Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Antibodies produced by a single clone of cells.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
Antibodies that reduce or abolish some biological activity of a soluble antigen or infectious agent, usually a virus.
A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies.
Local surface sites on antibodies which react with antigen determinant sites on antigens (EPITOPES.) They are formed from parts of the variable regions of FAB FRAGMENTS.
Antibodies reactive with HIV ANTIGENS.
Sites on an antigen that interact with specific antibodies.
Immunoglobulins induced by antigens specific for tumors other than the normally occurring HISTOCOMPATIBILITY ANTIGENS.
Immunoglobulins produced in a response to PROTOZOAN ANTIGENS.
Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
Immunoglobulins produced in a response to FUNGAL ANTIGENS.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
Antibodies, often monoclonal, in which the two antigen-binding sites are specific for separate ANTIGENIC DETERMINANTS. They are artificial antibodies produced by chemical crosslinking, fusion of HYBRIDOMA cells, or by molecular genetic techniques. They function as the main mediators of targeted cellular cytotoxicity and have been shown to be efficient in the targeting of drugs, toxins, radiolabeled haptens, and effector cells to diseased tissue, primarily tumors.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A form of antibodies consisting only of the variable regions of the heavy and light chains (FV FRAGMENTS), connected by a small linker peptide. They are less immunogenic than complete immunoglobulin and thus have potential therapeutic use.
Antibodies that inhibit the reaction between ANTIGEN and other antibodies or sensitized T-LYMPHOCYTES (e.g., antibodies of the IMMUNOGLOBULIN G class that compete with IGE antibodies for antigen, thereby blocking an allergic response). Blocking antibodies that bind tumors and prevent destruction of tumor cells by CYTOTOXIC T-LYMPHOCYTES have also been called enhancing antibodies. (Rosen et al., Dictionary of Immunology, 1989)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
Antibodies elicited in a different species from which the antigen originated. These antibodies are directed against a wide variety of interspecies-specific antigens, the best known of which are Forssman, Hanganutziu-Deicher (H-D), and Paul-Bunnell (P-B). Incidence of antibodies to these antigens--i.e., the phenomenon of heterophile antibody response--is useful in the serodiagnosis, pathogenesis, and prognosis of infection and latent infectious states as well as in cancer classification.
Antibodies that can catalyze a wide variety of chemical reactions. They are characterized by high substrate specificity and share many mechanistic features with enzymes.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
Antibodies from non-human species whose protein sequences have been modified to make them nearly identical with human antibodies. If the constant region and part of the variable region are replaced, they are called humanized. If only the constant region is modified they are called chimeric. INN names for humanized antibodies end in -zumab.
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.
Autoantibodies directed against phospholipids. These antibodies are characteristically found in patients with systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC;), ANTIPHOSPHOLIPID SYNDROME; related autoimmune diseases, some non-autoimmune diseases, and also in healthy individuals.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Substances that are recognized by the immune system and induce an immune reaction.
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens.
Established cell cultures that have the potential to propagate indefinitely.
Substances elaborated by bacteria that have antigenic activity.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER).
Proteins prepared by recombinant DNA technology.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques.
The sum of the weight of all the atoms in a molecule.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Substances elaborated by viruses that have antigenic activity.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
Sensitive tests to measure certain antigens, antibodies, or viruses, using their ability to agglutinate certain erythrocytes. (From Stedman, 26th ed)
Serologic tests in which a known quantity of antigen is added to the serum prior to the addition of a red cell suspension. Reaction result is expressed as the smallest amount of antigen which causes complete inhibition of hemagglutination.
Autoantibodies directed against cytoplasmic constituents of POLYMORPHONUCLEAR LEUKOCYTES and/or MONOCYTES. They are used as specific markers for GRANULOMATOSIS WITH POLYANGIITIS and other diseases, though their pathophysiological role is not clear. ANCA are routinely detected by indirect immunofluorescence with three different patterns: c-ANCA (cytoplasmic), p-ANCA (perinuclear), and atypical ANCA.
That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions.
EPIDEMIOLOGIC STUDIES based on the detection through serological testing of characteristic change in the serum level of specific ANTIBODIES. Latent subclinical infections and carrier states can thus be detected in addition to clinically overt cases.
Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies.
Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody.
Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response.
The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide.
Antibodies to the HEPATITIS C ANTIGENS including antibodies to envelope, core, and non-structural proteins.
Antibodies from an individual that react with ISOANTIGENS of another individual of the same species.
The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
Antibodies obtained from a single clone of cells grown in mice or rats.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Administration of vaccines to stimulate the host's immune response. This includes any preparation intended for active immunological prophylaxis.
Elements of limited time intervals, contributing to particular results or situations.
Antibodies to the HEPATITIS B ANTIGENS, including antibodies to the surface (Australia) and core of the Dane particle and those to the "e" antigens.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Resistance to a disease-causing agent induced by the introduction of maternal immunity into the fetus by transplacental transfer or into the neonate through colostrum and milk.
Antibodies specific to INSULIN.
Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
An encapsulated lymphatic organ through which venous blood filters.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Any part or derivative of any protozoan that elicits immunity; malaria (Plasmodium) and trypanosome antigens are presently the most frequently encountered.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Diagnostic procedures involving immunoglobulin reactions.
The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent.
An immunoglobulin fragment composed of one variable domain from an IMMUNOGLOBULIN HEAVY CHAIN or IMMUNOGLOBULIN LIGHT CHAIN.
Polysaccharides found in bacteria and in capsules thereof.
The rate dynamics in chemical or physical systems.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell.
Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Glycoproteins found on the membrane or surface of cells.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY).
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen.
Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Tests that are dependent on the clumping of cells, microorganisms, or particles when mixed with specific antiserum. (From Stedman, 26th ed)
Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified.
Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Semisynthetic conjugates of various toxic molecules, including RADIOACTIVE ISOTOPES and bacterial or plant toxins, with specific immune substances such as IMMUNOGLOBULINS; MONOCLONAL ANTIBODIES; and ANTIGENS. The antitumor or antiviral immune substance carries the toxin to the tumor or infected cell where the toxin exerts its poisonous effect.
The presence of antibodies directed against phospholipids (ANTIBODIES, ANTIPHOSPHOLIPID). The condition is associated with a variety of diseases, notably systemic lupus erythematosus and other connective tissue diseases, thrombopenia, and arterial or venous thromboses. In pregnancy it can cause abortion. Of the phospholipids, the cardiolipins show markedly elevated levels of anticardiolipin antibodies (ANTIBODIES, ANTICARDIOLIPIN). Present also are high levels of lupus anticoagulant (LUPUS COAGULATION INHIBITOR).
Use of radiolabeled antibodies for diagnostic imaging of neoplasms. Antitumor antibodies are labeled with diverse radionuclides including iodine-131, iodine-123, indium-111, or technetium-99m and injected into the patient. Images are obtained by a scintillation camera.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
External envelope protein of the human immunodeficiency virus which is encoded by the HIV env gene. It has a molecular weight of 120 kDa and contains numerous glycosylation sites. Gp120 binds to cells expressing CD4 cell-surface antigens, most notably T4-lymphocytes and monocytes/macrophages. Gp120 has been shown to interfere with the normal function of CD4 and is at least partly responsible for the cytopathic effect of HIV.
Adherence of cells to surfaces or to other cells.
A 44-kDa highly glycosylated plasma protein that binds phospholipids including CARDIOLIPIN; APOLIPOPROTEIN E RECEPTOR; membrane phospholipids, and other anionic phospholipid-containing moieties. It plays a role in coagulation and apoptotic processes. Formerly known as apolipoprotein H, it is an autoantigen in patients with ANTIPHOSPHOLIPID ANTIBODIES.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The principle immunoglobulin in exocrine secretions such as milk, respiratory and intestinal mucin, saliva and tears. The complete molecule (around 400 kD) is composed of two four-chain units of IMMUNOGLOBULIN A, one SECRETORY COMPONENT and one J chain (IMMUNOGLOBULIN J-CHAINS).
A form of fluorescent antibody technique utilizing a fluorochrome conjugated to an antibody, which is added directly to a tissue or cell suspension for the detection of a specific antigen. (Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity.
Proteins found in any species of bacterium.
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Antibodies found in adult RHEUMATOID ARTHRITIS patients that are directed against GAMMA-CHAIN IMMUNOGLOBULINS.
Antibody-mediated immune response. Humoral immunity is brought about by ANTIBODY FORMATION, resulting from TH2 CELLS activating B-LYMPHOCYTES, followed by COMPLEMENT ACTIVATION.
Any immunization following a primary immunization and involving exposure to the same or a closely related antigen.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Proteins found in any species of virus.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Crystallizable fragments composed of the carboxy-terminal halves of both IMMUNOGLOBULIN HEAVY CHAINS linked to each other by disulfide bonds. Fc fragments contain the carboxy-terminal parts of the heavy chain constant regions that are responsible for the effector functions of an immunoglobulin (COMPLEMENT fixation, binding to the cell membrane via FC RECEPTORS, and placental transport). This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Proteins found in any species of protozoan.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
A cell line derived from cultured tumor cells.
Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules.
Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role.
Transport proteins that carry specific substances in the blood or across cell membranes.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate.
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.
Cells of the lymphoid series that can react with antigen to produce specific cell products called antibodies. Various cell subpopulations, often B-lymphocytes, can be defined, based on the different classes of immunoglobulins that they synthesize.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts.
A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997)
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
Studies determining the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. For drugs and devices, CLINICAL TRIALS AS TOPIC; DRUG EVALUATION; and DRUG EVALUATION, PRECLINICAL are available.
Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.
A method to identify and enumerate cells that are synthesizing ANTIBODIES against ANTIGENS or HAPTENS conjugated to sheep RED BLOOD CELLS. The sheep red blood cells surrounding cells secreting antibody are lysed by added COMPLEMENT producing a clear zone of HEMOLYSIS. (From Illustrated Dictionary of Immunology, 3rd ed)
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Sensitive assay using radiolabeled ANTIGENS to detect specific ANTIBODIES in SERUM. The antigens are allowed to react with the serum and then precipitated using a special reagent such as PROTEIN A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Diseases of domestic cattle of the genus Bos. It includes diseases of cows, yaks, and zebus.
Ruminant mammals of South America. They are related to camels.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement.
Unglycosylated phosphoproteins expressed only on B-cells. They are regulators of transmembrane Ca2+ conductance and thought to play a role in B-cell activation and proliferation.
The type (and only) species of RUBIVIRUS causing acute infection in humans, primarily children and young adults. Humans are the only natural host. A live, attenuated vaccine is available for prophylaxis.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.

Competition on nitrocellulose-immobilized antibody arrays: from bacterial protein binding assay to protein profiling in breast cancer cells. (1/118)

Large scale comparative evaluation of protein expression requires miniaturized techniques to provide sensitive and accurate measurements of the abundance of molecules present as individual and/or assembled protein complexes in cells. The principle of competition between target molecules for binding to arrayed antibodies has recently been proposed to assess differential expression of numerous proteins with one-color or two-color fluorescence detection methods. To establish the limiting factors and to validate the use of alternative detection for protein profiling, we performed competitive binding assays under different conditions. A model experimental protocol was developed whereby the competitive displacement of multi-subunit bacterial RNA polymerase and/or its subunits was evaluated through binding to subunit-specific immobilized monoclonal antibodies. We show that the difference in physico-chemical properties of unlabeled and labeled molecules significantly affects the performance of one-color detection, whereas epitope inaccessibility in the protein complex can prohibit the assessment of competition by both detection methods. Our data also demonstrate that antibody cross-reactivity, target protein truncation and abundance, as well as the cellular compartment of origin are major factors that affect protein profiling on antibody arrays. The experimental conditions established for prokaryotic proteins were adopted to compare protein profiles in the breast tumor-derived cell lines MDA MB-231 and SKBR3. Competitive displacement was detected and confirmed for a number of proteins using both detection methods; however, we show that overall the two-color method is better suited for accurate expression profile evaluation of a large, complex set of proteins. Antibody array data confirm the functional linkage between the ErbB2 receptor and AP-2 transcription factors in these cell lines and highlight unexpected differences in G1 cyclin expression.  (+info)

Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction. (2/118)

 (+info)

Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. (3/118)

 (+info)

Development of immunoaffinity restricted access media for rapid extractions of low-mass analytes. (4/118)

 (+info)

Application of the checkerboard immunoblotting technique to the quantification of host biomarkers in gingival crevicular fluid. (5/118)

 (+info)

Digoxigenin modification of adenovirus to spatially control gene delivery from chitosan surfaces. (6/118)

 (+info)

Selective detection of live pathogens via surface-confined electric field perturbation on interdigitated silicon transducers. (7/118)

 (+info)

Biointeraction analysis by high-performance affinity chromatography: Kinetic studies of immobilized antibodies. (8/118)

 (+info)

The term "systemic" refers to the fact that the disease affects multiple organ systems, including the skin, joints, kidneys, lungs, and nervous system. LES is a complex condition, and its symptoms can vary widely depending on which organs are affected. Common symptoms include fatigue, fever, joint pain, rashes, and swelling in the extremities.

There are several subtypes of LES, including:

1. Systemic lupus erythematosus (SLE): This is the most common form of the disease, and it can affect anyone, regardless of age or gender.
2. Discoid lupus erythematosus (DLE): This subtype typically affects the skin, causing a red, scaly rash that does not go away.
3. Drug-induced lupus erythematosus: This form of the disease is caused by certain medications, and it usually resolves once the medication is stopped.
4. Neonatal lupus erythematosus: This rare condition affects newborn babies of mothers with SLE, and it can cause liver and heart problems.

There is no cure for LES, but treatment options are available to manage the symptoms and prevent flares. Treatment may include nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, immunosuppressive medications, and antimalarial drugs. In severe cases, hospitalization may be necessary to monitor and treat the disease.

It is important for people with LES to work closely with their healthcare providers to manage their condition and prevent complications. With proper treatment and self-care, many people with LES can lead active and fulfilling lives.

Examples of autoimmune diseases include:

1. Rheumatoid arthritis (RA): A condition where the immune system attacks the joints, leading to inflammation, pain, and joint damage.
2. Lupus: A condition where the immune system attacks various body parts, including the skin, joints, and organs.
3. Hashimoto's thyroiditis: A condition where the immune system attacks the thyroid gland, leading to hypothyroidism.
4. Multiple sclerosis (MS): A condition where the immune system attacks the protective covering of nerve fibers in the central nervous system, leading to communication problems between the brain and the rest of the body.
5. Type 1 diabetes: A condition where the immune system attacks the insulin-producing cells in the pancreas, leading to high blood sugar levels.
6. Guillain-Barré syndrome: A condition where the immune system attacks the nerves, leading to muscle weakness and paralysis.
7. Psoriasis: A condition where the immune system attacks the skin, leading to red, scaly patches.
8. Crohn's disease and ulcerative colitis: Conditions where the immune system attacks the digestive tract, leading to inflammation and damage to the gut.
9. Sjögren's syndrome: A condition where the immune system attacks the glands that produce tears and saliva, leading to dry eyes and mouth.
10. Vasculitis: A condition where the immune system attacks the blood vessels, leading to inflammation and damage to the blood vessels.

The symptoms of autoimmune diseases vary depending on the specific disease and the organs or tissues affected. Common symptoms include fatigue, fever, joint pain, skin rashes, and swollen lymph nodes. Treatment for autoimmune diseases typically involves medication to suppress the immune system and reduce inflammation, as well as lifestyle changes such as dietary changes and stress management techniques.

1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.

2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.

3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.

4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.

5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.

6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.

7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.

8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.

9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.

10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.

The syndrome is typically diagnosed based on the presence of anticardiolipin antibodies (aCL) or lupus anticoagulant in the blood. Treatment for antiphospholipid syndrome may involve medications to prevent blood clots, such as heparin or warfarin, and aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation. In some cases, intravenous immunoglobulin (IVIG) may be given to reduce the levels of antibodies in the blood. Plasmapheresis, a process that removes antibodies from the blood, may also be used in some cases.

Antiphospholipid syndrome is associated with other autoimmune disorders, such as systemic lupus erythematosus (SLE), and may be triggered by certain medications or infections. It is important for individuals with antiphospholipid syndrome to work closely with their healthcare provider to manage their condition and reduce the risk of complications.

Cattle diseases refer to any health issues that affect cattle, including bacterial, viral, and parasitic infections, as well as genetic disorders and environmental factors. These diseases can have a significant impact on the health and productivity of cattle, as well as the livelihoods of farmers and ranchers who rely on them for their livelihood.

Types of Cattle Diseases

There are many different types of cattle diseases, including:

1. Bacterial diseases, such as brucellosis, anthrax, and botulism.
2. Viral diseases, such as bovine viral diarrhea (BVD) and bluetongue.
3. Parasitic diseases, such as heartwater and gapeworm.
4. Genetic disorders, such as polledness and cleft palate.
5. Environmental factors, such as heat stress and nutritional deficiencies.

Symptoms of Cattle Diseases

The symptoms of cattle diseases can vary depending on the specific disease, but may include:

1. Fever and respiratory problems
2. Diarrhea and vomiting
3. Weight loss and depression
4. Swelling and pain in joints or limbs
5. Discharge from the eyes or nose
6. Coughing or difficulty breathing
7. Lameness or reluctance to move
8. Changes in behavior, such as aggression or lethargy

Diagnosis and Treatment of Cattle Diseases

Diagnosing cattle diseases can be challenging, as the symptoms may be similar for different conditions. However, veterinarians use a combination of physical examination, laboratory tests, and medical history to make a diagnosis. Treatment options vary depending on the specific disease and may include antibiotics, vaccines, anti-inflammatory drugs, and supportive care such as fluids and nutritional supplements.

Prevention of Cattle Diseases

Preventing cattle diseases is essential for maintaining the health and productivity of your herd. Some preventative measures include:

1. Proper nutrition and hydration
2. Regular vaccinations and parasite control
3. Sanitary living conditions and frequent cleaning
4. Monitoring for signs of illness and seeking prompt veterinary care if symptoms arise
5. Implementing biosecurity measures such as isolating sick animals and quarantining new animals before introduction to the herd.

It is important to work closely with a veterinarian to develop a comprehensive health plan for your cattle herd, as they can provide guidance on vaccination schedules, parasite control methods, and disease prevention strategies tailored to your specific needs.

Conclusion
Cattle diseases can have a significant impact on the productivity and profitability of your herd, as well as the overall health of your animals. It is essential to be aware of the common cattle diseases, their symptoms, diagnosis, treatment, and prevention methods to ensure the health and well-being of your herd.

By working closely with a veterinarian and implementing preventative measures such as proper nutrition and sanitary living conditions, you can help protect your cattle from disease and maintain a productive and profitable herd. Remember, prevention is key when it comes to managing cattle diseases.

Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.

Types of Neoplasms

There are many different types of neoplasms, including:

1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.

Causes and Risk Factors of Neoplasms

The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:

1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.

Signs and Symptoms of Neoplasms

The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:

1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.

Diagnosis and Treatment of Neoplasms

The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.

The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:

1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.

Prevention of Neoplasms

While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:

1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.

It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.

Source: 'Rubella' in Duane Gubler (ed.), up-to-date online clinical reference, retrieved on March 14, 2023 from

There are several types of melanoma, including:

1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.

The risk factors for developing melanoma include:

1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma

The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:

1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole

If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.

In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.

During convalescence, patients may be advised to follow specific dietary restrictions, engage in gentle exercise, and avoid strenuous activities that can exacerbate their condition or slow down the healing process. They may also receive medical treatment, such as physical therapy, medication, or other forms of supportive care, to aid in their recovery.

The duration of convalescence varies depending on the individual and the nature of their illness or injury. In general, convalescence can last anywhere from a few days to several weeks or even months, depending on the severity and complexity of the condition being treated.

Overall, the goal of convalescence is to allow the body to heal and recover fully, while also minimizing the risk of complications and promoting optimal functional outcomes.

There are several types of lymphoma, including:

1. Hodgkin lymphoma: This is a type of lymphoma that originates in the white blood cells called Reed-Sternberg cells. It is characterized by the presence of giant cells with multiple nucleoli.
2. Non-Hodgkin lymphoma (NHL): This is a type of lymphoma that does not meet the criteria for Hodgkin lymphoma. There are many subtypes of NHL, each with its own unique characteristics and behaviors.
3. Cutaneous lymphoma: This type of lymphoma affects the skin and can take several forms, including cutaneous B-cell lymphoma and cutaneous T-cell lymphoma.
4. Primary central nervous system (CNS) lymphoma: This is a rare type of lymphoma that develops in the brain or spinal cord.
5. Post-transplantation lymphoproliferative disorder (PTLD): This is a type of lymphoma that develops in people who have undergone an organ transplant, often as a result of immunosuppressive therapy.

The symptoms of lymphoma can vary depending on the type and location of the cancer. Some common symptoms include:

* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching

Lymphoma is diagnosed through a combination of physical examination, imaging tests (such as CT scans or PET scans), and biopsies. Treatment options for lymphoma depend on the type and stage of the cancer, and may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation.

Overall, lymphoma is a complex and diverse group of cancers that can affect people of all ages and backgrounds. While it can be challenging to diagnose and treat, advances in medical technology and research have improved the outlook for many patients with lymphoma.

The primary symptoms of celiac disease include diarrhea, abdominal pain, fatigue, weight loss, and bloating. However, some people may not experience any symptoms at all, but can still develop complications if the disease is left untreated. These complications can include malnutrition, anemia, osteoporosis, and increased risk of other autoimmune disorders.

