcare provider may perform a urine test or a stool culture to confirm the diagnosis and determine the appropriate treatment. In mild cases, symptoms may resolve on their own within a few days, but antibiotics may be necessary for more severe infections. It's essential to stay hydrated and follow your healthcare provider's recommendations to ensure a full recovery.

1. Feline Leukemia Virus (FeLV): This is a highly contagious virus that weakens the immune system, making cats more susceptible to other infections and cancer.
2. Feline Immunodeficiency Virus (FIV): Similar to HIV in humans, this virus attacks the immune system and can lead to a range of secondary infections and diseases.
3. Feline Infectious Peritonitis (FIP): A viral disease that causes fluid accumulation in the abdomen and chest, leading to difficulty breathing and abdominal pain.
4. Feline Lower Urinary Tract Disease (FLUTD): A group of conditions that affect the bladder and urethra, including urinary tract infections and kidney stones.
5. Feline Diabetes: Cats can develop diabetes, which can lead to a range of complications if left untreated, including urinary tract infections, kidney disease, and blindness.
6. Feline Hyperthyroidism: An overactive thyroid gland that can cause weight loss, anxiety, and heart problems if left untreated.
7. Feline Cancer: Cats can develop various types of cancer, including lymphoma, leukemia, and skin cancer.
8. Dental disease: Cats are prone to dental problems, such as tartar buildup, gum disease, and tooth resorption.
9. Obesity: A common problem in cats, obesity can lead to a range of health issues, including diabetes, arthritis, and heart disease.
10. Behavioral disorders: Cats can develop behavioral disorders such as anxiety, stress, and aggression, which can impact their quality of life and relationships with humans.

It's important to note that many of these diseases can be prevented or managed with proper care, including regular veterinary check-ups, vaccinations, parasite control, a balanced diet, exercise, and mental stimulation. Additionally, early detection and treatment can significantly improve the outcome for cats with health issues.

Hodgkin Disease can spread to other parts of the body through the lymphatic system, and it can affect people of all ages, although it is most common in young adults and teenagers. The symptoms of Hodgkin Disease can vary depending on the stage of the disease, but they may include swollen lymph nodes, fever, night sweats, fatigue, weight loss, and itching.

There are several types of Hodgkin Disease, including:

* Classical Hodgkin Disease: This is the most common type of Hodgkin Disease and is characterized by the presence of Reed-Sternberg cells.
* Nodular Lymphocytic predominant Hodgkin Disease: This type of Hodgkin Disease is characterized by the presence of nodules in the lymph nodes.
* Mixed Cellularity Hodgkin Disease: This type of Hodgkin Disease is characterized by a mixture of Reed-Sternberg cells and other immune cells.

Hodgkin Disease is usually diagnosed with a biopsy, which involves removing a sample of tissue from the affected lymph node or other area and examining it under a microscope for cancer cells. Treatment for Hodgkin Disease typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, bone marrow or stem cell transplantation may be necessary.

The prognosis for Hodgkin Disease is generally good, especially if the disease is detected and treated early. According to the American Cancer Society, the 5-year survival rate for people with Hodgkin Disease is about 85%. However, the disease can sometimes recur after treatment, and the long-term effects of radiation therapy and chemotherapy can include infertility, heart problems, and an increased risk of secondary cancers.

Hodgkin Disease is a rare form of cancer that affects the immune system. It is most commonly diagnosed in young adults and is usually treatable with chemotherapy or radiation therapy. However, the disease can sometimes recur after treatment, and the long-term effects of treatment can include infertility, heart problems, and an increased risk of secondary cancers.

There are several different types of preleukemia, including:

1. Myelodysplastic syndrome (MDS): A condition where there is a defect in the development of immature blood cells in the bone marrow, leading to an overproduction of blasts and a decrease in the number of healthy red blood cells, white blood cells, and platelets.
2. Myeloproliferative neoplasms (MPNs): A group of conditions characterized by an overproduction of one or more types of blood cells, including red blood cells, white blood cells, and platelets. MPNs can progress to leukemia over time.
3. Chronic myelogenous leukemia (CML): A type of leukemia that develops from a preleukemic condition called chronic myeloid leukemia. CML is characterized by the presence of a genetic abnormality known as the Philadelphia chromosome, which leads to an overproduction of white blood cells.
4. Acute myeloid leukemia (AML): A type of leukemia that can develop from preleukemic conditions such as MDS and MPNs. AML is characterized by the rapid growth of immature white blood cells in the bone marrow, which can crowd out healthy cells and lead to a decrease in the number of normal red blood cells, white blood cells, and platelets.

Preleukemia can be difficult to diagnose, as it often does not have clear symptoms in its early stages. However, doctors may use a variety of tests, including blood tests and bone marrow biopsies, to detect abnormalities in the blood or bone marrow that could indicate preleukemia.

Treatment for preleukemia depends on the specific type of condition and its severity. Some common treatments include:

1. Chemotherapy: A type of cancer treatment that uses drugs to kill cancer cells. Chemotherapy may be used to treat preleukemia, particularly in cases where there are abnormalities in the blood or bone marrow.
2. Blood transfusions: Transfusions of healthy red blood cells, platelets, or plasma may be given to patients with preleukemia who have low levels of these cells.
3. Supportive care: Patients with preleukemia may require supportive care, such as antibiotics or other medications, to manage symptoms and prevent complications.
4. Stem cell transplantation: In some cases, stem cell transplantation may be recommended for patients with preleukemia who have a high risk of developing acute leukemia. This involves replacing the patient's defective bone marrow stem cells with healthy ones from a donor.

Overall, early detection and treatment of preleukemia can improve outcomes and reduce the risk of developing acute leukemia. If you have been diagnosed with preleukemia or are experiencing symptoms that may indicate preleukemia, it is important to discuss your treatment options with your healthcare provider.

There are several possible causes of lymphopenia, including:

1. Viral infections: Many viral infections can cause lymphopenia, such as HIV/AIDS, hepatitis B and C, and influenza.
2. Bacterial infections: Some bacterial infections, such as tuberculosis and leprosy, can also cause lymphopenia.
3. Cancer: Certain types of cancer, such as Hodgkin's disease and non-Hodgkin's lymphoma, can cause lymphopenia by destroying lymphocytes.
4. Autoimmune disorders: Autoimmune disorders, such as rheumatoid arthritis and lupus, can cause lymphopenia by attacking the body's own tissues, including lymphocytes.
5. Radiation therapy: Radiation therapy can destroy lymphocytes and cause lymphopenia.
6. Medications: Certain medications, such as chemotherapy drugs and antibiotics, can cause lymphopenia as a side effect.
7. Genetic disorders: Some genetic disorders, such as X-linked lymphoproliferative disease, can cause lymphopenia by affecting the development or function of lymphocytes.

Symptoms of lymphopenia can include recurring infections, fatigue, and swollen lymph nodes. Treatment of lymphopenia depends on the underlying cause and may involve antibiotics, antiviral medications, or immunoglobulin replacement therapy. In some cases, a bone marrow transplant may be necessary.

Overall, lymphopenia is a condition that can have a significant impact on quality of life, and it is important to seek medical attention if symptoms persist or worsen over time. With proper diagnosis and treatment, many people with lymphopenia can experience improved health outcomes and a better quality of life.

There are several subtypes of NHL, including:

1. B-cell lymphomas (such as diffuse large B-cell lymphoma and follicular lymphoma)
2. T-cell lymphomas (such as peripheral T-cell lymphoma and mycosis fungoides)
3. Natural killer cell lymphomas (such as nasal NK/T-cell lymphoma)
4. Histiocyte-rich B-cell lymphoma
5. Primary mediastinal B-cell lymphoma
6. Mantle cell lymphoma
7. Waldenström macroglobulinemia
8. Lymphoplasmacytoid lymphoma
9. Myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) related lymphoma

These subtypes can be further divided into other categories based on the specific characteristics of the cancer cells.

Symptoms of NHL can vary depending on the location and size of the tumor, but may include:

* Swollen lymph nodes in the neck, underarm, or groin
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching
* Abdominal pain
* Swollen spleen

Treatment for NHL typically involves a combination of chemotherapy, radiation therapy, and in some cases, targeted therapy or immunotherapy. The specific treatment plan will depend on the subtype of NHL, the stage of the cancer, and other individual factors.

Overall, NHL is a complex and diverse group of cancers that require specialized care from a team of medical professionals, including hematologists, oncologists, radiation therapists, and other support staff. With advances in technology and treatment options, many people with NHL can achieve long-term remission or a cure.

