The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Antibodies produced by a single clone of cells.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Sites on an antigen that interact with specific antibodies.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
Antibodies reactive with HIV ANTIGENS.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Local surface sites on antibodies which react with antigen determinant sites on antigens (EPITOPES.) They are formed from parts of the variable regions of FAB FRAGMENTS.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell.
That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions.
Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
Antibodies from an individual that react with ISOANTIGENS of another individual of the same species.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
Substances that are recognized by the immune system and induce an immune reaction.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Substances elaborated by bacteria that have antigenic activity.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
External envelope protein of the human immunodeficiency virus which is encoded by the HIV env gene. It has a molecular weight of 120 kDa and contains numerous glycosylation sites. Gp120 binds to cells expressing CD4 cell-surface antigens, most notably T4-lymphocytes and monocytes/macrophages. Gp120 has been shown to interfere with the normal function of CD4 and is at least partly responsible for the cytopathic effect of HIV.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa.
Immunoglobulins produced in a response to PROTOZOAN ANTIGENS.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
Immunoglobulins induced by antigens specific for tumors other than the normally occurring HISTOCOMPATIBILITY ANTIGENS.
Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The sum of the weight of all the atoms in a molecule.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Immunoglobulins produced in a response to FUNGAL ANTIGENS.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Antibodies, often monoclonal, in which the two antigen-binding sites are specific for separate ANTIGENIC DETERMINANTS. They are artificial antibodies produced by chemical crosslinking, fusion of HYBRIDOMA cells, or by molecular genetic techniques. They function as the main mediators of targeted cellular cytotoxicity and have been shown to be efficient in the targeting of drugs, toxins, radiolabeled haptens, and effector cells to diseased tissue, primarily tumors.
A form of antibodies consisting only of the variable regions of the heavy and light chains (FV FRAGMENTS), connected by a small linker peptide. They are less immunogenic than complete immunoglobulin and thus have potential therapeutic use.
Proteins prepared by recombinant DNA technology.
Antibodies that inhibit the reaction between ANTIGEN and other antibodies or sensitized T-LYMPHOCYTES (e.g., antibodies of the IMMUNOGLOBULIN G class that compete with IGE antibodies for antigen, thereby blocking an allergic response). Blocking antibodies that bind tumors and prevent destruction of tumor cells by CYTOTOXIC T-LYMPHOCYTES have also been called enhancing antibodies. (Rosen et al., Dictionary of Immunology, 1989)
Established cell cultures that have the potential to propagate indefinitely.
Antibodies elicited in a different species from which the antigen originated. These antibodies are directed against a wide variety of interspecies-specific antigens, the best known of which are Forssman, Hanganutziu-Deicher (H-D), and Paul-Bunnell (P-B). Incidence of antibodies to these antigens--i.e., the phenomenon of heterophile antibody response--is useful in the serodiagnosis, pathogenesis, and prognosis of infection and latent infectious states as well as in cancer classification.
The rate dynamics in chemical or physical systems.
Antibodies that can catalyze a wide variety of chemical reactions. They are characterized by high substrate specificity and share many mechanistic features with enzymes.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Antibodies from non-human species whose protein sequences have been modified to make them nearly identical with human antibodies. If the constant region and part of the variable region are replaced, they are called humanized. If only the constant region is modified they are called chimeric. INN names for humanized antibodies end in -zumab.
Autoantibodies directed against phospholipids. These antibodies are characteristically found in patients with systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC;), ANTIPHOSPHOLIPID SYNDROME; related autoimmune diseases, some non-autoimmune diseases, and also in healthy individuals.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Substances elaborated by viruses that have antigenic activity.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide.
Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER).
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)
Elements of limited time intervals, contributing to particular results or situations.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin.
Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Diagnostic procedures involving immunoglobulin reactions.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies.
Autoantibodies directed against cytoplasmic constituents of POLYMORPHONUCLEAR LEUKOCYTES and/or MONOCYTES. They are used as specific markers for GRANULOMATOSIS WITH POLYANGIITIS and other diseases, though their pathophysiological role is not clear. ANCA are routinely detected by indirect immunofluorescence with three different patterns: c-ANCA (cytoplasmic), p-ANCA (perinuclear), and atypical ANCA.
Proteins found in any species of bacterium.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
EPIDEMIOLOGIC STUDIES based on the detection through serological testing of characteristic change in the serum level of specific ANTIBODIES. Latent subclinical infections and carrier states can thus be detected in addition to clinically overt cases.
Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen.
The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Commercially prepared reagent sets, with accessory devices, containing all of the major components and literature necessary to perform one or more designated diagnostic tests or procedures. They may be for laboratory or personal use.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A graphic means for assessing the ability of a screening test to discriminate between healthy and diseased persons; may also be used in other studies, e.g., distinguishing stimuli responses as to a faint stimuli or nonstimuli.
An encapsulated lymphatic organ through which venous blood filters.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Antibodies to the HEPATITIS C ANTIGENS including antibodies to envelope, core, and non-structural proteins.
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
Positive test results in subjects who do not possess the attribute for which the test is conducted. The labeling of healthy persons as diseased when screening in the detection of disease. (Last, A Dictionary of Epidemiology, 2d ed)
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Antibodies obtained from a single clone of cells grown in mice or rats.
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Antibodies to the HEPATITIS B ANTIGENS, including antibodies to the surface (Australia) and core of the Dane particle and those to the "e" antigens.
Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
Polysaccharides found in bacteria and in capsules thereof.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
Antibodies specific to INSULIN.
Tests that are dependent on the clumping of cells, microorganisms, or particles when mixed with specific antiserum. (From Stedman, 26th ed)
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Transport proteins that carry specific substances in the blood or across cell membranes.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Glycoproteins found on the membrane or surface of cells.
The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent.
Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
An immunoglobulin fragment composed of one variable domain from an IMMUNOGLOBULIN HEAVY CHAIN or IMMUNOGLOBULIN LIGHT CHAIN.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Peptides composed of between two and twelve amino acids.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
Proteins found in any species of virus.
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.

Monocyte-mediated antibody-dependent cellular cytotoxicity: a clinical test of monocyte function. (1/9631)

The lack of a simple, rapid, and quantitative test of the functional activity of the monocyte has hampered studies of the contribution of this cell type to host defense and human disease. This report describes an assay of antibody-dependent cellular cytotoxicity, which depends exclusively upon the monocyte as the effector cell and therefore provides a convenient test of monocyte function. In this system, mononuclear leukocytes (MNL) obtained by Ficoll-Hypaque separation of whole blood are cytotoxic for 51Cr-labeled human erythrocyte targets coated with anti-blood group antibody. Removal of phagocytic monocytes from the MNL by iron ingestion, followed by exposure to a magnetic field, completely abolishes all cytotoxic activity from the remaining MNL population. Similarly, in severely mono-cytopenic patients with aplastic anemia, cytotoxic effector activity is absent. In normals and less severely monocytopenic aplastic anemia patients, cytotoxicity correlates significantly (p less than 0.001) with monocyte number. Application of this monocyte-mediated antibody-dependent cellular cytotoxicity assay to the study of patients with the Wiskott-Aldrich syndrome has revealed defective monocyte cytotoxic activity in spite of normal monocyte numbers, suggesting that this test may be useful for the assessment of monocyte function in a variety of clinical situations.  (+info)

Features of the immune response to DNA in mice. I. Genetic control. (2/9631)

The genetic control of the immune response to DNA was studied in various strains of mice F1 hybrids and corresponding back-crosses immunized with single stranded DNA complexed to methylated bovine serum albumin. Anti-DNA antibody response was measured by radioimmuno-logical technique. High responder, low responder, and intermediate responder strains were found and the ability to respond to DNA was characterized as a dominant genetic trait which is not linked to the major locus of histocompatibility. Studies in back-crosses suggested that this immune response is under multigenic control. High responder mice produce both anti-double stranded DNA and anti-single stranded DNA 7S and 19S antibodies, while low responder mice produce mainly anti-single stranded DNA 19S antibodies.  (+info)

Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. (3/9631)

Molecular cloning studies have revealed the existence of a large family of voltage-gated K+ channel genes expressed in mammalian brain. This molecular diversity underlies the vast repertoire of neuronal K+ channels that regulate action potential conduction and neurotransmitter release and that are essential to the control of neuronal excitability. However, the specific contribution of individual K+ channel gene products to these neuronal K+ currents is poorly understood. We have shown previously, using an antibody, "KC, " specific for the Kv2.1 K+ channel alpha-subunit, the high-level expression of Kv2.1 protein in hippocampal neurons in situ and in culture. Here we show that KC is a potent blocker of K+ currents expressed in cells transfected with the Kv2.1 cDNA, but not of currents expressed in cells transfected with other highly related K+ channel alpha-subunit cDNAs. KC also blocks the majority of the slowly inactivating outward current in cultured hippocampal neurons, although antibodies to two other K+ channel alpha-subunits known to be expressed in these cells did not exhibit blocking effects. In all cases the blocking effects of KC were eliminated by previous incubation with a recombinant fusion protein containing the KC antigenic sequence. Together these studies show that Kv2.1, which is expressed at high levels in most mammalian central neurons, is a major contributor to the delayed rectifier K+ current in hippocampal neurons and that the KC antibody is a powerful tool for the elucidation of the role of the Kv2.1 K+ channel in regulating neuronal excitability.  (+info)

Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. (4/9631)

The serovars of Neisseria gonorrhoeae that are predominant in a community change over time, a phenomenon that may be due to the development of immunity to repeat infection with the same serovar. This study evaluated the epidemiologic evidence for serovar-specific immunity to N. gonorrhoeae. During a 17-month period in 1992-1994, all clients of a sexually transmitted disease clinic in rural North Carolina underwent genital culture for N. gonorrhoeae. Gonococcal isolates were serotyped according to standard methods. Odds ratios for repeat infection with the same serovar versus any different serovar were calculated on the basis of the distribution of serovars in the community at the time of reinfection. Of 2,838 patients, 608 (21.4%; 427 males and 181 females) were found to be infected with N. gonorrhoeae at the initial visit. Ninety patients (14.8% of the 608) had a total of 112 repeat gonococcal infections. Repeat infection with the same serovar occurred slightly more often than would be expected based on the serovars prevalent in the community at the time of reinfection, though the result was marginally nonsignificant (odds ratio = 1.5, 95% confidence interval 1.0-2.4; p = 0.05). Choosing partners within a sexual network may increase the likelihood of repeat exposure to the same serovar of N. gonorrhoeae. Gonococcal infection did not induce evident immunity to reinfection with the same serovar.  (+info)

Fine specificity of the autoimmune response to the Ro/SSA and La/SSB ribonucleoproteins. (5/9631)

The fine specificity of the Ro and La proteins has been studied by several techniques. In general, there is agreement in a qualitative sense that autoantibodies bind multiple epitopes. For some specific antibody binding, different studies agree quantitatively, for instance, the binding of the carboxyl terminus of 60-kd Ro as described by 2 studies using different techniques and the presence of an epitope within the leucine zipper of 52-kd Ro. In addition, there is general agreement about the location of a prominent epitope at the RRM motif region of the La molecule. On the other hand, the many specific epitope regions of the molecules differ among these studies. These discrepancies are likely the result of using different techniques, sera, and peptide constructs as well as a result of inherent advantages and disadvantages in the individual approaches. Several theories concerning the origin of not only the antibodies, but also the diseases themselves, have been generated from studies of the fine specificity of antibody binding. These include a theory of a primordial foreign antigen for anti-Ro autoimmunity, molecular mimicry with regard to La and CCHB, as well as the association of anti-Ro with HLA. These remain unproven, but are of continuing interest. An explanation for the association of anti-60-kd Ro and anti-52-kd Ro in the sera of patients has sprung from evaluating antibody binding. Data demonstrating multiple epitopes are part of a large body of evidence that strongly suggests an antigen-driven immune response. This means that the autoantigens are directly implicated in initiating and sustaining autoimmunity in their associated diseases. A number of studies have investigated the possibility of differences in the immune response to these antigens in SS and SLE sera. While several differences have been reported, none have been reproduced in a second cohort of patients. Furthermore, none of the reported differences may be sufficiently robust for clinical purposes, such as distinguishing between SS with systemic features and mild SLE, although some might be promising. For instance, in at least 3 groups of SLE patients, no binding of residues spanning amino acids 21-41 of 60-kd Ro has been found. Meanwhile, 1 of those studies found that 41% of sera from patients with primary SS bound the 60-kd Ro peptide 21-41. Perhaps future studies will elaborate a clinical role of such a difference among SS and SLE patients. Study of the epitopes of these autoantigens has, in part, led to a new animal model of anti-Ro and anti-La. Non-autoimmune-prone animals are immunized with proteins or peptides that make up the Ro/La RNP. Such animals develop an autoimmune response to the entire particle, not just the immunogen. This response has been hypothesized to arise from autoreactive B cells. In another, older animal model of disease, the MRL-lpr/lpr mouse, B cells have recently been shown to be required for the generation of abnormal, autoreactive T cells. Thus, there are now powerful data indicating that B cells that produce autoantibodies are directly involved in the pathogenesis of disease above and beyond the formation of immune complexes. Given that the autoreactive B cell is potentially critical to the underlying pathogenesis of disease, then studying these cells will be crucial to further understanding the origin of diseases associated with Ro and La autoimmunity. Hopefully, an increased understanding will eventually lead to improved treatment of patients. Progress in the area of treatment will almost surely be incremental, and studies of the fine specificity of autoantibody binding will be a part of the body of basic knowledge contributing to ultimate advancement. In the future, the animal models will need to be examined with regard to immunology and immunochemistry as well as genetics. The development of these autoantibodies has not been studied extensively because upon presentation to medical care, virtually all patients have a full-  (+info)

Overexpression of human homologs of the bacterial DnaJ chaperone in the synovial tissue of patients with rheumatoid arthritis. (6/9631)

OBJECTIVE: To study the expression of the chaperone family of J proteins in the synovial tissue of patients with rheumatoid arthritis (RA) or osteoarthritis. METHODS: Rabbit antibodies specific for a synthetic peptide (pHSJ1: EAYEVLSDKHKREIYD), representing the most conserved part of all J domains thus far identified--among them the Drosophila tumor suppressor Tid56--were used in immunohistochemical analyses of frozen sections of synovial tissue and immunoblotting of protein extracts of adherent synovial cells. IgG specific for Tid56 was also used. RESULTS: Both antisera predominantly and intensely stained synovial lining cells from RA patients; other cells did not stain or stained only faintly. In immunoblots, anti-pHSJ1 specifically detected several bands with molecular weights of >74 kd (type I), 57-64 kd (type II), 41-48 kd (type III), and < or =36 kd (type IV). The strongest band detected in RA adherent synovial cells was the type II band, whereas in a B cell line, a type I band was prominent. CONCLUSION: Several potentially new members of the J family are described. The type II band represents the human homolog of the Drosophila Tid56 protein and is strongly expressed in RA synovial tissue.  (+info)

Autoantibodies to RNA polymerases recognize multiple subunits and demonstrate cross-reactivity with RNA polymerase complexes. (7/9631)