The exact cause of celiac disease is unknown, but it is believed to be triggered by a combination of genetic and environmental factors. The disease is more common in people with a family history of celiac disease or other autoimmune disorders. Diagnosis is typically made through a combination of blood tests and intestinal biopsy, and treatment involves a strict gluten-free diet.

Dietary management of celiac disease involves avoiding all sources of gluten, including wheat, barley, rye, and some processed foods that may contain hidden sources of these grains. In some cases, nutritional supplements may be necessary to ensure adequate intake of certain vitamins and minerals.

While there is no known cure for celiac disease, adherence to a strict gluten-free diet can effectively manage the condition and prevent long-term complications. With proper management, people with celiac disease can lead normal, healthy lives.

HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.

There are several ways that HIV can be transmitted, including:

1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)

The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:

1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss

If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:

1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)

HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.

Prevention methods for HIV infection include:

1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.

It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.

The symptoms of glomerulonephritis can vary depending on the underlying cause of the disease, but may include:

* Blood in the urine (hematuria)
* Proteinuria (excess protein in the urine)
* Reduced kidney function
* Swelling in the legs and ankles (edema)
* High blood pressure

Glomerulonephritis can be caused by a variety of factors, including:

* Infections such as staphylococcal or streptococcal infections
* Autoimmune disorders such as lupus or rheumatoid arthritis
* Allergic reactions to certain medications
* Genetic defects
* Certain diseases such as diabetes, high blood pressure, and sickle cell anemia

The diagnosis of glomerulonephritis typically involves a physical examination, medical history, and laboratory tests such as urinalysis, blood tests, and kidney biopsy.

Treatment for glomerulonephritis depends on the underlying cause of the disease and may include:

* Antibiotics to treat infections
* Medications to reduce inflammation and swelling
* Diuretics to reduce fluid buildup in the body
* Immunosuppressive medications to suppress the immune system in cases of autoimmune disorders
* Dialysis in severe cases

The prognosis for glomerulonephritis depends on the underlying cause of the disease and the severity of the inflammation. In some cases, the disease may progress to end-stage renal disease, which requires dialysis or a kidney transplant. With proper treatment, however, many people with glomerulonephritis can experience a good outcome and maintain their kidney function over time.

Some common horse diseases include:

1. Equine Influenza (EI): A highly contagious respiratory disease caused by the equine influenza virus. It can cause fever, coughing, and nasal discharge.
2. Strangles: A bacterial infection of the lymph nodes, which can cause swelling of the neck and difficulty breathing.
3. West Nile Virus (WNV): A viral infection that can cause fever, weakness, and loss of coordination. It is transmitted by mosquitoes and can be fatal in some cases.
4. Tetanus: A bacterial infection caused by Clostridium tetani, which can cause muscle stiffness, spasms, and rigidity.
5. Rabies: A viral infection that affects the central nervous system and can be fatal if left untreated. It is transmitted through the saliva of infected animals, usually through a bite.
6. Cushing's Disease: A hormonal disorder caused by an overproduction of cortisol, which can cause weight gain, muscle wasting, and other health issues.
7. Laminitis: An inflammation of the laminae, the tissues that connect the hoof to the bone. It can be caused by obesity, overeating, or excessive exercise.
8. Navicular Syndrome: A condition that affects the navicular bone and surrounding tissue, causing pain and lameness in the foot.
9. Pneumonia: An inflammation of the lungs, which can be caused by bacteria, viruses, or fungi.
10. Colic: A general term for abdominal pain, which can be caused by a variety of factors, including gas, impaction, or twisting of the intestines.

These are just a few examples of the many potential health issues that can affect horses. Regular veterinary care and proper management can help prevent many of these conditions, and early diagnosis and treatment can improve the chances of a successful outcome.

The symptoms of myasthenia gravis can vary in severity and may include:

* Weakness in the arms and legs
* Fatigue and muscle tiredness
* Difficulty swallowing (dysphagia)
* Difficulty speaking or slurred speech (dysarthria)
* Drooping eyelids (ptosis)
* Double vision (diplopia)
* Weakness in the muscles of the face, arms, and legs

The exact cause of myasthenia gravis is not known, but it is believed to be an autoimmune disorder, meaning that the body's immune system mistakenly attacks healthy tissues. It can also be caused by other medical conditions such as thyroid disease, vitamin deficiencies, or infections.

There is no cure for myasthenia gravis, but there are various treatments available to manage the symptoms and improve quality of life. These include:

* Medications such as corticosteroids, immunosuppressants, and cholinesterase inhibitors
* Plasmapheresis, a procedure that removes harmful antibodies from the blood
* Intravenous immunoglobulin (IVIG), which contains antibodies that can help block the immune system's attack on the nerve-muscle junction
* Surgery to remove the thymus gland, which is believed to play a role in the development of myasthenia gravis

It is important for individuals with myasthenia gravis to work closely with their healthcare provider to manage their symptoms and prevent complications. With proper treatment and self-care, many people with myasthenia gravis are able to lead active and fulfilling lives.

1. Parvovirus (Parvo): A highly contagious viral disease that affects dogs of all ages and breeds, causing symptoms such as vomiting, diarrhea, and severe dehydration.
2. Distemper: A serious viral disease that can affect dogs of all ages and breeds, causing symptoms such as fever, coughing, and seizures.
3. Rabies: A deadly viral disease that affects dogs and other animals, transmitted through the saliva of infected animals, and causing symptoms such as aggression, confusion, and paralysis.
4. Heartworms: A common condition caused by a parasitic worm that infects the heart and lungs of dogs, leading to symptoms such as coughing, fatigue, and difficulty breathing.
5. Ticks and fleas: These external parasites can cause skin irritation, infection, and disease in dogs, including Lyme disease and tick-borne encephalitis.
6. Canine hip dysplasia (CHD): A genetic condition that affects the hip joint of dogs, causing symptoms such as arthritis, pain, and mobility issues.
7. Osteosarcoma: A type of bone cancer that affects dogs, often diagnosed in older dogs and causing symptoms such as lameness, swelling, and pain.
8. Allergies: Dog allergies can cause skin irritation, ear infections, and other health issues, and may be triggered by environmental factors or specific ingredients in their diet.
9. Gastric dilatation-volvulus (GDV): A life-threatening condition that occurs when a dog's stomach twists and fills with gas, causing symptoms such as vomiting, pain, and difficulty breathing.
10. Cruciate ligament injuries: Common in active dogs, these injuries can cause joint instability, pain, and mobility issues.

It is important to monitor your dog's health regularly and seek veterinary care if you notice any changes or abnormalities in their behavior, appetite, or physical condition.

Examples of delayed hypersensitivity reactions include contact dermatitis (a skin reaction to an allergic substance), tuberculin reactivity (a reaction to the bacteria that cause tuberculosis), and sarcoidosis (a condition characterized by inflammation in various organs, including the lungs and lymph nodes).

Delayed hypersensitivity reactions are important in the diagnosis and management of allergic disorders and other immune-related conditions. They can be detected through a variety of tests, including skin prick testing, patch testing, and blood tests. Treatment for delayed hypersensitivity reactions depends on the underlying cause and may involve medications such as antihistamines, corticosteroids, or immunosuppressants.

Plasmacytoma is a type of plasma cell dyscrasia, which is a group of diseases that affect the production and function of plasma cells. Plasma cells are a type of white blood cell that produces antibodies to fight infections. In plasmacytoma, the abnormal plasma cells grow and multiply out of control, leading to a tumor.

There are several subtypes of plasmacytoma, including:

* solitary plasmacytoma: A single tumor that occurs in one location.
* multiple myeloma: A type of cancer that affects the bones and is characterized by an overgrowth of malignant plasma cells in the bone marrow.
* extramedullary plasmacytoma: A tumor that occurs outside of the bone marrow, such as in soft tissue or organs.

Plasmacytoma is usually diagnosed through a combination of physical examination, imaging tests such as X-rays or CT scans, and biopsy. Treatment typically involves chemotherapy and/or radiation therapy to destroy the abnormal cells. In some cases, surgery may be necessary to remove the tumor.

Plasmacytoma is a relatively rare cancer, but it can be aggressive and potentially life-threatening if left untreated. It is important for patients with symptoms of plasmacytoma to seek medical attention as soon as possible to receive an accurate diagnosis and appropriate treatment.

The symptoms of toxoplasmosis can vary depending on the severity of the infection and the individual's overall health. In some cases, it may cause mild flu-like symptoms or no symptoms at all. However, in severe cases, it can lead to complications such as brain inflammation, eye infections, and pneumonia.

Toxoplasmosis is a significant public health concern due to its potential to affect anyone and its ability to cause serious complications, especially in certain populations such as pregnant women, people with weakened immune systems, and the elderly. It is important for individuals who may be at risk of contracting the disease to take preventive measures such as avoiding undercooked meat, washing hands frequently, and avoiding contact with cat feces.

Diagnosis of toxoplasmosis typically involves a combination of physical examination, laboratory tests, and imaging studies. Laboratory tests may include blood tests or polymerase chain reaction (PCR) to detect the parasite's DNA in the body. Imaging studies such as ultrasound or computerized tomography (CT) scans may be used to evaluate any complications of the disease.

Treatment for toxoplasmosis typically involves antibiotics to control the infection and manage symptoms. In severe cases, hospitalization may be necessary to monitor and treat any complications. Prevention is key to avoiding this disease, as there is no vaccine available to protect against it.

Types of experimental neoplasms include:

* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.

The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.

A disease that affects pigs, including viral, bacterial, and parasitic infections, as well as genetic disorders and nutritional deficiencies. Some common swine diseases include:

1. Porcine Reproductive and Respiratory Syndrome (PRRS): A highly contagious viral disease that can cause reproductive failure, respiratory problems, and death.
2. Swine Influenza: A viral infection similar to human influenza, which can cause fever, coughing, and pneumonia in pigs.
3. Erysipelas: A bacterial infection that causes high fever, loss of appetite, and skin lesions in pigs.
4. Actinobacillosis: A bacterial infection that can cause pneumonia, arthritis, and abscesses in pigs.
5. Parasitic infections: Such as gastrointestinal parasites like roundworms and tapeworms, which can cause diarrhea, anemia, and weight loss in pigs.
6. Scrapie: A degenerative neurological disorder that affects pigs and other animals, causing confusion, aggression, and eventually death.
7. Nutritional deficiencies: Such as a lack of vitamin E or selenium, which can cause a range of health problems in pigs, including muscular dystrophy and anemia.
8. Genetic disorders: Such as achondroplasia, a condition that causes dwarfism and deformities in pigs.
9. Environmental diseases: Such as heat stress, which can cause a range of health problems in pigs, including respiratory distress and death.

It's important to note that many swine diseases have similar symptoms, making accurate diagnosis by a veterinarian essential for effective treatment and control.

There are several types of vasculitis, each with its own set of symptoms and characteristics. Some common forms of vasculitis include:

1. Giant cell arteritis: This is the most common form of vasculitis, and it affects the large arteries in the head, neck, and arms. Symptoms include fever, fatigue, muscle aches, and loss of appetite.
2. Takayasu arteritis: This type of vasculitis affects the aorta and its major branches, leading to inflammation in the blood vessels that supply the heart, brain, and other vital organs. Symptoms include fever, fatigue, chest pain, and shortness of breath.
3. Polymyalgia rheumatica: This is an inflammatory condition that affects the muscles and joints, as well as the blood vessels. It often occurs in people over the age of 50 and is frequently associated with giant cell arteritis. Symptoms include pain and stiffness in the shoulders, hips, and other joints, as well as fatigue and fever.
4. Kawasaki disease: This is a rare condition that affects children under the age of 5, causing inflammation in the blood vessels that supply the heart and other organs. Symptoms include high fever, rash, swollen lymph nodes, and irritability.

The exact cause of vasculitis is not fully understood, but it is thought to be an autoimmune disorder, meaning that the body's immune system mistakenly attacks its own blood vessels. Genetic factors may also play a role in some cases.

Diagnosis of vasculitis typically involves a combination of physical examination, medical history, and diagnostic tests such as blood tests, imaging studies (e.g., MRI or CT scans), and biopsies. Treatment options vary depending on the specific type of vasculitis and its severity, but may include medications to reduce inflammation and suppress the immune system, as well as lifestyle modifications such as exercise and stress management techniques. In severe cases, surgery or organ transplantation may be necessary.

In addition to these specific types of vasculitis, there are other conditions that can cause similar symptoms and may be included in the differential diagnosis, such as:

1. Rheumatoid arthritis (RA): This is a chronic autoimmune disorder that affects the joints and can cause inflammation in blood vessels.
2. Systemic lupus erythematosus (SLE): This is another autoimmune disorder that can affect multiple systems, including the skin, joints, and blood vessels.
3. Polyarteritis nodosa: This is a condition that causes inflammation of the blood vessels, often in association with hepatitis B or C infection.
4. Takayasu arteritis: This is a rare condition that affects the aorta and its branches, causing inflammation and narrowing of the blood vessels.
5. Giant cell arteritis: This is a condition that causes inflammation of the large and medium-sized blood vessels, often in association with polymyalgia rheumatica (PMR).
6. Kawasaki disease: This is a rare condition that affects children, causing inflammation of the blood vessels and potential heart complications.
7. Henoch-Schönlein purpura: This is a rare condition that causes inflammation of the blood vessels in the skin, joints, and gastrointestinal tract.
8. IgG4-related disease: This is a condition that can affect various organs, including the pancreas, bile ducts, and blood vessels, causing inflammation and potentially leading to fibrosis or tumor formation.

It is important to note that these conditions may have similar symptoms and signs as vasculitis, but they are distinct entities with different causes and treatment approaches. A thorough diagnostic evaluation, including laboratory tests and imaging studies, is essential to determine the specific diagnosis and develop an appropriate treatment plan.

There are several possible causes of thrombocytopenia, including:

1. Immune-mediated disorders such as idiopathic thrombocytopenic purpura (ITP) or systemic lupus erythematosus (SLE).
2. Bone marrow disorders such as aplastic anemia or leukemia.
3. Viral infections such as HIV or hepatitis C.
4. Medications such as chemotherapy or non-steroidal anti-inflammatory drugs (NSAIDs).
5. Vitamin deficiencies, especially vitamin B12 and folate.
6. Genetic disorders such as Bernard-Soulier syndrome.
7. Sepsis or other severe infections.
8. Disseminated intravascular coagulation (DIC), a condition where blood clots form throughout the body.
9. Postpartum thrombocytopenia, which can occur in some women after childbirth.

Symptoms of thrombocytopenia may include easy bruising, petechiae (small red or purple spots on the skin), and prolonged bleeding from injuries or surgical sites. Treatment options depend on the underlying cause but may include platelet transfusions, steroids, immunosuppressive drugs, and in severe cases, surgery.

In summary, thrombocytopenia is a condition characterized by low platelet counts that can increase the risk of bleeding and bruising. It can be caused by various factors, and treatment options vary depending on the underlying cause.

Grave's disease is the most common cause of hyperthyroidism and affects about 1 in 200 people. It can occur at any age but is more common in women and tends to run in families. The exact cause of Grave's disease is not known, but it may be related to a combination of genetic and environmental factors.

Symptoms of Grave's disease can vary from person to person, but common signs include:

* Weight loss
* Nervousness or anxiety
* Irregular heartbeat (palpitations)
* Increased sweating
* Heat intolerance
* Fatigue
* Changes in menstrual cycle in women
* Enlargement of the thyroid gland, known as a goiter
* Bulging eyes (exophthalmos)

Grave's disease can be diagnosed through blood tests and scans. Treatment options include medication to reduce the production of thyroxine, radioactive iodine therapy to destroy part of the thyroid gland, and surgery to remove part or all of the thyroid gland.

It is important to seek medical attention if you experience any symptoms of Grave's disease, as untreated hyperthyroidism can lead to complications such as heart problems, osteoporosis, and eye problems. With proper treatment, most people with Grave's disease can manage their symptoms and lead a normal life.

Examples of acute diseases include:

1. Common cold and flu
2. Pneumonia and bronchitis
3. Appendicitis and other abdominal emergencies
4. Heart attacks and strokes
5. Asthma attacks and allergic reactions
6. Skin infections and cellulitis
7. Urinary tract infections
8. Sinusitis and meningitis
9. Gastroenteritis and food poisoning
10. Sprains, strains, and fractures.

Acute diseases can be treated effectively with antibiotics, medications, or other therapies. However, if left untreated, they can lead to chronic conditions or complications that may require long-term care. Therefore, it is important to seek medical attention promptly if symptoms persist or worsen over time.

There are several types of colonic neoplasms, including:

1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.

Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.

Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.

Falciparum malaria can cause a range of symptoms, including fever, chills, headache, muscle and joint pain, fatigue, nausea, and vomiting. In severe cases, the disease can lead to anemia, organ failure, and death.

Diagnosis of falciparum malaria typically involves a physical examination, medical history, and laboratory tests to detect the presence of parasites in the blood or other bodily fluids. Treatment usually involves the use of antimalarial drugs, such as artemisinin-based combination therapies (ACTs) or quinine, which can effectively cure the disease if administered promptly.

Prevention of falciparum malaria is critical to reducing the risk of infection, and this includes the use of insecticide-treated bed nets, indoor residual spraying (IRS), and preventive medications for travelers to high-risk areas. Eliminating standing water around homes and communities can also help reduce the number of mosquitoes and the spread of the disease.

In summary, falciparum malaria is a severe and life-threatening form of malaria caused by the Plasmodium falciparum parasite, which is responsible for the majority of malaria-related deaths worldwide. Prompt diagnosis and treatment are essential to prevent complications and death from this disease. Prevention measures include the use of bed nets, indoor spraying, and preventive medications, as well as reducing standing water around homes and communities.

Lyme disease is typically diagnosed based on a combination of physical symptoms, medical history, and laboratory tests. Treatment typically involves antibiotics, which can help to clear the infection and alleviate symptoms.

Prevention of Lyme disease involves protecting against tick bites by using insect repellents, wearing protective clothing when outdoors, and conducting regular tick checks. Early detection and treatment of Lyme disease can help to prevent long-term complications, such as joint inflammation and neurological problems.

In this definition, we have used technical terms such as 'bacterial infection', 'blacklegged tick', 'Borrelia burgdorferi', and 'antibiotics' to provide a more detailed understanding of the medical concept.

There are different types of Breast Neoplasms such as:

1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.

2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.

3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.

4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.

5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.

Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.

Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.

It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.

Sjögren's syndrome can affect people of all ages, but it most commonly occurs in women between the ages of 40 and 60. The exact cause of the disorder is not known, but it is believed to be an autoimmune response, meaning that the immune system mistakenly attacks the glands as if they were foreign substances.

Symptoms of Sjögren's syndrome can vary in severity and may include:

* Dry mouth (xerostomia)
* Dry eyes (dry eye syndrome)
* Fatigue
* Joint pain
* Swollen lymph nodes
* Rash
* Sores on the skin
* Numbness or tingling in the hands and feet
* Sexual dysfunction

There is no cure for Sjögren's syndrome, but various treatments can help manage the symptoms. These may include:

* Medications to stimulate saliva production
* Eye drops to moisturize the eyes
* Mouthwashes to stimulate saliva production
* Pain relief medication for joint pain
* Anti-inflammatory medication to reduce swelling
* Immunosuppressive medication to suppress the immune system
* Hormone replacement therapy (HRT) to treat hormonal imbalances.

Sjögren's syndrome can also increase the risk of developing other autoimmune disorders, such as rheumatoid arthritis or lupus. It is important for people with Sjögren's syndrome to work closely with their healthcare provider to manage their symptoms and monitor their condition over time.

There are several types of hepatitis C, including genotype 1, which is the most common and accounts for approximately 70% of cases in the United States. Other genotypes include 2, 3, 4, 5, and 6. The symptoms of hepatitis C can range from mild to severe and may include fatigue, fever, loss of appetite, nausea, vomiting, joint pain, jaundice (yellowing of the skin and eyes), dark urine, pale stools, and itching all over the body. Some people with hepatitis C may not experience any symptoms at all.

Hepatitis C is diagnosed through a combination of blood tests that detect the presence of antibodies against HCV or the virus itself. Treatment typically involves a combination of medications, including interferon and ribavirin, which can cure the infection but may have side effects such as fatigue, nausea, and depression. In recent years, new drugs known as direct-acting antivirals (DAAs) have become available, which can cure the infection with fewer side effects and in a shorter period of time.

Prevention measures for hepatitis C include avoiding sharing needles or other drug paraphernalia, using condoms to prevent sexual transmission, and ensuring that any tattoos or piercings are performed with sterilized equipment. Vaccines are also available for people who are at high risk of contracting the virus, such as healthcare workers and individuals who engage in high-risk behaviors.

Overall, hepatitis C is a serious and common liver disease that can lead to significant health complications if left untreated. Fortunately, with advances in medical technology and treatment options, it is possible to manage and cure the virus with proper care and attention.

Symptoms of influenza include:

* Fever (usually high)
* Cough
* Sore throat
* Runny or stuffy nose
* Headache
* Muscle or body aches
* Fatigue (tiredness)
* Diarrhea and nausea (more common in children than adults)

Influenza can lead to serious complications, such as pneumonia, bronchitis, and sinus and ear infections. These complications are more likely to occur in people who have a weakened immune system, such as the elderly, young children, and people with certain chronic health conditions (like heart disease, diabetes, and lung disease).