There are several types of osteoporosis, including:

1. Postmenopausal osteoporosis: This type of osteoporosis is caused by hormonal changes that occur during menopause. It is the most common form of osteoporosis and affects women more than men.
2. Senile osteoporosis: This type of osteoporosis is caused by aging and is the most common form of osteoporosis in older adults.
3. Juvenile osteoporosis: This type of osteoporosis affects children and young adults and can be caused by a variety of genetic disorders or other medical conditions.
4. secondary osteoporosis: This type of osteoporosis is caused by other medical conditions, such as rheumatoid arthritis, Crohn's disease, or ulcerative colitis.

The symptoms of osteoporosis can be subtle and may not appear until a fracture has occurred. They can include:

1. Back pain or loss of height
2. A stooped posture
3. Fractures, especially in the spine, hips, or wrists
4. Loss of bone density, as determined by a bone density test

The diagnosis of osteoporosis is typically made through a combination of physical examination, medical history, and imaging tests, such as X-rays or bone density tests. Treatment for osteoporosis can include medications, such as bisphosphonates, hormone therapy, or rANK ligand inhibitors, as well as lifestyle changes, such as regular exercise and a balanced diet.

Preventing osteoporosis is important, as it can help to reduce the risk of fractures and other complications. To prevent osteoporosis, individuals can:

1. Get enough calcium and vitamin D throughout their lives
2. Exercise regularly, especially weight-bearing activities such as walking or running
3. Avoid smoking and excessive alcohol consumption
4. Maintain a healthy body weight
5. Consider taking medications to prevent osteoporosis, such as bisphosphonates, if recommended by a healthcare provider.

Some common types of bone diseases include:

1. Osteoporosis: A condition characterized by brittle, porous bones that are prone to fracture.
2. Osteoarthritis: A degenerative joint disease that causes pain and stiffness in the joints.
3. Rheumatoid arthritis: An autoimmune disorder that causes inflammation and pain in the joints.
4. Bone cancer: A malignant tumor that develops in the bones.
5. Paget's disease of bone: A condition characterized by abnormal bone growth and deformity.
6. Osteogenesis imperfecta: A genetic disorder that affects the formation of bone and can cause brittle bones and other skeletal deformities.
7. Fibrous dysplasia: A rare condition characterized by abnormal growth and development of bone tissue.
8. Multiple myeloma: A type of cancer that affects the plasma cells in the bone marrow.
9. Bone cysts: Fluid-filled cavities that can form in the bones and cause pain, weakness, and deformity.
10. Bone spurs: Abnormal growths of bone that can form along the edges of joints and cause pain and stiffness.

Bone diseases can be diagnosed through a variety of tests, including X-rays, CT scans, MRI scans, and bone biopsies. Treatment options vary depending on the specific disease and can include medication, surgery, or a combination of both.

The term "blast crisis" was first used in the medical literature in 1998 to describe this phenomenon, which was previously known as "accelerated phase." The blast crisis is the most advanced stage of CML and is associated with a poor prognosis if left untreated.

The exact cause of blast crisis is not fully understood, but it is believed to be related to the development of resistance to TKIs, which can lead to an increase in the number of abnormal cells in the bone marrow and blood. The condition typically occurs after several years of TKI therapy, although it can sometimes occur within the first few months of treatment.

The symptoms of blast crisis are non-specific and can include fatigue, fever, night sweats, and weight loss. Laboratory tests will show an elevated white blood cell count, anemia, and thrombocytopenia. The diagnosis of blast crisis is based on the presence of blasts in the blood and bone marrow, as well as other laboratory and radiological findings.

Treatment of blast crisis typically involves the use of more intensive chemotherapy or hematopoietic stem cell transplantation (HSCT). In some cases, the TKI therapy may be discontinued and replaced with a different medication or combination of medications. The prognosis for patients with blast crisis is generally poor, with a five-year survival rate of around 50%. However, with appropriate treatment, some patients can achieve long-term remission or even a cure.

The symptoms of ganglioneuroblastoma can vary depending on the location and size of the tumor, but may include:

* Abdominal pain
* Weight loss
* Fatigue
* Loss of appetite
* Nausea and vomiting
* Constipation
* Hematuria (blood in the urine)

If you suspect that you or your child may have ganglioneuroblastoma, it is important to consult with a healthcare professional as soon as possible. A diagnosis of ganglioneuroblastoma is typically made through a combination of physical examination, imaging tests (such as CT scans or MRI), and biopsy.

Treatment for ganglioneuroblastoma usually involves a combination of surgery, chemotherapy, and radiation therapy. The specific treatment plan will depend on the size and location of the tumor, as well as the age and overall health of the patient. In some cases, a specialized procedure called a retroperitoneal hemiwidget may be performed to remove the tumor.

Overall, ganglioneuroblastoma is a rare and aggressive form of cancer that requires prompt and comprehensive medical care. With appropriate treatment, many patients with ganglioneuroblastoma can achieve long-term survival and a good quality of life.

The symptoms of myoepithelioma may vary depending on the location of the tumor, but they can include:

* A painless lump or swelling in the affected area
* Pain or tenderness in the affected area
* Difficulty swallowing or speaking (if the tumor is located in the parotid gland)
* Numbness or weakness in the face (if the tumor is located in the parotid gland)

The diagnosis of myoepithelioma usually involves a combination of imaging tests such as ultrasound, CT scan or MRI and a biopsy to confirm the presence of cancer cells.

Treatment for myoepithelioma may involve surgery, radiation therapy, or chemotherapy, depending on the size, location, and stage of the tumor. The prognosis for myoepithelioma is generally good if the tumor is diagnosed early and treated appropriately. However, the cancer can recur in some cases, so regular follow-up appointments with a doctor are important to monitor for any signs of recurrence.

In summary, Myoepithelioma is a rare type of cancer that develops in the myoepithelial cells and typically affects the parotid gland. It can cause various symptoms such as painless lump or swelling, pain or tenderness in the affected area and difficulty swallowing or speaking. The diagnosis is confirmed by imaging tests and biopsy and treatment options include surgery, radiation therapy and chemotherapy.

Examples of neoplasms, complex and mixed include:

1. Breast cancer that consists of both ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC).
2. Lung cancer that contains both adenocarcinoma and squamous cell carcinoma.
3. Colorectal cancer that is composed of both adenocarcinoma and mucinous adenocarcinoma.
4. Thyroid cancer that consists of both papillary carcinoma and follicular carcinoma.
5. Melanoma that is composed of both superficial spreading melanoma and nodular melanoma.

The diagnosis of neoplasms, complex and mixed often requires a combination of imaging studies such as CT scans, MRI, and PET scans, as well as tissue sampling through biopsy or surgery. Treatment may involve a combination of surgery, radiation therapy, and chemotherapy, depending on the specific type and extent of the cancer.

These animal models allow researchers to study the underlying causes of arthritis, test new treatments and therapies, and evaluate their effectiveness in a controlled environment before moving to human clinical trials. Experimental arthritis models are used to investigate various aspects of the disease, including its pathophysiology, immunogenicity, and potential therapeutic targets.

Some common experimental arthritis models include:

1. Collagen-induced arthritis (CIA): This model is induced in mice by immunizing them with type II collagen, which leads to an autoimmune response and inflammation in the joints.
2. Rheumatoid arthritis (RA) models: These models are developed by transferring cells from RA patients into immunodeficient mice, which then develop arthritis-like symptoms.
3. Osteoarthritis (OA) models: These models are induced in animals by subjecting them to joint injury or overuse, which leads to degenerative changes in the joints and bone.
4. Psoriatic arthritis (PsA) models: These models are developed by inducing psoriasis in mice, which then develop arthritis-like symptoms.

Experimental arthritis models have contributed significantly to our understanding of the disease and have helped to identify potential therapeutic targets for the treatment of arthritis. However, it is important to note that these models are not perfect representations of human arthritis and should be used as tools to complement, rather than replace, human clinical trials.

Some common types of adrenal gland neoplasms include:

1. Adrenocortical carcinoma: A rare and aggressive malignancy that arises in the outer layer of the adrenal cortex.
2. Adrenocortical adenoma: A benign tumor that arises in the outer layer of the adrenal cortex.
3. Pheochromocytoma: A rare tumor that arises in the inner part of the adrenal medulla and produces excessive amounts of hormones such as epinephrine and norepinephrine.
4. Paraganglioma: A rare tumor that arises in the sympathetic nervous system, often near the adrenal glands.

Symptoms of adrenal gland neoplasms can include:

* Weight gain or weight loss
* High blood pressure
* Fatigue
* Abdominal pain
* Headache
* Nausea and vomiting
* Palpitations

Diagnosis of adrenal gland neoplasms typically involves imaging tests such as computed tomography (CT) scans, magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, as well as hormone level assessments. Treatment options vary depending on the type and size of the tumor, and may include surgery, chemotherapy, and hormone therapy.