OBJECTIVE: To determine the subunit specificity of autoantibody directed to RNA polymerases (RNAP) I, II, and III, which is one of the major autoantibody responses in patients with systemic sclerosis (SSc). METHODS: Thirty-two SSc sera with anti-RNAP antibodies (23 with anti-RNAP I/III, 5 with anti-RNAP I/III and II, and 4 with anti-RNAP II alone) were analyzed by immunoblotting using affinity-purified RNAP and by immunoprecipitation using 35S-labeled cell extracts in which RNAP complexes were dissociated. Antibodies bound to individual RNAP subunits were eluted from preparative immunoblots and were further analyzed by immunoblotting and immunoprecipitation. RESULTS: At least 15 different proteins were bound by antibodies in anti-RNAP-positive SSc sera in various combinations. All 9 sera immunoprecipitating RNAP II and all 28 sera immunoprecipitating RNAP I/III recognized the large subunit proteins of RNAP II and III, respectively. Reactivity to RNAP I large subunits was strongly associated with bright nucleolar staining by indirect immunofluorescence. Affinity-purified antibodies that recognized a 62-kd subunit protein cross-reacted with a 43-kd subunit protein and immunoprecipitated both RNAP I and RNAP III. Antibodies that recognized a 21-kd subunit protein obtained from sera that were positive for anti-RNAP I/III and II antibodies immunoprecipitated both RNAP II and RNAP III. CONCLUSION: Anti-RNAP antibodies recognize multiple subunits of RNAP I, II, and III. Moreover, the results of this study provide the first direct evidence that antibodies that recognize shared subunits of human RNAPs or epitopes present on different human RNAP subunits are responsible for the recognition of multiple RNAPs by SSc sera.  (+info)

Alternating antineutrophil cytoplasmic antibody specificity: drug-induced vasculitis in a patient with Wegener's granulomatosis. (8/9631)

We describe a patient who presented with Wegener's granulomatosis associated with antineutrophil cytoplasmic antibodies (ANCA) directed against proteinase 3 (PR3) with a cytoplasmic immunofluorescence pattern (cANCA), whose ANCA type changed to antimyeloperoxidase antibodies with a perinuclear immunofluorescence pattern (pANCA) when treated with propylthiouracil, and changed back to anti-PR3 antibodies with cANCA after the medication was discontinued. The patient developed flares of vasculitis symptoms associated with rises in either type of ANCA. Tests for antimyeloperoxidase ANCA were repeatedly negative before the drug was started, strongly implicating the drug as the cause of the episode. This case demonstrates that patients with idiopathic ANCA-positive vasculitis may quickly develop a superimposed drug-associated ANCA-positive vasculitis. Iatrogenic vasculitis should be suspected when a patient with idiopathic vasculitis with one type of ANCA develops the other type of ANCA.  (+info)

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Neutralizing antibodies are a type of antibody that defends against pathogens such as viruses or bacteria by neutralizing their ability to infect cells. They do this by binding to specific regions on the surface proteins of the pathogen, preventing it from attaching to and entering host cells. This renders the pathogen ineffective and helps to prevent or reduce the severity of infection. Neutralizing antibodies can be produced naturally in response to an infection or vaccination, or they can be generated artificially for therapeutic purposes.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

Antibody affinity refers to the strength and specificity of the interaction between an antibody and its corresponding antigen at a molecular level. It is a measure of how strongly and selectively an antibody binds to its target antigen. A higher affinity indicates a more stable and specific binding, while a lower affinity suggests weaker and less specific interactions. Affinity is typically measured in terms of the dissociation constant (Kd), which describes the concentration of antigen needed to achieve half-maximal binding to an antibody. Generally, a smaller Kd value corresponds to a higher affinity, indicating a tighter and more selective bond. This parameter is crucial in the development of diagnostic and therapeutic applications, such as immunoassays and targeted therapies, where high-affinity antibodies are preferred for improved sensitivity and specificity.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

HIV antibodies are proteins produced by the immune system in response to the presence of HIV (Human Immunodeficiency Virus) in the body. These antibodies are designed to recognize and bind to specific parts of the virus, known as antigens, in order to neutralize or eliminate it.

There are several types of HIV antibodies that can be produced, including:

1. Anti-HIV-1 and anti-HIV-2 antibodies: These are antibodies that specifically target the HIV-1 and HIV-2 viruses, respectively.
2. Antibodies to HIV envelope proteins: These antibodies recognize and bind to the outer envelope of the virus, which is covered in glycoprotein spikes that allow the virus to attach to and enter host cells.
3. Antibodies to HIV core proteins: These antibodies recognize and bind to the interior of the viral particle, where the genetic material of the virus is housed.

The presence of HIV antibodies in the blood can be detected through a variety of tests, including enzyme-linked immunosorbent assay (ELISA) and Western blot. A positive test result for HIV antibodies indicates that an individual has been infected with the virus, although it may take several weeks or months after infection for the antibodies to become detectable.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

A binding site on an antibody refers to the specific region on the surface of the antibody molecule that can recognize and bind to a specific antigen. Antibodies are proteins produced by the immune system in response to the presence of foreign substances called antigens. They have two main functions: to neutralize the harmful effects of antigens and to help eliminate them from the body.

The binding site of an antibody is located at the tips of its Y-shaped structure, formed by the variable regions of the heavy and light chains of the antibody molecule. These regions contain unique amino acid sequences that determine the specificity of the antibody for a particular antigen. The binding site can recognize and bind to a specific epitope or region on the antigen, forming an antigen-antibody complex.

The binding between the antibody and antigen is highly specific and depends on non-covalent interactions such as hydrogen bonds, van der Waals forces, and electrostatic attractions. This interaction plays a crucial role in the immune response, as it allows the immune system to recognize and eliminate pathogens and other foreign substances from the body.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

An antigen-antibody reaction is a specific immune response that occurs when an antigen (a foreign substance, such as a protein or polysaccharide on the surface of a bacterium or virus) comes into contact with a corresponding antibody (a protective protein produced by the immune system in response to the antigen). The antigen and antibody bind together, forming an antigen-antibody complex. This interaction can neutralize the harmful effects of the antigen, mark it for destruction by other immune cells, or activate complement proteins to help eliminate the antigen from the body. Antigen-antibody reactions are a crucial part of the adaptive immune response and play a key role in the body's defense against infection and disease.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Anti-idiotypic antibodies are a type of immune protein that recognizes and binds to the unique identifying region (idiotype) of another antibody. These antibodies are produced by the immune system as part of a regulatory feedback mechanism, where they can modulate or inhibit the activity of the original antibody. They have been studied for their potential use in immunotherapy and vaccine development.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Immunoglobulin (Ig) Fab fragments are the antigen-binding portions of an antibody that result from the digestion of the whole antibody molecule by enzymes such as papain. An antibody, also known as an immunoglobulin, is a Y-shaped protein produced by the immune system to identify and neutralize foreign substances like bacteria, viruses, or toxins. The antibody has two identical antigen-binding sites, located at the tips of the two shorter arms, which can bind specifically to a target antigen.

Fab fragments are formed when an antibody is cleaved by papain, resulting in two Fab fragments and one Fc fragment. Each Fab fragment contains one antigen-binding site, composed of a variable region (Fv) and a constant region (C). The Fv region is responsible for the specificity and affinity of the antigen binding, while the C region contributes to the effector functions of the antibody.

Fab fragments are often used in various medical applications, such as immunodiagnostics and targeted therapies, due to their ability to bind specifically to target antigens without triggering an immune response or other effector functions associated with the Fc region.

A hybridoma is a type of hybrid cell that is created in a laboratory by fusing a cancer cell (usually a B cell) with a normal immune cell. The resulting hybrid cell combines the ability of the cancer cell to grow and divide indefinitely with the ability of the immune cell to produce antibodies, which are proteins that help the body fight infection.

Hybridomas are commonly used to produce monoclonal antibodies, which are identical copies of a single antibody produced by a single clone of cells. These antibodies can be used for a variety of purposes, including diagnostic tests and treatments for diseases such as cancer and autoimmune disorders.

To create hybridomas, B cells are first isolated from the spleen or blood of an animal that has been immunized with a specific antigen (a substance that triggers an immune response). The B cells are then fused with cancer cells using a chemical agent such as polyethylene glycol. The resulting hybrid cells are called hybridomas and are grown in culture medium, where they can be selected for their ability to produce antibodies specific to the antigen of interest. These antibody-producing hybridomas can then be cloned to produce large quantities of monoclonal antibodies.

The Immunoglobulin (Ig) variable region is the antigen-binding part of an antibody, which is highly variable in its amino acid sequence and therefore specific to a particular epitope (the site on an antigen that is recognized by the antigen-binding site of an antibody). This variability is generated during the process of V(D)J recombination in the maturation of B cells, allowing for a diverse repertoire of antibodies to be produced and recognizing a wide range of potential pathogens.

The variable region is composed of several sub-regions including:

1. The heavy chain variable region (VH)
2. The light chain variable region (VL)
3. The heavy chain joining region (JH)
4. The light chain joining region (JL)

These regions are further divided into framework regions and complementarity-determining regions (CDRs). The CDRs, particularly CDR3, contain the most variability and are primarily responsible for antigen recognition.

A hapten is a small molecule that can elicit an immune response only when it is attached to a larger carrier protein. On its own, a hapten is too small to be recognized by the immune system as a foreign substance. However, when it binds to a carrier protein, it creates a new antigenic site that can be detected by the immune system. This process is known as haptenization.

Haptens are important in the study of immunology and allergies because they can cause an allergic response when they bind to proteins in the body. For example, certain chemicals found in cosmetics, drugs, or industrial products can act as haptens and trigger an allergic reaction when they come into contact with the skin or mucous membranes. The resulting immune response can cause symptoms such as rash, itching, or inflammation.

Haptens can also be used in the development of vaccines and diagnostic tests, where they are attached to carrier proteins to stimulate an immune response and produce specific antibodies that can be measured or used for therapy.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

An immunoassay is a biochemical test that measures the presence or concentration of a specific protein, antibody, or antigen in a sample using the principles of antibody-antigen reactions. It is commonly used in clinical laboratories to diagnose and monitor various medical conditions such as infections, hormonal disorders, allergies, and cancer.

Immunoassays typically involve the use of labeled reagents, such as enzymes, radioisotopes, or fluorescent dyes, that bind specifically to the target molecule. The amount of label detected is proportional to the concentration of the target molecule in the sample, allowing for quantitative analysis.

There are several types of immunoassays, including enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and chemiluminescent immunoassay (CLIA). Each type has its own advantages and limitations, depending on the sensitivity, specificity, and throughput required for a particular application.

Isoantibodies are antibodies produced by the immune system that recognize and react to antigens (markers) found on the cells or tissues of another individual of the same species. These antigens are typically proteins or carbohydrates present on the surface of red blood cells, but they can also be found on other cell types.

Isoantibodies are formed when an individual is exposed to foreign antigens, usually through blood transfusions, pregnancy, or tissue transplantation. The exposure triggers the immune system to produce specific antibodies against these antigens, which can cause a harmful immune response if the individual receives another transfusion or transplant from the same donor in the future.

There are two main types of isoantibodies:

1. Agglutinins: These are IgM antibodies that cause red blood cells to clump together (agglutinate) when mixed with the corresponding antigen. They develop rapidly after exposure and can cause immediate transfusion reactions or hemolytic disease of the newborn in pregnant women.
2. Hemolysins: These are IgG antibodies that destroy red blood cells by causing their membranes to become more permeable, leading to lysis (bursting) of the cells and release of hemoglobin into the plasma. They take longer to develop but can cause delayed transfusion reactions or hemolytic disease of the newborn in pregnant women.

Isoantibodies are detected through blood tests, such as the crossmatch test, which determines compatibility between a donor's and recipient's blood before transfusions or transplants.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Autoantigens are substances that are typically found in an individual's own body, but can stimulate an immune response because they are recognized as foreign by the body's own immune system. In autoimmune diseases, the immune system mistakenly attacks and damages healthy tissues and organs because it recognizes some of their components as autoantigens. These autoantigens can be proteins, DNA, or other molecules that are normally present in the body but have become altered or exposed due to various factors such as infection, genetics, or environmental triggers. The immune system then produces antibodies and activates immune cells to attack these autoantigens, leading to tissue damage and inflammation.

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

HIV Envelope Protein gp120 is a glycoprotein that is a major component of the outer envelope of the Human Immunodeficiency Virus (HIV). It plays a crucial role in the viral infection process. The "gp" stands for glycoprotein.

The gp120 protein is responsible for binding to CD4 receptors on the surface of human immune cells, particularly T-helper cells or CD4+ cells. This binding initiates the fusion process that allows the virus to enter and infect the cell.

After attachment, a series of conformational changes occur in the gp120 and another envelope protein, gp41, leading to the formation of a bridge between the viral and cell membranes, which ultimately results in the virus entering the host cell.

The gp120 protein is also one of the primary targets for HIV vaccine design due to its critical role in the infection process and its surface location, making it accessible to the immune system. However, its high variability and ability to evade the immune response have posed significant challenges in developing an effective HIV vaccine.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

Immunoglobulin heavy chains are proteins that make up the framework of antibodies, which are Y-shaped immune proteins. These heavy chains, along with light chains, form the antigen-binding sites of an antibody, which recognize and bind to specific foreign substances (antigens) in order to neutralize or remove them from the body.

The heavy chain is composed of a variable region, which contains the antigen-binding site, and constant regions that determine the class and function of the antibody. There are five classes of immunoglobulins (IgA, IgD, IgE, IgG, and IgM) that differ in their heavy chain constant regions and therefore have different functions in the immune response.

Immunoglobulin heavy chains are synthesized by B cells, a type of white blood cell involved in the adaptive immune response. The genetic rearrangement of immunoglobulin heavy chain genes during B cell development results in the production of a vast array of different antibodies with unique antigen-binding sites, allowing for the recognition and elimination of a wide variety of pathogens.

Antibodies, protozoan, refer to the immune system's response to an infection caused by a protozoan organism. Protozoa are single-celled microorganisms that can cause various diseases in humans, such as malaria, giardiasis, and toxoplasmosis.

When the body is infected with a protozoan, the immune system responds by producing specific proteins called antibodies. Antibodies are produced by a type of white blood cell called a B-cell, and they recognize and bind to specific antigens on the surface of the protozoan organism.

There are five main types of antibodies: IgA, IgD, IgE, IgG, and IgM. Each type of antibody has a different role in the immune response. For example, IgG is the most common type of antibody and provides long-term immunity to previously encountered pathogens. IgM is the first antibody produced in response to an infection and is important for activating the complement system, which helps to destroy the protozoan organism.

Overall, the production of antibodies against protozoan organisms is a critical part of the immune response and helps to protect the body from further infection.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

'Antibodies, Neoplasm' is a medical term that refers to abnormal antibodies produced by neoplastic cells, which are cells that have undergone uncontrolled division and form a tumor or malignancy. These antibodies can be produced in large quantities and may have altered structures or functions compared to normal antibodies.