Influenza is diagnosed based on a physical examination and medical history. A healthcare provider may also use a rapid influenza test (RIT) or a polymerase chain reaction (PCR) test to confirm the diagnosis.

Treatment for influenza typically involves rest, hydration, and over-the-counter medications such as acetaminophen (Tylenol) or ibuprofen (Advil, Motrin) to relieve fever and body aches. Antiviral medications, such as oseltamivir (Tamiflu) or zanamivir (Relenza), may also be prescribed to help shorten the duration and severity of the illness. However, these medications are most effective when started within 48 hours of the onset of symptoms.

Prevention is key in avoiding influenza. Vaccination is the most effective way to prevent influenza, as well as practicing good hygiene such as washing your hands frequently, avoiding close contact with people who are sick, and staying home when you are sick.

There are two main types of systemic scleroderma: diffuse cutaneous systemic sclerosis (DCSS) and limited cutaneous systemic sclerosis (LCSS). DCSS is characterized by skin thickening and scar formation over the trunk, arms, and legs, while LCSS is characterized by skin tightening and patches of scaly skin on the hands and face.

The symptoms of systemic scleroderma can include:

* Skin hardening and tightening
* Fatigue
* Joint pain and stiffness
* Muscle weakness
* Swallowing difficulties
* Heartburn and acid reflux
* Shortness of breath
* Raynaud's phenomenon (pale or blue-colored fingers and toes in response to cold temperatures or stress)

The exact cause of systemic scleroderma is not known, but it is believed to involve a combination of genetic and environmental factors. Treatment options for systemic scleroderma include medications to manage symptoms such as pain, stiffness, and swallowing difficulties, as well as physical therapy and lifestyle modifications to improve quality of life.

In summary, systemic scleroderma is a chronic autoimmune disease that affects multiple systems in the body, causing skin hardening and thickening, fatigue, joint pain, and other symptoms. While there is no cure for systemic scleroderma, treatment options are available to manage symptoms and improve quality of life.

Symptoms of hemophilia A can include spontaneous bleeding, easy bruising, and prolonged bleeding after injury or surgery. Treatment typically involves replacing the missing factor VIII with infusions of clotting factor concentrate, which helps to restore the blood's ability to clot and stop bleeding. Regular infusions are often needed to prevent bleeding episodes, and patients with severe hemophilia A may require lifelong treatment.

Complications of hemophilia A can include joint damage, muscle weakness, and chronic pain. In severe cases, the condition can also increase the risk of bleeding in the brain or other internal organs, which can be life-threatening. However, with proper treatment and management, most patients with hemophilia A can lead active and relatively normal lives.

It is important to note that there is no cure for hemophilia A, but advances in medical technology and treatment have significantly improved the quality of life for many patients with the condition.

Measles is caused by a virus that is transmitted through the air when an infected person coughs or sneezes. The virus can also be spread through direct contact with an infected person's saliva or mucus.

The symptoms of measles usually appear about 10-14 days after exposure to the virus, and may include:

* Fever
* Cough
* Runny nose
* Red, watery eyes
* Small white spots inside the mouth (Koplik spots)
* A rash that starts on the head and spreads to the rest of the body

Measles can be diagnosed through a physical examination, laboratory tests, or by observing the characteristic rash. There is no specific treatment for measles, but it can be treated with over-the-counter medications such as acetaminophen or ibuprofen to relieve fever and pain.

Complications of measles can include:

* Ear infections
* Pneumonia
* Encephalitis (inflammation of the brain)
* Seizures
* Death (rare)

Measles is highly contagious and can spread easily through schools, workplaces, and other communities. Vaccination is the best way to prevent measles, and the Measles, Mumps, and Rubella (MMR) vaccine is recommended for all children and adults who have not been previously infected with the virus or vaccinated.

Previous articleHow to Stay Safe During the COVID-19 Pandemic: Tips from Health Experts
Next articleWhat You Need to Know About the Omicron Variant of COVID-19

There are two main types of hemolysis:

1. Intravascular hemolysis: This type occurs within the blood vessels and is caused by factors such as mechanical injury, oxidative stress, and certain infections.
2. Extravascular hemolysis: This type occurs outside the blood vessels and is caused by factors such as bone marrow disorders, splenic rupture, and certain medications.

Hemolytic anemia is a condition that occurs when there is excessive hemolysis of RBCs, leading to a decrease in the number of healthy red blood cells in the body. This can cause symptoms such as fatigue, weakness, pale skin, and shortness of breath.

Some common causes of hemolysis include:

1. Genetic disorders such as sickle cell anemia and thalassemia.
2. Autoimmune disorders such as autoimmune hemolytic anemia (AIHA).
3. Infections such as malaria, babesiosis, and toxoplasmosis.
4. Medications such as antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and blood thinners.
5. Bone marrow disorders such as aplastic anemia and myelofibrosis.
6. Splenic rupture or surgical removal of the spleen.
7. Mechanical injury to the blood vessels.

Diagnosis of hemolysis is based on a combination of physical examination, medical history, and laboratory tests such as complete blood count (CBC), blood smear examination, and direct Coombs test. Treatment depends on the underlying cause and may include supportive care, blood transfusions, and medications to suppress the immune system or prevent infection.

Adenocarcinoma is a term used to describe a variety of different types of cancer that arise in glandular tissue, including:

1. Colorectal adenocarcinoma (cancer of the colon or rectum)
2. Breast adenocarcinoma (cancer of the breast)
3. Prostate adenocarcinoma (cancer of the prostate gland)
4. Pancreatic adenocarcinoma (cancer of the pancreas)
5. Lung adenocarcinoma (cancer of the lung)
6. Thyroid adenocarcinoma (cancer of the thyroid gland)
7. Skin adenocarcinoma (cancer of the skin)

The symptoms of adenocarcinoma depend on the location of the cancer and can include:

1. Blood in the stool or urine
2. Abdominal pain or discomfort
3. Changes in bowel habits
4. Unusual vaginal bleeding (in the case of endometrial adenocarcinoma)
5. A lump or thickening in the breast or elsewhere
6. Weight loss
7. Fatigue
8. Coughing up blood (in the case of lung adenocarcinoma)

The diagnosis of adenocarcinoma is typically made through a combination of imaging tests, such as CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a sample of tissue from the affected area and examining it under a microscope for cancer cells.

Treatment options for adenocarcinoma depend on the location of the cancer and can include:

1. Surgery to remove the tumor
2. Chemotherapy, which involves using drugs to kill cancer cells
3. Radiation therapy, which involves using high-energy X-rays or other particles to kill cancer cells
4. Targeted therapy, which involves using drugs that target specific molecules on cancer cells to kill them
5. Immunotherapy, which involves using drugs that stimulate the immune system to fight cancer cells.

The prognosis for adenocarcinoma is generally good if the cancer is detected and treated early, but it can be more challenging to treat if the cancer has spread to other parts of the body.

There are several types of lung neoplasms, including:

1. Adenocarcinoma: This is the most common type of lung cancer, accounting for approximately 40% of all lung cancers. It is a malignant tumor that originates in the glands of the respiratory tract and can be found in any part of the lung.
2. Squamous cell carcinoma: This type of lung cancer accounts for approximately 25% of all lung cancers and is more common in men than women. It is a malignant tumor that originates in the squamous cells lining the airways of the lungs.
3. Small cell lung cancer (SCLC): This is a highly aggressive form of lung cancer that accounts for approximately 15% of all lung cancers. It is often found in the central parts of the lungs and can spread quickly to other parts of the body.
4. Large cell carcinoma: This is a rare type of lung cancer that accounts for only about 5% of all lung cancers. It is a malignant tumor that originates in the large cells of the respiratory tract and can be found in any part of the lung.
5. Bronchioalveolar carcinoma (BAC): This is a rare type of lung cancer that originates in the cells lining the airways and alveoli of the lungs. It is more common in women than men and tends to affect older individuals.
6. Lymphangioleiomyomatosis (LAM): This is a rare, progressive, and often fatal lung disease that primarily affects women of childbearing age. It is characterized by the growth of smooth muscle-like cells in the lungs and can lead to cysts, lung collapse, and respiratory failure.
7. Hamartoma: This is a benign tumor that originates in the tissue of the lungs and is usually found in children. It is characterized by an overgrowth of normal lung tissue and can be treated with surgery.
8. Secondary lung cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
9. Metastatic cancer: This type of cancer occurs when cancer cells from another part of the body spread to the lungs through the bloodstream or lymphatic system. It is more common in people who have a history of smoking or exposure to other carcinogens.
10. Mesothelioma: This is a rare and aggressive form of cancer that originates in the lining of the lungs or abdomen. It is caused by asbestos exposure and can be treated with surgery, chemotherapy, and radiation therapy.

Lung diseases can also be classified based on their cause, such as:

1. Infectious diseases: These are caused by bacteria, viruses, or other microorganisms and can include pneumonia, tuberculosis, and bronchitis.
2. Autoimmune diseases: These are caused by an overactive immune system and can include conditions such as sarcoidosis and idiopathic pulmonary fibrosis.
3. Genetic diseases: These are caused by inherited mutations in genes that affect the lungs and can include cystic fibrosis and primary ciliary dyskinesia.
4. Environmental diseases: These are caused by exposure to harmful substances such as tobacco smoke, air pollution, and asbestos.
5. Radiological diseases: These are caused by exposure to ionizing radiation and can include conditions such as radiographic breast cancer and lung cancer.
6. Vascular diseases: These are caused by problems with the blood vessels in the lungs and can include conditions such as pulmonary embolism and pulmonary hypertension.
7. Tumors: These can be benign or malignant and can include conditions such as lung metastases and lung cancer.
8. Trauma: This can include injuries to the chest or lungs caused by accidents or other forms of trauma.
9. Congenital diseases: These are present at birth and can include conditions such as bronchopulmonary foregut malformations and congenital cystic adenomatoid malformation.

Each type of lung disease has its own set of symptoms, diagnosis, and treatment options. It is important to seek medical attention if you experience any persistent or severe respiratory symptoms, as early diagnosis and treatment can improve outcomes and quality of life.

1. Common cold: A viral infection that affects the upper respiratory tract and causes symptoms such as sneezing, running nose, coughing, and mild fever.
2. Influenza (flu): A viral infection that can cause severe respiratory illness, including pneumonia, bronchitis, and sinus and ear infections.
3. Measles: A highly contagious viral infection that causes fever, rashes, coughing, and redness of the eyes.
4. Rubella (German measles): A mild viral infection that can cause fever, rashes, headache, and swollen lymph nodes.
5. Chickenpox: A highly contagious viral infection that causes fever, itching, and a characteristic rash of small blisters on the skin.
6. Herpes simplex virus (HSV): A viral infection that can cause genital herpes, cold sores, or other skin lesions.
7. Human immunodeficiency virus (HIV): A viral infection that attacks the immune system and can lead to acquired immunodeficiency syndrome (AIDS).
8. Hepatitis B: A viral infection that affects the liver, causing inflammation and damage to liver cells.
9. Hepatitis C: Another viral infection that affects the liver, often leading to chronic liver disease and liver cancer.
10. Ebola: A deadly viral infection that causes fever, vomiting, diarrhea, and internal bleeding.
11. SARS (severe acute respiratory syndrome): A viral infection that can cause severe respiratory illness, including pneumonia and respiratory failure.
12. West Nile virus: A viral infection that can cause fever, headache, and muscle pain, as well as more severe symptoms such as meningitis or encephalitis.

Viral infections can be spread through contact with an infected person or contaminated surfaces, objects, or insects such as mosquitoes. Prevention strategies include:

1. Practicing good hygiene, such as washing hands frequently and thoroughly.
2. Avoiding close contact with people who are sick.
3. Covering the mouth and nose when coughing or sneezing.
4. Avoiding sharing personal items such as towels or utensils.
5. Using condoms or other barrier methods during sexual activity.
6. Getting vaccinated against certain viral infections, such as HPV and hepatitis B.
7. Using insect repellents to prevent mosquito bites.
8. Screening blood products and organs for certain viruses before transfusion or transplantation.

Treatment for viral infections depends on the specific virus and the severity of the illness. Antiviral medications may be used to reduce the replication of the virus and alleviate symptoms. In severe cases, hospitalization may be necessary to provide supportive care such as intravenous fluids, oxygen therapy, or mechanical ventilation.

Prevention is key in avoiding viral infections, so taking the necessary precautions and practicing good hygiene can go a long way in protecting oneself and others from these common and potentially debilitating illnesses.

Herpesviridae infections are caused by the Herpesviridae family of viruses and can be transmitted through skin-to-skin contact, sexual contact, or from mother to child during pregnancy or childbirth. Symptoms of herpesviridae infections can vary depending on the type of virus and the individual infected, but may include fever, fatigue, muscle aches, and skin sores or rashes.

There is no cure for herpesviridae infections, but antiviral medications can help manage symptoms and reduce the risk of transmission to others. Good hygiene practices, such as washing hands regularly and avoiding close contact with those who are infected, can also help prevent the spread of these viruses.

Some common types of herpesviridae infections include:

* Herpes simplex virus (HSV) - Causes cold sores and genital herpes.
* Varicella-zoster virus (VZV) - Causes chickenpox and shingles.
* Human herpesvirus 8 (HHV-8) - Associated with certain types of cancer, such as Kaposi's sarcoma.

The condition is often caused by gallstones or other blockages that prevent the normal flow of bile from the liver to the small intestine. Over time, the scarring can lead to the formation of cirrhosis, which is characterized by the replacement of healthy liver tissue with scar tissue.

Symptoms of liver cirrhosis, biliary may include:

* Jaundice (yellowing of the skin and eyes)
* Itching
* Fatigue
* Abdominal pain
* Dark urine
* Pale stools

The diagnosis of liver cirrhosis, biliary is typically made through a combination of physical examination, medical history, and diagnostic tests such as ultrasound, CT scans, and blood tests.

Treatment for liver cirrhosis, biliary depends on the underlying cause of the condition. In some cases, surgery may be necessary to remove gallstones or repair damaged bile ducts. Medications such as antioxidants and anti-inflammatory drugs may also be prescribed to help manage symptoms and slow the progression of the disease. In severe cases, a liver transplant may be necessary.

Prognosis for liver cirrhosis, biliary is generally poor, as the condition can lead to complications such as liver failure, infection, and cancer. However, with early diagnosis and appropriate treatment, it is possible to manage the symptoms and slow the progression of the disease.

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.

What is a Chronic Disease?

A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:

1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke

Impact of Chronic Diseases

The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.

Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.

Addressing Chronic Diseases

Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:

1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.

Conclusion

Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.

The symptoms of chlamydia infections can vary depending on the location of the infection. In genital infections, symptoms may include:

* Discharge from the penis or vagina
* Painful urination
* Abnormal bleeding or spotting
* Painful sex
* Testicular pain in men
* Pelvic pain in women

In eye infections, symptoms can include:

* Redness and swelling of the eye
* Discharge from the eye
* Pain or sensitivity to light

In respiratory infections, symptoms may include:

* Cough
* Fever
* Shortness of breath or wheezing

If left untreated, chlamydia infections can lead to serious complications, such as pelvic inflammatory disease (PID) in women and epididymitis in men. Chlamydia infections can also increase the risk of infertility and other long-term health problems.

Chlamydia infections are typically diagnosed through a physical examination, medical history, and laboratory tests such as a nucleic acid amplification test (NAAT) or a culture test. Treatment for chlamydia infections typically involves antibiotics, which can effectively cure the infection. It is important to note that sexual partners of someone with a chlamydia infection should also be tested and treated, as they may also have the infection.

Prevention methods for chlamydia infections include safe sex practices such as using condoms and dental dams, as well as regular screening and testing for the infection. It is important to note that chlamydia infections can be asymptomatic, so regular testing is crucial for early detection and treatment.

In conclusion, chlamydia is a common sexually transmitted bacterial infection that can cause serious complications if left untreated. Early detection and treatment are key to preventing long-term health problems and the spread of the infection. Safe sex practices and regular screening are also important for preventing chlamydia infections.

Orthomyxoviridae infections are a group of viral infections caused by the Orthomyxoviridae family of viruses, which includes influenza A and B viruses, as well as other related viruses. These infections can affect both humans and animals and can cause a range of symptoms, from mild to severe.

The most common type of Orthomyxoviridae infection is seasonal influenza, which occurs when the virus is transmitted from person to person through the air or by contact with infected surfaces. Other types of Orthomyxoviridae infections include:

1. Pandemic influenza: This occurs when a new strain of the virus emerges and spreads quickly around the world, causing widespread illness and death. Examples of pandemic influenza include the Spanish flu of 1918 and the Asian flu of 1957.
2. Avian influenza: This occurs when birds are infected with the virus and can be transmitted to humans through close contact with infected birds or their droppings.
3. Swine influenza: This occurs when pigs are infected with the virus and can be transmitted to humans through close contact with infected pigs or their droppings.
4. H5N1 and H7N9: These are two specific types of bird flu viruses that have caused serious outbreaks in humans in recent years.

Symptoms of Orthomyxoviridae infections can include fever, cough, sore throat, runny nose, muscle aches, and fatigue. In severe cases, these infections can lead to pneumonia, bronchitis, and other respiratory complications, as well as hospitalization and even death.

Diagnosis of Orthomyxoviridae infections is typically made through a combination of physical examination, medical history, and laboratory tests, such as PCR (polymerase chain reaction) or viral culture. Treatment is generally focused on relieving symptoms and supporting the immune system, with antiviral medications may be used in severe cases.

Prevention of Orthomyxoviridae infections can include avoiding close contact with infected birds or pigs, wearing protective clothing and gear when handling animals, and practicing good hygiene such as washing hands frequently. Vaccines are also available for some species of birds and pigs to protect against these viruses.

Overall, Orthomyxoviridae is a family of viruses that can cause serious illness in humans and other animals, and it's important to take precautions to prevent exposure and spread of these viruses.

The symptoms of hepatitis B can range from mild to severe and may include fatigue, loss of appetite, nausea, vomiting, abdominal pain, dark urine, pale stools, joint pain, and jaundice (yellowing of the skin and eyes). In some cases, hepatitis B can be asymptomatic, meaning that individuals may not experience any symptoms at all.

Hepatitis B is diagnosed through blood tests that detect the presence of HBV antigens or antibodies in the body. Treatment for acute hepatitis B typically involves rest, hydration, and medication to manage symptoms, while chronic hepatitis B may require ongoing therapy with antiviral drugs to suppress the virus and prevent liver damage.

Preventive measures for hepatitis B include vaccination, which is recommended for individuals at high risk of infection, such as healthcare workers, sexually active individuals, and those traveling to areas where HBV is common. In addition, safe sex practices, avoiding sharing of needles or other bodily fluids, and proper sterilization of medical equipment can help reduce the risk of transmission.

Overall, hepatitis B is a serious infection that can have long-term consequences for liver health, and it is important to take preventive measures and seek medical attention if symptoms persist or worsen over time.

The symptoms of AIDS can vary depending on the individual and the stage of the disease. Common symptoms include:

1. Fever
2. Fatigue
3. Swollen glands
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
9. Memory loss and other neurological problems
10. Cancer and other opportunistic infections.

AIDS is diagnosed through blood tests that detect the presence of HIV antibodies or the virus itself. There is no cure for AIDS, but antiretroviral therapy (ART) can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis (PrEP), and avoiding sharing needles or other injection equipment.

In summary, Acquired Immunodeficiency Syndrome (AIDS) is a severe and life-threatening condition caused by the Human Immunodeficiency Virus (HIV). It is characterized by a severely weakened immune system, which makes it difficult to fight off infections and diseases. While there is no cure for AIDS, antiretroviral therapy can help manage the symptoms and slow the progression of the disease. Prevention methods include using condoms, pre-exposure prophylaxis, and avoiding sharing needles or other injection equipment.

The symptoms of rabies can vary depending on the severity of the infection and the individual's overall health. Early symptoms may include fever, headache, weakness, and fatigue. As the disease progresses, symptoms can become more severe and can include:

* Agitation and confusion
* Seizures and paralysis
* Hydrophobia (fear of water)
* Spasms and twitching
* Increased salivation
* Fever and chills
* Weakness and paralysis of the face, arms, and legs

If left untreated, rabies is almost always fatal. However, prompt medical attention, including the administration of post-exposure prophylaxis (PEP), can prevent the disease from progressing and save the life of an infected person. PEP typically involves a series of injections with rabies immune globulin and a rabies vaccine.

Rabies is a significant public health concern, particularly in developing countries where access to medical care may be limited. According to the World Health Organization (WHO), there are an estimated 55,000-60,000 human deaths from rabies each year, mostly in Asia and Africa. In the United States, rabies is relatively rare, with only a few cases reported each year. However, it is still important for individuals to be aware of the risks of rabies and take precautions to prevent exposure, such as avoiding contact with wild animals and ensuring that pets are up-to-date on their vaccinations.

There are several types of lupus nephritis, each with its own unique characteristics and symptoms. The most common forms include:

* Class I (mesangial proliferative glomerulonephritis): This type is characterized by the growth of abnormal cells in the glomeruli (blood-filtering units of the kidneys).
* Class II (active lupus nephritis): This type is characterized by widespread inflammation and damage to the kidneys, with or without the presence of antibodies.
* Class III (focal lupus nephritis): This type is characterized by localized inflammation in certain areas of the kidneys.
* Class IV (lupus nephritis with crescentic glomerulonephritis): This type is characterized by widespread inflammation and damage to the kidneys, with crescent-shaped tissue growth in the glomeruli.
* Class V (lupus nephritis with sclerotic changes): This type is characterized by hardening and shrinkage of the glomeruli due to scarring.