Asthma can cause recurring episodes of wheezing, coughing, chest tightness, and shortness of breath. These symptoms occur when the muscles surrounding the airways contract, causing the airways to narrow and swell. This can be triggered by exposure to environmental allergens or irritants such as pollen, dust mites, pet dander, or respiratory infections.

There is no cure for asthma, but it can be managed with medication and lifestyle changes. Treatment typically includes inhaled corticosteroids to reduce inflammation, bronchodilators to open up the airways, and rescue medications to relieve symptoms during an asthma attack.

Asthma is a common condition that affects people of all ages, but it is most commonly diagnosed in children. According to the American Lung Association, more than 25 million Americans have asthma, and it is the third leading cause of hospitalization for children under the age of 18.

While there is no cure for asthma, early diagnosis and proper treatment can help manage symptoms and improve quality of life for those affected by the condition.

The disease typically presents with symptoms such as fever, cough, fatigue, weight loss, and night sweats, and can progress to severe respiratory, cutaneous, and disseminated forms if left untreated. The infection is diagnosed through a combination of clinical evaluation, radiological studies, and laboratory tests such as PCR and culture.

Treatment options for paracoccidioidomycosis include antifungal medications such as amphotericin B, fluconazole, and itraconazole, which are often associated with significant side effects and variable efficacy. Surgical debulking may also be considered in certain cases.

The prognosis for paracoccidioidomycosis is generally poor, especially in advanced stages of the disease, with high rates of morbidity and mortality. However, early diagnosis and appropriate treatment can improve outcomes.