Neoplastic antibodies can arise from various types of malignancies, including leukemias, lymphomas, and multiple myeloma. In some cases, these abnormal antibodies can interfere with the normal functioning of the immune system and contribute to the progression of the disease.

In addition, neoplastic antibodies can also be used as tumor markers for diagnostic purposes. For example, certain types of monoclonal gammopathy, such as multiple myeloma, are characterized by the overproduction of a single type of immunoglobulin, which can be detected in the blood or urine and used to monitor the disease.

Overall, 'Antibodies, Neoplasm' is a term that encompasses a wide range of abnormal antibodies produced by neoplastic cells, which can have significant implications for both the diagnosis and treatment of malignancies.

Antinuclear antibodies (ANA) are a type of autoantibody that target structures found in the nucleus of a cell. These antibodies are produced by the immune system and attack the body's own cells and tissues, leading to inflammation and damage. The presence of ANA is often used as a marker for certain autoimmune diseases, such as systemic lupus erythematosus (SLE), Sjogren's syndrome, rheumatoid arthritis, scleroderma, and polymyositis.

ANA can be detected through a blood test called the antinuclear antibody test. A positive result indicates the presence of ANA in the blood, but it does not necessarily mean that a person has an autoimmune disease. Further testing is usually needed to confirm a diagnosis and determine the specific type of autoantibodies present.

It's important to note that ANA can also be found in healthy individuals, particularly as they age. Therefore, the test results should be interpreted in conjunction with other clinical findings and symptoms.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Fungal antibodies are a type of protein called immunoglobulins that are produced by the immune system in response to the presence of fungi in the body. These antibodies are specifically designed to recognize and bind to antigens on the surface of fungal cells, marking them for destruction by other immune cells.

There are several types of fungal antibodies, including IgA, IgG, IgM, and IgE, each with a specific role in the immune response. For example, IgG antibodies are the most common type of antibody found in the blood and provide long-term immunity to fungi, while IgE antibodies are associated with allergic reactions to fungi.

Fungal antibodies can be measured in the blood or other bodily fluids to help diagnose fungal infections, monitor the effectiveness of treatment, or assess immune function in individuals who are at risk for fungal infections, such as those with weakened immune systems due to HIV/AIDS, cancer, or organ transplantation.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Bispecific antibodies are a type of artificial protein that have been engineered to recognize and bind to two different antigens simultaneously. They are created by combining two separate antibody molecules, each with a unique binding site, into a single entity. This allows the bispecific antibody to link two cells or proteins together, bringing them into close proximity and facilitating various biological processes.

In the context of medicine and immunotherapy, bispecific antibodies are being investigated as a potential treatment for cancer and other diseases. For example, a bispecific antibody can be designed to recognize a specific tumor-associated antigen on the surface of cancer cells, while also binding to a component of the immune system, such as a T cell. This brings the T cell into close contact with the cancer cell, activating the immune system and triggering an immune response against the tumor.

Bispecific antibodies have several potential advantages over traditional monoclonal antibodies, which only recognize a single antigen. By targeting two different epitopes or antigens, bispecific antibodies can increase the specificity and affinity of the interaction, reducing off-target effects and improving therapeutic efficacy. Additionally, bispecific antibodies can bring together multiple components of the immune system, amplifying the immune response and enhancing the destruction of cancer cells.

Overall, bispecific antibodies represent a promising new class of therapeutics that have the potential to revolutionize the treatment of cancer and other diseases. However, further research is needed to fully understand their mechanisms of action and optimize their clinical use.

Single-chain antibodies (scFvs) are small, artificial protein molecules that contain the antigen-binding sites of immunoglobulins. They are formed by linking the variable regions of the heavy and light chains of an antibody via a flexible peptide linker, creating a single polypeptide chain. This design allows scFvs to maintain the specificity of traditional antibodies while being significantly smaller in size, more stable, and easier to produce. They have various applications in research, diagnostics, and therapeutics, including targeted drug delivery, tumor imaging, and the development of novel therapies for cancer and other diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Blocking antibodies are a type of antibody that binds to a specific antigen but does not cause the immune system to directly attack the antigen. Instead, blocking antibodies prevent the antigen from interacting with other molecules or receptors, effectively "blocking" its activity. This can be useful in therapeutic settings, where blocking antibodies can be used to inhibit the activity of harmful proteins or toxins.

For example, some blocking antibodies have been developed to target and block the activity of specific cytokines, which are signaling molecules involved in inflammation and immune responses. By blocking the interaction between the cytokine and its receptor, these antibodies can help to reduce inflammation and alleviate symptoms in certain autoimmune diseases or chronic inflammatory conditions.

It's important to note that while blocking antibodies can be useful for therapeutic purposes, they can also have unintended consequences if they block the activity of essential proteins or molecules. Therefore, careful consideration and testing are required before using blocking antibodies as a treatment.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Heterophile antibodies are a type of antibody that can react with antigens from more than one source, rather than being specific to a single antigen. They are produced in response to an initial infection or immunization, but can also cross-react with antigens from unrelated organisms or substances. A common example of heterophile antibodies are those that are produced in response to Epstein-Barr virus (EBV) infection, which can cause infectious mononucleosis. These antibodies, known as Paul-Bunnell antibodies, can agglutinate (clump together) sheep or horse red blood cells, which is the basis for a diagnostic test for EBV infection called the Monospot test. However, it's important to note that not all cases of infectious mononucleosis are caused by EBV, and other infections or conditions can also cause the production of heterophile antibodies, leading to false-positive results.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Catalytic antibodies, also known as abzymes or catalytic immune proteins, are a type of antibody that possesses enzymatic activity. They are capable of accelerating specific chemical reactions in a manner similar to traditional enzymes. This unique property arises from the ability of certain antibodies to bind substrates and promote their conversion into products through a series of chemical transformations.

Catalytic antibodies are generated by immunizing an organism with a transition state analogue, a molecule that mimics the high-energy, transient structure of a substrate during a chemical reaction. The immune system recognizes this analogue as foreign and produces antibodies against it. Some of these antibodies will bind to the transition state analogue in a way that stabilizes its geometry and lowers the energy barrier for the conversion of the substrate into the product. This results in the formation of a catalytic antibody, which can then accelerate this specific chemical reaction when presented with the appropriate substrate.

These specialized antibodies have attracted significant interest in the fields of chemistry, biochemistry, and immunology due to their potential applications in various areas, including drug design, diagnostics, and environmental monitoring. However, it is important to note that catalytic antibodies are still a subject of ongoing research, and their use as practical tools in these applications is not yet widespread.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

The Fluorescent Antibody Technique (FAT), Indirect is a type of immunofluorescence assay used to detect the presence of specific antigens in a sample. In this method, the sample is first incubated with a primary antibody that binds to the target antigen. After washing to remove unbound primary antibodies, a secondary fluorescently labeled antibody is added, which recognizes and binds to the primary antibody. This indirect labeling approach allows for amplification of the signal, making it more sensitive than direct methods. The sample is then examined under a fluorescence microscope to visualize the location and amount of antigen based on the emitted light from the fluorescent secondary antibody. It's commonly used in diagnostic laboratories for detection of various bacteria, viruses, and other antigens in clinical specimens.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

Monoclonal antibodies are laboratory-produced proteins that mimic the immune system's ability to fight off harmful antigens such as viruses and cancer cells. They are created by fusing a single B cell (the type of white blood cell responsible for producing antibodies) with a tumor cell, resulting in a hybrid cell called a hybridoma. This hybridoma can then be cloned to produce a large number of identical cells, all producing the same antibody, hence "monoclonal."

Humanized monoclonal antibodies are a type of monoclonal antibody that have been genetically engineered to include human components. This is done to reduce the risk of an adverse immune response in patients receiving the treatment. In this process, the variable region of the mouse monoclonal antibody, which contains the antigen-binding site, is grafted onto a human constant region. The resulting humanized monoclonal antibody retains the ability to bind to the target antigen while minimizing the immunogenicity associated with murine (mouse) antibodies.

In summary, "antibodies, monoclonal, humanized" refers to a type of laboratory-produced protein that mimics the immune system's ability to fight off harmful antigens, but with reduced immunogenicity due to the inclusion of human components in their structure.

Antiphospholipid antibodies are a type of autoantibody that targets and binds to certain proteins found in the blood that attach to phospholipids (a type of fat molecule). These antibodies are associated with an increased risk of developing antiphospholipid syndrome, a disorder characterized by abnormal blood clotting.

There are several types of antiphospholipid antibodies, including:

1. Lupus anticoagulant: This type of antiphospholipid antibody can interfere with blood clotting tests and may increase the risk of thrombosis (blood clots) in both arteries and veins.
2. Anticardiolipin antibodies: These antibodies target a specific phospholipid called cardiolipin, which is found in the inner membrane of mitochondria. High levels of anticardiolipin antibodies are associated with an increased risk of thrombosis and pregnancy complications such as recurrent miscarriage.
3. Anti-β2 glycoprotein I antibodies: These antibodies target a protein called β2 glycoprotein I, which binds to negatively charged phospholipids on the surface of cells. High levels of anti-β2 glycoprotein I antibodies are associated with an increased risk of thrombosis and pregnancy complications.

The exact mechanism by which antiphospholipid antibodies cause blood clotting is not fully understood, but it is thought to involve the activation of platelets, the inhibition of natural anticoagulants, and the promotion of inflammation. Antiphospholipid syndrome can be treated with medications that thin the blood or prevent clots from forming, such as aspirin, warfarin, or heparin.

Surface antigens are molecules found on the surface of cells that can be recognized by the immune system as being foreign or different from the host's own cells. Antigens are typically proteins or polysaccharides that are capable of stimulating an immune response, leading to the production of antibodies and activation of immune cells such as T-cells.

Surface antigens are important in the context of infectious diseases because they allow the immune system to identify and target infected cells for destruction. For example, viruses and bacteria often display surface antigens that are distinct from those found on host cells, allowing the immune system to recognize and attack them. In some cases, these surface antigens can also be used as targets for vaccines or other immunotherapies.

In addition to their role in infectious diseases, surface antigens are also important in the context of cancer. Tumor cells often display abnormal surface antigens that differ from those found on normal cells, allowing the immune system to potentially recognize and attack them. However, tumors can also develop mechanisms to evade the immune system, making it difficult to mount an effective response.

Overall, understanding the properties and behavior of surface antigens is crucial for developing effective immunotherapies and vaccines against infectious diseases and cancer.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

An antigen is any substance that can stimulate an immune response, particularly the production of antibodies. Viral antigens are antigens that are found on or produced by viruses. They can be proteins, glycoproteins, or carbohydrates present on the surface or inside the viral particle.

Viral antigens play a crucial role in the immune system's recognition and response to viral infections. When a virus infects a host cell, it may display its antigens on the surface of the infected cell. This allows the immune system to recognize and target the infected cells for destruction, thereby limiting the spread of the virus.

Viral antigens are also important targets for vaccines. Vaccines typically work by introducing a harmless form of a viral antigen to the body, which then stimulates the production of antibodies and memory T-cells that can recognize and respond quickly and effectively to future infections with the actual virus.

It's worth noting that different types of viruses have different antigens, and these antigens can vary between strains of the same virus. This is why there are often different vaccines available for different viral diseases, and why flu vaccines need to be updated every year to account for changes in the circulating influenza virus strains.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Immunoglobulin fragments refer to the smaller protein units that are formed by the digestion or break-down of an intact immunoglobulin, also known as an antibody. Immunoglobulins are large Y-shaped proteins produced by the immune system to identify and neutralize foreign substances such as pathogens or toxins. They consist of two heavy chains and two light chains, held together by disulfide bonds.

The digestion or break-down of an immunoglobulin can occur through enzymatic cleavage, which results in the formation of distinct fragments. The most common immunoglobulin fragments are:

1. Fab (Fragment, antigen binding) fragments: These are formed by the digestion of an intact immunoglobulin using the enzyme papain. Each Fab fragment contains a single antigen-binding site, consisting of a portion of one heavy chain and one light chain. The Fab fragments retain their ability to bind to specific antigens.
2. Fc (Fragment, crystallizable) fragments: These are formed by the digestion of an intact immunoglobulin using the enzyme pepsin or through the natural breakdown process in the body. The Fc fragment contains the constant region of both heavy chains and is responsible for effector functions such as complement activation, binding to Fc receptors on immune cells, and antibody-dependent cellular cytotoxicity (ADCC).

These immunoglobulin fragments play crucial roles in various immune responses and diagnostic applications. For example, Fab fragments can be used in immunoassays for the detection of specific antigens, while Fc fragments can mediate effector functions that help eliminate pathogens or damaged cells from the body.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

A peptide library is a collection of a large number of peptides, which are short chains of amino acids. Each peptide in the library is typically composed of a defined length and sequence, and may contain a variety of different amino acids. Peptide libraries can be synthesized using automated techniques and are often used in scientific research to identify potential ligands (molecules that bind to specific targets) or to study the interactions between peptides and other molecules.

In a peptide library, each peptide is usually attached to a solid support, such as a resin bead, and the entire library can be created using split-and-pool synthesis techniques. This allows for the rapid and efficient synthesis of a large number of unique peptides, which can then be screened for specific activities or properties.

Peptide libraries are used in various fields such as drug discovery, proteomics, and molecular biology to identify potential therapeutic targets, understand protein-protein interactions, and develop new diagnostic tools.

Passive immunization is a type of temporary immunity that is transferred to an individual through the injection of antibodies produced outside of the body, rather than through the active production of antibodies in the body in response to vaccination or infection. This can be done through the administration of preformed antibodies, such as immune globulins, which contain a mixture of antibodies that provide immediate protection against specific diseases.

Passive immunization is often used in situations where individuals have been exposed to a disease and do not have time to develop their own active immune response, or in cases where individuals are unable to produce an adequate immune response due to certain medical conditions. It can also be used as a short-term measure to provide protection until an individual can receive a vaccination that will confer long-term immunity.

Passive immunization provides immediate protection against disease, but the protection is typically short-lived, lasting only a few weeks or months. This is because the transferred antibodies are gradually broken down and eliminated by the body over time. In contrast, active immunization confers long-term immunity through the production of memory cells that can mount a rapid and effective immune response upon re-exposure to the same pathogen in the future.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Hemagglutination tests are laboratory procedures used to detect the presence of antibodies or antigens in a sample, typically in blood serum. These tests rely on the ability of certain substances, such as viruses or bacteria, to agglutinate (clump together) red blood cells.

In a hemagglutination test, a small amount of the patient's serum is mixed with a known quantity of red blood cells that have been treated with a specific antigen. If the patient has antibodies against that antigen in their serum, they will bind to the antigens on the red blood cells and cause them to agglutinate. This clumping can be observed visually, indicating a positive test result.

Hemagglutination tests are commonly used to diagnose infectious diseases caused by viruses or bacteria that have hemagglutinating properties, such as influenza, parainfluenza, and HIV. They can also be used in blood typing and cross-matching before transfusions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

Neoplasm antigens, also known as tumor antigens, are substances that are produced by cancer cells (neoplasms) and can stimulate an immune response. These antigens can be proteins, carbohydrates, or other molecules that are either unique to the cancer cells or are overexpressed or mutated versions of normal cellular proteins.