Lupus Nephritis can cause a range of symptoms, including:

* Proteinuria (excess protein in the urine)
* Hematuria (blood in the urine)
* Reduced kidney function
* Swelling (edema)
* Fatigue
* Fever
* Joint pain

Lupus Nephritis can be diagnosed through a combination of physical examination, medical history, laboratory tests, and kidney biopsy. Treatment options for lupus nephritis include medications to suppress the immune system, control inflammation, and prevent further damage to the kidneys. In severe cases, dialysis or a kidney transplant may be necessary.

Sheep diseases can be caused by a variety of factors, including bacteria, viruses, parasites, and environmental factors. Here are some common sheep diseases and their meanings:

1. Scrapie: A fatal neurological disorder that affects sheep and goats, caused by a prion.
2. Ovine Progressive Pneumonia (OPP): A contagious respiratory disease caused by Mycobacterium ovipneumoniae.
3. Maedi-Visna: A slow-progressing pneumonia caused by a retrovirus, which can lead to OPP.
4. Foot-and-Mouth Disease (FMD): A highly contagious viral disease that affects cloven-hoofed animals, including sheep and goats.
5. Bloat: A condition caused by gas accumulation in the rumen, which can lead to abdominal pain and death if not treated promptly.
6. Pneumonia: An inflammation of the lungs, often caused by bacteria or viruses.
7. Cryptosporidiosis: A diarrheal disease caused by Cryptosporidium parvum, which can be fatal in young lambs.
8. Babesiosis: A blood parasitic disease caused by Babesia oviparasites, which can lead to anemia and death if left untreated.
9. Fascioliasis: A liver fluke infection that can cause anemia, jaundice, and liver damage.
10. Anthrax: A serious bacterial disease caused by Bacillus anthracis, which can be fatal if left untreated.

Sheep diseases can have a significant impact on the health and productivity of flocks, as well as the economy of sheep farming. It is important for sheep farmers to be aware of these diseases and take appropriate measures to prevent and control them.

The hallmark of Wegener Granulomatosis is the formation of granulomas, which are clusters of immune cells that form in response to infection or inflammation. In this condition, however, the granulomas are not caused by an infectious agent but rather by the body's own immune system attacking its own tissues.

The symptoms of Wegener Granulomatosis can vary depending on the organs affected and can include:

* Fever
* Joint pain
* Fatigue
* Weight loss
* Shortness of breath
* Chest pain
* Coughing up blood
* Abdominal pain
* Blood in urine or stool
* Headache

The exact cause of Wegener Granulomatosis is not known, but it is believed to involve a combination of genetic and environmental factors. Treatment typically involves the use of corticosteroids and other immunosuppressive medications to reduce inflammation and prevent further damage to the body. In some cases, plasmapheresis (plasma exchange) may also be used to remove harmful antibodies from the blood.

Wegener Granulomatosis is a relatively rare condition, affecting approximately 2-4 people per million each year. It can occur at any age but is most commonly diagnosed in adults between the ages of 40 and 60. With early diagnosis and proper treatment, many people with Wegener Granulomatosis can experience a good outcome and improved quality of life. However, if left untreated, the condition can be fatal.

Hepatitis A is typically spread through contaminated food and water or through close contact with someone who has the infection. The virus can also be spread through sexual contact or sharing of needles.

Symptoms of hepatitis A usually appear two to six weeks after exposure and can last for several weeks or months. In some cases, the infection can lead to complications such as liver failure, which can be life-threatening.

There is a vaccine available for hepatitis A, which is recommended for individuals traveling to areas where the virus is common, people who engage in high-risk behaviors, and those with chronic liver disease. Treatment for hepatitis A typically focuses on relieving symptoms and supporting the liver as it recovers. In severe cases, hospitalization may be necessary.

Preventive measures to reduce the risk of hepatitis A infection include maintaining good hygiene practices, such as washing hands frequently, especially before eating or preparing food; avoiding consumption of raw or undercooked shellfish, particularly oysters; and avoiding close contact with people who have the infection.

Some common types of connective tissue diseases include:

1. Rheumatoid arthritis (RA): A chronic autoimmune disorder that causes inflammation and joint damage.
2. Systemic lupus erythematosus (SLE): An autoimmune disorder that can affect multiple systems in the body, including the skin, joints, and kidneys.
3. Sjogren's syndrome: An autoimmune disorder that causes dry eyes and mouth, as well as joint pain and swelling.
4. Fibromyalgia: A chronic condition characterized by widespread muscle pain and fatigue.
5. Myositis: Inflammatory diseases that affect the muscles, such as dermatomyositis and polymyositis.
6. Giant cell arteritis: A condition that causes inflammation of the blood vessels, particularly in the head and neck.
7. Takayasu arteritis: A condition that causes inflammation of the blood vessels in the aorta and its branches.
8. Polyarteritis nodosa: A condition that causes inflammation of the blood vessels, particularly in the hands and feet.
9. IgG4-related disease: A condition characterized by inflammation and damage to various organs, including the pancreas, salivary glands, and liver.

Connective tissue diseases can cause a wide range of symptoms, including joint pain and stiffness, fatigue, skin rashes, fever, and weight loss. Treatment options vary depending on the specific disease and its severity, but may include medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs). In some cases, surgery or physical therapy may also be necessary.

Symptoms of dengue fever typically begin within 2-7 days after the bite of an infected mosquito and can include:

* High fever
* Severe headache
* Pain behind the eyes
* Severe joint and muscle pain
* Rash
* Fatigue
* Nausea
* Vomiting

In some cases, dengue fever can develop into a more severe form of the disease, known as dengue hemorrhagic fever (DHF), which can be life-threatening. Symptoms of DHF include:

* Severe abdominal pain
* Vomiting
* Diarrhea
* Bleeding from the nose, gums, or under the skin
* Easy bruising
* Petechiae (small red spots on the skin)
* Black stools
* Decreased urine output

Dengue fever is diagnosed based on a combination of symptoms, physical examination findings, and laboratory tests. Treatment for dengue fever is primarily focused on relieving symptoms and managing fluid and electrolyte imbalances. There is no specific treatment for the virus itself, but early detection and proper medical care can significantly lower the risk of complications and death.

Prevention of dengue fever relies on measures to prevent mosquito bites, such as using insect repellents, wearing protective clothing, and eliminating standing water around homes and communities to reduce the breeding of mosquitoes. Vaccines against dengue fever are also being developed, but none are currently available for widespread use.

In summary, dengue is a viral disease that is transmitted to humans through the bite of infected mosquitoes and can cause a range of symptoms from mild to severe. Early detection and proper medical care are essential to prevent complications and death from dengue fever. Prevention of dengue relies on measures to prevent mosquito bites and eliminating standing water around homes and communities.

References:

1. World Health Organization. (2020). Dengue and severe dengue. Retrieved from
2. Centers for Disease Control and Prevention. (2020). Dengue fever: Background. Retrieved from
3. Mayo Clinic. (2020). Dengue fever. Retrieved from
4. MedlinePlus. (2020). Dengue fever. Retrieved from

The symptoms of infectious mononucleosis can vary in severity but typically include:

* Fatigue
* Fever
* Sore throat
* Swollen lymph nodes in the neck and armpits
* Enlarged spleen
* Headache
* Muscle weakness
* Rash
* Swollen liver or spleen

Infectious mononucleosis is usually diagnosed through a combination of physical examination, blood tests, and other laboratory tests. Treatment focuses on relieving symptoms and allowing the body to fight the infection on its own.

Prognosis for infectious mononucleosis is generally good, but it can take several weeks to recover fully. Complications are rare but can include inflammation of the spleen, liver disease, and a condition called splenomegaly (enlargement of the spleen).

Prevention includes avoiding close contact with people who have mononucleosis, washing hands frequently, and not sharing eating or drinking utensils. There is no vaccine available to protect against infectious mononucleosis.

Viremia is a condition where the virus is present in the bloodstream, outside of infected cells or tissues. This can occur during the acute phase of an infection, when the virus is actively replicating and spreading throughout the body. Viremia can also be seen in chronic infections, where the virus may persist in the blood for longer periods of time.

In some cases, viremia can lead to the development of antibodies against the virus, which can help to neutralize it and prevent its spread. However, if the viremia is not controlled, it can cause serious complications, such as sepsis or organ damage.

Diagnosis of viremia typically involves laboratory tests, such as PCR (polymerase chain reaction) or ELISA (enzyme-linked immunosorbent assay), which can detect the presence of virus in the blood. Treatment of viremia depends on the underlying cause and may include antiviral medications, supportive care, and management of any related complications.

There are several different types of leukemia, including:

1. Acute Lymphoblastic Leukemia (ALL): This is the most common type of leukemia in children, but it can also occur in adults. It is characterized by an overproduction of immature white blood cells called lymphoblasts.
2. Acute Myeloid Leukemia (AML): This type of leukemia affects the bone marrow's ability to produce red blood cells, platelets, and other white blood cells. It can occur at any age but is most common in adults.
3. Chronic Lymphocytic Leukemia (CLL): This type of leukemia affects older adults and is characterized by the slow growth of abnormal white blood cells called lymphocytes.
4. Chronic Myeloid Leukemia (CML): This type of leukemia is caused by a genetic mutation in a gene called BCR-ABL. It can occur at any age but is most common in adults.
5. Hairy Cell Leukemia: This is a rare type of leukemia that affects older adults and is characterized by the presence of abnormal white blood cells called hairy cells.
6. Myelodysplastic Syndrome (MDS): This is a group of disorders that occur when the bone marrow is unable to produce healthy blood cells. It can lead to leukemia if left untreated.

Treatment for leukemia depends on the type and severity of the disease, but may include chemotherapy, radiation therapy, targeted therapy, or stem cell transplantation.

There are three stages of syphilis:

1. Primary stage: A small, painless sore or ulcer (called a chancre) appears at the site of infection, usually on the genitals, rectum, or mouth. This sore heals on its own within 2-6 weeks, but the infection remains in the body.
2. Secondary stage: A rash and other symptoms can appear weeks to months after the primary stage. The rash can be accompanied by fever, fatigue, and swollen lymph nodes.
3. Latent stage: After the secondary stage, the infection can enter a latent (hidden) phase, during which there are no visible symptoms but the infection remains in the body. If left untreated, syphilis can progress to the tertiary stage, which can cause serious complications such as damage to the heart, brain, and other organs.

Syphilis is diagnosed through a physical examination, blood tests, and/or a lumbar puncture (spinal tap). Treatment typically involves antibiotics, and early treatment can cure the infection and prevent long-term complications.

Prevention measures include safe sex practices such as using condoms and dental dams, avoiding sexual contact with someone who has syphilis, and getting regularly tested for STIs. It is important to seek medical attention if symptoms of syphilis are present, as early treatment can prevent long-term complications.

Benign ovarian neoplasms include:

1. Serous cystadenoma: A fluid-filled sac that develops on the surface of the ovary.
2. Mucinous cystadenoma: A tumor that is filled with mucin, a type of protein.
3. Endometrioid tumors: Tumors that are similar to endometrial tissue (the lining of the uterus).
4. Theca cell tumors: Tumors that develop in the supportive tissue of the ovary called theca cells.

Malignant ovarian neoplasms include:

1. Epithelial ovarian cancer (EOC): The most common type of ovarian cancer, which arises from the surface epithelium of the ovary.
2. Germ cell tumors: Tumors that develop from germ cells, which are the cells that give rise to eggs.
3. Stromal sarcomas: Tumors that develop in the supportive tissue of the ovary.

Ovarian neoplasms can cause symptoms such as pelvic pain, abnormal bleeding, and abdominal swelling. They can also be detected through pelvic examination, imaging tests such as ultrasound and CT scan, and biopsy. Treatment options for ovarian neoplasms depend on the type, stage, and location of the tumor, and may include surgery, chemotherapy, and radiation therapy.

The symptoms of limbic encephalitis can vary depending on the severity of the inflammation and the specific areas of the brain affected. Common symptoms include:

* Memory loss and confusion
* Seizures
* Vision problems
* Speech difficulties
* Emotional changes, such as anxiety or depression
* Behavioral changes, such as aggression or apathy
* Personality changes

The exact cause of limbic encephalitis is not fully understood, but it is believed to be an autoimmune response, where the immune system mistakenly attacks healthy tissue in the brain. In some cases, the condition may be triggered by a viral or bacterial infection, and in others, it may be associated with certain medical conditions, such as multiple sclerosis or lupus.

There is no cure for limbic encephalitis, but treatment options are available to manage symptoms and slow the progression of the disease. These may include:

* Medications to reduce inflammation and suppress the immune system
* Anticonvulsants to prevent seizures
* Cognitive rehabilitation to improve memory and other cognitive functions
* Behavioral therapy to manage emotional and behavioral changes

The prognosis for limbic encephalitis varies depending on the severity of the inflammation and the specific areas of the brain affected. In some cases, the condition may resolve on its own over time, while in others, it may result in long-term cognitive and behavioral impairments.

There is currently no way to prevent limbic encephalitis, but early diagnosis and treatment can help manage symptoms and slow the progression of the disease. Researchers are continuing to study the condition to better understand its causes and develop more effective treatments.

HIV seropositivity is typically diagnosed through a blood test called an enzyme-linked immunosorbent assay (ELISA). This test detects the presence of antibodies against HIV in the blood by using specific proteins on the surface of the virus. If the test is positive, it means that the individual has been infected with HIV.

HIV seropositivity is an important diagnostic criterion for AIDS (Acquired Immune Deficiency Syndrome), which is a condition that develops when the immune system is severely damaged by HIV infection. AIDS is diagnosed based on a combination of symptoms and laboratory tests, including HIV seropositivity.

HIV seropositivity can be either primary (acute) or chronic. Primary HIV seropositivity occurs when an individual is first infected with HIV and their immune system produces antibodies against the virus. Chronic HIV seropositivity occurs when an individual has been living with HIV for a long time and their immune system has produced antibodies that remain in their bloodstream.

HIV seropositivity can have significant implications for an individual's health and quality of life, as well as their social and economic well-being. It is important for individuals who are HIV seropositive to receive appropriate medical care and support to manage their condition and prevent the transmission of HIV to others.

1. Hantavirus pulmonary syndrome (HPS): This is a severe respiratory disease caused by the hantavirus, which is found in the urine and saliva of infected rodents. Symptoms of HPS can include fever, headache, muscle pain, and difficulty breathing.
2. Leptospirosis: This is a bacterial infection caused by the bacterium Leptospira, which is found in the urine of infected rodents. Symptoms can include fever, headache, muscle pain, and jaundice (yellowing of the skin and eyes).
3. Rat-bite fever: This is a bacterial infection caused by the bacterium Streptobacillus moniliformis, which is found in the saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and swollen lymph nodes.
4. Lymphocytic choriomeningitis (LCM): This is a viral infection caused by the lymphocytic choriomeningitis virus (LCMV), which is found in the urine and saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and meningitis (inflammation of the membranes surrounding the brain and spinal cord).
5. Tularemia: This is a bacterial infection caused by the bacterium Francisella tularensis, which is found in the urine and saliva of infected rodents. Symptoms can include fever, headache, muscle pain, and swollen lymph nodes.

These are just a few examples of the many diseases that can be transmitted to humans through contact with rodents. It is important to take precautions when handling or removing rodents, as they can pose a serious health risk. If you suspect that you have been exposed to a rodent-borne disease, it is important to seek medical attention as soon as possible.

The exact cause of paraneoplastic syndromes is not fully understood, but it is believed that the immune system mistakenly attacks healthy cells in the nervous system, leading to damage and dysfunction. Some research suggests that certain types of cancer may trigger an autoimmune response, while other factors such as genetics or environmental exposures may also play a role.

Paraneoplastic syndromes can be difficult to diagnose, as they often present with symptoms that are similar to those of more common conditions such as multiple sclerosis or stroke. However, certain tests such as electromyography (EMG) and nerve conduction studies (NCS) can help rule out other conditions and confirm the presence of a paraneoplastic syndrome.

Treatment for paraneoplastic syndromes typically focuses on managing symptoms and addressing any underlying cancer that may be present. Medications such as corticosteroids, immunosuppressive drugs, and chemotherapy may be used to reduce inflammation and suppress the immune system, while surgery or radiation therapy may be necessary to remove cancerous tissue. In some cases, plasmapheresis (plasma exchange) may also be recommended to remove harmful antibodies from the blood.

Overall, paraneoplastic syndromes, nervous system are a complex and rare group of disorders that can significantly impact quality of life. Early diagnosis and treatment are key to managing symptoms and improving outcomes for patients with these conditions.

There are several subtypes of lymphoma, B-cell, including:

1. Diffuse large B-cell lymphoma (DLBCL): This is the most common type of B-cell lymphoma and typically affects older adults.
2. Follicular lymphoma: This type of lymphoma grows slowly and often does not require treatment for several years.
3. Marginal zone lymphoma: This type of lymphoma develops in the marginal zone of the spleen or other lymphoid tissues.
4. Hodgkin lymphoma: This is a type of B-cell lymphoma that is characterized by the presence of Reed-Sternberg cells, which are abnormal cells that can be identified under a microscope.

The symptoms of lymphoma, B-cell can vary depending on the subtype and the location of the tumor. Common symptoms include swollen lymph nodes, fatigue, fever, night sweats, and weight loss.

Treatment for lymphoma, B-cell usually involves chemotherapy, which is a type of cancer treatment that uses drugs to kill cancer cells. Radiation therapy may also be used in some cases. In some cases, bone marrow or stem cell transplantation may be recommended.

Prognosis for lymphoma, B-cell depends on the subtype and the stage of the disease at the time of diagnosis. In general, the prognosis is good for patients with early-stage disease, but the cancer can be more difficult to treat if it has spread to other parts of the body.

Prevention of lymphoma, B-cell is not possible, as the exact cause of the disease is not known. However, avoiding exposure to certain risk factors, such as viral infections and pesticides, may help reduce the risk of developing the disease. Early detection and treatment can also improve outcomes for patients with lymphoma, B-cell.

Lymphoma, B-cell is a type of cancer that affects the immune system and can be treated with chemotherapy and other therapies. The prognosis varies depending on the subtype and stage of the disease at diagnosis. Prevention is not possible, but early detection and treatment can improve outcomes for patients with this condition.

There are several different types of malaria, including:

1. Plasmodium falciparum: This is the most severe form of malaria, and it can be fatal if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
2. Plasmodium vivax: This type of malaria is less severe than P. falciparum, but it can still cause serious complications if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
3. Plasmodium ovale: This type of malaria is similar to P. vivax, but it can cause more severe symptoms in some people. It is found primarily in West Africa.
4. Plasmodium malariae: This type of malaria is less common than the other three types, and it tends to cause milder symptoms. It is found primarily in parts of Africa and Asia.

The symptoms of malaria can vary depending on the type of parasite that is causing the infection, but they typically include:

1. Fever
2. Chills
3. Headache
4. Muscle and joint pain
5. Fatigue
6. Nausea and vomiting
7. Diarrhea
8. Anemia (low red blood cell count)

If malaria is not treated promptly, it can lead to more severe complications, such as:

1. Seizures
2. Coma
3. Respiratory failure
4. Kidney failure
5. Liver failure
6. Anemia (low red blood cell count)

Malaria is typically diagnosed through a combination of physical examination, medical history, and laboratory tests, such as blood smears or polymerase chain reaction (PCR) tests. Treatment for malaria typically involves the use of antimalarial drugs, such as chloroquine or artemisinin-based combination therapies. In severe cases, hospitalization may be necessary to manage complications and provide supportive care.

Prevention is an important aspect of managing malaria, and this can include:

1. Using insecticide-treated bed nets
2. Wearing protective clothing and applying insect repellent when outdoors
3. Eliminating standing water around homes and communities to reduce the number of mosquito breeding sites
4. Using indoor residual spraying (IRS) or insecticide-treated wall lining to kill mosquitoes
5. Implementing malaria control measures in areas where malaria is common, such as distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)
6. Improving access to healthcare services, particularly in rural and remote areas
7. Providing education and awareness about malaria prevention and control
8. Encouraging the use of preventive medications, such as intermittent preventive treatment (IPT) for pregnant women and children under the age of five.

Early diagnosis and prompt treatment are critical in preventing the progression of malaria and reducing the risk of complications and death. In areas where malaria is common, it is essential to have access to reliable diagnostic tools and effective antimalarial drugs.

Herpes simplex virus 1 (HSV-1) typically causes cold sores or fever blisters that appear on the lips, mouth, or nose. While herpes simplex virus 2 (HSV-2) is responsible for genital herpes which affects the genital area, buttocks, and anal area.

The infection can be spread through direct contact with an infected person's saliva, mucus, or skin, even if there are no visible sores present. Symptoms of herpes simplex may include itching, burning, tingling, redness, and small blisters that burst and ooze fluid.

There is no cure for herpes simplex, but medications can help manage symptoms and shorten the duration of an outbreak. Antiviral drugs such as acyclovir, famciclovir, and valacyclovir are commonly used to treat herpes simplex.

Osteoarthritis (OA) is a degenerative condition that occurs when the cartilage that cushions the joints breaks down over time, causing the bones to rub together. It is the most common form of arthritis and typically affects older adults.