Cell Death and Differentiation. 12 (6): 637-48. doi:10.1038/sj.cdd.4401647. PMID 15846369. Chiu A, Xu W, He B, Dillon SR, Gross ... B-cell maturation antigen (BCMA or BCM), also known as tumor necrosis factor receptor superfamily member 17 (TNFRSF17), is a ... January 2020). "Serum B-Cell Maturation Antigen (BCMA) Levels Differentiate Primary Antibody Deficiencies". The Journal of ... Serum B-cell maturation antigen (sBCMA) is the cleaved form of BCMA, found at low levels in the serum of normal patients and ...
White Cell Differentiation Antigens: 654-55. Loken MR, Shah VO, Civin CI (1987). "Characterization of myeloid antigens on human ... White Cell Differentiation Antigens. pp. 630-35. "Stemcells Redirection". stemcells.nih.gov. Bhatia M, Bonnet D, Murdoch B, Gan ... hematopoietic cell surface antigen defined by a monoclonal antibody raised against KG-1a cells". Journal of Immunology. 133 (1 ... Many markers belong to the cluster of differentiation series, like: CD34, CD38, CD90, CD133, CD105, CD45, and also c-kit - the ...
... derives its name from the cluster of differentiation protocol that identifies cell surface antigens. CD34 was first ... Antigens,+CD34 at the US National Library of Medicine Medical Subject Headings (MeSH) Mouse CD Antigen Chart Human CD Antigen ... White Cell Differentiation Antigens.Oxford University Press 630-635. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (June ... White Cell Differentiation Antigens. Oxford University Press, 654-655. Loken M. Shah V. Civin CI.. (1987). "Characterization of ...
The most common dyes act by binding to antigens presented on cells. Common antigens targeted are clusters of differentiation ( ... antigens). This technology is based on the attachment of small, inert, supra-magnetic particles to mAbs specific for antigens ... When a CD73+ antigen expressed itself with RCVRN+ cells (calcium-binding proteins in the eye), it showed researchers that this ... they have the foundation for further research based on the success of pairing non-damaged photoreceptors with a CD73 antigen ...
... (Cluster of Differentiation 300A) is a human gene. The CMRF35 antigen (CMRF35A; MIM 606786), which was identified by ... Tissue Antigens. 55 (2): 101-9. doi:10.1034/j.1399-0039.2000.550201.x. PMID 10746781. Cantoni C, Bottino C, Augugliaro R, et al ... Cluster of differentiation GRCh38: Ensembl release 89: ENSG00000167851 - Ensembl, May 2017 "Human PubMed Reference:". National ...
Perivascular microglia also react strongly to macrophage differentiation antigens. These microglia have been shown to be ... In some cases, microglia can also be activated by IFN-γ to present antigens, but do not function as effectively as if they had ... As mentioned above, resident non-activated microglia act as poor antigen presenting cells due to their lack of MHC class I/II ... In their downregulated form, microglia lack the MHC class I/MHC class II proteins, IFN-γ cytokines, CD45 antigens, and many ...
1998). "Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign ... It is now clear that the term prostate-specific antigen is a misnomer: it is an antigen but is not specific to the prostate. ... Prostate-specific antigen (PSA), also known as gamma-seminoprotein or kallikrein-3 (KLK3), P-30 antigen, is a glycoprotein ... Prostate-specific antigen has been shown to interact with protein C inhibitor. Prostate-specific antigen interacts with and ...
Fukuda M, Carlsson SR (1987). "Leukosialin, a major sialoglycoprotein on human leukocytes as differentiation antigens". Med. ... CD43+antigen at the US National Library of Medicine Medical Subject Headings (MeSH) Human SPN genome location and SPN gene ... Leukosialin also known as sialophorin or CD43 (cluster of differentiation 43) is a transmembrane cell surface protein that in ... it is generally less effective at demonstrating this condition than is CD3 antigen. However, it may be useful as part of a ...
Antigen- driven B cell differentiation in vivo. J Exp Med. 1993;178:295-307. 138 Constellations (Articles with short ... Antigen- specific B cell memory: expression and replenishment of a novel B220- memory b cell compartment. J Exp Med. 2000;191: ...
... these genes exhibit more inter-breed differentiation than intra-breed differentiation. Dogs have been selectively bred for ... Tissue Antigens, 68(6), 502-508. Kennedy, L. J., Davison, L. J., Barnes, A., Short, A. D., Fretwell, N., Jones, C. A., et al. ( ... Tissue Antigens, 68(6), 467-476. Pedersen N, FAU - Liu, H., Liu H, FAU - Millon, L., Millon L, FAU - Greer, K., et al. Dog ... Tissue Antigens, 68(5), 418-426. Safra N, FAU - Pedersen, N. C., Pedersen NC, FAU - Wolf, Z., Wolf Z, FAU - Johnson, E. G., et ...
Svärd SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD (1998). "Differentiation-associated surface antigen variation in the ...
Differentiation. 4 (10): 821-30. PMID 8274451. Scanlan MJ, Gordan JD, Williamson B, Stockert E, Bander NH, Jongeneel V, Gure AO ... Jäger D, Jäger E, Knuth A, Chen YT, Old LJ (November 1999). "Antigens recognized by autologous antibody in patients with renal- ...
Langerhans cells are antigen-presenting cells but have undergone further differentiation. Skin Langerhans cells express CD1a, ... phagocytosis and antigen presentation. Phagocytosis is the main process of macrophages and antigen presentation the main ... Their main activity is antigen presentation; they express Factor XIIIa, CD1c, and Class II Human leukocyte antigens. A subset ... They express LCAs (leucocyte common antigens) CD45, CD14, CD33, and CD4 (also expressed by T helper cells). These histiocytes ...
Myeloid cell Nuclear Differentiation Antigen is a protein that in humans is encoded as MNDA gene. The myeloid cell nuclear ... "Entrez Gene: MNDA myeloid cell nuclear differentiation antigen". Burrus GR, Briggs JA, Briggs RC (February 1992). " ... nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with human myeloid cell nuclear differentiation antigen ... "The human myeloid cell nuclear differentiation antigen gene is one of at least two related interferon-inducible genes located ...
Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, ... A specialized type of differentiation, known as terminal differentiation, is of importance in some tissues, for example ... Differentiation may continue to occur after terminal differentiation if the capacity and functions of the cell undergo further ... Cell differentiation is thus a transition of a cell from one cell type to another and it involves a switch from one pattern of ...
They found that the immune responses to innocuous antigens triggers an increase in the activity of hypothalamic neurons and ... Affect cell growth, proliferation and differentiation. Cause immunosuppression which can lead to an extended amount of time ... Suppress cell adhesion, antigen presentation, chemotaxis and cytotoxicity. Increase apoptosis. Release of corticotropin- ...
Immunologically they are characterized as members of the CD66 cluster of differentiation. The proteins include CD66a, CD66b, ... Carcinoembryonic+Antigen at the US National Library of Medicine Medical Subject Headings (MeSH) CEA at Lab Tests Online CEA: ... Carcinoembryonic antigen (CEA) describes a set of highly related glycoproteins involved in cell adhesion. CEA is normally ... Asad-Ur-Rahman F, Saif MW (June 2016). "Elevated Level of Serum Carcinoembryonic Antigen (CEA) and Search for a Malignancy: A ...
... of cytotoxic cell differentiation in secondary cultures by subcellular antigens". J. Immunol. 122 (5): 2134. PMID 312858. v t e ...
JL1, a novel differentiation antigen of human cortical thymocyte. J Exp Med. 178:1447-51, 1993 Choi EY, Park WS, Jung KC, Chung ... He also found the novel antigen JL1 on thymocytes, which has been developed as a therapeutic target for leukemia. Today he is ... He also found the novel antigen JL1 expressed in thymocytes (J Exp Med. 178:1447-51, 1993). JL1 is a unique epitope of CD43 ... Another important achievement of his research is the induction of antigen-specific T cell tolerance, which has been a distant ...
Fos-related antigen 2 (FRA2) is a protein that in humans is encoded by the FOSL2 gene. The Fos gene family consists of 4 ... differentiation, and transformation. AP-1 (transcription factor) GRCh38: Ensembl release 89: ENSG00000075426 - Ensembl, May ... "Entrez Gene: FOSL2 FOS-like antigen 2". Matsui M, Tokuhara M, Konuma Y, Nomura N, Ishizaki R (March 1990). "Isolation of human ... Molven A, Houge G, Berger R (November 1996). "Chromosomal assignment of the human gene encoding the Fos-related antigen-2 (FRA2 ...
TI-1 antigens have an intrinsic B cell activating activity, that can directly cause proliferation and differentiation of B ... It results in proliferation and differentiation of B lymphocytes and production of antibodies. TI-2 antigens can activate only ... TI-1 antigen, which has an activity that can directly activate B cells and TI-2 antigen, which has highly repetitive structure ... An example of TI-1 antigen is lipopolysaccharide (LPS) or bacterial DNA. Second group of TI antigens consists mainly of highly ...
The Kell protein has also recently been designated CD238 (cluster of differentiation 238). Kell antigens are important in ... The Kell antigen system (also known as the Kell-Cellano system) is a human blood group system, that is, a group of antigens on ... The Kell antigens are K, k, Kpa, Kpb, Jsa and Jsb. The Kell antigens are peptides found within the Kell protein, a 93- ... Individuals without K antigens(K0) who have formed an antibody to a K antigen, must be transfused with blood from donors who ...
Fos-related antigen 1 (FRA1) is a protein that in humans is encoded by the FOSL1 gene. The Fos gene family consists of 4 ... differentiation, and transformation. FOSL1 has been shown to interact with USF1 (human gene) and C-jun. AP-1 (transcription ... "Entrez Gene: FOSL1 FOS-like antigen 1". Pognonec P, Boulukos KE, Aperlo C, Fujimoto M, Ariga H, Nomoto A, Kato H (May 1997). " ... "Reverse mapping of the gene encoding the human fos-related antigen-1 (fra-1) within chromosome band 11q13". Genomics. 18 (1): ...
"Joint Report of the First International Workshop on Human Leucocyte Differentiation Antigens by the Investigators of the ... CD1+Antigen at the US National Library of Medicine Medical Subject Headings (MeSH) Mouse CD Antigen Chart Human CD Antigen ... human leucocyte differentiation antigens detected by monoclonal antibodies: specification, classification, nomenclature. Berlin ... The antigen has also been associated with a number of autoimmune diseases such as vitiligo and type I diabetes mellitus. T- ...