Neoplasm antigens can be classified into two main categories: tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs). TSAs are unique to cancer cells and are not expressed by normal cells, while TAAs are present at low levels in normal cells but are overexpressed or altered in cancer cells.

TSAs can be further divided into viral antigens and mutated antigens. Viral antigens are produced when cancer is caused by a virus, such as human papillomavirus (HPV) in cervical cancer. Mutated antigens are the result of genetic mutations that occur during cancer development and are unique to each patient's tumor.

Neoplasm antigens play an important role in the immune response against cancer. They can be recognized by the immune system, leading to the activation of immune cells such as T cells and natural killer (NK) cells, which can then attack and destroy cancer cells. However, cancer cells often develop mechanisms to evade the immune response, allowing them to continue growing and spreading.

Understanding neoplasm antigens is important for the development of cancer immunotherapies, which aim to enhance the body's natural immune response against cancer. These therapies include checkpoint inhibitors, which block proteins that inhibit T cell activation, and therapeutic vaccines, which stimulate an immune response against specific tumor antigens.

Immunoglobulin idiotypes refer to the unique antigenic determinants found on the variable regions of an immunoglobulin (antibody) molecule. These determinants are specific to each individual antibody and can be used to distinguish between different antibodies produced by a single individual or between antibodies produced by different individuals.

The variable region of an antibody is responsible for recognizing and binding to a specific antigen. The amino acid sequence in this region varies between different antibodies, and it is these variations that give rise to the unique idiotypes. Idiotypes can be used as markers to study the immune response, including the clonal selection and affinity maturation of B cells during an immune response.

Immunoglobulin idiotypes are also important in the development of monoclonal antibodies for therapeutic use. By identifying and isolating a specific antibody with the desired idiotype, it is possible to produce large quantities of identical antibodies that can be used to treat various diseases, including cancer and autoimmune disorders.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Hemagglutination inhibition (HI) tests are a type of serological assay used in medical laboratories to detect and measure the amount of antibodies present in a patient's serum. These tests are commonly used to diagnose viral infections, such as influenza or HIV, by identifying the presence of antibodies that bind to specific viral antigens and prevent hemagglutination (the agglutination or clumping together of red blood cells).

In an HI test, a small amount of the patient's serum is mixed with a known quantity of the viral antigen, which has been treated to attach to red blood cells. If the patient's serum contains antibodies that bind to the viral antigen, they will prevent the antigen from attaching to the red blood cells and inhibit hemagglutination. The degree of hemagglutination inhibition can be measured and used to estimate the amount of antibody present in the patient's serum.

HI tests are relatively simple and inexpensive to perform, but they have some limitations. For example, they may not detect early-stage infections before the body has had a chance to produce antibodies, and they may not be able to distinguish between different strains of the same virus. Nonetheless, HI tests remain an important tool for diagnosing viral infections and monitoring immune responses to vaccination or infection.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Serologic tests are laboratory tests that detect the presence or absence of antibodies or antigens in a patient's serum (the clear liquid that separates from clotted blood). These tests are commonly used to diagnose infectious diseases, as well as autoimmune disorders and other medical conditions.

In serologic testing for infectious diseases, a sample of the patient's blood is collected and allowed to clot. The serum is then separated from the clot and tested for the presence of antibodies that the body has produced in response to an infection. The test may be used to identify the specific type of infection or to determine whether the infection is active or has resolved.

Serologic tests can also be used to diagnose autoimmune disorders, such as rheumatoid arthritis and lupus, by detecting the presence of antibodies that are directed against the body's own tissues. These tests can help doctors confirm a diagnosis and monitor the progression of the disease.

It is important to note that serologic tests are not always 100% accurate and may produce false positive or false negative results. Therefore, they should be interpreted in conjunction with other clinical findings and laboratory test results.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Immunologic techniques are a group of laboratory methods that utilize the immune system's ability to recognize and respond to specific molecules, known as antigens. These techniques are widely used in medicine, biology, and research to detect, measure, or identify various substances, including proteins, hormones, viruses, bacteria, and other antigens.

Some common immunologic techniques include:

1. Enzyme-linked Immunosorbent Assay (ELISA): A sensitive assay used to detect and quantify antigens or antibodies in a sample. This technique uses an enzyme linked to an antibody or antigen, which reacts with a substrate to produce a colored product that can be measured and quantified.
2. Immunofluorescence: A microscopic technique used to visualize the location of antigens or antibodies in tissues or cells. This technique uses fluorescent dyes conjugated to antibodies, which bind to specific antigens and emit light when excited by a specific wavelength of light.
3. Western Blotting: A laboratory technique used to detect and identify specific proteins in a sample. This technique involves separating proteins based on their size using electrophoresis, transferring them to a membrane, and then probing the membrane with antibodies that recognize the protein of interest.
4. Immunoprecipitation: A laboratory technique used to isolate and purify specific antigens or antibodies from a complex mixture. This technique involves incubating the mixture with an antibody that recognizes the antigen or antibody of interest, followed by precipitation of the antigen-antibody complex using a variety of methods.
5. Radioimmunoassay (RIA): A sensitive assay used to detect and quantify antigens or antibodies in a sample. This technique uses radioactively labeled antigens or antibodies, which bind to specific antigens or antibodies in the sample, allowing for detection and quantification using a scintillation counter.

These techniques are important tools in medical diagnosis, research, and forensic science.

Antineutrophil cytoplasmic antibodies (ANCAs) are a type of autoantibody that specifically target certain proteins in the cytoplasm of neutrophils, which are a type of white blood cell. These antibodies are associated with several types of vasculitis, which is inflammation of the blood vessels.

There are two main types of ANCAs: perinuclear ANCAs (p-ANCAs) and cytoplasmic ANCAs (c-ANCAs). p-ANCAs are directed against myeloperoxidase, a protein found in neutrophil granules, while c-ANCAs target proteinase 3, another protein found in neutrophil granules.

The presence of ANCAs in the blood can indicate an increased risk for developing certain types of vasculitis, such as granulomatosis with polyangiitis (GPA), eosinophilic granulomatosis with polyangiitis (EGPA), and microscopic polyangiitis (MPA). ANCA testing is often used in conjunction with other clinical findings to help diagnose and manage these conditions.

It's important to note that while the presence of ANCAs can indicate an increased risk for vasculitis, not everyone with ANCAs will develop the condition. Additionally, ANCAs can also be found in some individuals without any associated disease, so their presence should be interpreted in the context of other clinical findings.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Immunosorbent techniques are a group of laboratory methods used in immunology and clinical chemistry to isolate or detect specific proteins, antibodies, or antigens from a complex mixture. These techniques utilize the specific binding properties of antibodies or antigens to capture and concentrate target molecules.

The most common immunosorbent technique is the Enzyme-Linked Immunosorbent Assay (ELISA), which involves coating a solid surface with a capture antibody, allowing the sample to bind, washing away unbound material, and then detecting bound antigens or antibodies using an enzyme-conjugated detection reagent. The enzyme catalyzes a colorimetric reaction that can be measured and quantified, providing a sensitive and specific assay for the target molecule.

Other immunosorbent techniques include Radioimmunoassay (RIA), Immunofluorescence Assay (IFA), and Lateral Flow Immunoassay (LFIA). These methods have wide-ranging applications in research, diagnostics, and drug development.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Seroepidemiologic studies are a type of epidemiological study that measures the presence and levels of antibodies in a population's blood serum to investigate the prevalence, distribution, and transmission of infectious diseases. These studies help to identify patterns of infection and immunity within a population, which can inform public health policies and interventions.

Seroepidemiologic studies typically involve collecting blood samples from a representative sample of individuals in a population and testing them for the presence of antibodies against specific pathogens. The results are then analyzed to estimate the prevalence of infection and immunity within the population, as well as any factors associated with increased or decreased risk of infection.

These studies can provide valuable insights into the spread of infectious diseases, including emerging and re-emerging infections, and help to monitor the effectiveness of vaccination programs. Additionally, seroepidemiologic studies can also be used to investigate the transmission dynamics of infectious agents, such as identifying sources of infection or tracking the spread of antibiotic resistance.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

Antibody diversity refers to the variety of different antibodies that an organism can produce in response to exposure to various antigens. This diversity is generated through a process called V(D)J recombination, which occurs during the development of B cells in the bone marrow.

The variable regions of heavy and light chains of antibody molecules are generated by the random selection and rearrangement of gene segments (V, D, and J) from different combinations. This results in a unique antigen-binding site for each antibody molecule, allowing the immune system to recognize and respond to a vast array of potential pathogens.

Further diversity is generated through the processes of somatic hypermutation and class switch recombination, which introduce additional changes in the variable regions of antibodies during an immune response. These processes allow for the affinity maturation of antibodies, where the binding strength between the antibody and antigen is increased over time, leading to a more effective immune response.

Overall, antibody diversity is critical for the adaptive immune system's ability to recognize and respond to a wide range of pathogens and protect against infection and disease.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Immunoglobulins (Igs), also known as antibodies, are glycoprotein molecules produced by the immune system's B cells in response to the presence of foreign substances, such as bacteria, viruses, and toxins. These Y-shaped proteins play a crucial role in identifying and neutralizing pathogens and other antigens, thereby protecting the body against infection and disease.

Immunoglobulins are composed of four polypeptide chains: two identical heavy chains and two identical light chains, held together by disulfide bonds. The variable regions of these chains form the antigen-binding sites, which recognize and bind to specific epitopes on antigens. Based on their heavy chain type, immunoglobulins are classified into five main isotypes or classes: IgA, IgD, IgE, IgG, and IgM. Each class has distinct functions in the immune response, such as providing protection in different body fluids and tissues, mediating hypersensitivity reactions, and aiding in the development of immunological memory.

In medical settings, immunoglobulins can be administered therapeutically to provide passive immunity against certain diseases or to treat immune deficiencies, autoimmune disorders, and other conditions that may benefit from immunomodulation.

Immunoglobulins, also known as antibodies, are proteins produced by the immune system to recognize and neutralize foreign substances like pathogens or antigens. The term "immunoglobulin isotypes" refers to the different classes of immunoglobulins that share a similar structure but have distinct functions and properties.

There are five main isotypes of immunoglobulins in humans, namely IgA, IgD, IgE, IgG, and IgM. Each isotype has a unique heavy chain constant region (CH) that determines its effector functions, such as binding to Fc receptors, complement activation, or protection against pathogens.

IgA is primarily found in external secretions like tears, saliva, and breast milk, providing localized immunity at mucosal surfaces. IgD is expressed on the surface of B cells and plays a role in their activation and differentiation. IgE is associated with allergic responses and binds to mast cells and basophils, triggering the release of histamine and other mediators of inflammation.

IgG is the most abundant isotype in serum and has several subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their effector functions. IgG can cross the placenta, providing passive immunity to the fetus. IgM is the first antibody produced during an immune response and is primarily found in the bloodstream, where it forms large pentameric complexes that are effective at agglutination and complement activation.

Overall, immunoglobulin isotypes play a crucial role in the adaptive immune response, providing specific and diverse mechanisms for recognizing and neutralizing foreign substances.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

Reagent kits, diagnostic are prepackaged sets of chemical reagents and other components designed for performing specific diagnostic tests or assays. These kits are often used in clinical laboratories to detect and measure the presence or absence of various biomarkers, such as proteins, antibodies, antigens, nucleic acids, or small molecules, in biological samples like blood, urine, or tissues.

Diagnostic reagent kits typically contain detailed instructions for their use, along with the necessary reagents, controls, and sometimes specialized equipment or supplies. They are designed to simplify the testing process, reduce human error, and increase standardization, ensuring accurate and reliable results. Examples of diagnostic reagent kits include those used for pregnancy tests, infectious disease screening, drug testing, genetic testing, and cancer biomarker detection.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

A Receiver Operating Characteristic (ROC) curve is a graphical representation used in medical decision-making and statistical analysis to illustrate the performance of a binary classifier system, such as a diagnostic test or a machine learning algorithm. It's a plot that shows the tradeoff between the true positive rate (sensitivity) and the false positive rate (1 - specificity) for different threshold settings.

The x-axis of an ROC curve represents the false positive rate (the proportion of negative cases incorrectly classified as positive), while the y-axis represents the true positive rate (the proportion of positive cases correctly classified as positive). Each point on the curve corresponds to a specific decision threshold, with higher points indicating better performance.

The area under the ROC curve (AUC) is a commonly used summary measure that reflects the overall performance of the classifier. An AUC value of 1 indicates perfect discrimination between positive and negative cases, while an AUC value of 0.5 suggests that the classifier performs no better than chance.

ROC curves are widely used in healthcare to evaluate diagnostic tests, predictive models, and screening tools for various medical conditions, helping clinicians make informed decisions about patient care based on the balance between sensitivity and specificity.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

Antigens are substances (usually proteins) found on the surface of cells, or viruses, that can be recognized by the immune system and stimulate an immune response. In the context of protozoa, antigens refer to the specific proteins or other molecules found on the surface of these single-celled organisms that can trigger an immune response in a host organism.

Protozoa are a group of microscopic eukaryotic organisms that include a diverse range of species, some of which can cause diseases in humans and animals. When a protozoan infects a host, the host's immune system recognizes the protozoan antigens as foreign and mounts an immune response to eliminate the infection. This response involves the activation of various types of immune cells, such as T-cells and B-cells, which recognize and target the protozoan antigens.

Understanding the nature of protozoan antigens is important for developing vaccines and other immunotherapies to prevent or treat protozoan infections. For example, researchers have identified specific antigens on the surface of the malaria parasite that are recognized by the human immune system and have used this information to develop vaccine candidates. However, many protozoan infections remain difficult to prevent or treat, and further research is needed to identify new targets for vaccines and therapies.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Hepatitis C antibodies are proteins produced by the immune system in response to an infection with the hepatitis C virus (HCV). Detection of these antibodies in the blood indicates a past or present HCV infection. However, it does not necessarily mean that the person is currently infected, as antibodies can persist for years even after the virus has been cleared from the body. Additional tests are usually needed to confirm whether the infection is still active and to guide treatment decisions.

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that can affect almost any organ or system in the body. In SLE, the immune system produces an exaggerated response, leading to the production of autoantibodies that attack the body's own cells and tissues, causing inflammation and damage. The symptoms and severity of SLE can vary widely from person to person, but common features include fatigue, joint pain, skin rashes (particularly a "butterfly" rash across the nose and cheeks), fever, hair loss, and sensitivity to sunlight.

Systemic lupus erythematosus can also affect the kidneys, heart, lungs, brain, blood vessels, and other organs, leading to a wide range of symptoms such as kidney dysfunction, chest pain, shortness of breath, seizures, and anemia. The exact cause of SLE is not fully understood, but it is believed to involve a combination of genetic, environmental, and hormonal factors. Treatment typically involves medications to suppress the immune system and manage symptoms, and may require long-term management by a team of healthcare professionals.