Rheumatoid arthritis (RA) is an autoimmune condition that occurs when the body's immune system attacks the lining of the joints, leading to inflammation and pain. It can affect anyone, regardless of age, and is typically seen in women.

Other types of arthritis include psoriatic arthritis, gouty arthritis, and lupus-related arthritis. Treatment for arthritis depends on the type and severity of the condition, but can include medications such as pain relievers, anti-inflammatory drugs, and disease-modifying anti-rheumatic drugs (DMARDs). Physical therapy and lifestyle changes, such as exercise and weight loss, can also be helpful. In severe cases, surgery may be necessary to repair or replace damaged joints.

Arthritis is a leading cause of disability worldwide, affecting over 50 million adults in the United States alone. It can have a significant impact on a person's quality of life, making everyday activities such as walking, dressing, and grooming difficult and painful. Early diagnosis and treatment are important to help manage symptoms and slow the progression of the disease.

Examples of Immunologic Deficiency Syndromes include:

1. Primary Immunodeficiency Diseases (PIDDs): These are a group of genetic disorders that affect the immune system's ability to function properly. Examples include X-linked agammaglobulinemia, common variable immunodeficiency, and severe combined immunodeficiency.
2. Acquired Immunodeficiency Syndrome (AIDS): This is a condition that results from the human immunodeficiency virus (HIV) infection, which destroys CD4 cells, a type of immune cell that fights off infections.
3. Immune Thrombocytopenic Purpura (ITP): This is an autoimmune disorder that causes the immune system to attack and destroy platelets, which are blood cells that help the blood to clot.
4. Autoimmune Disorders: These are conditions in which the immune system mistakenly attacks and damages healthy cells and tissues in the body. Examples include rheumatoid arthritis, lupus, and multiple sclerosis.
5. Immunosuppressive Therapy-induced Immunodeficiency: This is a condition that occurs as a side effect of medications used to prevent rejection in organ transplant patients. These medications can suppress the immune system, increasing the risk of infections.

Symptoms of Immunologic Deficiency Syndromes can vary depending on the specific disorder and the severity of the immune system dysfunction. Common symptoms include recurrent infections, fatigue, fever, and swollen lymph nodes. Treatment options for these syndromes range from medications to suppress the immune system to surgery or bone marrow transplantation.

In summary, Immunologic Deficiency Syndromes are a group of disorders that result from dysfunction of the immune system, leading to recurrent infections and other symptoms. There are many different types of these syndromes, each with its own set of symptoms and treatment options.

There are several subtypes of carcinoma, including:

1. Adenocarcinoma: This type of carcinoma originates in glandular cells, which produce fluids or mucus. Examples include breast cancer, prostate cancer, and colon cancer.
2. Squamous cell carcinoma: This type of carcinoma originates in squamous cells, which are found on the surface layers of skin and mucous membranes. Examples include head and neck cancers, cervical cancer, and anal cancer.
3. Basal cell carcinoma: This type of carcinoma originates in the deepest layer of skin, called the basal layer. It is the most common type of skin cancer and tends to grow slowly.
4. Neuroendocrine carcinoma: This type of carcinoma originates in cells that produce hormones and neurotransmitters. Examples include lung cancer, pancreatic cancer, and thyroid cancer.
5. Small cell carcinoma: This type of carcinoma is a highly aggressive form of lung cancer that spreads quickly to other parts of the body.

The signs and symptoms of carcinoma depend on the location and stage of the cancer. Some common symptoms include:

* A lump or mass
* Pain
* Skin changes, such as a new mole or a change in the color or texture of the skin
* Changes in bowel or bladder habits
* Abnormal bleeding

The diagnosis of carcinoma typically involves a combination of imaging tests, such as X-rays, CT scans, MRI scans, and PET scans, and a biopsy, which involves removing a small sample of tissue for examination under a microscope. Treatment options for carcinoma depend on the location and stage of the cancer and may include surgery, radiation therapy, chemotherapy, or a combination of these.

In conclusion, carcinoma is a type of cancer that originates in epithelial cells and can occur in various parts of the body. Early detection and treatment are important for improving outcomes.

References:

1. American Cancer Society. (2022). Carcinoma. Retrieved from
2. Mayo Clinic. (2022). Carcinoma. Retrieved from
3. MedlinePlus. (2022). Carcinoma. Retrieved from

Symptoms of whooping cough typically appear within 7-14 days after exposure and may include:

* Mild fever
* Runny nose
* Sneezing
* Dry, irritating cough that progresses to spasmodic, convulsive coughing fits
* Vomiting after coughing
* Apnea (pause in breathing)

In infants, the symptoms may be milder and include:

* Mild fever
* Lack of appetite
* Irritability
* Cyanosis (blue discoloration of the skin)

If left untreated, whooping cough can lead to serious complications such as pneumonia, seizures, and brain damage. Diagnosis is based on a combination of clinical findings, laboratory tests, and medical imaging. Treatment typically involves antibiotics and supportive care to manage symptoms and prevent complications.

Prevention measures include immunization with the pertussis vaccine, which is routinely given to infants and children in early childhood, as well as booster shots during adolescence and adulthood. Good hygiene practices, such as frequent handwashing and avoiding close contact with people who are sick, can also help prevent the spread of the disease.

Mumps is typically diagnosed based on a combination of symptoms and physical examination findings. Laboratory tests such as PCR or IgG antibody testing may also be performed to confirm the diagnosis. There is no specific treatment for mumps, but supportive care such as pain management and hydration may be provided to alleviate symptoms. Vaccines are available to prevent mumps, and they are most effective when given before exposure to the virus.

The medical field has a clear definition of mumps, which is essential for accurate diagnosis, treatment, and prevention of the disease. The World Health Organization (WHO) defines mumps as "a contagious viral infection that affects the salivary glands, particularly the parotid gland." The Centers for Disease Control and Prevention (CDC) also provides guidelines for diagnosis, treatment, and prevention of mumps.

In conclusion, mumps is a viral infection that affects the salivary glands and can cause pain, discomfort, and potentially serious complications. The medical field has a clear definition of mumps, which is essential for accurate diagnosis, treatment, and prevention of the disease. Vaccines are available to prevent mumps, and they are most effective when given before exposure to the virus.

1. Polymyositis: This is an inflammatory disease that affects the muscles and can cause muscle weakness, pain, and stiffness.
2. Dercum's disease: This is a rare condition that causes fatty degeneration of the muscles, leading to muscle pain, weakness, and wasting.
3. Inflammatory myopathy: This is a group of conditions that cause inflammation in the muscles, leading to muscle weakness and pain.
4. Dermatomyositis: This is an inflammatory condition that affects both the skin and the muscles, causing skin rashes and muscle weakness.
5. Juvenile myositis: This is a rare condition that affects children and can cause muscle weakness, pain, and stiffness.

The symptoms of myositis can vary depending on the type of condition and its severity. Common symptoms include muscle weakness, muscle pain, stiffness, and fatigue. Other symptoms may include skin rashes, fever, and joint pain.

The diagnosis of myositis typically involves a combination of physical examination, medical history, and laboratory tests such as blood tests and muscle biopsies. Treatment for myositis depends on the underlying cause and may include medications such as corticosteroids, immunosuppressive drugs, and physical therapy. In some cases, surgery may be necessary to remove affected muscle tissue.

Disease progression can be classified into several types based on the pattern of worsening:

1. Chronic progressive disease: In this type, the disease worsens steadily over time, with a gradual increase in symptoms and decline in function. Examples include rheumatoid arthritis, osteoarthritis, and Parkinson's disease.
2. Acute progressive disease: This type of disease worsens rapidly over a short period, often followed by periods of stability. Examples include sepsis, acute myocardial infarction (heart attack), and stroke.
3. Cyclical disease: In this type, the disease follows a cycle of worsening and improvement, with periodic exacerbations and remissions. Examples include multiple sclerosis, lupus, and rheumatoid arthritis.
4. Recurrent disease: This type is characterized by episodes of worsening followed by periods of recovery. Examples include migraine headaches, asthma, and appendicitis.
5. Catastrophic disease: In this type, the disease progresses rapidly and unpredictably, with a poor prognosis. Examples include cancer, AIDS, and organ failure.

Disease progression can be influenced by various factors, including:

1. Genetics: Some diseases are inherited and may have a predetermined course of progression.
2. Lifestyle: Factors such as smoking, lack of exercise, and poor diet can contribute to disease progression.
3. Environmental factors: Exposure to toxins, allergens, and other environmental stressors can influence disease progression.
4. Medical treatment: The effectiveness of medical treatment can impact disease progression, either by slowing or halting the disease process or by causing unintended side effects.
5. Co-morbidities: The presence of multiple diseases or conditions can interact and affect each other's progression.

Understanding the type and factors influencing disease progression is essential for developing effective treatment plans and improving patient outcomes.

The two main types of lymphoid leukemia are:

1. Acute Lymphoblastic Leukemia (ALL): This type of leukemia is most commonly seen in children, but it can also occur in adults. It is characterized by a rapid increase in the number of immature white blood cells in the blood and bone marrow.
2. Chronic Lymphocytic Leukemia (CLL): This type of leukemia usually affects older adults and is characterized by the gradual buildup of abnormal white blood cells in the blood, bone marrow, and lymph nodes.

Symptoms of lymphoid leukemia include fatigue, fever, night sweats, weight loss, and swollen lymph nodes. Treatment options for lymphoid leukemia can vary depending on the type of cancer and the severity of symptoms, but may include chemotherapy, radiation therapy, or bone marrow transplantation.

Also known as Burkitt's Lymphoma.

The exact cause of MCTD is not known, but it is believed to be an autoimmune disorder, meaning that the immune system mistakenly attacks healthy tissues in the body. The disease is more common in women than men and typically affects people between the ages of 20 and 50.

Symptoms of MCTD can vary widely and may include:

* Skin rashes or lesions
* Joint pain and stiffness
* Fatigue
* Fever
* Raynaud's phenomenon (digits turn white or blue in response to cold or stress)
* Swollen lymph nodes
* Shortness of breath
* Chest pain
* Abdominal pain
* Weakness and wasting of muscles

There is no cure for MCTD, but treatment focuses on managing symptoms and preventing complications. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and immunosuppressive drugs may be used to reduce inflammation and suppress the immune system. Physical therapy and exercise may also be helpful in maintaining joint mobility and strength.

The prognosis for MCTD varies depending on the severity of the disease and the presence of certain complications, such as lung or heart involvement. Some people with MCTD may experience a gradual worsening of symptoms over time, while others may experience periods of remission. With appropriate treatment, many people with MCTD are able to manage their symptoms and lead active lives.

Eimeria species are obligate intracellular parasites that infect the epithelial cells lining the intestinal tract of animals, causing damage to the gut mucosa and leading to diarrhea, vomiting, weight loss, and even death. The disease can be acute or chronic, depending on the severity of the infection and the host's immune response.

There are several species of Eimeria that can infect ruminants, with different species affecting different parts of the intestinal tract. For example, Eimeria bovis and Eimeria zuernii infect the caecum and abomasum, respectively, while Eimeria ellipsoidalis and Eimeria falciformis infect the small intestine.

Coccidiosis is typically diagnosed through fecal examination, where the presence of oocysts (eggs) in the feces is indicative of an infection. Treatment options include anticoccidial drugs, which can be administered orally or parenterally, and supportive care to manage symptoms such as diarrhea and dehydration.

Prevention is key to managing coccidiosis, and this includes the use of vaccines, cleanliness and hygiene practices, and controlling the parasite's environmental survival. In some cases, a combination of these methods may be necessary to effectively prevent and control coccidiosis in ruminant populations.

The term "paraneoplastic" refers to the fact that these conditions are parallel to, or associated with, neoplasms (abnormal growths) in the body. The exact cause of paraneoplastic syndromes is not fully understood, but they are believed to be related to the immune system's response to cancer cells.

Some common features of paraneoplastic syndromes include:

1. Autoantibodies: The immune system produces antibodies that attack the body's own tissues and organs.
2. Inflammation: The immune system causes inflammation in various parts of the body.
3. Nerve damage: Paraneoplastic syndromes can affect the nerves, leading to symptoms such as numbness, weakness, and pain.
4. Muscle weakness: Some paraneoplastic syndromes can cause muscle weakness and wasting.
5. Skin rashes: Some patients with paraneoplastic syndromes may develop skin rashes or lesions.
6. Eye problems: Paraneoplastic syndromes can affect the eyes, leading to symptoms such as double vision, blindness, and eye pain.
7. Endocrine dysfunction: Some paraneoplastic syndromes can disrupt the normal functioning of the endocrine system, leading to hormonal imbalances.

Examples of paraneoplastic syndromes include:

1. Lambert-Eaton myasthenic syndrome (LEMS): This is a rare autoimmune disorder that affects the nerves and muscles, leading to muscle weakness and fatigue. It is often associated with small cell lung cancer.
2. Anti-NMDA receptor encephalitis: This is a severe autoimmune disorder that affects the brain and can cause symptoms such as seizures, confusion, and memory loss. It is often associated with ovarian teratoma.
3. Paraneoplastic cerebellar degeneration (PCD): This is a rare condition that affects the cerebellum and can cause symptoms such as coordination problems, balance difficulties, and difficulty with movement. It is often associated with lung cancer or other types of cancer.
4. Stiff-person syndrome: This is a rare autoimmune disorder that affects the central nervous system and can cause symptoms such as muscle stiffness, spasms, and autonomy dysfunction. It is often associated with ovarian teratoma.
5. Polymyositis: This is a rare inflammatory condition that affects the muscles and can cause muscle weakness and wasting. It is often associated with cancer, particularly lung cancer.
6. Dercum's disease: This is a rare condition that affects the adipose tissue and can cause symptoms such as pain, swelling, and limited mobility. It is often associated with cancer, particularly breast cancer.
7. Multiple myeloma: This is a type of cancer that affects the plasma cells in the bone marrow and can cause symptoms such as bone pain, fatigue, and weakness. It is often associated with ovarian teratoma.
8. Painless thyroiditis: This is a rare condition that affects the thyroid gland and can cause symptoms such as thyroid gland inflammation, fatigue, and weight gain. It is often associated with cancer, particularly breast cancer.
9. Ovarian cysts: These are fluid-filled sacs that form on the ovaries and can cause symptoms such as pelvic pain, bloating, and irregular menstrual periods. They are often associated with ovarian teratoma.
10. Endometriosis: This is a condition in which tissue similar to the lining of the uterus grows outside of the uterus and can cause symptoms such as pelvic pain, heavy menstrual bleeding, and infertility. It is often associated with ovarian teratoma.

It's important to note that these conditions are rare and not all cases of ovarian teratoma are associated with them. If you suspect you may have ovarian teratoma, it's important to talk to your healthcare provider for proper diagnosis and treatment.

The hallmark of anti-GBM disease is the presence of circulating anti-GBM antibodies and immune complexes, which are deposited in the glomeruli and lung alveoli, leading to inflammation and tissue damage. The disease can progress rapidly and lead to ESRD if left untreated.

The symptoms of anti-GBM disease vary depending on the severity of the disease and may include:

* Hematuria (blood in urine)
* Proteinuria (excess protein in urine)
* Reduced kidney function
* Fatigue
* Weight loss
* Shortness of breath
* Cough

The diagnosis of anti-GBM disease is based on a combination of clinical findings, laboratory tests, and kidney biopsy. Laboratory tests may include:

* Detection of anti-GBM antibodies in the blood
* Presence of immune complexes in the urine or lung tissue
* Abnormal liver enzymes
* Low complement levels

Treatment of anti-GBM disease typically involves a combination of steroids, immunosuppressive medications, and plasmapheresis (a process that removes harmful antibodies from the blood). In severe cases, kidney transplantation may be necessary. The prognosis for anti-GBM disease is generally poor, with a five-year survival rate of approximately 50%.

There are several types of brucellosis, including:

1. Brucella abortus: This type is primarily found in cattle and is the most common form of the disease in humans.
2. Brucella suis: This type is found in pigs and is less common in humans.
3. Brucella melitensis: This type is found in sheep, goats, and other animals, and is more virulent than B. abortus.
4. Brucella canis: This type is found in dogs and is rare in humans.

The symptoms of brucellosis can vary depending on the severity of the infection and the individual's overall health. Common symptoms include:

1. Fever
2. Headache
3. Joint pain
4. Muscle pain
5. Swelling of the lymph nodes and spleen
6. Fatigue
7. Loss of appetite
8. Weight loss

In severe cases, brucellosis can cause complications such as:

1. Endocarditis (infection of the heart valves)
2. Meningitis (inflammation of the lining around the brain and spinal cord)
3. Osteomyelitis (infection of the bone)
4. Testicular inflammation in men
5. Epididymitis (inflammation of the epididymis, a tube that carries sperm from the testicle to the penis)
6. Inflammation of the heart muscle and valves
7. Pneumonia
8. Inflammation of the liver and spleen

Brucellosis is diagnosed through a combination of physical examination, laboratory tests, and imaging studies. Treatment typically involves antibiotics, and early treatment can help prevent complications. Prevention measures include avoiding contact with infected animals and ensuring proper hygiene practices when handling livestock or wild game.

There are several types of thrombosis, including:

1. Deep vein thrombosis (DVT): A clot forms in the deep veins of the legs, which can cause swelling, pain, and skin discoloration.
2. Pulmonary embolism (PE): A clot breaks loose from another location in the body and travels to the lungs, where it can cause shortness of breath, chest pain, and coughing up blood.
3. Cerebral thrombosis: A clot forms in the brain, which can cause stroke or mini-stroke symptoms such as weakness, numbness, or difficulty speaking.
4. Coronary thrombosis: A clot forms in the coronary arteries, which supply blood to the heart muscle, leading to a heart attack.
5. Renal thrombosis: A clot forms in the kidneys, which can cause kidney damage or failure.

The symptoms of thrombosis can vary depending on the location and size of the clot. Some common symptoms include:

1. Swelling or redness in the affected limb
2. Pain or tenderness in the affected area
3. Warmth or discoloration of the skin
4. Shortness of breath or chest pain if the clot has traveled to the lungs
5. Weakness, numbness, or difficulty speaking if the clot has formed in the brain
6. Rapid heart rate or irregular heartbeat
7. Feeling of anxiety or panic

Treatment for thrombosis usually involves medications to dissolve the clot and prevent new ones from forming. In some cases, surgery may be necessary to remove the clot or repair the damaged blood vessel. Prevention measures include maintaining a healthy weight, exercising regularly, avoiding long periods of immobility, and managing chronic conditions such as high blood pressure and diabetes.

Types of Pneumococcal Infections:

1. Pneumonia: This is an infection of the lungs that can cause fever, cough, chest pain, and difficulty breathing.
2. Meningitis: This is an infection of the membranes that cover the brain and spinal cord, which can cause fever, headache, stiff neck, and confusion.
3. Septicemia (bloodstream infection): This is an infection of the blood that can cause fever, chills, and low blood pressure.
4. Sinusitis: This is an infection of the sinuses, which can cause headache, facial pain, and difficulty breathing through the nose.
5. Otitis media (middle ear infection): This is an infection of the middle ear, which can cause ear pain, fever, and hearing loss.

Causes and Risk Factors:

Pneumococcal infections are caused by the bacteria Streptococcus pneumoniae. These bacteria can be spread through close contact with an infected person, such as touching or sharing food and drinks. People who are at high risk for developing pneumococcal infections include:

1. Children under the age of 5 and adults over the age of 65.
2. People with weakened immune systems, such as those with cancer, HIV/AIDS, or taking medications that suppress the immune system.
3. Smokers and people with chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease (COPD).
4. People who have recently had surgery or have a severe injury.
5. Those who live in long-term care facilities or have limited access to healthcare.

Prevention and Treatment:

Preventing pneumococcal infections is important, especially for high-risk individuals. Here are some ways to prevent and treat pneumococcal infections:

1. Vaccination: The pneumococcal conjugate vaccine (PCV) is recommended for children under the age of 5 and adults over the age of 65, as well as for people with certain medical conditions.
2. Hand washing: Frequent hand washing can help prevent the spread of pneumococcal bacteria.
3. Good hygiene: Avoiding close contact with people who are sick and regularly cleaning surfaces that may be contaminated with bacteria can also help prevent infection.
4. Antibiotics: Pneumococcal infections can be treated with antibiotics, but overuse of antibiotics can lead to the development of antibiotic-resistant bacteria. Therefore, antibiotics should only be used when necessary and under the guidance of a healthcare professional.
5. Supportive care: Those with severe pneumococcal infections may require hospitalization and supportive care, such as oxygen therapy or mechanical ventilation.

Conclusion:

Pneumococcal infections can be serious and even life-threatening, especially for high-risk individuals. Prevention and prompt treatment are key to reducing the risk of complications and improving outcomes. Vaccination, good hygiene practices, and appropriate antibiotic use are all important in preventing and treating pneumococcal infections. If you suspect that you or a loved one has a pneumococcal infection, it is essential to seek medical attention right away. With proper care and support, many people with pneumococcal infections can recover fully and resume their normal lives.