Yu CY, Milstein C (1990). "A physical map linking the five CD1 human thymocyte differentiation antigen genes". EMBO J. 8 (12): ... a family of major histocompatibility complex-related differentiation antigens". Proc. Natl. Acad. Sci. U.S.A. 83 (23): 9154-8. ... CD1E+Antigen at the US National Library of Medicine Medical Subject Headings (MeSH) Human CD1A genome location and CD1A gene ... The CD1 proteins mediate the presentation of primarily lipid and glycolipid antigens of self or microbial origin to T cells. ...
Yu CY, Milstein C (1990). "A physical map linking the five CD1 human thymocyte differentiation antigen genes". EMBO J. 8 (12): ... a family of major histocompatibility complex-related differentiation antigens". Proc. Natl. Acad. Sci. U.S.A. 83 (23): 9154- ... A differentiation of these two types can be obtained in human by using an antibody against the TCR Vα24 chain, which is ... CD1d-presented lipid antigens activate a special class of T cells, known as natural killer T (NKT) cells, through the ...
Yu CY, Milstein C (1990). "A physical map linking the five CD1 human thymocyte differentiation antigen genes". EMBO J. 8 (12): ... a family of major histocompatibility complex-related differentiation antigens". Proc. Natl. Acad. Sci. U.S.A. 83 (23): 9154-8. ... CD1a (Cluster of Differentiation 1a) is a human protein encoded by the CD1A gene. This gene encodes a member of the CD1 family ... 1988). "Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c". Proc. Natl. Acad. Sci. U.S.A. 84 (24): ...
have characterized OA1 immunologically as a melanoma/melanocyte differentiation antigen. Flow cytometry data suggests that OA1- ... This indicates that OA1 peptide is processed and presented on the surface of melanoma cells to be recognized by antigen- ...
Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) also known as CD66e (Cluster of Differentiation 66e), is a ... "The specificity for the differentiation blocking activity of carcinoembryonic antigen resides in its glycophosphatidyl-inositol ... In the literature, CEACAM5 is often used as a synonym for cancer embryonic antigen (CEA), a well-known biomarker of many types ... August 1987). "Carcinoembryonic antigen family: expression in a mouse L-cell transfectant and characterization of a partial ...
Carcinoembryonic antigen-related cell adhesion molecule 8 (CEACAM8) also known as CD66b (Cluster of Differentiation 66b), is a ... 2002). "Carcinoembryonic antigen-related cell adhesion molecule 1 expression and signaling in human, mouse, and rat leukocytes ... 1990). "Characterization of a cDNA clone encoding a new species of the nonspecific cross-reacting antigen (NCA), a member of ... Cluster of differentiation GRCh38: Ensembl release 89: ENSG00000124469 - Ensembl, May 2017 "Human PubMed Reference:". National ...
It interacts with a wide variety of proteins, such as apoptosis antigen Fas, centromere protein C, and transcription factor ... TGF-β regulates a variety of different cellular developmental processes including growth, differentiation, proliferation, and ...
Leukocyte immunoglobulin-like receptor subfamily A member 3 (LILR-A3) also known as CD85 antigen-like family member E (CD85e), ... with a preference for free heavy chains of HLA-C alleles Cluster of differentiation "Human PubMed Reference:". National Center ... and can bind human leukocyte antigen (HLA) class I. Therefore, if secreted, the LILRA3 might impair interactions of membrane- ... Clusters of differentiation, Immunoglobulin superfamily, All stub articles, Immunology stubs, Membrane protein stubs, Human ...
More precisely, 15 kDa GNLY is capable of initiating differentiation of monocytes into dendritic cells. The 15 kDa form is also ... 15 kDa plays other roles in immunological processes, such as in antigen-presenting cell maturation and in immune cell migration ... Krensky AM, Clayberger C (March 2009). "Biology and clinical relevance of granulysin". Tissue Antigens. 73 (3): 193-198. doi: ...
... cell growth and differentiation, gene transcription, signal transduction and apoptosis. Subsequently, a compromised proteasome ... proteins are digested into peptides for MHC class I antigen presentation. To meet such complicated demands in biological ... the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen ...
Noncognate (not antigen specific) B cells play a significant role in the transport of antigens to FDCs. They capture immune ... and differentiation into high-affinity plasma cells and memory B cells. Adhesion between FDCs and B cells is mediated by ICAM-1 ... Follicular DCs receptors CR1, CR2 and FcγRIIb trap antigen opsonized by complement or antibodies. These antigens are then taken ... To become selected as a future memory cell, GC B cells must bind the antigen presented on FDCs, otherwise they enter apoptosis ...
Boyse EA, Old LJ, Stockert E. An approach to the mapping of antigens on the cell surface. Proc Natl Acad Sci USA 1968;60:886. ... Nabel G, Fresno M, Chessman A, Cantor H. Use of cloned populations of mouse lymphocytes to analyze cellular differentiation. ... J Exp Med 145: 1-9. Rao A, Ko WW, Faas SJ, Cantor H. Binding of antigen in the absence of histocompatibility proteins by ... Glimcher L, Shen F-W, Cantor H. Identification of a cell-surface antigen selectively expressed on the natural killer cell. J. ...
... (Cluster of Differentiation 96) or Tactile (T cell activation, increased late expression) is a protein that in humans is ... It may also function in antigen presentation[citation needed]. Alternative splicing occurs at this locus and two transcript ... It may also function in antigen presentation. Alternative splicing generates multiple transcript variants encoding distinct ... Clusters of differentiation, All stub articles, Immunology stubs, Biochemistry stubs, Human chromosome 3 gene stubs, Wikipedia ...
CD49b+antigen at the US National Library of Medicine Medical Subject Headings (MeSH) PDBe-KB provides an overview of all the ... Integrin alpha-2, or CD49b (cluster of differentiation 49b), is a protein which in humans is encoded by the CD49b gene. The ... Arase H, Saito T, Phillips JH, Lanier LL (August 2001). "Cutting edge: the mouse NK cell-associated antigen recognized by DX5 ... monoclonal antibody is CD49b (alpha 2 integrin, very late antigen-2)". Journal of Immunology. 167 (3): 1141-4. doi:10.4049/ ...
OspA antigens, shed by live Borrelia bacteria into urine, are a promising technique being studied. The use of nanotrap ... "Differentiation of reinfection from relapse in recurrent Lyme disease". N Engl J Med. 367 (20): 1883-90. doi:10.1056/ ... Hyde FW, Johnson RC, White TJ, Shelburne CE (January 1989). "Detection of antigens in urine of mice and humans infected with ... The CDC does not recommend urine antigen tests, PCR tests on urine, immunofluorescent staining for cell-wall-deficient forms of ...
Clusters of differentiation, All stub articles, Membrane protein stubs, Blood antigen systems, Transfusion medicine). ... Raph blood group system in the BGMUT blood group antigen gene mutation database Human CD151 genome location and CD151 gene ... CD151 molecule (Raph blood group), also known as CD151 (Cluster of Differentiation 151), is a human gene. The protein encoded ... Cluster of differentiation Tetraspanin GRCh38: Ensembl release 89: ENSG00000177697 - Ensembl, May 2017 GRCm38: Ensembl release ...
A delayed Th2 differentiation and delayed production of cytokines IL-4, IL-5 and IL-13 have been demonstrated in the IL-25 ... promotes efficient protective immunity against Trichinella spiralis infection by enhancing the antigen-specific IL-9 response ...
Differentiation. 12 (1): 29-37. PMID 11205743. Sheehy AM, Gaddis NC, Choi JD, Malim MH (Aug 2002). "Isolation of a human gene ... the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen ... Differentiation. 12 (1): 29-37. PMID 11205743. Coux O, Tanaka K, Goldberg AL (1996). "Structure and functions of the 20S and ... cell growth and differentiation, gene transcription, signal transduction and apoptosis. Subsequently, a compromised proteasome ...
Activated T cells can either induce their own proliferation and differentiation (autocrine signaling), or that of other T cells ... IL-3 is produced by T cells only after stimulation with antigens or other specific impulses. However, it was observed that IL-3 ... Ihle JN, Pepersack L, Rebar L (June 1981). "Regulation of T cell differentiation: in vitro induction of 20 alpha-hydroxysteroid ... It induces proliferation and differentiation in both early pluripotent stem cells and committed progenitors. It also has many ...
M is identical to the MAX.1 antigen and its expression is associated with monocyte to macrophage differentiation". The Journal ... Its expression is associated with monocyte to macrophage differentiation. This encoded protein contains hydrophobic regions at ...
A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux". The Journal of Biological Chemistry. 275 (23 ... Pim-1 is required for endothelial and mural cell differentiation in vitro". Blood. 103 (12): 4536-44. doi:10.1182/blood-2003-11 ... A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux". The Journal of Biological Chemistry. 275 (23 ... "Protein kinase C-delta is a negative regulator of antigen-induced mast cell degranulation". Molecular and Cellular Biology. 22 ...
It is associated with agammaglobulinemia-6. The B lymphocyte antigen receptor is a multimeric complex that includes the antigen ... Cluster of differentiation GRCh38: Ensembl release 89: ENSG00000007312 - Ensembl, May 2017 GRCm38: Ensembl release 89: ... PDBe-KB provides an overview of all the structure information available in the PDB for Human B-cell antigen receptor complex- ... Müller B, Cooper L, Terhorst C (1995). "Interplay between the human TCR/CD3 epsilon and the B-cell antigen receptor associated ...
Prostate-specific membrane antigen (PSMA) stimulates cancer development by increasing folate levels, helping the cancer cells ... Chuang AY, DeMarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI (August 2007). "Immunohistochemical differentiation of ... Yao V, Berkman CE, Choi JK, O'Keefe DS, Bacich DJ (February 2010). "Expression of prostate-specific membrane antigen (PSMA), ... Cabarkapa S, Perera M, McGrath S, Lawrentschuk N (December 2016). "Prostate cancer screening with prostate-specific antigen: A ...
This is associated with autoimmune disorders, causing the immune system to attack self-antigens on the uncleared cells. Genes ... Differentiation. 23 (6): 979-989. doi:10.1038/cdd.2016.13. ISSN 1476-5403. Ravichandran, Kodi S. (2010-08-30). "Find-me and eat ... Differentiation. 23 (6): 979-989. doi:10.1038/cdd.2016.13. ISSN 1350-9047. PMC 4987731. PMID 26891690. Cockram, Tom O. J.; ...