Vaccination is a simple, safe, and effective way to protect people against harmful diseases, before they come into contact with them. It uses your body's natural defenses to build protection to specific infections and makes your immune system stronger.

A vaccination usually contains a small, harmless piece of a virus or bacteria (or toxins produced by these germs) that has been made inactive or weakened so it won't cause the disease itself. This piece of the germ is known as an antigen. When the vaccine is introduced into the body, the immune system recognizes the antigen as foreign and produces antibodies to fight it.

If a person then comes into contact with the actual disease-causing germ, their immune system will recognize it and immediately produce antibodies to destroy it. The person is therefore protected against that disease. This is known as active immunity.

Vaccinations are important for both individual and public health. They prevent the spread of contagious diseases and protect vulnerable members of the population, such as young children, the elderly, and people with weakened immune systems who cannot be vaccinated or for whom vaccination is not effective.

Protein engineering is a branch of molecular biology that involves the modification of proteins to achieve desired changes in their structure and function. This can be accomplished through various techniques, including site-directed mutagenesis, gene shuffling, directed evolution, and rational design. The goal of protein engineering may be to improve the stability, activity, specificity, or other properties of a protein for therapeutic, diagnostic, industrial, or research purposes. It is an interdisciplinary field that combines knowledge from genetics, biochemistry, structural biology, and computational modeling.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

A "false positive reaction" in medical testing refers to a situation where a diagnostic test incorrectly indicates the presence of a specific condition or disease in an individual who does not actually have it. This occurs when the test results give a positive outcome, while the true health status of the person is negative or free from the condition being tested for.

False positive reactions can be caused by various factors including:

1. Presence of unrelated substances that interfere with the test result (e.g., cross-reactivity between similar molecules).
2. Low specificity of the test, which means it may detect other conditions or irrelevant factors as positive.
3. Contamination during sample collection, storage, or analysis.
4. Human errors in performing or interpreting the test results.

False positive reactions can have significant consequences, such as unnecessary treatments, anxiety, and increased healthcare costs. Therefore, it is essential to confirm any positive test result with additional tests or clinical evaluations before making a definitive diagnosis.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Monoclonal murine-derived antibodies are a type of laboratory-produced antibody that is identical in structure, having been derived from a single clone of cells. These antibodies are created using mouse cells and are therefore composed entirely of mouse immune proteins. They are designed to bind specifically to a particular target protein or antigen, making them useful tools for research, diagnostic testing, and therapeutic applications.

Monoclonal antibodies offer several advantages over polyclonal antibodies (which are derived from multiple clones of cells and can recognize multiple epitopes on an antigen). Monoclonal antibodies have a consistent and uniform structure, making them more reliable for research and diagnostic purposes. They also have higher specificity and affinity for their target antigens, allowing for more sensitive detection and measurement.

However, there are some limitations to using monoclonal murine-derived antibodies in therapeutic applications. Because they are composed entirely of mouse proteins, they can elicit an immune response in humans, leading to the production of human anti-mouse antibodies (HAMA) that can neutralize their effectiveness. To overcome this limitation, researchers have developed chimeric and humanized monoclonal antibodies that incorporate human protein sequences, reducing the risk of an immune response.

"Evaluation studies" is a broad term that refers to the systematic assessment or examination of a program, project, policy, intervention, or product. The goal of an evaluation study is to determine its merits, worth, and value by measuring its effects, efficiency, and impact. There are different types of evaluation studies, including formative evaluations (conducted during the development or implementation of a program to provide feedback for improvement), summative evaluations (conducted at the end of a program to determine its overall effectiveness), process evaluations (focusing on how a program is implemented and delivered), outcome evaluations (assessing the short-term and intermediate effects of a program), and impact evaluations (measuring the long-term and broad consequences of a program).

In medical contexts, evaluation studies are often used to assess the safety, efficacy, and cost-effectiveness of new treatments, interventions, or technologies. These studies can help healthcare providers make informed decisions about patient care, guide policymakers in developing evidence-based policies, and promote accountability and transparency in healthcare systems. Examples of evaluation studies in medicine include randomized controlled trials (RCTs) that compare the outcomes of a new treatment to those of a standard or placebo treatment, observational studies that examine the real-world effectiveness and safety of interventions, and economic evaluations that assess the costs and benefits of different healthcare options.

Immunochemistry is a branch of biochemistry and immunology that deals with the chemical basis of antigen-antibody interactions. It involves the application of chemical techniques and principles to the study of immune system components, particularly antibodies and antigens. Immunochemical methods are widely used in various fields such as clinical diagnostics, research, and forensic science for the detection, quantification, and characterization of different molecules, cells, and microorganisms. These methods include techniques like ELISA (Enzyme-Linked Immunosorbent Assay), Western blotting, immunoprecipitation, and immunohistochemistry.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Hepatitis B antibodies are proteins produced by the immune system in response to the presence of the Hepatitis B virus. There are two main types of Hepatitis B antibodies:

1. Hepatitis B surface antibody (anti-HBs): This is produced when a person has recovered from a Hepatitis B infection or has been successfully vaccinated against the virus. The presence of anti-HBs indicates immunity to Hepatitis B.
2. Hepatitis B core antibody (anti-HBC): This is produced during a Hepatitis B infection and remains present for life, even after the infection has been cleared. However, the presence of anti-HBC alone does not indicate immunity to Hepatitis B, as it can also be present in people who have a chronic Hepatitis B infection.

It's important to note that testing for Hepatitis B antibodies is typically done through blood tests and can help determine whether a person has been infected with the virus, has recovered from an infection, or has been vaccinated against it.

The complement system is a group of proteins found in the blood and on the surface of cells that when activated, work together to help eliminate pathogens such as bacteria, viruses, and fungi from the body. The proteins are normally inactive in the bloodstream. When they encounter an invading microorganism or foreign substance, a series of reactions take place leading to the activation of the complement system. Activation results in the production of effector molecules that can punch holes in the cell membranes of pathogens, recruit and activate immune cells, and help remove debris and dead cells from the body.

There are three main pathways that can lead to complement activation: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteins that work together in a cascade-like manner to amplify the response and generate effector molecules. The three main effector molecules produced by the complement system are C3b, C4b, and C5b. These molecules can bind to the surface of pathogens, marking them for destruction by other immune cells.

Complement proteins also play a role in the regulation of the immune response. They help to prevent excessive activation of the complement system, which could damage host tissues. Dysregulation of the complement system has been implicated in a number of diseases, including autoimmune disorders and inflammatory conditions.

In summary, Complement System Proteins are a group of proteins that play a crucial role in the immune response by helping to eliminate pathogens and regulate the immune response. They can be activated through three different pathways, leading to the production of effector molecules that mark pathogens for destruction. Dysregulation of the complement system has been linked to various diseases.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Maternally-acquired immunity (MAI) refers to the passive immunity that is transferred from a mother to her offspring, typically through the placenta during pregnancy or through breast milk after birth. This immunity is temporary and provides protection to the newborn or young infant against infectious agents, such as bacteria and viruses, based on the mother's own immune experiences and responses.

In humans, maternally-acquired immunity is primarily mediated by the transfer of antibodies called immunoglobulins (IgG) across the placenta to the fetus during pregnancy. This process begins around the 20th week of gestation and continues until birth, providing the newborn with a range of protective antibodies against various pathogens. After birth, additional protection is provided through breast milk, which contains secretory immunoglobulin A (IgA) that helps to prevent infections in the infant's gastrointestinal and respiratory tracts.

Maternally-acquired immunity is an essential mechanism for protecting newborns and young infants, who have not yet developed their own active immune responses. However, it is important to note that maternally-acquired antibodies can also interfere with the infant's response to certain vaccines, as they may neutralize the vaccine antigens before the infant's immune system has a chance to mount its own response. This is one reason why some vaccines are not recommended for young infants and why the timing of vaccinations may be adjusted in cases where maternally-acquired immunity is present.

Insulin antibodies are proteins produced by the immune system that recognize and bind to insulin. They are typically formed in response to an exposure to exogenous insulin, such as in people with diabetes who use insulin therapy. In some cases, the presence of insulin antibodies can affect insulin absorption, distribution, metabolism, and elimination, leading to variable insulin requirements, reduced glycemic control, and potentially an increased risk of hypoglycemia or hyperglycemia. However, not all individuals with insulin antibodies experience clinical consequences, and the significance of their presence can vary between individuals.

Agglutination tests are laboratory diagnostic procedures used to detect the presence of antibodies or antigens in a sample, such as blood or serum. These tests work by observing the clumping (agglutination) of particles, like red blood cells or bacteriophages, coated with specific antigens or antibodies when mixed with a patient's sample.

In an agglutination test, the sample is typically combined with a reagent containing known antigens or antibodies on the surface of particles, such as latex beads, red blood cells, or bacteriophages. If the sample contains the corresponding antibodies or antigens, they will bind to the particles, forming visible clumps or agglutinates. The presence and strength of agglutination are then assessed visually or with automated equipment to determine the presence and quantity of the target antigen or antibody in the sample.

Agglutination tests are widely used in medical diagnostics for various applications, including:

1. Bacterial and viral infections: To identify specific bacterial or viral antigens in a patient's sample, such as group A Streptococcus, Legionella pneumophila, or HIV.
2. Blood typing: To determine the ABO blood group and Rh type of a donor or recipient before a blood transfusion or organ transplantation.
3. Autoimmune diseases: To detect autoantibodies in patients with suspected autoimmune disorders, such as rheumatoid arthritis, systemic lupus erythematosus, or Hashimoto's thyroiditis.
4. Allergies: To identify specific IgE antibodies in a patient's sample to determine allergic reactions to various substances, such as pollen, food, or venom.
5. Drug monitoring: To detect and quantify the presence of drug-induced antibodies, such as those developed in response to penicillin or hydralazine therapy.

Agglutination tests are simple, rapid, and cost-effective diagnostic tools that provide valuable information for clinical decision-making and patient management. However, they may have limitations, including potential cross-reactivity with other antigens, false-positive results due to rheumatoid factors or heterophile antibodies, and false-negative results due to the prozone effect or insufficient sensitivity. Therefore, it is essential to interpret agglutination test results in conjunction with clinical findings and other laboratory data.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Antibody-Dependent Cell Cytotoxicity (ADCC) is a type of immune response in which the effector cells of the immune system, such as natural killer (NK) cells, cytotoxic T-cells or macrophages, recognize and destroy virus-infected or cancer cells that are coated with antibodies.

In this process, an antibody produced by B-cells binds specifically to an antigen on the surface of a target cell. The other end of the antibody then interacts with Fc receptors found on the surface of effector cells. This interaction triggers the effector cells to release cytotoxic substances, such as perforins and granzymes, which create pores in the target cell membrane and induce apoptosis (programmed cell death).

ADCC plays an important role in the immune defense against viral infections and cancer. It is also a mechanism of action for some monoclonal antibody therapies used in cancer treatment.

Autoimmune diseases are a group of disorders in which the immune system, which normally protects the body from foreign invaders like bacteria and viruses, mistakenly attacks the body's own cells and tissues. This results in inflammation and damage to various organs and tissues in the body.

In autoimmune diseases, the body produces autoantibodies that target its own proteins or cell receptors, leading to their destruction or malfunction. The exact cause of autoimmune diseases is not fully understood, but it is believed that a combination of genetic and environmental factors contribute to their development.

There are over 80 different types of autoimmune diseases, including rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, Graves' disease, psoriasis, and inflammatory bowel disease. Symptoms can vary widely depending on the specific autoimmune disease and the organs or tissues affected. Treatment typically involves managing symptoms and suppressing the immune system to prevent further damage.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

A dose-response relationship in immunology refers to the quantitative relationship between the dose or amount of an antigen (a substance that triggers an immune response) and the magnitude or strength of the resulting immune response. Generally, as the dose of an antigen increases, the intensity and/or duration of the immune response also increase, up to a certain point. This relationship helps in determining the optimal dosage for vaccines and immunotherapies, ensuring sufficient immune activation while minimizing potential adverse effects.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Single-domain antibodies (sdAbs), also known as nanobodies or VHHs, are antigen-binding fragments derived from the heavy-chain only antibodies found in camelids (camels, llamas, and alpacas) and some shark species. These unique antibodies lack light chains and consist of a single variable domain (VHH) that can bind to specific antigens with high affinity and stability. The small size (12-15 kDa), robustness, and solubility make sdAbs attractive for various biotechnological and therapeutic applications, including diagnostics, targeted drug delivery, and protein engineering.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Bacterial vaccines are types of vaccines that are created using bacteria or parts of bacteria as the immunogen, which is the substance that triggers an immune response in the body. The purpose of a bacterial vaccine is to stimulate the immune system to develop protection against specific bacterial infections.

There are several types of bacterial vaccines, including:

1. Inactivated or killed whole-cell vaccines: These vaccines contain entire bacteria that have been killed or inactivated through various methods, such as heat or chemicals. The bacteria can no longer cause disease, but they still retain the ability to stimulate an immune response.
2. Subunit, protein, or polysaccharide vaccines: These vaccines use specific components of the bacterium, such as proteins or polysaccharides, that are known to trigger an immune response. By using only these components, the vaccine can avoid using the entire bacterium, which may reduce the risk of adverse reactions.
3. Live attenuated vaccines: These vaccines contain live bacteria that have been weakened or attenuated so that they cannot cause disease but still retain the ability to stimulate an immune response. This type of vaccine can provide long-lasting immunity, but it may not be suitable for people with weakened immune systems.

Bacterial vaccines are essential tools in preventing and controlling bacterial infections, reducing the burden of diseases such as tuberculosis, pneumococcal disease, meningococcal disease, and Haemophilus influenzae type b (Hib) disease. They work by exposing the immune system to a harmless form of the bacteria or its components, which triggers the production of antibodies and memory cells that can recognize and fight off future infections with that same bacterium.

It's important to note that while vaccines are generally safe and effective, they may cause mild side effects such as pain, redness, or swelling at the injection site, fever, or fatigue. Serious side effects are rare but can occur, so it's essential to consult with a healthcare provider before receiving any vaccine.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

Immunoglobulin light chains are the smaller protein subunits of an immunoglobulin, also known as an antibody. They are composed of two polypeptide chains, called kappa (κ) and lambda (λ), which are produced by B cells during the immune response. Each immunoglobulin molecule contains either two kappa or two lambda light chains, in association with two heavy chains.

Light chains play a crucial role in the antigen-binding site of an antibody, where they contribute to the specificity and affinity of the interaction between the antibody and its target antigen. In addition to their role in immune function, abnormal production or accumulation of light chains can lead to various diseases, such as multiple myeloma and amyloidosis.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

An epitope is a specific region on an antigen (a substance that triggers an immune response) that is recognized and bound by an antibody or a B-lymphocyte (a type of white blood cell that produces antibodies). Epitopes are also sometimes referred to as antigenic determinants.

B-lymphocytes, or B cells, are a type of immune cell that plays a key role in the humoral immune response. They produce and secrete antibodies, which are proteins that recognize and bind to specific epitopes on antigens. When a B cell encounters an antigen, it binds to the antigen at its surface receptor, which recognizes a specific epitope on the antigen. This binding activates the B cell, causing it to divide and differentiate into plasma cells, which produce and secrete large amounts of antibody that is specific for the epitope on the antigen.