Some common types of streptococcal infections include:

1. Strep throat (pharyngitis): an infection of the throat and tonsils that can cause fever, sore throat, and swollen lymph nodes.
2. Sinusitis: an infection of the sinuses (air-filled cavities in the skull) that can cause headache, facial pain, and nasal congestion.
3. Pneumonia: an infection of the lungs that can cause cough, fever, chills, and shortness of breath.
4. Cellulitis: an infection of the skin and underlying tissue that can cause redness, swelling, and warmth over the affected area.
5. Endocarditis: an infection of the heart valves, which can cause fever, fatigue, and swelling in the legs and abdomen.
6. Meningitis: an infection of the membranes covering the brain and spinal cord that can cause fever, headache, stiff neck, and confusion.
7. Septicemia (blood poisoning): an infection of the bloodstream that can cause fever, chills, rapid heart rate, and low blood pressure.

Streptococcal infections are usually treated with antibiotics, which can help clear the infection and prevent complications. In some cases, hospitalization may be necessary to monitor and treat the infection.

Prevention measures for streptococcal infections include:

1. Good hygiene practices, such as washing hands frequently, especially after contact with someone who is sick.
2. Avoiding close contact with people who have streptococcal infections.
3. Keeping wounds and cuts clean and covered to prevent bacterial entry.
4. Practicing safe sex to prevent the spread of streptococcal infections through sexual contact.
5. Getting vaccinated against streptococcus pneumoniae, which can help prevent pneumonia and other infections caused by this bacterium.

It is important to seek medical attention if you suspect you or someone else may have a streptococcal infection, as early diagnosis and treatment can help prevent complications and improve outcomes.

The symptoms of lupus vulgaris typically include:

* Rough, scaly patches on the skin that may be dark red or purple in color
* Itching or burning sensation on the skin
* Skin thickening or hardening
* Painless ulcers or sores on the skin
* Swollen lymph nodes
* Fever
* Headache
* Joint pain or swelling

The diagnosis of lupus vulgaris is based on a combination of clinical findings and laboratory tests. A physical examination of the skin and mucous membranes can reveal characteristic signs of the condition, such as scaly patches or ulcers. Laboratory tests, such as blood tests or biopsies, may be performed to confirm the diagnosis and rule out other conditions.

Treatment of lupus vulgaris typically involves antibiotics, which can help to clear the infection and reduce symptoms. In severe cases, surgical debridement or laser therapy may be necessary to remove damaged tissue and promote healing. In addition, patients with lupus vulgaris may require supportive care to manage symptoms such as pain, itching, and swelling.

Overall, lupus vulgaris is a chronic skin condition that can cause significant discomfort and disfigurement if left untreated. It is important for individuals in regions where the condition is common to be aware of the signs and symptoms and seek medical attention if they suspect they may have the condition. With proper diagnosis and treatment, however, most patients with lupus vulgaris can experience significant improvement in their symptoms and quality of life.

1. Group B streptococcus (GBS): This type of bacterial infection is the leading cause of infections in newborns. GBS can cause a range of complications, including pneumonia, meningitis, and sepsis.
2. Urinary tract infections (UTIs): These are common during pregnancy and can be caused by bacteria such as Escherichia coli (E. coli) or Staphylococcus saprophyticus. UTIs can lead to complications such as preterm labor and low birth weight.
3. HIV: Pregnant women who are infected with HIV can pass the virus to their baby during pregnancy, childbirth, or breastfeeding.
4. Toxoplasmosis: This is an infection caused by a parasite that can be transmitted to the fetus through the placenta. Toxoplasmosis can cause a range of complications, including birth defects and stillbirth.
5. Listeriosis: This is a rare infection caused by eating contaminated food, such as soft cheeses or hot dogs. Listeriosis can cause complications such as miscarriage, stillbirth, and premature labor.
6. Influenza: Pregnant women who contract the flu can be at higher risk for complications such as pneumonia and hospitalization.
7. Herpes simplex virus (HSV): This virus can cause complications such as preterm labor, low birth weight, and neonatal herpes.
8. Human parvovirus (HPV): This virus can cause complications such as preterm labor, low birth weight, and stillbirth.
9. Syphilis: This is a sexually transmitted infection that can be passed to the fetus during pregnancy, leading to complications such as stillbirth, premature birth, and congenital syphilis.
10. Chickenpox: Pregnant women who contract chickenpox can be at higher risk for complications such as preterm labor and low birth weight.

It's important to note that the risks associated with these infections are relatively low, and many pregnant women who contract them will have healthy pregnancies and healthy babies. However, it's still important to be aware of the risks and take steps to protect yourself and your baby.

Here are some ways to reduce your risk of infection during pregnancy:

1. Practice good hygiene: Wash your hands frequently, especially before preparing or eating food.
2. Avoid certain foods: Avoid consuming raw or undercooked meat, eggs, and dairy products, as well as unpasteurized juices and soft cheeses.
3. Get vaccinated: Get vaccinated against infections such as the flu and HPV.
4. Practice safe sex: Use condoms or other forms of barrier protection to prevent the spread of STIs.
5. Avoid close contact with people who are sick: If someone in your household is sick, try to avoid close contact with them if possible.
6. Keep your environment clean: Regularly clean and disinfect surfaces and objects that may be contaminated with germs.
7. Manage stress: High levels of stress can weaken your immune system and make you more susceptible to infection.
8. Get enough rest: Adequate sleep is essential for maintaining a healthy immune system.
9. Stay hydrated: Drink plenty of water throughout the day to help flush out harmful bacteria and viruses.
10. Consider taking prenatal vitamins: Prenatal vitamins can help support your immune system and overall health during pregnancy.

Remember, it's always better to be safe than sorry, so if you suspect that you may have been exposed to an infection or are experiencing symptoms of an infection during pregnancy, contact your healthcare provider right away. They can help determine the appropriate course of action and ensure that you and your baby stay healthy.

There are several key features of inflammation:

1. Increased blood flow: Blood vessels in the affected area dilate, allowing more blood to flow into the tissue and bringing with it immune cells, nutrients, and other signaling molecules.
2. Leukocyte migration: White blood cells, such as neutrophils and monocytes, migrate towards the site of inflammation in response to chemical signals.
3. Release of mediators: Inflammatory mediators, such as cytokines and chemokines, are released by immune cells and other cells in the affected tissue. These molecules help to coordinate the immune response and attract more immune cells to the site of inflammation.
4. Activation of immune cells: Immune cells, such as macrophages and T cells, become activated and start to phagocytose (engulf) pathogens or damaged tissue.
5. Increased heat production: Inflammation can cause an increase in metabolic activity in the affected tissue, leading to increased heat production.
6. Redness and swelling: Increased blood flow and leakiness of blood vessels can cause redness and swelling in the affected area.
7. Pain: Inflammation can cause pain through the activation of nociceptors (pain-sensing neurons) and the release of pro-inflammatory mediators.

Inflammation can be acute or chronic. Acute inflammation is a short-term response to injury or infection, which helps to resolve the issue quickly. Chronic inflammation is a long-term response that can cause ongoing damage and diseases such as arthritis, asthma, and cancer.

There are several types of inflammation, including:

1. Acute inflammation: A short-term response to injury or infection.
2. Chronic inflammation: A long-term response that can cause ongoing damage and diseases.
3. Autoimmune inflammation: An inappropriate immune response against the body's own tissues.
4. Allergic inflammation: An immune response to a harmless substance, such as pollen or dust mites.
5. Parasitic inflammation: An immune response to parasites, such as worms or fungi.
6. Bacterial inflammation: An immune response to bacteria.
7. Viral inflammation: An immune response to viruses.
8. Fungal inflammation: An immune response to fungi.

There are several ways to reduce inflammation, including:

1. Medications such as nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying anti-rheumatic drugs (DMARDs).
2. Lifestyle changes, such as a healthy diet, regular exercise, stress management, and getting enough sleep.
3. Alternative therapies, such as acupuncture, herbal supplements, and mind-body practices.
4. Addressing underlying conditions, such as hormonal imbalances, gut health issues, and chronic infections.
5. Using anti-inflammatory compounds found in certain foods, such as omega-3 fatty acids, turmeric, and ginger.

It's important to note that chronic inflammation can lead to a range of health problems, including:

1. Arthritis
2. Diabetes
3. Heart disease
4. Cancer
5. Alzheimer's disease
6. Parkinson's disease
7. Autoimmune disorders, such as lupus and rheumatoid arthritis.

Therefore, it's important to manage inflammation effectively to prevent these complications and improve overall health and well-being.

The most common parvoviridae infection in animals is feline panleukopenia (FPV) or canine parvovirus (CPV), which affects dogs and cats. These infections are highly contagious and can cause a range of symptoms, including fever, vomiting, diarrhea, lethargy, and loss of appetite. In severe cases, they can lead to life-threatening complications such as anemia, bone marrow failure, and death.

There is no specific treatment for parvoviridae infections, but supportive care such as fluid therapy, antibiotics, and anti-inflammatory medication can help manage symptoms and prevent complications. Vaccination is the most effective way to prevent parvoviridae infections, and vaccines are available for dogs, cats, and other animals.

In humans, parvoviridae infections are rare but can occur through contact with infected animals or contaminated feces. The most common human parvoviridae infection is erythema infectiosum (Fifth disease), which causes a rash, fever, and mild symptoms. Pregnant women who contract parvoviridae infections may experience complications such as miscarriage or preterm labor. There is no specific treatment for human parvoviridae infections, but supportive care can help manage symptoms.

There are several types of disease susceptibility, including:

1. Genetic predisposition: This refers to the inherent tendency of an individual to develop a particular disease due to their genetic makeup. For example, some families may have a higher risk of developing certain diseases such as cancer or heart disease due to inherited genetic mutations.
2. Environmental susceptibility: This refers to the increased risk of developing a disease due to exposure to environmental factors such as pollutants, toxins, or infectious agents. For example, someone who lives in an area with high levels of air pollution may be more susceptible to developing respiratory problems.
3. Lifestyle susceptibility: This refers to the increased risk of developing a disease due to unhealthy lifestyle choices such as smoking, lack of exercise, or poor diet. For example, someone who smokes and is overweight may be more susceptible to developing heart disease or lung cancer.
4. Immune system susceptibility: This refers to the increased risk of developing a disease due to an impaired immune system. For example, people with autoimmune disorders such as HIV/AIDS or rheumatoid arthritis may be more susceptible to opportunistic infections.

Understanding disease susceptibility can help healthcare providers identify individuals who are at risk of developing certain diseases and provide preventive measures or early intervention to reduce the risk of disease progression. Additionally, genetic testing can help identify individuals with a high risk of developing certain diseases, allowing for earlier diagnosis and treatment.

In summary, disease susceptibility refers to the predisposition of an individual to develop a particular disease or condition due to various factors such as genetics, environment, lifestyle choices, and immune system function. Understanding disease susceptibility can help healthcare providers identify individuals at risk and provide appropriate preventive measures or early intervention to reduce the risk of disease progression.

The symptoms of GBS can range from mild to severe and may include:

* Weakness or tingling sensations in the legs, arms, or face
* Muscle weakness that progresses to paralysis
* Loss of reflexes
* Difficulty swallowing or speaking
* Numbness or pain in the hands and feet
* Fatigue and fever

The diagnosis of GBS is based on a combination of symptoms, physical examination findings, and laboratory tests. There is no cure for GBS, but treatment can help manage symptoms and prevent complications. Plasmapheresis, immunoglobulin therapy, and corticosteroids are common treatments used to reduce inflammation and slow the progression of the disease.

GBS is a rare condition that affects about one in 100,000 people per year in the United States. It can affect anyone, but it is more common in children and young adults. The prognosis for GBS varies depending on the severity of the disease, but most people recover fully within a few weeks or months with proper treatment.

In conclusion, Guillain-Barré Syndrome is a rare autoimmune disorder that can cause muscle weakness and paralysis. While there is no cure for GBS, early diagnosis and treatment can help manage symptoms and prevent complications. With proper care, most people with GBS can recover fully within a few weeks or months.

Autoimmune hemolytic anemia (AIHA) is a specific type of hemolytic anemia that occurs when the immune system mistakenly attacks and destroys red blood cells. This can happen due to various underlying causes such as infections, certain medications, and some types of cancer.

In autoimmune hemolytic anemia, the immune system produces antibodies that coat the surface of red blood cells and mark them for destruction by other immune cells called complement proteins. This leads to the premature destruction of red blood cells in the spleen, liver, and other organs.

Symptoms of autoimmune hemolytic anemia can include fatigue, weakness, shortness of breath, jaundice (yellowing of the skin and eyes), dark urine, and a pale or yellowish complexion. Treatment options for AIHA depend on the underlying cause of the disorder, but may include medications to suppress the immune system, plasmapheresis to remove antibodies from the blood, and in severe cases, splenectomy (removal of the spleen) or bone marrow transplantation.

In summary, autoimmune hemolytic anemia is a type of hemolytic anemia that occurs when the immune system mistakenly attacks and destroys red blood cells, leading to premature destruction of red blood cells and various symptoms such as fatigue, weakness, and jaundice. Treatment options depend on the underlying cause of the disorder and may include medications, plasmapheresis, and in severe cases, splenectomy or bone marrow transplantation.

Nephritis is often diagnosed through a combination of physical examination, medical history, and laboratory tests such as urinalysis and blood tests. Treatment for nephritis depends on the underlying cause, but may include antibiotics, corticosteroids, and immunosuppressive medications. In severe cases, dialysis may be necessary to remove waste products from the blood.

Some common types of nephritis include:

1. Acute pyelonephritis: This is a type of bacterial infection that affects the kidneys and can cause sudden and severe symptoms.
2. Chronic pyelonephritis: This is a type of inflammation that occurs over a longer period of time, often as a result of recurrent infections or other underlying conditions.
3. Lupus nephritis: This is a type of inflammation that occurs in people with systemic lupus erythematosus (SLE), an autoimmune disorder that can affect multiple organs.
4. IgA nephropathy: This is a type of inflammation that occurs when an antibody called immunoglobulin A (IgA) deposits in the kidneys and causes damage.
5. Mesangial proliferative glomerulonephritis: This is a type of inflammation that affects the mesangium, a layer of tissue in the kidney that helps to filter waste products from the blood.
6. Minimal change disease: This is a type of nephrotic syndrome (a group of symptoms that include proteinuria, or excess protein in the urine) that is caused by inflammation and changes in the glomeruli, the tiny blood vessels in the kidneys that filter waste products from the blood.
7. Membranous nephropathy: This is a type of inflammation that occurs when there is an abnormal buildup of antibodies called immunoglobulin G (IgG) in the glomeruli, leading to damage to the kidneys.
8. Focal segmental glomerulosclerosis: This is a type of inflammation that affects one or more segments of the glomeruli, leading to scarring and loss of function.
9. Post-infectious glomerulonephritis: This is a type of inflammation that occurs after an infection, such as streptococcal infections, and can cause damage to the kidneys.
10. Acute tubular necrosis (ATN): This is a type of inflammation that occurs when there is a sudden loss of blood flow to the kidneys, causing damage to the tubules, which are tiny tubes in the kidneys that help to filter waste products from the blood.

The symptoms of Chagas disease can vary depending on the severity of the infection and the location of the parasites in the body. In the acute phase, which typically lasts for weeks to months after infection, symptoms may include fever, fatigue, headache, joint pain, and swelling of the eyelids and neck. In some cases, the infection can spread to the heart and digestive system, leading to life-threatening complications such as heart failure, arrhythmias, and intestinal obstruction.

If left untreated, Chagas disease can enter a chronic phase, which can last for years or even decades. During this phase, symptoms may be less severe but can still include fatigue, joint pain, and cardiac problems. In some cases, the infection can reactivate during pregnancy or after exposure to stress, leading to relapses of acute symptoms.

Chagas disease is diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood tests and imaging studies. Treatment typically involves antiparasitic drugs, which can be effective in reducing the severity of symptoms and preventing complications. However, the disease can be difficult to diagnose and treat, particularly in remote areas where medical resources are limited.

Prevention is an important aspect of managing Chagas disease. This includes controlling the population of triatomine bugs through measures such as insecticide spraying and sealing homes, as well as educating people about the risks of the disease and how to avoid infection. In addition, blood banks in areas where Chagas disease is common screen donated blood for the parasite to prevent transmission through blood transfusions.

Overall, Chagas disease is a significant public health problem in Latin America and can have severe consequences if left untreated. Early diagnosis and treatment are important to prevent complications and improve outcomes for those infected with this disease.

Hantavirus infections can cause a range of diseases, including:

1. Hemorrhagic fever with renal syndrome (HFRS): This is the most common form of hantavirus infection and is characterized by fever, hemorrhaging, and failure of the kidneys.
2. Hypereosinophilic syndrome (HES): This is a rare form of hantavirus infection that is characterized by an abnormal increase in the number of eosinophils in the blood.
3. Pulmonary hantavirus infection: This is a rare form of hantavirus infection that affects the lungs and can cause respiratory failure.
4. Cardiac hantavirus infection: This is a rare form of hantavirus infection that affects the heart and can cause cardiac failure.

The symptoms of hantavirus infections can vary depending on the type of disease, but may include fever, headache, muscle pain, vomiting, diarrhea, and abdominal pain. In severe cases, hantavirus infections can lead to organ failure and death.

Hantaviruses are primarily transmitted through contact with the urine, saliva, or feces of infected rodents, such as mice and rats. The virus can also be spread through contact with contaminated materials, such as dust and soil, that have come into contact with infected rodents.

There is no specific treatment for hantavirus infections, but supportive care, such as fluid replacement and oxygen therapy, may be provided to manage symptoms. Prevention of hantavirus infections is primarily focused on avoiding contact with infected rodents and their bodily fluids, as well as taking precautions when cleaning up contaminated areas.

Symptoms of anaphylaxis include:

1. Swelling of the face, lips, tongue, and throat
2. Difficulty breathing or swallowing
3. Abdominal cramps
4. Nausea and vomiting
5. Rapid heartbeat
6. Feeling of impending doom or loss of consciousness

Anaphylaxis is diagnosed based on a combination of symptoms, medical history, and physical examination. Treatment for anaphylaxis typically involves administering epinephrine (adrenaline) via an auto-injector, such as an EpiPen or Auvi-Q. Additional treatments may include antihistamines, corticosteroids, and oxygen therapy.

Prevention of anaphylaxis involves avoiding known allergens and being prepared to treat a reaction if it occurs. If you have a history of anaphylaxis, it is important to carry an EpiPen or other emergency medication with you at all times. Wearing a medical alert bracelet or necklace can also help to notify others of your allergy and the need for emergency treatment.

In severe cases, anaphylaxis can lead to unconsciousness, seizures, and even death. Prompt treatment is essential to prevent these complications and ensure a full recovery.

Recurrence can also refer to the re-emergence of symptoms in a previously treated condition, such as a chronic pain condition that returns after a period of remission.

In medical research, recurrence is often studied to understand the underlying causes of disease progression and to develop new treatments and interventions to prevent or delay its return.

1. Bubonic plague: This is the most common form of the disease and is characterized by the development of swollen and painful lymph nodes (called buboes) in the groin, armpits, or neck.
2. Pneumonic plague: This form of the disease affects the lungs and can be transmitted from person to person through respiratory droplets. It is highly contagious and can be fatal if left untreated.
3. Septicemic plague: This form of the disease occurs when the bacteria enter the bloodstream directly, without going through the lymph nodes or lungs. It can cause fever, chills, abdominal pain, and bleeding into the skin and organs.

Plague has a long history of being a major public health threat, with pandemics occurring in the Middle Ages and other times throughout history. In modern times, plague is still present in some parts of the world, particularly in rural areas of the western United States and in parts of Africa and Asia.

Treatment of plague typically involves antibiotics, which can be effective if started early in the course of the illness. However, resistance to these antibiotics has been a growing concern in recent years, making it increasingly difficult to treat the disease effectively.

Prevention of plague primarily involves controlling the population of infected fleas and other vectors, as well as avoiding contact with infected animals or people. This can be achieved through measures such as using insecticides, wearing protective clothing and gear, and practicing good hygiene. Vaccines are also available for some forms of the disease, but they are not widely used due to their limited effectiveness and the availability of other treatment options.

Overall, plague is a serious and potentially deadly disease that requires prompt medical attention if symptoms persist or worsen over time. While treatment options exist, prevention is key to avoiding infection and controlling the spread of the disease.

There are several types of pemphigus, including:

1. Pemphigus vulgaris: This is the most common form of the disease and is characterized by the formation of large, painful blisters on the skin and mucous membranes.
2. Pemphigus foliaceus: This type of pemphigus is characterized by the formation of smaller, crusting sores on the skin.
3. Pemphigus erythematosus: This type of pemphigus is characterized by the formation of flat, red sores on the skin.
4. Bullous pemphigoid: This is a rare form of pemphigus that is characterized by the formation of large, fluid-filled blisters on the skin.

Treatment for pemphigus typically involves the use of corticosteroids and immunosuppressive drugs to reduce inflammation and suppress the immune system. In severe cases, hospitalization may be necessary to manage complications such as infection and fluid loss.

Prevention of pemphigus is difficult, but avoiding exposure to known triggers such as certain medications and taking steps to maintain good skin care can help reduce the risk of developing the disease. Early diagnosis and treatment are important to prevent complications and improve outcomes for patients with pemphigus.