... whose expression is induced with differentiation of spermatogenic cells". Biochemical and Biophysical Research Communications. ... "Entrez Gene: SPAG1 sperm associated antigen 1". Diekman AB, Herr JC (January 1997). "Sperm antigens and their use in the ... Sperm-associated antigen 1 is a protein that in humans is encoded by the SPAG1 gene. The correlation of anti-sperm antibodies ... "Sperm-associated antigen 1 is expressed early in pancreatic tumorigenesis and promotes motility of cancer cells". Oncogene. 26 ...
1998). "cDNA cloning and Escherichia coli expression of UK114 tumor antigen". Biochim. Biophys. Acta. 1442 (1): 49-59. doi: ... soluble translational inhibitor protein from human monocytes that is upregulated upon cellular differentiation". Eur J Biochem ...
... can induce the differentiation into TC2 cells and IL-1 or IL-23 can induce the differentiation into TC17 cells. Naïve CD4+ ... Naive T cells, which are immature T cells that have yet to encounter an antigen, are converted into activated effector T cells ... The main cytokine for differentiation into TH1 cells is IL-12 which is produced by dendritic cells in response to the ... Interferon gamma and IL-12 promote differentiation toward TC1 cells. T-bet activation is required for both interferon gamma and ...
Immunohistochemistry (IHC) techniques involve the selective identification of antigen proteins by exploiting these antigen- ... and can serve as a means of inter-cellular differentiation. Monitoring the activity of the ER via the ERT is necessary as it ... Employing SP1 allows for detection of estrogen receptor (ER) antigen in sections of the fixed patient samples. In junction with ... the observation of this receptor's activity allows for the insight to growth and proliferation and allows for differentiations ...
2002). "Hepatic differentiation of murine embryonic stem cells". Exp. Cell Res. 272 (1): 15-22. doi:10.1006/excr.2001.5396. ... 2003). "Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression". Cancer Immun ...
Each type matures according to its specific differentiation program as it migrates up and out of the crypt. Many of the genes ... On the one hand, it acts as a barrier, preventing the entry of harmful substances such as foreign antigens, toxins and ... Microfold cells (commonly referred to as M cells) sample antigens from the lumen and deliver them to the lymphoid tissue ... van der Flier, Laurens G.; Clevers, Hans (1 January 2009). "Stem cells, self-renewal, and differentiation in the intestinal ...
Han S, Yang K, Ozen Z, Peng W, Marinova E, Kelsoe G, Zheng B (February 2003). "Enhanced differentiation of splenic plasma cells ... Natural killer (NK) cell cytotoxicity and the antigen-presenting function of dendritic cells diminishes with age. The age- ... Hakim FT, Gress RE (September 2007). "Immunosenescence: deficits in adaptive immunity in the elderly". Tissue Antigens. 70 (3 ... specific for the most rare and less frequently present antigens shed the most. However, such a distribution shift leads to ...
This lymphoma also belongs to a group of lymphoid neoplasms with plasmablastic differentiation that involve malignant ... or one of the various tests for hepatitis C antigen. Extracavitary PEL is diagnosed based on findings that their mass lesions ... List of hematologic conditions Chen BJ, Chuang SS (March 2020). "Lymphoid Neoplasms With Plasmablastic Differentiation: A ... with PEL that is associated with cirrosis due to hepatitis evidence positive serum tests for the hepatitis virus B antigen ( ...
Tr1 cells regulate tolerance towards antigens of any origin. Tr1 cells are self or non-self antigen specific and their key role ... IL-6 and IL-21 also plays a role in differentiation as they regulate expression of transcription factors necessary for IL-10 ... and enhances the antigen-specific T-cell response which is necessary for Tr1 cells antigen specificity. CD49b belongs to the ... IL-10 indirectly downregulates MHC II molecules and co-stimulatory molecules on antigen-presenting cells (APC) and force them ...
Every helper T-cell is specific to one particular antigen. Only professional antigen-presenting cells (APCs: macrophages, B ... Histiocyte Macrophage List of human clusters of differentiation for a list of CD molecules (such as CD80 and CD86) Monga I, ... Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. They ... Here they act as antigen-presenting cells: they activate helper T-cells and killer T-cells as well as B-cells by presenting ...
It interacts with three membrane receptors on B lymphocytes: BAFF-R (BAFF receptor) BCMA (B cell maturation antigen) TACI ( ... research showing the key role of BLyS in B cell differentiation, survival, and activation was published. In October 2000, HGS ... which contributes to cell proliferation and differentiation, are increased in the nucleus. Another B-cell activator similar to ...
Selective expression of class-II MHC antigens during hemopoietic differentiation F E Katz, L Davis, C D Myers, M F Greaves ... Selective expression of class-II MHC antigens during hemopoietic differentiation F E Katz et al. Exp Hematol. 1985 Dec. ... Discordant expression of human Ia-like antigens on hematopoietic progenitor cells. Linch DC, Nadler LM, Luther EA, Lipton JM. ... Cell surface antigens on human marrow cells: dissection of hematopoietic development using monoclonal antibodies and ...
Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation Hector Rodriguez Cetina Biefer 1 , Timm ... Mast cells regulate CD4+ T-cell differentiation in the absence of antigen presentation Hector Rodriguez Cetina Biefer et al. J ... MC-mediated CD4+ T-cell differentiation after NAD+ administration does not require antigen presentation through major APCs and ... Background: Given their unique capacity for antigen uptake, processing, and presentation, antigen-presenting cells (APCs) are ...
2254 Clonally Expanded Bone Marrow T Cells Show Effector Differentiation and Rarely Recognize Disease-Associated Antigens in ... Hypothesizing that the target antigen was a non-mutated self-antigen, we could show that this TCR also recognized the plasma ... Only one of these TCRs recognized antigens selectively presented on multiple myeloma cells and this TCR was not neo-antigen- ... clonally expanded bone marrow T cells do not recognize antigens presented on multiple myeloma cells and are not neo-antigen- ...
Serum fucosylated prostate-specific antigen (PSA) improves the differentiation of aggressive from non-aggressive prostate ... Serum fucosylated prostate-specific antigen (PSA) improves the differentiation of aggressive from non-aggressive prostate ... Prostate-specific antigen (PSA), tissue inhibitor of metallopeptidase 1 (TIMP1) and tissue plasminogen activator (tPA), and ...
Human carcinoembryonic antigen (CEA), a widely used tumor marker, is a member of a family of cell surface glycoproteins that ... Human carcinoembryonic antigen, an intercellular adhesion molecule, blocks fusion and differentiation of rat myoblasts. F J ... The Specificity for the Differentiation Blocking Activity of Carcinoembryonic Antigen Resides in Its Glycophosphatidyl-Inositol ... Human carcinoembryonic antigen (CEA), a widely used tumor marker, is a member of a family of cell surface glycoproteins that ...
Differentiation, B-Lymphocyte" by people in this website by year, and whether "Antigens, Differentiation, B-Lymphocyte" was a ... "Antigens, Differentiation, B-Lymphocyte" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus ... Below are the most recent publications written about "Antigens, Differentiation, B-Lymphocyte" by people in Profiles. ... Below are MeSH descriptors whose meaning is more general than "Antigens, Differentiation, B-Lymphocyte". ...
... of a deglycosylated ricin toxin A chain containing immunotoxin directed against a CD7 T lineage differentiation antigen for ... of a deglycosylated ricin toxin A chain containing immunotoxin directed against a CD7 T lineage differentiation antigen for ... of a deglycosylated ricin toxin A chain containing immunotoxin directed against a CD7 T lineage differentiation antigen for ... of a deglycosylated ricin toxin A chain containing immunotoxin directed against a CD7 T lineage differentiation antigen for ...
Cutting Edge: Tissue Antigen Expression Levels Fine-Tune T Cell Differentiation Decisions In Vivo.. Pinheiro, Douglas F; Szenes ... Using a novel mouse model, we have studied the differentiation of naive CD4+ T cells into Foxp3+ Treg in response to a ... Immune homeostasis in peripheral tissues is, to a large degree, maintained by the differentiation and action of regulatory T ...
Shield CF III, Manlett P, Smith A, Gunter L, Goldstein G. Stability of human leukocyte differentiation antigens when stored at ... Leukocyte typing IV: white cell differentiation antigens. Oxford: Oxford University Press, 1989. ...
... of function of Nkx3.1 in mouse prostate results in down-regulation of genes that are essential for prostate differentiation, as ... The NKX3.1 homeobox gene plays essential roles in prostate differentiation and prostate cancer. We show that loss ... Histocompatibility Antigens * Homeodomain Proteins * Minor Histocompatibility Antigens * NKX3-1 protein, human * Nuclear ... Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation Science. 2016 Jun ...
title = "H-Y antigen and disorders of sexual differentiation",. abstract = "The process of sexual differentiation has been ... antigen. A patient with abnormal sexual differentiation whose workup included testing for H-Y antigen is presented. The ... antigen. A patient with abnormal sexual differentiation whose workup included testing for H-Y antigen is presented. The ... antigen. A patient with abnormal sexual differentiation whose workup included testing for H-Y antigen is presented. The ...
Cluster of differentiation antigen 49f. *FLJ18737. *integrin alpha 6. *integrin alpha chain, alpha 6 ...
cell differentiation. cell population proliferation. cellular component organization. establishment of localization. ...
Abbreviations: CD, cluster of differentiation; CTLA, cytotoxic T-lymphocyte antigen; EGFR, epidermal growth factor receptor; IL ... Limited data also suggest that modified dosing regimens, including a doubling of the standard antigen dose or administration of ... Test for antibodies to hepatitis B virus surface antigen serum after vaccination, and revaccinate if initial antibody response ... Mycobacterium tuberculosis antigen-specific interferon-γ assay (i.e., QuantiFERON-TB Gold or T-SPOT TB, both generally more ...