The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor. The variable region is made up of several loops of amino acids, called complementarity-determining regions (CDRs), that form a binding site for the antigen. The CDRs are highly variable in sequence and length, allowing them to recognize and bind to a wide variety of different epitopes.

In summary, an epitope is a specific region on an antigen that is recognized and bound by an antibody or a B-lymphocyte. The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Other applications include enzymatic inhibition assays and screenings of antibody specificity. The runaway success of DNA ... screening antibody specificity. Stevens, R. C. (2000). "Design of high-throughput methods of protein production for structural ... Here the DNA was immobilized in the well together with an anti-GST antibody. Then cell-free expression mix was added and the ... Many proteins, including antibodies, are difficult to express in host cells due to problems with insolubility, disulfide bonds ...
The specificity of this test is >98%. Thus, a positive anti-centromere antibody finding is strongly suggestive of limited ... Main antinuclear antibody patterns on immunofluorescence A schematic representation of an antibody JB Imboden, DB Hellmann, JH ... Anti-centromere antibodies are found in approximately 60% of patients with limited systemic scleroderma and in 15% of those ... Anti-centromere antibodies present early in the course of disease and are notably predictive of limited cutaneous involvement ...
Antibodies show a strong correlation between rigidity and specificity. This correlation extends far beyond the paratope of the ... Bond specificity, unlike group specificity, recognizes particular chemical bond types. This differs from group specificity, as ... Immunostaining utilizes the chemical specificity of antibodies in order to detect a protein of interest at the cellular level. ... Tanford, Charles (1968). "Chemical basis for antibody diversity and specificity". Accounts of Chemical Research. 1 (6): 161-167 ...
An antibody can be called monospecific if it has specificity for the same antigen or epitope, or bispecific if they have ... antibody Neutralizing antibody Optimer Ligand Secondary antibodies Single-domain antibody Slope spectroscopy Synthetic antibody ... Antibody fragments, such as Fab and nanobodies are not considered as antibody mimetics. Common advantages over antibodies are ... Affimer Anti-mitochondrial antibodies Anti-nuclear antibodies Antibody mimetic Aptamer Colostrum ELISA Humoral immunity ...
... with antibodies to multiple antigenic targets). p-ANCA with MPO specificity is found in 50% of microscopic polyangiitis, 50% of ... Classical p-ANCA occurs with antibodies directed to MPO. p-ANCA without nuclear extension occurs with antibodies to BPI, ... Sinclair, D; Stevens, JM (Sep 2007). "Role of antineutrophil cytoplasmic antibodies and glomerular basement membrane antibodies ... Anti-neutrophil cytoplasmic antibodies (ANCAs) are a group of autoantibodies, mainly of the IgG type, against antigens in the ...
They also contribute to the specificity of each antibody. In a variable domain, the 3 HV segments of each heavy or light chain ... In antibodies, hypervariable regions form the antigen-binding site and are found on both light and heavy chains. ... Antibodies are remarkably specific, thanks to hypervariable regions in both light and heavy chains. The hyperbariable regions ...
... which consist of three antibody hypervariable amino acid domains responsible for the antibody specificity embedded into ... Antibody-drug conjugates (ADCs) are antibodies linked to one or more drug molecules. Typically when the ADC meets the target ... Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. ... Murine antibodies in vitro are thereby transformed into fully human antibodies. The heavy and light chains of human IgG ...
Bispecific antibodies combine two different antigen binding specificities within one molecule. The bispecific antibodies are ... Recombinant antibodies are antibody fragments produced by using recombinant antibody coding genes. They mostly consist of a ... a group including Fab fragment antibodies, antibodies binding to idiotope outside of the drug binding site and antibodies, ... Fab fragment antibodies can be used for detection of not bound drugs or free drugs in the serum. Fab antibodies have also been ...
Köhler, G.; Milstein, C. (2005). "Continuous cultures of fused cells secreting antibody of predefined specificity. 1975". ... Other antibody parts (such as Fc regions) and antibody mimetics use different naming schemes. For antibodies named until early ... ximab just as does the human/macaque antibody gomiliximab. Purely human antibodies used -u-. Rat/mouse hybrid antibodies can be ... This means that antibodies with the same source and target substems are only distinguished by their prefix. Even antibodies ...
"Recombination of a mixture of univalent antibody fragments of different specificity". Archives of Biochemistry and Biophysics. ... Bispecific monoclonal antibody entry in the public domain NCI Dictionary of Cancer Terms Bispecific+antibodies at the U.S. ... The most common types are called trifunctional antibodies, as they have three unique binding sites on the antibody: the two Fab ... Suurs FV, Lub-de Hooge MN, de Vries EG, de Groot DJ (September 2019). "A review of bispecific antibodies and antibody ...
Köhler, G.; Milstein, C. (1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. 256 ... The resulting "hybridoma" from this combination expresses a desired antibody as determined by the B-cell involved, but is ... Wilschut, Jan; Duezguenes, Nejat; Papahadjopoulos, Demetrios (1981). "Calcium/magnesium specificity in membrane fusion: ... AND SPECIFICITY". Journal of Biological Chemistry. 277 (40): 37272-37279. doi:10.1074/jbc.M204257200. ISSN 0021-9258. PMID ...
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. ... More recently[when?] work has been undertaken to graft antibodies or other molecular markers onto the liposome surface in the ... The resulting "hybridoma" from this combination expresses a desired antibody as determined by the B-cell involved, but is ...
G. Köhler & C. Milstein (1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. 256 ... Milstein and Köhler's technique for producing monoclonal antibodies laid the foundation for the exploitation of antibodies for ... He not only worked hard for refining antibodies but also gave his time to his family. George moonlighted as a taxi driver to ... It was during this work that they devised their hybridoma technique for the production of antibodies. Köhler continued his ...
The major advantage of NChIP is antibody specificity. It is important to note that most antibodies to modified histones are ... The antibodies are commonly coupled to agarose, sepharose, or magnetic beads. Alternatively, chromatin-antibody complexes can ... The chromatin-antibody complex is selectively retained by the disc and eluted to obtain enriched DNA for downstream ... This is because antibodies have to be generated for each TF, or, alternatively, transgenic model organisms expressing epitope- ...
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. ... SeV antibodies that cross-reactive with HPIV-1 antibodies are present in most people, however, majority of people do not have ... Instead, it can be measured using anti-glycan antibodies, and despite the large collection of such antibodies in a community ... and from antibodies-online.com (No. ABIN6737444) . Monoclonal antibodies (IgG1) to F-protein are available from Kerafast ( ...
Kohler, G.; Milstein, C. (1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. 256 ... César Milstein and Georges Köhler report their discovery of how to use hybridoma cells to isolate monoclonal antibodies, ... effectively beginning the history of monoclonal antibody use in science. Living specimens of the Chacoan Peccary (Catagonus ...
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. ... The monoclonal antibody infliximab is a mouse-human chimeric antibody to TNF-α. The FDA approved it in 1998, making it the ... they can prompt an immunological response causing the development of anti-drug antibodies. Anti-drug antibodies can cause ... The use of antibodies to treat diseases can be traced all the way back to the late 1800s with the advent of diphtheria ...
Köhler, G; Milstein, C (7 August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". ... I. Isolation with a monoclonal antibody". The Journal of Experimental Medicine. 157 (4): 1149-69. doi:10.1084/jem.157.4.1149. ... Antibody production in plasma B cells (Astrid Fagraeus) 1949 - Growth of polio virus in tissue culture, neutralization, and ... Demonstration of antibody activity against diphtheria and tetanus toxins. Beginning of humoral theory of immunity. (Emil von ...
... an antibody). Owing to their high affinity and specificity, antibodies have been considered as suitable vehicles for imaging ... Köhler, G.; Milstein, C. (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". ... Owing to the high molecular weight of antibodies and the Fc domain of the antibody, a slow clearance from the blood and non- ... However, these types of antibodies turned out to be quite troublesome, due to the triggering of the human anti-murine antibody ...
Köhler G, Milstein C (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. ... Those that produce the desired antibody are then selected and cultured to produce the monoclonal antibody. Hybridoma cells can ... One possible approach would be to use the specificity of the thymidine kinase of poxvirus for the purpose, in a similar way ... It is used to select hybridoma cell lines in production of monoclonal antibodies. In clinical chemistry it is used as a ...
Antibody specificity exists for specific interaction with a given antigen. Antigen-antibody interaction occurs by precise ... He worked on antitoxins for diphtheria and their binding to antibodies in the blood. He hypothesised that antibodies bind to ... The theory explains the interaction of antibodies and antigens in the blood, and how antibodies are produced. In 1891, Paul ... which would then be liberated into the blood stream as antibodies. According to Ehrlich, an antibody could be considered an ...
Antibody characterization is characterizing cross-reactivity, specificity and mapping epitopes. Treatment development involves ... The lysate is arrayed onto the microarray and probed with antibodies against the target protein of interest. These antibodies ... to assay enzymatic activity and to detect antibodies and demonstrate their specificity. They differ from analytical arrays in ... antibody characterization, and treatment development. Diagnostics involves the detection of antigens and antibodies in blood ...
Dema B, Charles N (January 2016). "Autoantibodies in SLE: Specificities, Isotypes and Receptors". Antibodies. 5 (1): 2. doi: ...
Dema, Barbara; Charles, Nicolas (4 January 2016). "Autoantibodies in SLE: Specificities, Isotypes, and Receptors". Antibodies. ... Anti-histone antibodies can be used as a marker for drug-induced lupus. Anti-histone antibodies target five major classes of ... Anti-histone antibodies are autoantibodies that are a subset of the anti-nuclear antibody family, which specifically target ... Anti-histone antibodies are diverse, so aside from targeting the protein subunits, different antibodies may also be specific ...
When positive, they feature similar specificity to the heterophile antibody test. Therefore, these tests are useful for ... of diagnosed people have heterophile antibodies by week 3, disappearing in under a year. The antibodies involved in the test do ... EBV-targeting antibodies can also be classified according to which part of the virus they bind to: Viral capsid antigen (VCA): ... The heterophile antibody test is a screening test that gives results within a day, but has significantly less than full ...
Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495. Gramer, MJ. Britton TL. ... Hollow fiber bioreactors are used to generate high concentrations of cell-derived products including monoclonal antibodies, ... but they do not allow the passage of larger products such as antibodies. Therefore, as a cell line (e.g., hybridoma) expands ... including monoclonal antibody and influenza vaccine production. Likewise, because hollow fiber bioreactors use up significantly ...
"RBPDB: The database of RNA-binding protein specificities". "Anti-TMEM171 Antibody". Sigma-Aldrich. Swiss Institute of ... November 2008). "A comprehensive functional analysis of tissue specificity of human gene expression". BMC Biology. 6 (1): 49. ...
Problematic with AGA is the typical sensitivity and specificity was about 85%. Gliadin peptides which are synthesized as the ... Clinically these antibodies and IgG antibodies to gliadin are abbreviated as AGA. The IgG antibody is similar to AGA IgA, but ... Anti-gliadin antibodies are frequently found with anti-transglutaminase antibodies. The IgE antibodies are more typically found ... removal of gluten results in the benign circulation of antibodies. The half life of these antibodies is typically 120 days. ...
The sensitivity of this test is 98.03% while the specificity is 99.56%. This test is paired with an easy-to-use mobile app ... It uses a lateral flow test to determine whether a person has IgG antibodies to the SARS-CoV-2 virus that causes COVID-19. The ... The AbC-19 rapid antibody test is an immunological test for COVID-19 exposure developed by the UK Rapid Test Consortium and ... COVID-19 rapid antigen test "AbC-19™ , COVID-19 Rapid Antibody Test and Certificate Solution , IgG". Abingdon Health plc. ...
Antibody epitope mapping is used to find the specificity of an antibody. The epitope (antibody binding site of antigens) is ... Flow cytometry with fluorescently-labelled antibodies is used to detect the amount of antibody binding to epitope. This can be ... These include affinity-based screening, antibody epitope mapping, the identification of peptide substrates, the identification ... or an antibody (usually fluorescently tagged), depending on the application of the experiment. The sample is then passed ...
Limited Specificity of Serologic Tests for SARS-CoV-2 Antibody Detection, Benin Anges Yadouleton1, Anna-Lena Sander1, Andres ... Limited Specificity of Serologic Tests for SARS-CoV-2 Antibody Detection, Benin. ...
Specializing in Secondary Antibodies and Conjugates - For Western Blotting, IHC, ICC, Flow Cytometry, ELISA and other ... Antibody Format: Whole IgG. Specificity: IgG, F(ab)₂ fragment specific. Minimal Cross Reactivity: Human Serum Proteins ... No antibody was detected against the Fc portion of sheep IgG or against non-immunoglobulin serum proteins. The antibody has ... Therefore, use of BSA or milk to block or dilute these antibodies may significantly increase background and/or reduce antibody ...
Order monoclonal and polyclonal MAP3K9 antibodies for many applications. Selected quality suppliers for anti-MAP3K9 antibodies. ... MAP3K9 Antibodies by Binding Specificity. Find MAP3K9 Antibodies with a specific epitope. The epitopes listed below are among ... E130314H24Rik Antibodies. MEKK9 Antibodies. MLK1 Antibodies. Mlk1 Antibodies. PRKE1 Antibodies. Prke1 Antibodies. RGD1562149 ... MAP3K9 Antibodies by Reactivity. Find MAP3K9 Antibodies for a variety of species such as anti-Human MAP3K9, anti-Mouse MAP3K9, ...
An antibody, also called immunoglobulin, is an adaptive protein produced by the immune system in response to the presence of a ... Specificity. PPV* at 5% prevalence. NPV** at 5% prevalence. Abbott Architect. High Throughput CLIA. Nucleocapsid. 100%(95.8%; ... How long do SARS-CoV-2 antibodies last?. Duration of antibody response to SARS-CoV-2 virus is not known. Based on the studies ... Antibodies recognize and latch onto antigens to destroy them and subsequently remove them from the body. The antibodies that ...
View Goat Polyclonal anti-MafF Antibody [Unconjugated] (AF3917). Validated Applications: WB, ICC/IF. Validated Species: Human. ... Specificity. Detects human MafF in direct ELISAs and Western blots. In Western blots, less than 1% cross-reactivity with ... Reviews for MafF Antibody (AF3917) (0) There are no reviews for MafF Antibody (AF3917). By submitting a review you will receive ... MafF Antibody [Unconjugated] Summary. Immunogen. E. coli-derived recombinant human MafF. Ser2-Ser164. Accession # Q9ULX9 ...
A/AHSG Biotinylated Antibody (BAF1563) validated in Mouse. ... Specificity. Detects mouse Fetuin A/AHSG in Western blots. In ... Reviews for Mouse Fetuin A/AHSG Biotinylated Antibody. There are currently no reviews for this product. Be the first to review ... Have you used Mouse Fetuin A/AHSG Biotinylated Antibody?. Submit a review and receive an Amazon gift card.. $25/€18/£15/$25CAN ...