The term "immune complex disease" was first used in the 1960s to describe a group of conditions that were thought to be caused by the formation of immune complexes. These diseases include:

1. Systemic lupus erythematosus (SLE): an autoimmune disorder that can affect multiple organ systems and is characterized by the presence of anti-nuclear antibodies.
2. Rheumatoid arthritis (RA): an autoimmune disease that causes inflammation in the joints and can lead to joint damage.
3. Type III hypersensitivity reaction: a condition in which immune complexes are deposited in tissues, leading to inflammation and tissue damage.
4. Pemphigus: a group of autoimmune diseases that affect the skin and mucous membranes, characterized by the presence of autoantibodies against desmosomal antigens.
5. Bullous pemphigoid: an autoimmune disease that affects the skin and is characterized by the formation of large blisters.
6. Myasthenia gravis: an autoimmune disorder that affects the nervous system, causing muscle weakness and fatigue.
7. Goodpasture's syndrome: a rare autoimmune disease that affects the kidneys and lungs, characterized by the presence of immune complexes in the glomeruli of the kidneys.
8. Hemolytic uremic syndrome (HUS): a condition in which red blood cells are destroyed and waste products accumulate in the kidneys, leading to kidney failure.

Immune complex diseases can be caused by various factors, including genetic predisposition, environmental triggers, and exposure to certain drugs or toxins. Treatment options for these diseases include medications that suppress the immune system, such as corticosteroids and immunosuppressive drugs, and plasmapheresis, which is a process that removes harmful antibodies from the blood. In some cases, organ transplantation may be necessary.

In conclusion, immune complex diseases are a group of disorders that occur when the body's immune system mistakenly attacks its own tissues and organs, leading to inflammation and damage. These diseases can affect various parts of the body, including the skin, kidneys, lungs, and nervous system. Treatment options vary depending on the specific disease and its severity, but may include medications that suppress the immune system and plasmapheresis.

There are many different types of collagen diseases, each with its own set of symptoms and characteristics. Some common examples include:

* Osteogenesis imperfecta (OI): A genetic disorder that affects the development of bones and connective tissue, leading to fragile bones, joint deformities, and other complications.
* Ehlers-Danlos syndrome (EDS): A group of genetic disorders that affect the production and structure of collagen, leading to loose joints, bruising, and other symptoms.
* Marfan syndrome: A genetic disorder that affects the body's connective tissue, particularly the heart, blood vessels, and joints. It can cause tall stature, long limbs, and cardiovascular problems.
* Cutis laxa: A rare genetic disorder that affects the production of collagen in the skin, leading to loose, wrinkled skin and other complications.
* Pseudoxanthoma elasticum (PXE): A genetic disorder that affects the elastic tissue in the skin, leading to mineral deposits and changes in the skin's texture and color.

Collagen diseases can be caused by a variety of factors, including genetics, environmental exposures, and autoimmune disorders. Treatment for these conditions can vary depending on the specific type and severity of the disease, but may include medication, physical therapy, and surgery.

The symptoms of rotavirus infection can range from mild to severe and may include:

* Diarrhea
* Vomiting
* Fever
* Abdominal pain
* Dehydration
* Loss of appetite
* Weight loss

In severe cases, rotavirus infection can lead to complications such as:

* Dehydration
* Malnutrition
* Electrolyte imbalance
* Acute kidney injury
* Septicemia
* Death (rare)

The diagnosis of rotavirus infection is based on a combination of clinical symptoms, laboratory tests, and medical imaging. Laboratory tests may include:

* Stool testing for the presence of rotavirus antigens or genetic material
* Blood testing for signs of dehydration or electrolyte imbalance

There is no specific treatment for rotavirus infection, but rather supportive care to manage symptoms and prevent complications. This may include:

* Fluid replacement therapy to prevent dehydration
* Anti-diarrheal medications to slow down bowel movements
* Pain management with medication
* Rest and hydration

Prevention is key in managing rotavirus infections. Vaccines are available to protect against rotavirus infection, and good hygiene practices such as frequent handwashing and avoiding close contact with people who are sick can also help prevent the spread of the virus.

Overall, while rotavirus infections can be severe and potentially life-threatening, with proper supportive care and prevention measures, most children recover fully within a few days to a week.

The symptoms of FMD can vary depending on the severity of the infection and the age of the animal. In mild cases, the only symptoms may be a slight fever and blisters on the feet, while in severe cases, the blisters may become ulcers, and the animal may develop difficulty swallowing or eating, leading to weight loss and dehydration.

The virus is transmitted through contact with infected animals or their secretions, such as saliva, mucus, and manure. It can also be spread by contaminated feed or equipment, and by insects such as flies and midges. The incubation period for FMD is typically 3-14 days, but it can range from 2 to 30 days.

FMD is a significant threat to animal health and welfare, and can have severe economic consequences for farmers and the livestock industry as a whole. In addition, the disease can be transmitted to humans through close contact with infected animals, although this is rare.

There are several tests available to diagnose FMD, including serological tests such as ELISAs and virus isolation techniques. The disease is typically controlled through a combination of stamping out (killing all animals in an affected herd) and vaccination. Vaccination can be used to protect animals that are not yet infected, or to reduce the severity of the disease in animals that are already infected.

In summary, foot-and-mouth disease is a highly contagious viral disease that affects cloven-hoofed animals and can have severe economic and animal health consequences. It is characterized by fever, blisters on the feet and in the mouth, and difficulty swallowing or eating. Diagnosis is based on clinical signs and laboratory tests, and control measures include stamping out and vaccination.

Symptoms of type 1 diabetes can include increased thirst and urination, blurred vision, fatigue, weight loss, and skin infections. If left untreated, type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, and blindness.

Type 1 diabetes is diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood glucose measurements and autoantibody tests. Treatment typically involves insulin therapy, which can be administered via injections or an insulin pump, as well as regular monitoring of blood glucose levels and appropriate lifestyle modifications such as a healthy diet and regular exercise.

Examples of experimental leukemias include:

1. X-linked agammaglobulinemia (XLA): A rare inherited disorder that leads to a lack of antibody production and an increased risk of infections.
2. Diamond-Blackfan anemia (DBA): A rare inherited disorder characterized by a failure of red blood cells to mature in the bone marrow.
3. Fanconi anemia: A rare inherited disorder that leads to a defect in DNA repair and an increased risk of cancer, particularly leukemia.
4. Ataxia-telangiectasia (AT): A rare inherited disorder characterized by progressive loss of coordination, balance, and speech, as well as an increased risk of cancer, particularly lymphoma.
5. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21, which increases the risk of developing leukemia, particularly acute myeloid leukemia (AML).

These experimental leukemias are often used in research studies to better understand the biology of leukemia and to develop new treatments.

Encephalitis can cause a range of symptoms, including fever, headache, confusion, seizures, and loss of consciousness. In severe cases, encephalitis can lead to brain damage, coma, and even death.

The diagnosis of encephalitis is based on a combination of clinical signs, laboratory tests, and imaging studies. Laboratory tests may include blood tests to detect the presence of antibodies or antigens specific to the causative agent, as well as cerebrospinal fluid (CSF) analysis to look for inflammatory markers and/or bacteria or viruses in the CSF. Imaging studies, such as CT or MRI scans, may be used to visualize the brain and identify any areas of damage or inflammation.

Treatment of encephalitis typically involves supportive care, such as intravenous fluids, oxygen therapy, and medication to manage fever and pain. Antiviral or antibacterial drugs may be used to target the specific causative agent, if identified. In severe cases, hospitalization in an intensive care unit (ICU) may be necessary to monitor and manage the patient's condition.

Prevention of encephalitis includes vaccination against certain viruses that can cause the condition, such as herpes simplex virus and Japanese encephalitis virus. Additionally, avoiding exposure to mosquitoes and other insects that can transmit viruses or bacteria that cause encephalitis, as well as practicing good hygiene and sanitation, can help reduce the risk of infection.

Overall, encephalitis is a serious and potentially life-threatening condition that requires prompt medical attention for proper diagnosis and treatment. With appropriate care, many patients with encephalitis can recover fully or partially, but some may experience long-term neurological complications or disability.

Neoplastic metastasis can occur in any type of cancer but are more common in solid tumors such as carcinomas (breast, lung, colon). It is important for cancer diagnosis and prognosis because metastasis indicates that the cancer has spread beyond its original site and may be more difficult to treat.

Metastases can appear at any distant location but commonly found sites include the liver, lungs, bones, brain, and lymph nodes. The presence of metastases indicates a higher stage of cancer which is associated with lower survival rates compared to localized cancer.

There are three main forms of anthrax:

1. Cutaneous (skin) anthrax: This is the most common form of the disease and causes skin lesions that can progress to severe inflammation and scarring.
2. Inhalational (lung) anthrax: This is the most deadly form of the disease and causes serious respiratory problems, including fever, chills, and difficulty breathing.
3. Gastrointestinal (GI) anthrax: This form of the disease causes symptoms such as diarrhea, abdominal pain, and vomiting.

Anthrax can be diagnosed through a variety of tests, including blood tests and imaging studies. Treatment typically involves antibiotics, but the effectiveness of treatment depends on the severity of the infection and the timing of treatment.

Prevention of anthrax primarily involves vaccination of animals and control of animal products to prevent the spread of the bacteria. In addition, public health measures such as surveillance and quarantine can help prevent the spread of the disease to humans.

The medical management of anthrax involves a combination of antibiotics, supportive care, and wound management. Early diagnosis and treatment are critical to preventing serious complications and death.

The causes of colorectal neoplasms are not fully understood, but factors such as age, genetics, diet, and lifestyle have been implicated. Symptoms of colorectal cancer can include changes in bowel habits, blood in the stool, abdominal pain, and weight loss. Screening for colorectal cancer is recommended for adults over the age of 50, as it can help detect early-stage tumors and improve survival rates.

There are several subtypes of colorectal neoplasms, including adenomas (which are precancerous polyps), carcinomas (which are malignant tumors), and lymphomas (which are cancers of the immune system). Treatment options for colorectal cancer depend on the stage and location of the tumor, but may include surgery, chemotherapy, radiation therapy, or a combination of these.

Research into the causes and treatment of colorectal neoplasms is ongoing, and there has been significant progress in recent years. Advances in screening and treatment have improved survival rates for patients with colorectal cancer, and there is hope that continued research will lead to even more effective treatments in the future.

The symptoms of tetanus can develop anywhere from 3 days to 3 weeks after exposure to the bacteria, and they can include:

* Muscle stiffness and spasms, especially in the neck, jaw, and limbs
* Difficulty swallowing or speaking
* Fever and sweating
* Headache and fatigue
* Rigidity and spasticity of muscles
* Abdominal cramps and diarrhea
* In severe cases, tetanus can cause serious complications such as pneumonia, heart problems, and death.

Tetanus is diagnosed through a physical examination, medical history, and laboratory tests. Treatment typically involves administering antitoxin medication to neutralize the effects of the bacterial toxins, as well as providing supportive care such as pain management and wound care.

Prevention is key in avoiding tetanus, and this can be achieved through:

* Vaccination: Tetanus vaccines are available and recommended for individuals of all ages, especially for those who have open wounds or injuries.
* Proper wound care: Keeping wounds clean and covered can help prevent the entry of bacteria into the body.
* Avoiding risky behaviors: Avoiding activities that can cause injury, such as playing contact sports or engaging in dangerous hobbies, can reduce the risk of developing tetanus.

Overall, tetanus is a serious medical condition that requires prompt treatment and prevention measures to avoid complications and ensure a full recovery.

Definition:

Veterinary abortion refers to the intentional termination of a pregnancy in an animal, typically a farm or domesticated animal such as a dog, cat, horse, cow, or pig. The procedure is performed by a veterinarian and is usually done for reasons such as unwanted breeding, disease or genetic disorders in the fetus, or to prevent overpopulation of certain species.

Types of Veterinary Abortion:

1. Spontaneous Abortion (Miscarriage): This occurs naturally when the pregnancy is terminated by natural causes such as infection or trauma.
2. Induced Abortion: This is performed by a veterinarian using various methods such as injection of drugs or surgical procedures to terminate the pregnancy.

Methods of Veterinary Abortion:

1. Drug-induced abortion: This method involves administering medication to the animal to cause uterine contractions and expulsion of the fetus.
2. Surgical abortion: This method involves surgical intervention to remove the fetus from the uterus, usually through a small incision in the abdomen.
3. Non-surgical abortion: This method uses a device to remove the fetus from the uterus without making an incision.

Complications and Risks of Veterinary Abortion:

1. Infection: As with any surgical procedure, there is a risk of infection.
2. Hemorrhage: Excessive bleeding can occur during or after the procedure.
3. Uterine rupture: In rare cases, the uterus may rupture during the procedure.
4. Incomplete abortion: In some cases, not all of the fetus may be removed, leading to complications later on.
5. Scarring: Scars may form in the uterus or abdomen after the procedure, which can lead to reproductive problems in the future.

Prevention of Unwanted Pregnancies in Animals:

1. Spaying/neutering: This is the most effective way to prevent unwanted pregnancies in animals.
2. Breeding management: Proper breeding management, including selecting healthy and fertile breeding animals, can help reduce the risk of unwanted pregnancies.
3. Use of contraceptives: Hormonal contraceptives, such as injection or implants, can be used in some species to prevent pregnancy.
4. Behavioral management: In some cases, behavioral management techniques, such as separation or rehoming of animals, may be necessary to prevent unwanted breeding.

Ethical Considerations of Veterinary Abortion:

1. Animal welfare: The procedure should only be performed when necessary and with the intention of improving the animal's welfare.
2. Owner consent: Owners must provide informed consent before the procedure can be performed.
3. Veterinarian expertise: The procedure should only be performed by a licensed veterinarian with experience in the procedure.
4. Alternative options: All alternative options, such as spaying/neutering or rehoming, should be considered before performing an abortion.

Conclusion:

Veterinary abortion is a complex issue that requires careful consideration of ethical and practical factors. While it may be necessary in some cases to prevent the suffering of unwanted litters, it is important to approach the procedure with caution and respect for animal welfare. Owners must provide informed consent, and the procedure should only be performed by a licensed veterinarian with experience in the procedure. Alternative options, such as spaying/neutering or rehoming, should also be considered before performing an abortion. Ultimately, the decision to perform a veterinary abortion should be made with the intention of improving the animal's welfare and quality of life.

Multiple myeloma is the second most common type of hematologic cancer after non-Hodgkin's lymphoma, accounting for approximately 1% of all cancer deaths worldwide. It is more common in older adults, with most patients being diagnosed over the age of 65.

The exact cause of multiple myeloma is not known, but it is believed to be linked to genetic mutations that occur in the plasma cells. There are several risk factors that have been associated with an increased risk of developing multiple myeloma, including:

1. Family history: Having a family history of multiple myeloma or other plasma cell disorders increases the risk of developing the disease.
2. Age: The risk of developing multiple myeloma increases with age, with most patients being diagnosed over the age of 65.
3. Race: African Americans are at higher risk of developing multiple myeloma than other races.
4. Obesity: Being overweight or obese may increase the risk of developing multiple myeloma.
5. Exposure to certain chemicals: Exposure to certain chemicals such as pesticides, solvents, and heavy metals has been linked to an increased risk of developing multiple myeloma.

The symptoms of multiple myeloma can vary depending on the severity of the disease and the organs affected. Common symptoms include:

1. Bone pain: Pain in the bones, particularly in the spine, ribs, or long bones, is a common symptom of multiple myeloma.
2. Fatigue: Feeling tired or weak is another common symptom of the disease.
3. Infections: Patients with multiple myeloma may be more susceptible to infections due to the impaired functioning of their immune system.
4. Bone fractures: Weakened bones can lead to an increased risk of fractures, particularly in the spine, hips, or ribs.
5. Kidney problems: Multiple myeloma can cause damage to the kidneys, leading to problems such as kidney failure or proteinuria (excess protein in the urine).
6. Anemia: A low red blood cell count can cause anemia, which can lead to fatigue, weakness, and shortness of breath.
7. Increased calcium levels: High levels of calcium in the blood can cause symptoms such as nausea, vomiting, constipation, and confusion.
8. Neurological problems: Multiple myeloma can cause neurological problems such as headaches, numbness or tingling in the arms and legs, and difficulty with coordination and balance.

The diagnosis of multiple myeloma typically involves a combination of physical examination, medical history, and laboratory tests. These may include:

1. Complete blood count (CBC): A CBC can help identify abnormalities in the numbers and characteristics of different types of blood cells, including red blood cells, white blood cells, and platelets.
2. Serum protein electrophoresis (SPEP): This test measures the levels of different proteins in the blood, including immunoglobulins (antibodies) and abnormal proteins produced by myeloma cells.
3. Urine protein electrophoresis (UPEP): This test measures the levels of different proteins in the urine.
4. Immunofixation: This test is used to identify the type of antibody produced by myeloma cells and to rule out other conditions that may cause similar symptoms.
5. Bone marrow biopsy: A bone marrow biopsy involves removing a sample of tissue from the bone marrow for examination under a microscope. This can help confirm the diagnosis of multiple myeloma and determine the extent of the disease.
6. Imaging tests: Imaging tests such as X-rays, CT scans, or MRI scans may be used to assess the extent of bone damage or other complications of multiple myeloma.
7. Genetic testing: Genetic testing may be used to identify specific genetic abnormalities that are associated with multiple myeloma and to monitor the response of the disease to treatment.

It's important to note that not all patients with MGUS or smoldering myeloma will develop multiple myeloma, and some patients with multiple myeloma may not have any symptoms at all. However, if you are experiencing any of the symptoms listed above or have a family history of multiple myeloma, it's important to talk to your doctor about your risk and any tests that may be appropriate for you.

Epidemiology of Haemophilus Infections:

* Incidence: Hib disease was once a major cause of childhood meningitis and sepsis, but the introduction of Hib vaccines in the 1980s has significantly reduced the incidence of invasive Hib disease. Non-invasive Hib disease, such as otitis media, is still common.
* Prevalence: Hib is the leading cause of bacterial meningitis in children under the age of 5 worldwide. In developed countries, the prevalence of invasive Hib disease has decreased significantly since the introduction of vaccines, but it remains a significant public health problem in developing countries.
* Risk factors: young age, poverty, lack of access to healthcare, and poor sanitation and hygiene are risk factors for Hib disease. Children under the age of 5, especially those under the age of 2, are at highest risk for invasive Hib disease.

Pathophysiology of Haemophilus Infections:

* Mechanisms of infection: H. influenzae can cause both respiratory and non-respiratory infections by colonizing the nasopharynx and other mucosal surfaces. The bacteria can then disseminate to other parts of the body, causing invasive disease.
* Immune response: the immune response to Hib infection involves both humoral and cell-mediated immunity. Antibodies play a crucial role in protecting against reinfection, while T cells and macrophages help to clear the bacteria from the body.

Clinical Presentation of Haemophilus Infections:

* Respiratory infections: H. influenzae can cause various respiratory tract infections, including bronchitis, pneumonia, and sinusitis. Symptoms may include fever, cough, sore throat, and difficulty breathing.
* Non-respiratory infections: Hib can cause a range of non-respiratory infections, including meningitis, epiglottitis, and septic arthritis. These infections can have more severe symptoms and may require prompt medical attention.

Diagnosis of Haemophilus Infections:

* Diagnostic tests: diagnosis of Hib disease is based on a combination of clinical findings, laboratory tests, and radiologic studies. Blood cultures, lumbar puncture, and chest x-rays may be used to confirm the presence of the bacteria and assess the extent of infection.
* Laboratory testing: identification of Hib is based on its distinctive gram stain appearance and biochemical characteristics. Polymerase chain reaction (PCR) and DNA sequencing are also used to confirm the diagnosis.

Treatment and Prevention of Haemophilus Infections:

* Antibiotics: Hib infections are treated with antibiotics, such as amoxicillin or ceftriaxone. The choice of antibiotic depends on the severity and location of the infection.
* Vaccination: the Hib vaccine is recommended for children under 5 years old to prevent Hib disease. The vaccine is given in a series of 3-4 doses, with the first dose given at 2 months of age.
* Good hygiene practices: good hygiene practices, such as frequent handwashing and proper cleaning and disinfection, can help prevent the spread of Hib bacteria.

Complications of Haemophilus Infections:

* Meningitis: Hib meningitis can have serious complications, including hearing loss, learning disabilities, and seizures.
* Permanent brain damage: Hib infections can cause permanent brain damage, including cognitive and behavioral impairments.
* Respiratory failure: severe Hib pneumonia can lead to respiratory failure, which may require mechanical ventilation.
* Death: Hib infections can be life-threatening, especially in young children and those with underlying medical conditions.

In conclusion, Haemophilus infections are a serious public health concern, particularly for young children and those with underlying medical conditions. Prevention through vaccination and good hygiene practices is essential to reduce the risk of infection. Early diagnosis and treatment are critical to prevent complications and improve outcomes.

Some common poultry diseases include:

1. Avian influenza (bird flu): A highly contagious viral disease that affects birds and can be transmitted to humans.
2. Newcastle disease: A viral disease that causes respiratory and gastrointestinal symptoms in birds.
3. Infectious bronchitis: A viral disease that causes respiratory symptoms in birds.
4. Marek's disease: A viral disease that affects the nervous system of birds.
5. Coccidiosis: A parasitic disease caused by the Eimeria protozoa, which can cause diarrhea and weight loss in birds.
6. Chicken anemia virus: A viral disease that causes anemia and weakened immune systems in chickens.
7. Fowl pox: A viral disease that causes skin lesions and other symptoms in birds.
8. Avian encephalomyelitis (AE): A viral disease that affects the brain and spinal cord of birds, causing neurological symptoms such as paralysis and death.
9. Mycoplasmosis: A bacterial disease caused by the Mycoplasma bacteria, which can cause respiratory and other symptoms in birds.
10. Aspergillosis: A fungal disease that affects the respiratory system of birds, causing symptoms such as coughing and difficulty breathing.