Antigens; Polycyclic aromatic hydrocarbons; In vitro study; Cell differentiation; Cellular effects; Cellular function; Cellular ... Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 ... and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and ... PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner. ...
White cell differentiation antigens. Oxford: Oxford University Press, 1989. *Loken MR, Brosnan JM, Bach BA, Ault KA. ... Shield CF III, Manlett P, Smith A, Gunter L, Goldstein G. Stability of human leukocyte differentiation antigens when stored at ... Immunophenotyping relies on detecting specific antigenic determinants on the surface of WBCs by antigen-specific monoclonal ...
Adipophilin and periplipin are two such antigens associated with sebaceous differentiation. [33, 34] ... Sometimes, sebaceous differentiation can be seen, and such cases are more commonly related to MTS. See the image below. ... PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and ... differs from sebaceous adenoma mainly in regards to the degree of differentiation. Sebaceous epithelioma lacks the lobular ...
antigen-specific lymphocyte function and differentiation. no. Romero, Roberto J., M.D. ... immune system development, antigen recognition and responses, systems immunology. no. Braylan, Raul C., M.D. NIH Clinical ... antigen recognition and responses, lymphocyte activation, molecular and structural immunology. no. Sauna, Zuben E., Ph.D.. FDA/ ... clinical and human immunology, immunotherapy and vaccines, mucosal immunity, tumor immunology, antigen recognition. yes. ...
Antigens, Differentiation. Immunotherapy. Neoplasms--immunology. Neoplasms--therapy. Receptors, Antigen, T-Cell. T-Lymphocytes ...
... contributed to the differentiation of ISBCD from OSBUD. We constructed a diagnostic model, ISBCD index (,span class=inline_ ... Carcinoembryonic antigen. CRP:. C-reactive protein. ESR:. Erythrocyte sedimentation rate. CI:. Confidence interval. ... contributed to the differentiation of ISBCD from OSBUD. We constructed a diagnostic model, ISBCD index (. , 95% CI: 0.830-0.925 ... From the perspective of real-world clinical differentiation, may be of more practical value as a diagnostic basis for ISBCD in ...
Immunization against defined tumor antigens using a xenogeneic DNA vaccine is currently being tested in early phase clinical ... Preclinical animal studies have convincingly demonstrated that tumor immunity to self antigens can be actively induced and can ... Differentiation antigens. Tissue specific differentiation antigens are molecules present on tumor cells and their normal cell ... Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl ...
Mechanisms of mucosal antigen uptake of pathogens, commensals, food antigens. Immunity and Inflammation. The mucosal immune ... Different mucosal DC subsets have been shown to promote differentiation of B cells into IgA secreting cells, induction of ... M cells transport antigens to intraepithelial dendritic cells (DC) in the pockets below the M cells to initiate antigen ... Mucosal Antigen Sampling and Presentation. Epithelial cells form a tight barrier separating the luminal contents from the ...
Bacterial antigens induce a humoral immune response, but little is known about the impact of B cells on the inflammatory ... The finding of local V-region diversification suggests that in the ST of patients with ReA, an antigen-driven, T cell-dependent ... differentiation of B cells occurs. This local B cell response may contribute to the progress of the disease. Whether B cells ... Antigen-Dependent B Cell Differentiation in the Synovial Tissue of a Patient with Reactive Arthritis. Access & Citations. * 388 ...
BCC Research Market Report says market for chimeric antigen receptor (CAR) T-cell therapy is estimated to grow from $1.5 bln in ... Cluster of Differentiation. *Lymphocytes. *Adoptive Cell Transfer (ACT) Technologies. Chapter- 4: Impact of COVID-19 on the ... Current Research & Development Status of Chimeric Antigen Receptor (CAR) T-Cell Therapy. Jan 2022, BIO162B, BCC Publishing ... The global market for chimeric antigen receptor (CAR) T-cell therapy is estimated to grow from $1.5 billion in 2021 to reach $ ...
... and we conclude that they recognize the bovine leukocyte common antigen and are BoCD45 mAb. The three mAbs IL-A117, 1C10 and ... All mAbs reacted broadly and stained antigen expressed on thymocytes as well as T and B cells in peripheral blood. The five ... together with a novel broadly expressed leukocyte differentiation antigen, BoWC11 Bembridge GP., Howard CJ., Parsons KR., Sopp ... together with a novel broadly expressed leukocyte differentiation antigen, BoWC11 ...
Basophils Can Directly Present or Cross-Present Antigen to CD8 Lymphocytes and Alter CD8 T Cell Differentiation into IL-10- ... Basophils Can Directly Present or Cross-Present Antigen to CD8 Lymphocytes and Alter CD8 T Cell Differentiation into IL-10- ... Although factors involved in type 1 differentiation have well been studied, factors associated with type 2 differentiation ... IL-4 produced by basophils play a key role in basophil-mediated CD4 T cell Th2 differentiation (4, 5, 6). The contribution of ...
Antigens, Differentiation / genetics Actions. * Search in PubMed * Search in MeSH * Add to Search ... Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. Berková L, Fazilaty H, ... Differentiation markers were detected by IF within Prox1 lineage stripes, with Fabp1 for enterocytes, Muc2 for goblet cells, ... Uranium-bearing dust induces differentiation and expansion of enteroendocrine cells in human colonoids. Atanga R, Appell LL, ...
MeSH Terms: Animals; Antigens, Differentiation; Arteries/immunology*; Arteries/pathology; Endothelium, Lymphatic/immunology; ...
CD4 and CD8 differentiation antigens.. Kontny E. Arch Immunol Ther Exp (Warsz); 1989; 37(5-6):569-76. PubMed ID: 2518640. [TBL] ... antigens).. Kontny E; Ryzewska A. Arch Immunol Ther Exp (Warsz); 1990; 38(5-6):421-32. PubMed ID: 1718236. [TBL] ...
In Leukocyte typing V: white cell differentiation antigens. S.F. Schlossman et al., editors. Oxford University Press. Oxford, ... Gougos, A, Letarte, M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre- ... This implies that in situ differentiation of endothelial cells from mesodermally derived precursors, their assembly into the ... Caniggia, I, Taylor, CV, Ritchie, JWK, Lye, SJ, Letarte, M. Endoglin regulates trophoblast differentiation along the invasive ...
  • Immunophenotyping relies on detecting specific antigenic determinants on the surface of WBCs by antigen-specific monoclonal antibodies that have been labeled with a fluorescent dye or fluorochrome, such as phycoerythrin (PE) or fluorescein isothiocyanate (FITC). (cdc.gov)
  • When this antigenic peptide is presented to a T cell, the T cell becomes activated and in turn helps stimulate B cells to proliferate and differentiate into Plasma Cells which make antibodies "specific" to that antigen only. (dentalcare.com)
  • With the help of the activated T cell, B cells also produce memory cells with antigen-specific antibodies expressed on their surface as B cell Receptors. (dentalcare.com)
  • Vaccines are synthetic forms or processed natural antigens used to stimulate the production of antibodies. (dentalcare.com)
  • Every time that antigen invades the body, the body remembers (memory), and an appropriate and specific response is produced by the host immune cells and antibodies. (dentalcare.com)
  • 1. Ledbetter JA, Herzenberg LA. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. (southernbiotech.com)
  • The mechanism responsible for the formation of the antibodies against the human blood group polysaccharide (PS) antigens is unknown. (techscience.com)
  • 1. Laboratories should conduct initial testing for HIV with an FDA-approved antigen/antibody immunoassaya that detects HIV-1 and HIV-2 antibodies and HIV-1 p24 antigen to test for established HIV-1 and HIV-2 infection and for acute HIV-1 infection, respectively. (cdc.gov)
  • 2. Specimens with a reactive antigen/antibody immunoassay result (or repeatedly reactive, if repeat testing is recommended by the manufacturer or required by regulatory authorities) should be tested with an FDA-approved supplemental antibody immunoassay that differentiates HIV-1 antibodies from HIV-2 antibodies. (cdc.gov)
  • Reactive results on the initial antigen/antibody immunoassay and the HIV-1/HIV-2 antibody differentiation immunoassay should be interpreted as positive for HIV-1 antibodies, HIV-2 antibodiesb, or HIV antibodies, untypable (undifferentiated). (cdc.gov)
  • In the testis and epididymis, speculative functions may include among others spermatogenesis and/or sperm maturation (differentiation) whereas in placenta they are possibly associated with trophoblast fusion and locally induced immunosuppression to protect the foetus from immunological attack. (who.int)
  • Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. (bvsalud.org)
  • Although it has been shown that multiple myeloma neo-antigen-specific T cells can be expanded in vitro , little is known about functions and specificities of clonally expanded multiple myeloma-infiltrating bone marrow T cells. (confex.com)
  • In the absence of other cell types in vitro , OL differentiation reproduces the in vivo development with a correct timing, suggesting the existence of an intrinsic regulatory mechanism that presently is unknown. (jneurosci.org)
  • An inhibitory subclass of NK cell lectin-like receptors that interacts with CLASS I MAJOR HISTOCOMPATIBILITY ANTIGENS and prevents the activation of NK CELLS. (umassmed.edu)
  • Role of inhibitory B cell co-receptors in B cell self-tolerance to non-protein antigens. (bvsalud.org)
  • If HIV Antigen and Antibody, 4th Generation Screen is Repeatedly Reactive, HIV-1/2 Antibody Differentiation will be performed. (privatemdlabs.com)
  • If HIV-1/2 Antibody Differentiation is Indeterminate or Negative, HIV-1 RNA, Qualitative, Real-Time PCR will be performed. (privatemdlabs.com)
  • 3. Specimens that are reactive on the initial antigen/antibody immunoassay and non-reactive or indeterminate on the HIV-1/HIV-2 antibody differentiation immunoassay should be tested with an FDA-approved HIV-1 NAT. (cdc.gov)
  • A reactive HIV-1 NAT result and non-reactive or indeterminate HIV-1/HIV-2 antibody differentiation immunoassay result indicates laboratory evidence of acute HIV-1 infection. (cdc.gov)
  • A negative HIV-1 NAT result and non-reactive or HIV-1 indeterminate antibody differentiation immunoassay result indicates an HIV-1 false-positive result on the initial immunoassay. (cdc.gov)
  • The RNA-LPX cancer vaccine induces activation of both the adaptive immune system (vaccine antigen-specific CD8+/CD4+ T cell) as well as the innate immune system (TLR7 agonism of single-stranded RNA). (clinicaltrials.gov)