Rabbit Monoclonal Antibody (PE-Cy7® Conjugate) (CST #55545) is ready to ship. ... Monoclonal Antibody for studying HA-Tag. Validated for Flow Cytometry (Fixed/Permeabilized). Highly specific and rigorously ... At CST, we adhere to the Hallmarks of Antibody Validation™, six complementary strategies for determining the specificity, ... Antibody Dilution Buffer: Purchase ready-to-use Flow Cytometry Antibody Dilution Buffer (#13616), or prepare a 0.5% BSA PBS ...
Analytical specificity. For the monoclonal antibodies used, non detectable cross-reactivities were found for the following ... 1st incubation: 10 µL of sample, a biotinylated monoclonal SHBG-specific antibody, and a monoclonal SHBG-specific antibody ... the still-vacant sites of the biotinylated antibodies become occupied, with formation of an antibody-hapten complex. The entire ... SPECIFICITY (CROSS REACTIVITY. The following compounds were tested for cross-reactivity with the Direct 3a Diol G ELISA kit ...
Other applications include enzymatic inhibition assays and screenings of antibody specificity. The runaway success of DNA ... screening antibody specificity. Stevens, R. C. (2000). "Design of high-throughput methods of protein production for structural ... Here the DNA was immobilized in the well together with an anti-GST antibody. Then cell-free expression mix was added and the ... Many proteins, including antibodies, are difficult to express in host cells due to problems with insolubility, disulfide bonds ...
A central core structure in an antibody variable domain determines antigen specificity Author ... A central core structure in an antibody variable domain determines antigen specificity ... Antibody binding sites provide an adaptable surface capable of interacting with essentially any molecular target. Using CDR ... residues was supported by their presence in a mouse monoclonal antibody with a known structure and the same epitope specificity ...
SARS-CoV-2 IgG immunoassay for the qualitative detection of antibodies to Spike, N-Protein, & RBD. ... so specificity and reactivity of salivary IgG directly reflects serum IgG reactivity, making saliva serology an attractive ... SARS-CoV-2-Specific Antibody Responses in Saliva. By testing for coronavirus antibodies to a combination of SARS-CoV-2 antigens ... The SARS-CoV-2 IgG Antibody Assay, 3-Plex (S-Protein, N-Protein, & RBD) is a serological assay that recognizes antibodies to ...
Specificity. Clone. Host Species. Reactive Species. Format. Size. Reviews. Supplier. CD56. FT56-4B3. Mouse. ferret. biotin ... MS VALIDATED ANTIBODIES GmbH More Info CD56. MSVA-056R. Recombinant Rabbit. human. unconjugated. 0,5 ml. n/a. MS VALIDATED ... ANTIBODIES GmbH More Info CD56. MSVA-056R. Recombinant Rabbit. human. unconjugated. 1 ml. n/a. MS VALIDATED ANTIBODIES GmbH ... Search Antibodies. Search Tips. *To get the most hits and fastest results, use as few words as possible in your search string. ...
Antibody titres for A/H3N2 at 4-weeks post-vaccination were significantly associated with protection against LCII, where every ... Our results suggest that both antibody and cell-mediated immune measures are valuable and potentially complementary correlates ... Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus ... Antibody and Cell-Mediated Immune Response Measures. Hemagglutination-inhibition (HAI) antibody titres were quantified using ...
... is a relatively rare autoimmune disorder in which antibodies form against acetylcholine nicotinic postsynaptic receptors at the ... The anti-acetylcholine receptor (AChR) antibody test for diagnosing MG has the following characteristics:. * High specificity ( ... Assays for the following antibodies may also be useful:. * Anti-MuSK antibody (present in about half of patients with negative ... Antibody response in MG is polyclonal. In an individual patient, antibodies are composed of different subclasses of IgG. In ...
NPR3 antibody LS-C115121 is an unconjugated mouse monoclonal antibody to human NPR3. Validated for Flow, IF, IHC and WB. For ... Antibodies All Antibodies Primary Antibodies Secondary Antibodies IHC-plus™ Antibodies PathPlus™ Antibodies Isotype Control ... Site Links Home All Antibodies How To Buy All Proteins Distributors All ELISA & Assay Kits Reviews PathPlus™ Antibodies ... NPR3 antibody LS-C115121 is an unconjugated mouse monoclonal antibody to human NPR3. Validated for Flow, IF, IHC and WB. ...
The gel test: sensitivity and specificity for unexpected antibodies to blood group antigens. Immunohematology. 1997. 13(4):132- ... Nonspecific antibodies may skew the results of antibody screening. These antibodies are not related to RBC antigens; instead, ... These antibodies can be either immunoglobulin (Ig) M or IgG. IgM antibodies are generally considered to be less significant ... AHG is an animal antibody that binds to the Fc portion of human immunoglobulin. The AHG detects bound RBC antibodies that do ...
"Antibody specificity, reproducibility, and instrument compatibility are critical for researchers using spatial biology ... "Instead of spending time validating antibodies, the pre-validated antibodies from CST allow them to design their individual ... Posted in News , Tagged Antibodies, Biomarkers, Cell signalling, Cellular imaging, Microsystems Leica Microsystems and Cell ... "By using validated antibodies with Cell DIVE, our open multiplexed imaging solution, researchers gain back precious time to ...
Categories: Antibody Specificity Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
To test the specificity of the antibodies used, we tested the anti-BDNF, anti-NT-4, anti-trkB, and anti-p75NTR antibodies with ... The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ... The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ... The rabbit polyclonal antibody trkB (794; sc-12) was purchased from Santa Cruz Biotecnology, and monoclonal antibody anti- ...
We produce our PSD 95 mouse monoclonal primary antibody from hybridoma clone K28/43. It is great in IHC, ICC and is purified by ... Specificity. No cross-reactivity against recombinant Chapsyn-110, SAP97 or SAP102 Quality Control. Each new lot of antibody is ... Anti-PSD-95 Antibody FL594 Conjugate (K28/43). Our Anti-PSD 95 mouse monoclonal primary antibody from NeuroMab is produced in- ... We are Antibodies incorporated For over fifty years, the people of Antibodies Incorporated have dedicated themselves to ...
Indirect fluorescent antibody testing for HTLV-I/II has been used in some laboratories, but it does not distinguish antibodies ... Sensitivity and specificity of a recombinant transmembrane glycoprotein (rgp21)-spiked Western immunoblot for serologic ... p21E antibody detection enzyme immunoassay as a supplementary test in HTLV-I/II antibody testing algorithms. J Clin Microbiol ... The presence of antibodies to HTLV-I or HTLV-II indicates that a person is infected with the virus.. In November 1988, the Food ...
Pancreatic antibodies; Anti-GP2: Antibodies against glycoprotein 2; pANCA: Perinuclear anti-neutrophil cytoplasmic antibodies; ... Specificity. PPV. NPV. Ref.. CD vs controls. ASCA. 35.5%-72.8%. 95.2%-96.5%. 91%-93.8%. 59.9%-77.8%. [44,451]. ... 2Diagnostic value of antibodies against Saccharomyces cerevisiae (ASCA) antibodies in ulcerative colitis (UC) patients without ... Table 2 Diagnostic accuracy of the combined novel antibodies with conventional serological markers in children with ...
... is a relatively rare autoimmune disorder in which antibodies form against acetylcholine nicotinic postsynaptic receptors at the ... The anti-acetylcholine receptor (AChR) antibody test for diagnosing MG has the following characteristics:. * High specificity ( ... Assays for the following antibodies may also be useful:. * Anti-MuSK antibody (present in about half of patients with negative ... Antibody response in MG is polyclonal. In an individual patient, antibodies are composed of different subclasses of IgG. In ...
A murine monoclonal antibody with broad specificity for occupationally relevant diisocyanates. Authors. ...
After maternal antibodies- after that maternal IgM is expected to have waned to confirm a probable congenital infection. At ... At this time, we do not know the sensitivity and specificity of currently available Zika virus testing in infants. Thus, for ... Or it could have been obtained too late after RNA and IgM antibodies had cleared or waned, or a negative test might be because ... Additionally, neutralizing antibody titers against the? flavivirus to which the person was previously exposed might be higher ...
... please contact mouse Antibody. Other Can products are available in stock. Specificity: Can Category: You Group: Use Mouse ... antibodies movie antibodies online antibodies test antibodies test covid antibodies test covid 19 antibodies test for ... antibodies movie antibodies online antibodies test antibodies test covid antibodies test covid 19 antibodies test for ... Human IgG antibody Laboratories manufactures the can you use mouse monoclonal antibody on mouse cells reagents distributed by ...
  • METHODS: Nine monoclonal antibodies (Mabs) were produced against Escherichia coli-expressed recombinant MSP4 protein and characterized. (monash.edu)
  • Many criteria have to be taken into account in order to begin the production of monoclonal antibodies (mAbs). (genengnews.com)
  • Our RabMAb ® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. (abcam.com)
  • When monoclonal antibodies are not monospecific: Hybridomas frequently express additional functional variable regions. (invivogen.com)
  • Immunization with full length MSP4 in Freund s adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth in vitro in a manner proportionate to the antibody titre. (monash.edu)
  • Western blot analysis of extracts of various cell lines using IL9R Polyclonal Antibody at dilution of 1:1000. (elabscience.com)
  • Newly synthesized proteins which are tagged with GST are then immobilized next to the template DNA by binding to the adjacent polyclonal anti-GST capture antibody that is also pre-coated onto the capture surface. (wikipedia.org)
  • Find available monoclonal or polyclonal EIF4A3 Antibodies. (antibodies-online.com)
  • PVDF membrane was probed with 0.1 µg/mL Rabbit Anti-Human p38 delta Antigen Affinity-purified Polyclonal Antibody (Catalog # AF1519) followed by HRP-conjugated Anti-Rabbit IgG Secondary Antibody (Catalog # HAF008 ). (rndsystems.com)
  • Western Blot: TBCE Antibody [H00006905-B01P] - Analysis of TBCE expression in transfected 293T cell line by TBCE polyclonal antibody. (novusbio.com)
  • Antibody reactivity against Recombinant Protein with GST tag on ELISA and WB and also on transfected lysate in WB. (novusbio.com)
  • 2. According to the recommended primary antibody dilution ratio, use the TBST Buffer containing 5% Skim Milk Powder to dilute the IL9R Antibody at , soak the PVDF Membrane in the primary antibody working solution, incubate overnight at 4 ℃, and gently shake. (elabscience.com)
  • For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween ® 20 at 4°C with gentle shaking, overnight. (cellsignal.com)
  • Please refer to primary antibody product webpage for recommended antibody dilution. (cellsignal.com)
  • Browse our broad primary antibody portfolio - 200,000 antibodies and growing. (thermofisher.com)
  • To investigate patterns of autoreactivity in Sjögren's syndrome, the epitope specificity of anti-La antibodies was determined using recombinant antigens bearing sequences of the amino, middle, and carboxyl portions of the La molecule. (duke.edu)
  • This antibody does not detect recombinant p38 alpha, p38 beta or p38 gamma in Western blots. (rndsystems.com)
  • InvivoGen provides a recombinant fully mouse anti-mouse IL-1α-mIgG1 monoclonal antibody (mAb) that was previously extracted from hybridoma. (invivogen.com)
  • Within the past 2 years, investigational peptide- and recombinant protein-based serologic assays that can more easily differentiate the antibodies to HTLV-I and HTLV-II have been developed (8,9). (cdc.gov)
  • The specificity and sensitivity of SARS-CoV-2 antibody tests are known to vary and very few studies have addressed the performance of these tests in COVID-19 patient groups at different time points. (plos.org)
  • We here compared the sensitivity and specificity of seven commercial (SNIBE, Epitope, Euroimmun, Roche, Abbott, DiaSorin, Biosensor) and two in-house LIPS assays (LIPS N and LIPS S-RBD) IgG/total Ab tests in serum samples from 97 COVID-19 patients and 100 controls, and correlated the results with the patients' clinical data and the time-point the test was performed. (plos.org)
  • Although the producers have usually reported high sensitivity and specificity for their tests, variable clinical sensitivity has been reported by independent studies [ 2 - 5 ]. (plos.org)
  • In addition, the licensed screening tests, which use HTLV-I antigens, vary in their sensitivity to detect antibodies to HTLV-II (4,5). (cdc.gov)
  • The high rican trypanosomiasis) depends on case sensitivity and specificity of CATT on filter detection by means of parasitological ex- paper allows a better estimation of sero- amination of blood, lymph or cerebrospinal prevalence and incidence of the disease. (who.int)
  • To state, Southern Sudan [10] it is suggested increase the specificity of serological tests that this area is a low-endemic region of hu- and the sensitivity of parasitological tests man African trypanosomiasis. (who.int)
  • The use of these of this study was to evaluate the specificity concentration techniques can increase the and efficiency of a combination of different sensitivity of trypanosome detection by serological antibody detection techniques in several orders of magnitude [6]. (who.int)
  • The Committee also reviewed preliminary data on a diagnostic assay based on protein-array technology, and agreed that additional studies will be needed to evaluate its robustness, stability, sensitivity and specificity. (who.int)
  • Salivary anti-H. pylori antibody positivity showed low sensitivity (36.6%) and high specificity (75.8%) in CLD patients. (who.int)
  • Sensitivity and specificity of salivary rently, managing chronically-ill patients tests have indicted that saliva could be with hepatic disease is a challenge for den- useful as a non-invasive technique for de- tal practitioners. (who.int)
  • To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. (unibas.ch)
  • Therefore, the study aim was to profile serum antibody responses in young adults with suspected B. pertussis infections, immunized during childhood with either whole-cell (wPV) or monocomponent acellular pertussis (aPV) vaccines. (figshare.com)
  • Serum anti-pertussis toxin (PTx) IgG antibody levels served as an indicator for a recent B. pertussis infection. (figshare.com)
  • Leftover sera from a diagnostic laboratory from 36 Danish individuals were included and divided into four groups based on immunization background (aPV vs. wPV) and serum anti-PTx IgG levels (- vs. +). Pertussis-specific IgG/IgA antibody levels and antigen specificity were determined by using multiplex immunoassays (MIA), one- and two-dimensional immunoblotting (1 & 2DEWB), and mass spectrometry. (figshare.com)
  • Monoclonal mouse antibody provided in liquid form as cell culture supernatant (containing fetal bovine serum) dialyzed against 0.05 mol/L Tris-HCl, pH 7.2, and containing 0.015 mol/L sodium azide. (agilent.com)
  • Naturally occurring anti-A and anti-B are the only RBC antibodies in normal human serum or plasma. (medscape.com)
  • The antibody screening test performed in a clinical laboratory and/or blood bank is designed to detect the presence of unexpected antibodies, especially alloantibodies in the serum to antigens of the non-ABO blood group system: Duffy, Kell, Kidd, MNS, P, and certain Rh types that are considered clinically significant. (medscape.com)
  • It is also used in antenatal screening to detect the presence of antibodies in a pregnant woman's serum that could result in hemolytic disease of the fetus and newborn . (medscape.com)
  • Notably, the specificity test showed the half-maximal effective concentration values of the three humanized antibodies were lower than that of positive patient serum . (bvsalud.org)
  • ABSTRACT In this study, endoscopy patients with and without chronic liver disease (CLD) were ex- amined and tested for Helicobacter pylori infection by detecting the presence of serum and salivary anti-H. pylori antibody. (who.int)
  • It is not suitable for detection of primary antibodies with lambda light chains. (jacksonimmuno.com)