  • Vaccinia viruses as vectors for vaccine antigens : proceedings of the Workshop on Vaccinia Viruses as Vectors for Vaccine Antigens, held November 13-14, 1984, in Chevy Chase, Maryland, U.S.A. / editor, Gerald V. Quinnan. (who.int)
  • Here we asked at the single cell level whether clonally expanded T cells i) were detectable in multiple myeloma bone marrow and peripheral blood, ii) showed characteristic immune phenotypes, and iii) recognized antigens selectively presented on multiple myeloma cells. (confex.com)
  • Less than 25% of expanded CD8 + T cell clones expressed the immune checkpoint molecules programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), or T cell immunoglobulin and mucin-domain containing-3 (TIM-3), while B and T lymphocyte attenuator (BTLA) was expressed on more than half of the expanded clones. (confex.com)
  • In humans it is called the Human Leukocyte Antigen System (HLA) and it is responsible for genetically encoding our cells for recognition by the Immune System as either self or non-self. (dentalcare.com)
  • Nucleated cells express MHC Class I genes, whereas a subgroup of immune cells called antigen presenting cells (APCs) express MHC Class II genes. (dentalcare.com)
  • This property refers to the ability of the immune system to recognize non-self antigens and respond in a specific manner to them, rather than responding in a random manner. (dentalcare.com)
  • The initial contact with a molecule eliciting an immune response (antigen) leaves an imprint of information. (dentalcare.com)
  • Although this method can provide insights into regulatory T cell differentiation, it can also be modified to study other CD4 T cell subsets and other immune cells of interest. (jove.com)
  • In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner. (cdc.gov)
  • Here, using differentiated Caco-2 cells with the established 0[I] blood group phenotype (no expression of the blood antigens A and B [AgA, AgB] under normal conditions) as a model of human enterocytes we examined whether the overloading of these cells with lipids could cause errors in the Golgi-dependent glycosylation. (techscience.com)
  • MicroRNAs not only participate in determining DCs phenotype and then naive T lymphocyte differentiation, but also participate in the regulation of airway inflammation and airway remodeling in asthma. (cdc.gov)
  • The myeloid differentiation antigen CD14 acts as the major receptor for bacterial LPS. (enzolifesciences.com)
  • The physiology of efficient induction, expansion and differentiation of antigen-specific T cells is associated with programmed death receptor-1 (PD-1) upregulation on these T cells. (clinicaltrials.gov)
  • CD40 has been reported to be involved in B cell differentiation, costimulation, isotype class-switching, and protection of B cells from apoptosis. (biolegend.com)
  • Phenotypes of clonally expanded T cells were distinctive of cytolytic effector differentiation and significantly different from non-expanded CD8 + T cells. (confex.com)
  • Clonal T cell expansion did not correlate with neo-antigen load as determined by whole exome and RNA sequencing of purified multiple myeloma cells. (confex.com)
  • To determine whether clonally expanded bone marrow T cells recognized antigens selectively presented on multiple myeloma cells, 71 dominant TCRs from five selected patients with substantial clonal T cell expansion were re-expressed in 58α - β - T-hybridoma reporter T cells and co-incubated with CD38-enriched multiple myeloma cells from the same patients. (confex.com)
  • Only one of these TCRs recognized antigens selectively presented on multiple myeloma cells and this TCR was not neo-antigen-specific. (confex.com)
  • In summary, clonally expanded T cells in multiple myeloma bone marrow of newly diagnosed patients show cytolytic effector differentiation. (confex.com)
  • To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. (cdc.gov)
  • O4 + oligodendrocyte (OL) progenitors in the mammalian CNS are committed fully to terminal differentiation into myelin-forming cells. (jneurosci.org)
  • In the absence of platelet-derived growth factor (PDGF), exogenous TN-R induced myelin gene expression and the upregulation of its own synthesis by cultured cells, resulting in a rapid terminal differentiation of O4 + progenitors. (jneurosci.org)
  • These observations strongly suggest that the mechanism promoting the timed differentiation of OL progenitors is intrinsic for these cells. (jneurosci.org)
  • Pellat-Deceunynck C, Bataille R. Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. (bdbiosciences.com)
  • Specificity is initiated by Antigen Presenting Cells such as activated T Cells, B Cells, macrophages, dendritic cells and thymic epithelial cells. (dentalcare.com)
  • These memory cells live for a longer period of time and, on second contact with an antigen, can respond more robustly and more quickly to eliminate it. (dentalcare.com)
  • The ligand interactions of B cell Siglecs are involved in the prevention of autoimmunity to sialylated self-antigens and in the quality control of signaling-competent B cells. (bvsalud.org)
  • Experiments in our laboratory have indicated restricted expression of retroviral antigens including baboon endogenous retroviral proteins (BERV), ERV-3, HIV-1 gp41 and HERV-K env in the baboon ovary. (who.int)
  • Tissue antigens 2004 Apr 63 (4): 293-325. (cdc.gov)
  • Tissue antigens 2006 Jan 67 (1): 30-7. (cdc.gov)
  • BNT112 consists of messenger ribonucleic acid (mRNA [or RNA]) targeting 5 antigens expressed in de novo and metastatic prostate cancer that are separately complexed with liposomes to form serum-stable RNA lipoplexes (RNA-LPX). (clinicaltrials.gov)
  • Calgranulin B is expressed at high concentrations in GRANULOCYTES during early monocyte differentiation, and serum calgranulin B levels are elevated in many inflammatory disorders such as CYSTIC FIBROSIS. (bvsalud.org)
  • 4. Laboratories should use this same testing algorithm, beginning with an antigen/antibody immunoassay on all serum or plasma specimens submitted for testing after a preliminary positive result from any rapid HIV test conducted in a CLIA-waived setting (7). (cdc.gov)
  • aThe FDA-approved single-use rapid HIV-1/HIV-2 antigen/antibody immunoassay can be used as the initial assay in the laboratory HIV testing algorithm for serum or plasma. (cdc.gov)
  • The Pan-Filovirus Rapid Diagnostic Test is premised on the identity of conserved epitopes of filovirus glycoprotein (GP) with potential for intra-genera differentiation. (who.int)
  • For example, both contain prostate-specific antigen (PSA) and PSA phosphatase, two enzymes that can be markers of health. (medicalnewstoday.com)
  • Our findings strongly suggest that TN-R represents an intrinsic regulatory molecule that controls the timed OL differentiation by an autocrine mechanism and imply the relevance of TN-R for CNS myelination and remyelination. (jneurosci.org)
  • This method can help to answer key questions in the T cell immunology field, such as how does regulatory T cell differentiation occur on the molecular level? (jove.com)
  • Following induction of ADSCs with the adipose ECM, more fibroblasts were found, expression of CK19 and vimentin increased, and a greater degree of fibrosis occurred, which revealed the positive effect of the adipose ECM on the differentiation of ADSCs into fibroblasts. (spandidos-publications.com)
  • Hypothesizing that the target antigen was a non-mutated self-antigen, we could show that this TCR also recognized the plasma cell leukemia cell line U-266 in an HLA-A*02:01-restricted manner. (confex.com)
  • Leucocyte typing IV : white cell differentiation antigens. (bdbiosciences.com)
  • Leukocyte Typing V:White Cell Differentiation Antigens. (biolegend.com)
  • Then, the effect of the adipose ECM during the differentiation of ADSCs into fibroblasts was investigated by detecting the total amount of collagen fibers and degree of fibrosis, and the proliferation and cell cycle of differentiated fibroblasts, using the MTT assay and flow cytometry analysis respectively. (spandidos-publications.com)
  • 2. Ledbetter JA, Rouse RV, Micklem HS, Herzenberg LA. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. (southernbiotech.com)
  • Role of silver staining nucleolar organizer regions, proliferating cell nuclear antigen, p53, and c-myc in differentiation and prognosis. (bvsalud.org)
  • T cell differentiation. (cdc.gov)
  • In the mammalian CNS the differentiation of oligodendrocytes (OLs) is characterized by the sequential expression of myelin-specific molecules, which finally leads to the formation of the myelin sheath. (jneurosci.org)
  • Dr. Clarke's results on the distinct differentiation between the viruses of tick-borne encephalitis group in agar-gel precipitation test [5] , [6] had not been confirmed in our laboratory by N. Gorev by comparison of tick-borne and biphasic meningoencephalitis viruses. (cdc.gov)
  • Levels of this antigen can help indicate prostate cancer in males and certain types of breast cancer in females. (medicalnewstoday.com)
  • The CD45 antibody (anti-HLe-1) recognizes members of the T200 family of human leucocyte antigens with molecular mass of 180 to 220 kilodaltons (kDa. (bdbiosciences.com)
  • Antigen composition of Absettarov virus is closely related, if not identical, to tick-borne encephalitis virus and louping ill virus in cross HI, NT and in cross-resistance tests in actively immunized mice. (cdc.gov)
  • Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. (cdc.gov)
  • The present study demonstrated that the adipose ECM in combination with ADSCs may be a novel therapeutic target for the repair of skin injury, due to the ability of the adipose ECM to induce the differentiation of ADSCs into fibroblasts and to facilitate the wound healing process. (spandidos-publications.com)
  • The critical role of fibroblasts in wound healing has been recognized through their generation of ECM and differentiation into myofibroblasts ( 9 ). (spandidos-publications.com)
  • However, if there is a possibility of very early infection leading to a non-reactive initial antigen/antibody immunoassay, such as when recent HIV exposure is suspected or reported, then conduct an HIV-1 nucleic acid test (NAT), or request a new specimen and repeat the algorithm according to CDC guidance (1,4,5,6). (cdc.gov)
  • Como marcadores inmunológicos, tienen gran especificidad por órganos y tejidos, y son útiles como sondas en estudios del desarrollo celular normal y de la transformación neoplásica. (bvsalud.org)