  • Our results suggest that some antibody tests are more sensitive for the detection of antibodies in early stage and asymptomatic patients, which may explain the contradictory results of previous studies and should be taken into consideration in clinical practice and epidemiological studies. (plos.org)
  • Currently, more than 300 tests are available for SARS-CoV-2 antibody detection [ 1 ]. (plos.org)
  • Utilize our EIF4A3 antibodies in your research endeavors for dependable EIF4A3 detection. (antibodies-online.com)
  • Lower panel shows a lack of labeling if primary antibodies are omitted and tissue is stained only with secondary antibody followed by incubation with detection reagents. (rndsystems.com)
  • After immediate spin, the tubes are incubated at 37°C. To promote the detection of warm reactive antibodies, especially of the IgG class, additional enhancement techniques such as low ionic strength saline (LISS) and polyethylene glycol (PEG) are often used. (medscape.com)
  • [ 1 , 2 ] PEG, a water-soluble linear polymer, appears to accelerate antibody-RBC binding by steric exclusion of water molecules in the diluents and to promote antibody detection. (medscape.com)
  • The climate is hot body detection test based on reaction throughout the year with the rains falling of specific antibodies with the same between March and November. (who.int)
  • Detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection. (lu.se)
  • In PCR-confirmed COVID-19 patients (n = 45), the total antibody detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. (lu.se)
  • Our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody detection patterns in association with disease progress and hospitalization. (lu.se)
  • Scholars@Duke publication: Epitope specificity of anti-La antibodies from patients with Sjögren's syndrome. (duke.edu)
  • The importance of several of these conserved residues was supported by their presence in a mouse monoclonal antibody with a known structure and the same epitope specificity. (lu.se)
  • We offer a wide selection of primary antibodies specific to epitope and affinity tags, fluorescent dyes, and fusion proteins. (thermofisher.com)
  • It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. (unibas.ch)
  • These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. (monash.edu)
  • Furthermore, the proportion of antibody binding directed to the different La epitopes showed considerable individual variations, but these patterns were not correlated with specific clinical manifestations. (duke.edu)
  • Furthermore, an explanation for the observed restricted germline gene usage in certain antibody responses against protein epitopes is provided. (lu.se)
  • In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. (unibas.ch)
  • The binding affinity of an antibody depends on how well the antigen fits the variable region of the antibody. (genengnews.com)
  • The specificity of an antibody mostly relies on the quality of the antigen design strategy and of the hybridoma generation process. (genengnews.com)
  • The latter can bind, for example, at the same time as a membrane receptor to get the antibody inside the tissue, and then the antigen of interest. (genengnews.com)
  • Based on antigen-binding assay, Western blotting, and/or ELISA, the antibody reacts with the light chains on mouse IgG and with those common to other mouse immunoglobulins. (jacksonimmuno.com)
  • Our study highlights the importance to consider clinical symptoms, time of testing, and using more than one viral antigen in SARS-CoV-2 antibody testing. (plos.org)
  • Several of these corresponding residues in the mouse monoclonal antibody are known to interact with the antigen. (lu.se)
  • In conclusion, critical residues important for maintaining a human antigen-specific binding site during the process of in vitro antibody evolution were defined. (lu.se)
  • This study demonstrated that B. pertussis infection-induced antibody responses were distinct on antigen level between individuals with either wPV or aPV immunization background. (figshare.com)
  • All others are unexpected and can be divided into alloantibodies (an antibody to an antigen that an individual lacks) and autoantibodies (an antibody to an antigen a person has). (medscape.com)
  • The tubes are then spun for 15 seconds at room temperature to facilitate antigen-antibody interaction. (medscape.com)
  • LISS is usually added to reduce clustering by Na + and Cl - ions and speed antigen-antibody attraction. (medscape.com)
  • The presence of agglutination with the addition of AHG indicates antibody binding to a specific red cell antigen. (medscape.com)
  • Alexa Fluor® 488-conjugated antibodies absorb light maximally at 493 nm and fluoresce with a peak around 519 nm. (jacksonimmuno.com)
  • SARS-CoV-2 antibody tests are available in various formats, detecting different viral target proteins and antibody subclasses. (plos.org)
  • In addition, the target proteins used to detect antibodies vary between the tests. (plos.org)
  • Commercial tests are usually designed to detect antibodies against SARS-CoV-2 nucleocapsid (N), spike1 (S1), spike2 (S2), or receptor-binding domain of the spike (S-RBD) protein, or their combinations, though not all commercial providers specify the viral proteins used. (plos.org)
  • Once the newly synthesized proteins are released from the ribosome, the tag sequence that is also synthesized at the N- or C-terminus of each nascent protein will be bound by the capture reagent or antibody, thus immobilizing the proteins to form an array. (wikipedia.org)
  • Moreover, the resulting protein array is not 'pure' because the proteins are co-localized with their DNA templates and capture antibodies. (wikipedia.org)
  • We offer a large portfolio of high-quality Invitrogen primary antibodies that bind target proteins or other relevant antigens specifically and sensitively. (thermofisher.com)
  • Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. (unibas.ch)
  • Instead of relying on antibodies for DNA enrichment, affinity-based assays use proteins that specifically bind methylated or unmethylated CpG sites in fragmented genomic DNA (restriction enzyme digestion or sonication). (neb.com)
  • Other applications include enzymatic inhibition assays and screenings of antibody specificity. (wikipedia.org)
  • Anti-Phosphoserine Antibody detects level of Phosphoserine & has been published & validated for use in ELISA, IH, IP & WB. (sigmaaldrich.com)
  • The AHG detects bound RBC antibodies that do not produce direct agglutination (sensitizing antibody). (medscape.com)
  • These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally P. falciparum-infected individuals from a malaria endemic region of Vietnam. (monash.edu)
  • The antibody has been tested by ELISA to ensure minimal cross-reaction with bovine, goat, horse, human, rabbit, rat and sheep immunoglobulins, but it may cross-react with immunoglobulins from other species. (jacksonimmuno.com)
  • Find EIF4A3 Antibodies validated for a specific application such as WB, ELISA, IF (cc), IF (p). (antibodies-online.com)
  • These antibodies are useful across various applications including western blot, immunohistochemistry, ELISA, and immunocytochemistry. (thermofisher.com)
  • MyBioSource ELISA kits and antibodies are distributed by Gentaur BV in all European countries. (biocheminfo.org)
  • The presence of antibodies to HTLV-I or HTLV-II indicates that a person is infected with the virus. (cdc.gov)
  • The antibody was purified from antisera by immunoaffinity chromatography using antigens coupled to agarose beads. (jacksonimmuno.com)
  • If a person is exposed to blood with different antigens than his or her own, he or she may form antibodies that can result in extravascular and/or intravascular hemolysis when the recipient is reintroduced to the same antigens in a future transfusion. (medscape.com)
  • In the in situ method, protein synthesis is carried out on a protein array surface that is pre-coated with a protein-capturing reagent or antibody. (wikipedia.org)
  • CiteAb is an independent data company with comprehensive coverage of RUO antibody reagent and publication data. (thermofisher.com)
  • 2016 . Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogenic hypersensitivity reactions in a murine model of breast cancer. (invivogen.com)
  • A murine monoclonal antibody with broad specificity for occupationally relevant diisocyanates. (cdc.gov)
  • Human-murine chimeric autoantibodies with high affinity and specificity for systemic sclerosis. (bvsalud.org)
  • In this study, murine-sourced scFv library were screened by phage display technology against human Scl-70, and the scFvs with high affinity were constructed into humanized antibodies for clinical application. (bvsalud.org)
  • We believe it is critical to show specificity beyond just a single method, such as CRISPR gene knockouts in western blotting. (thermofisher.com)
  • In Western blotting of human Caco-2 cell lysate, the antibody labels a major band at 88 kDa corresponding to the expected molecular weight of MLH1 (14). (agilent.com)
  • One vial containing 420 mg of trastuzumab, a humanised IgG1 monoclonal antibody produced by mammalian (Chinese hamster ovary) cell suspension culture and purified by chromatography including specific viral inactivation and removal procedures. (who.int)
  • 2017. Murinization and H chain isotype matching of Anti-GITR antibody DTA-1 reduces immunogenicity-mediated anaphylaxis in C57BL/6 mice. (invivogen.com)
  • Low antibody specificity can lead to this kind of complication, but toxicity can also result from the stimulation of an immune response against the antibodies, detected as foreign bodies. (genengnews.com)
  • Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. (unibas.ch)
  • Another way to ensure an antibody reaches its target is to design it as a bispecific antibody. (genengnews.com)
  • It is also possible to combine the effects of two antibodies into a single molecule, thanks to the generation of bispecific antibodies, as discussed previously. (genengnews.com)
  • Find EIF4A3 Antibodies for a variety of species such as anti-Human EIF4A3, anti-Mouse EIF4A3, anti-Rat EIF4A3. (antibodies-online.com)
  • Myasthenia gravis (MG) is a relatively rare acquired, autoimmune disorder caused by an antibody-mediated blockade of neuromuscular transmission resulting in skeletal muscle weakness and rapid muscle fatigue. (medscape.com)
  • Myasthenia gravis (MG) is a relatively rare autoimmune disorder in which antibodies form against acetylcholine nicotinic postsynaptic receptors at the neuromuscular junction of skeletal muscles (see the image below). (medscape.com)
  • Such changes in protein phosphorylation may be detected by immunocytochemical mapping of cells labeled with anti-phosphoserine or anti-phosphothreonine antibodies and can be correlated with cellular, electrophysiological or behavioral state changes. (sigmaaldrich.com)
  • If using purified protein exacts containing only the protein of interest, antibody amounts should be decreased to 5 μg/500 μL of extracts. (sigmaaldrich.com)
  • Endogenous testosterone released from the sample by ANS (8-anilino-1-naphthalene sulfonic acid) and norgestrel competes with the added testosterone derivative labeled with ruthenium complex for the binding sites on the biotinylated antibody. (cdc.gov)
  • These tests are produced in several formats and they detect different types of antibodies including IgG, IgM or IgA subtypes or total immunoglobulin. (plos.org)
  • The purpose of the immediate spin is to detect "cold" antibodies, usually of the IgM class. (medscape.com)
  • The last 2 phases (37°C and AHG phases) are necessary to detect clinically significant IgG antibodies. (medscape.com)
  • Antibody specificity validation remains a top concern for researchers and at Thermo Fisher, antibody reproducibility is something we take seriously. (thermofisher.com)
  • Different vaccines are available, however, it is currently unknown whether the type of childhood vaccination has an influence on antibody responses following a B. pertussis infection later in life. (figshare.com)
  • Moreover, in individuals immunized with an aPV containing only PTx in childhood, the infection-induced antibody responses were not limited to PTx alone. (figshare.com)
  • Quality control test: Antibody reactive against mammalian transfected lysate. (novusbio.com)
  • The increasing use of antibody-drug conjugates (ADC) is an example: this method combines the specificity of an antibody with the high potency of drugs which could not be used as monotherapies. (genengnews.com)
  • In this study, we applied a rapid COVID-19 IgM/IgG antibody test and performed serology assessment of antibody response to SARS-CoV-2. (lu.se)
  • IgM antibodies are generally considered to be less significant than IgG, because they are reactive at room temperature but not body temperature and, therefore, rarely cause hemolysis in vivo. (medscape.com)
  • Using CDR shuffling, residues important for the assembly of mucin-1 specific paratopes were defined by random recombination of the complementarity determining regions derived from a set of mucin-1 specific clones, previously selected from an antibody fragment library. (lu.se)
  • 1985. Specific bronchoalveolar lavage IgG antibody in hypersensitivity pneumonitis from diphenylmethane diisocyanate. (cdc.gov)
  • Thanks to progress being made in genetics, transgenic strains now even allow the development of fully human antibodies into animal hosts (mostly mice). (genengnews.com)
  • With greater than 90% coverage of the human proteome, find the antibody that meets your needs. (thermofisher.com)
  • Western Blot: TBCE Antibody [H00006905-B01P] - Analysis of TBCE expression in human spleen. (novusbio.com)
  • AHG is an animal antibody that binds to the F c portion of human immunoglobulin. (medscape.com)
  • Cross-Neutralizing and Protective Human Antibody Specificities to Poxvirus Infections. (nih.gov)
  • Elecsys Testosterone is based on a competitive test principle using a monoclonal antibody specifically directed against testosterone. (cdc.gov)
  • Given the large variability in antibody tests, discrepancies between test results are expected. (plos.org)
  • The antibody screening test, as part of pretransfusion compatibility testing (see Special Considerations ), along with the type and crossmatch, prevents transfusion reactions such as hemolysis from occurring. (medscape.com)
  • Test specificity was determined to be 97% on 69 sera/plasma samples collected between 2016-2018. (lu.se)
  • Specificity testing is combined with extensive application validation data to provide confidence that our high-quality Invitrogen antibodies will help enable superior performance in your research. (thermofisher.com)
  • Browse high quality antibodies to elevate your research. (thermofisher.com)
  • Moreover, these humanized antibodies showed high specificity for Scl-70 in diagnostic immunoassays for ANA. (bvsalud.org)
  • In addition, more and more antibody fragments are being engineered. (genengnews.com)
  • Whole IgG antibodies are isolated as intact molecules from antisera by immunoaffinity chromatography. (jacksonimmuno.com)
  • To proceed, mutations of the unstable hot spots of the complementarity determining regions (CDRs) within the variable fragment of the antibody are induced, until the optimal affinity is reached. (genengnews.com)
  • 1DEWB demonstrated that antibody patterns differed between groups but also between individuals with the same immunization background and anti-PTx levels. (figshare.com)
  • Find EIF4A3 Antibodies with a specific Host. (antibodies-online.com)
  • Find EIF4A3 Antibodies with a specific conjugate such as Biotin, FITC, HRP. (antibodies-online.com)
  • Fragmented genomic DNA (restriction enzyme digestion or sonication) is denatured and immunoprecipitated with antibodies specific for 5-mC. (neb.com)
  • Epitope Tag Antibodies provide a method to localize gene products in a variety of cell types. (thermofisher.com)
  • Antibody screening is routinely used in conjunction with typing and crossmatch before the administration of blood products, especially RBCs, to avoid transfusion reactions and to prevent notably decreased survival of transfused RBCs. (medscape.com)
  • Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. (bvsalud.org)
  • Since then, all donations of whole blood and blood components in the United States have been screened for antibodies to HTLV-I. The screening tests that were licensed, as well as the investigational supplementary tests used to confirm seroreactivity (Western immunoblot and radioimmunoprecipitation assay), do not reliably differentiate between antibodies to HTLV-I and the closely related HTLV-II. (cdc.gov)

No images available that match "antibody specificity"