Poultry diseases can have a significant impact on bird health and productivity, and can also be transmitted to humans in some cases. It is important for poultry farmers and owners to monitor their flocks closely and take steps to prevent the spread of disease, such as providing clean water and feed, maintaining good hygiene, and vaccinating birds against certain diseases.

There are several different types of tumor viruses, including:

1. Human papillomavirus (HPV): This virus is responsible for causing cervical cancer and other types of cancer, such as anal, vulvar, vaginal, and penile cancer.
2. Hepatitis B virus (HBV): This virus can cause liver cancer, known as hepatocellular carcinoma (HCC).
3. Human immunodeficiency virus (HIV): This virus can increase the risk of developing certain types of cancer, such as Kaposi's sarcoma and lymphoma.
4. Epstein-Barr virus (EBV): This virus has been linked to the development of Burkitt lymphoma and Hodgkin's lymphoma.
5. Merkel cell polyomavirus (MCPyV): This virus is responsible for causing Merkel cell carcinoma, a rare type of skin cancer.
6. Human T-lymphotropic virus (HTLV-1): This virus has been linked to the development of adult T-cell leukemia/lymphoma (ATLL).

Tumor virus infections can be diagnosed through a variety of methods, including blood tests, imaging studies, and biopsies. Treatment for these infections often involves antiviral medications, chemotherapy, and surgery. In some cases, tumors may also be removed through radiation therapy.

It's important to note that not all tumors or cancers are caused by viruses, and that many other factors, such as genetics and environmental exposures, can also play a role in the development of cancer. However, for those tumor virus infections that are caused by a specific virus, early diagnosis and treatment can improve outcomes and reduce the risk of complications.

Overall, tumor virus infections are a complex and diverse group of conditions, and further research is needed to better understand their causes and develop effective treatments.

Neuroblastoma is caused by a genetic mutation that affects the development and growth of nerve cells. The cancerous cells are often sensitive to chemotherapy, but they can be difficult to remove surgically because they are deeply embedded in the nervous system.

There are several different types of neuroblastoma, including:

1. Infantile neuroblastoma: This type of neuroblastoma occurs in children under the age of one and is often more aggressive than other types of the cancer.
2. Juvenile neuroblastoma: This type of neuroblastoma occurs in children between the ages of one and five and tends to be less aggressive than infantile neuroblastoma.
3. Adult neuroblastoma: This type of neuroblastoma occurs in adults and is rare.
4. Metastatic neuroblastoma: This type of neuroblastoma has spread to other parts of the body, such as the bones or liver.

Symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include:

* Abdominal pain
* Fever
* Loss of appetite
* Weight loss
* Fatigue
* Bone pain
* Swelling in the abdomen or neck
* Constipation
* Increased heart rate

Diagnosis of neuroblastoma typically involves a combination of imaging tests, such as CT scans and MRI scans, and biopsies to confirm the presence of cancerous cells. Treatment for neuroblastoma usually involves a combination of chemotherapy, surgery, and radiation therapy. The prognosis for neuroblastoma varies depending on the type of cancer, the age of the child, and the stage of the disease. In general, the younger the child and the more aggressive the treatment, the better the prognosis.

Synonyms: JE

Definition:

A viral infection that affects the brain and is transmitted by the bite of an infected Culex species mosquito. The virus is found throughout Asia and the western Pacific region.

Symptoms:

* Fever
* Headache
* Vomiting
* Seizures
* Confusion
* Weakness in the limbs

Diagnosis:

* Blood tests to detect antibodies against the virus
* Imaging studies such as CT or MRI scans to look for signs of brain inflammation

Treatment:

* Supportive care, such as intravenous fluids and oxygen therapy, to manage symptoms and prevent complications
* Antiviral medications may be given in some cases

Prognosis:

* The prognosis for Japanese encephalitis is generally good if treatment is received promptly and the patient is otherwise healthy. However, in severe cases or those with underlying medical conditions, the virus can cause significant brain damage and lead to long-term complications or death.

Prevention:

* Vaccination against Japanese encephalitis is recommended for people who live in or travel to areas where the virus is common, particularly children and adults who plan to spend extended periods of time outdoors. The vaccine is effective in preventing severe illness and death from the virus.
* Mosquito control measures, such as using insect repellents and wearing protective clothing, can also help reduce the risk of infection.

There are several types of coronaviridae infections, including:

1. Common cold: This is the most common type of coronavirus infection, and it is estimated that the common cold affects millions of people worldwide each year.
2. Seasonal flu: Some coronaviruses can cause seasonal flu, which is a more severe illness than the common cold.
3. SARS (severe acute respiratory syndrome): This is a serious and potentially life-threatening infection that was first identified in 2003.
4. MERS-CoV (Middle East respiratory syndrome coronavirus): This is another serious and potentially life-threatening infection that was first identified in 2012.
5. COVID-19: This is a viral respiratory disease that was first identified in Wuhan, China in December 2019. It has since spread to become a global pandemic.

The symptoms of coronaviridae infections can vary depending on the type of virus and the individual infected. Common symptoms include:

* Fever
* Cough
* Sore throat
* Runny nose
* Headache
* Fatigue
* Diarrhea (in some cases)

In severe cases, coronaviridae infections can lead to complications such as pneumonia, bronchitis, and sinus and ear infections. In rare cases, they can also lead to more serious conditions such as acute respiratory distress syndrome (ARDS) and multi-organ failure.

There is no specific treatment for coronaviridae infections, but antiviral medications may be prescribed in some cases. Treatment is generally focused on relieving symptoms and supporting the body's immune system. Prevention measures include good hygiene practices such as washing hands frequently, avoiding close contact with people who are sick, and wearing masks in public places. Vaccines are also being developed to prevent COVID-19 and other coronaviridae infections.

Coronaviridae infections can be diagnosed through a variety of tests, including:

* Rapid antigen tests: These tests can detect the presence of the virus in a person's nose and throat.
* PCR (polymerase chain reaction) tests: These tests can detect the genetic material of the virus in a person's respiratory tract.
* Serology tests: These tests can detect antibodies against the virus in a person's blood.

Overall, coronaviridae infections can be serious and potentially life-threatening, but with proper diagnosis and treatment, many people are able to recover from them. Prevention measures such as good hygiene practices and vaccination can also help prevent the spread of these infections.

Pathologic neovascularization can be seen in a variety of conditions, including cancer, diabetic retinopathy, and age-related macular degeneration. In cancer, for example, the formation of new blood vessels can help the tumor grow and spread to other parts of the body. In diabetic retinopathy, the growth of new blood vessels in the retina can cause vision loss and other complications.

There are several different types of pathologic neovascularization, including:

* Angiosarcoma: a type of cancer that arises from the cells lining blood vessels
* Hemangiomas: benign tumors that are composed of blood vessels
* Cavernous malformations: abnormal collections of blood vessels in the brain or other parts of the body
* Pyogenic granulomas: inflammatory lesions that can form in response to trauma or infection.

The diagnosis of pathologic neovascularization is typically made through a combination of physical examination, imaging studies (such as ultrasound, CT scans, or MRI), and biopsy. Treatment options vary depending on the underlying cause of the condition, but may include medications, surgery, or radiation therapy.

In summary, pathologic neovascularization is a process that occurs in response to injury or disease, and it can lead to serious complications. It is important for healthcare professionals to be aware of this condition and its various forms in order to provide appropriate diagnosis and treatment.

The diagnosis of leptospirosis is based on a combination of clinical symptoms, laboratory tests, and the patient's exposure history. The most common diagnostic test is a blood test that detects antibodies against Leptospira. Treatment typically involves antibiotics and supportive care to manage symptoms.

Prevention of leptospirosis includes avoiding exposure to contaminated water, soil, or food, wearing protective clothing when working with animals or in areas where the bacteria may be present, and vaccinating animals that are at risk of infection. The disease is more common in tropical and subtropical regions, and it affects people who work outdoors or engage in activities that expose them to contaminated water, such as farmers, veterinarians, and sewer workers.

In medical terminology, leptospirosis is classified as a zoonotic disease, meaning it can be transmitted between animals and humans. The bacteria that cause the infection are gram-negative, aerobic, and helical shaped, and they belong to the family Leptospiraceae.

In summary, leptospirosis is a bacterial infection that can affect both humans and animals, and it is spread through contact with contaminated water, soil, or food. It can cause a wide range of symptoms, from mild to severe, and can lead to serious complications if left untreated. Prevention measures include avoiding exposure to contaminated sources, wearing protective clothing, and vaccinating animals at risk.

Causes: Thyroiditis can be caused by a viral or bacterial infection, autoimmune disorders, or radiation exposure.

Symptoms: Symptoms of thyroiditis may include pain and swelling in the neck, difficulty swallowing, hoarseness, fatigue, weight gain, muscle weakness, and depression.

Types: There are several types of thyroiditis, including subacute thyroiditis, silent thyroiditis, and postpartum thyroiditis.

Diagnosis: Thyroiditis is typically diagnosed through a combination of physical examination, blood tests, and imaging studies such as ultrasound or CT scans.

Treatment: Treatment for thyroiditis usually involves antibiotics to treat any underlying infection, pain relief medication to manage neck swelling and discomfort, and hormone replacement therapy to address hormonal imbalances. In some cases, surgery may be necessary to remove part or all of the affected thyroid gland.

Complications: Untreated thyroiditis can lead to complications such as hypothyroidism (underactive thyroid), hyperthyroidism (overactive thyroid), and thyroid nodules or cancer.

Prevention: Preventing thyroiditis is challenging, but maintaining good overall health, avoiding exposure to radiation, and managing any underlying autoimmune disorders can help reduce the risk of developing the condition.

Prognosis: With proper treatment, most people with thyroiditis experience a full recovery and normalization of thyroid function. However, in some cases, long-term hormone replacement therapy may be necessary to manage persistent hypothyroidism or hyperthyroidism.

Hepatitis, chronic is a type of liver disease that is characterized by inflammation and damage to the liver, which can lead to scarring, cirrhosis, and potentially liver failure. It is caused by a variety of factors, including viral infections (such as hepatitis B and C), alcohol consumption, and autoimmune disorders.

Chronic hepatitis can be challenging to diagnose, as its symptoms are often nonspecific and may resemble those of other conditions. However, some common signs and symptoms include:

* Fatigue
* Loss of appetite
* Nausea and vomiting
* Abdominal pain
* Yellowing of the skin and eyes (jaundice)
* Dark urine
* Pale stools

If left untreated, chronic hepatitis can lead to serious complications, such as liver failure, liver cancer, and esophageal varices. Treatment options for chronic hepatitis depend on the underlying cause and may include medications, lifestyle changes, and in severe cases, liver transplantation.

Preventing Chronic Hepatitis:

While some forms of chronic hepatitis are incurable, there are steps you can take to prevent the development of this condition or slow its progression. These include:

* Avoiding alcohol or drinking in moderation
* Maintaining a healthy diet and lifestyle
* Getting vaccinated against hepatitis A and B
* Practicing safe sex to avoid sexually transmitted infections (STIs)
* Avoiding sharing needles or other drug-injecting equipment
* Seeking medical attention if you suspect you have been exposed to hepatitis

Managing Chronic Hepatitis:

If you have chronic hepatitis, managing the condition is crucial to prevent complications and improve quality of life. This may involve:

* Medications to treat the underlying cause of the hepatitis (e.g., antiviral drugs for hepatitis B or C)
* Lifestyle changes, such as avoiding alcohol and maintaining a healthy diet
* Regular monitoring of liver function and viral load
* In some cases, liver transplantation

Living with Chronic Hepatitis:

Living with chronic hepatitis can be challenging, but there are resources available to help you cope. These may include:

* Support groups for people with hepatitis and their families
* Counseling to address emotional and mental health concerns
* Educational resources to help you understand the condition and its management
* Legal assistance to navigate insurance and disability benefits

Conclusion:

Chronic hepatitis is a complex and multifactorial condition that can have serious consequences if left untreated. However, with early diagnosis, appropriate treatment, and lifestyle changes, it is possible to manage the condition and improve quality of life. By understanding the causes, symptoms, diagnosis, and management of chronic hepatitis, you can take an active role in your healthcare and make informed decisions about your care.

There are several types of Mycoplasma bacteria that can cause infection in humans, including:

1. Mycoplasma pneumoniae, which is the most common cause of atypical pneumonia and can also cause sinus infections, bronchitis, and other respiratory infections.
2. Mycoplasma genitalium, which can cause pelvic inflammatory disease, epididymitis, and urethritis.
3. Mycoplasma hominis, which is a common inhabitant of the human respiratory tract and can cause infections such as pneumonia and bronchitis.
4. Mycoplasma fermentans, which is associated with respiratory infections and has been linked to conditions such as asthma and chronic obstructive pulmonary disease (COPD).

Mycoplasma infections are typically diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood cultures and PCR (polymerase chain reaction) tests. Treatment for Mycoplasma infections usually involves antibiotics, but the type and duration of treatment may vary depending on the severity and location of the infection.

Prevention measures for Mycoplasma infections include good hygiene practices such as frequent handwashing, avoiding close contact with people who are sick, and covering the mouth and nose when coughing or sneezing. Vaccines are also available for some types of Mycoplasma bacteria, such as the M. pneumoniae vaccine, which is recommended for certain high-risk groups.

Overall, Mycoplasma infections can be serious and potentially life-threatening, especially in certain populations such as young children, older adults, and people with weakened immune systems. If you suspect that you or someone you know may have a Mycoplasma infection, it is important to seek medical attention right away.

1. Gastritis: Inflammation of the stomach lining, which can be acute or chronic.
2. Peptic ulcer disease: Ulcers in the stomach or duodenum (the first part of the small intestine) that are caused by H. pylori infection.
3. Gastric adenocarcinoma: A type of stomach cancer that is associated with long-term H. pylori infection.
4. Mucosa-associated lymphoid tissue (MALT) lymphoma: A rare type of cancer that affects the immune cells in the stomach and small intestine.
5. Gastroesophageal reflux disease (GERD): A condition in which stomach acid flows back up into the esophagus, causing symptoms such as heartburn and regurgitation.
6. Helicobacter pylori-associated chronic atrophic gastritis: A type of chronic inflammation of the stomach lining that can lead to stomach ulcers and stomach cancer.
7. Post-infectious irritable bowel syndrome (PI-IBS): A condition that develops after a gastrointestinal infection, characterized by persistent symptoms such as abdominal pain, bloating, and changes in bowel habits.

Helicobacter infections are typically diagnosed through endoscopy, where a flexible tube with a camera and light on the end is inserted into the stomach and small intestine to visualize the mucosa and look for signs of inflammation or ulcers. Laboratory tests such as breath tests and stool tests may also be used to detect the presence of H. pylori bacteria in the body. Treatment typically involves a combination of antibiotics and acid-suppressing medications to eradicate the infection and reduce symptoms.

Preventing Helicobacter Infections:

While it is not possible to completely prevent Helicobacter infections, there are several measures that can be taken to reduce the risk of developing these conditions:

1. Practice good hygiene: Wash your hands regularly, especially before eating and after using the bathroom.
2. Avoid close contact with people who have Helicobacter infections.
3. Avoid sharing food, drinks, or utensils with people who have Helicobacter infections.
4. Avoid consuming undercooked meat, especially pork and lamb.
5. Avoid consuming raw shellfish, especially oysters.
6. Avoid consuming unpasteurized dairy products.
7. Avoid alcohol and caffeine, which can irritate the stomach lining and increase the risk of developing Helicobacter infections.
8. Maintain a healthy diet that is high in fiber and low in fat.
9. Manage stress, as stress can exacerbate symptoms of Helicobacter infections.
10. Practice good oral hygiene to prevent gum disease and other oral infections that can increase the risk of developing Helicobacter infections.

Conclusion:

Helicobacter infections are a common cause of stomach ulcers, gastritis, and other gastrointestinal disorders. These infections are caused by the bacteria Helicobacter pylori, which can be found in the stomach lining and small intestine. While these infections can be difficult to diagnose, a combination of endoscopy, blood tests, and stool tests can help confirm the presence of Helicobacter bacteria. Treatment typically involves a combination of antibiotics and acid-suppressing medications to eradicate the infection and reduce symptoms. Preventive measures include practicing good hygiene, avoiding close contact with people who have Helicobacter infections, and maintaining a healthy diet.

The symptoms of MS can vary widely depending on the location and severity of the damage to the CNS. Common symptoms include:

* Weakness, numbness, or tingling in the limbs
* Fatigue
* Vision problems, such as blurred vision, double vision, or loss of vision
* Difficulty with balance and coordination
* Tremors or spasticity
* Memory and concentration problems
* Mood changes, such as depression or mood swings
* Bladder and bowel problems

There is no cure for MS, but various treatments can help manage the symptoms and slow the progression of the disease. These treatments include:

* Disease-modifying therapies (DMTs) - These medications are designed to reduce the frequency and severity of relapses, and they can also slow the progression of disability. Examples of DMTs include interferons, glatiramer acetate, natalizumab, fingolimod, dimethyl fumarate, teriflunomide, and alemtuzumab.
* Steroids - Corticosteroids can help reduce inflammation during relapses, but they are not a long-term solution.
* Pain management medications - Pain relievers, such as acetaminophen or nonsteroidal anti-inflammatory drugs (NSAIDs), can help manage pain caused by MS.
* Muscle relaxants - These medications can help reduce spasticity and tremors.
* Physical therapy - Physical therapy can help improve mobility, balance, and strength.
* Occupational therapy - Occupational therapy can help with daily activities and assistive devices.
* Speech therapy - Speech therapy can help improve communication and swallowing difficulties.
* Psychological counseling - Counseling can help manage the emotional and psychological aspects of MS.

It's important to note that each person with MS is unique, and the best treatment plan will depend on the individual's specific symptoms, needs, and preferences. It's essential to work closely with a healthcare provider to find the most effective treatment plan.

In animals, toxoplasmosis can cause a variety of clinical signs depending on the severity of the infection and the immune status of the host. Some common symptoms include diarrhea, lethargy, loss of appetite, weight loss, fever, and enlargement of the liver and spleen. In severe cases, toxoplasmosis can lead to respiratory failure, neurological disorders, and death.

Toxoplasmosis is typically diagnosed through a combination of physical examination, laboratory tests such as polymerase chain reaction (PCR) or serology, and imaging studies such as radiography or ultrasonography. Treatment for toxoplasmosis in animals is largely supportive, aimed at managing symptoms and preventing complications.

Prevention of toxoplasmosis in animals involves good hygiene practices, such as avoiding contact with cat feces and contaminated food or water, and vaccination of cats against toxoplasmosis to reduce the risk of oocyst shedding. In some cases, antibiotics may be used to treat secondary bacterial infections that arise from the immunosuppression caused by the parasite.

In conclusion, toxoplasmosis is a common and widespread infectious disease that affects many animal species, including humans. It can cause a range of clinical signs and symptoms, and diagnosis requires a combination of physical examination, laboratory tests, and imaging studies. Prevention involves good hygiene practices and vaccination of cats against toxoplasmosis.

In this manner, HAMA provides a bridge between immobilized antibodies and labeled secondary antibodies. In contrast, HAMA ... Human anti-mouse antibody or human anti-murine antibody (HAMA) is an antibody found in humans which reacts to immunoglobins ... only the immobilized mouse antibodies and the HAMA remain in the immunoassay when the labeled secondary antibodies are ... HAMAs will capture immobilized mouse antibodies. In the heterogeneous immunoassay the separation step will wash away the free ...
Tagged antibodies may be in solution, conjugated to beads, or surface immobilized. The cell staining follows the same ... Costs of CyTOF are high, as the metal-tagged antibodies and antibody conjunction kits are expensive. A major downside of CyTOF ... Four to five polymers are bound to an antibody, resulting in about 100 isotope atoms per antibody. ... More antibodies per panel saves on time, allows understanding of a larger picture, and requires fewer numbers of cells per ...
... they bind to the immobilized antibodies. (Figure 1a) Second, eosin-conjugated antibodies are added to the patient's sample. ... First, a droplet of a patient's sample is loaded on a test strip whose surface is covered with immobilized antibodies. If the ... For instance, if more antigens are bound to the surface antibodies, more eosin-conjugated antibodies will also bind to the ... This second antibody specifically binds with the bound antigens, thereby causing each bound antigen to be sandwiched between ...
However, when these antibodies are immobilized (either by secondary antibody bound to plastic or by Fc receptors on other cells ... It is of note, that the immobilized conventional antibody poses less prominent spatial constraints than the immobilized ... Immobilized superagonistic antibodies bound to CD28 exclude CD45 phosphatases completely and the signal leading to T-cell ... "Accessory cell independent proliferation of human T4 cells stimulated by immobilized monoclonal antibodies to CD3". Journal of ...
A biologically active layer can be placed between the interdigitated electrodes which contains immobilized antibodies. If the ... corresponding antigen is present in a sample, the antigen will bind to the antibodies, causing a mass-loading on the device. ...
... phosphopeptides are enriched using phosphospecific antibodies, immobilized metal affinity chromatography or titanium dioxide ( ... Antiphosphotyrosine antibodies have been proven very successful in purification, but fewer reports have been published using ... IMAC enrichment is based on phosphate affinity for immobilized metal chelated to the resin. SCX separates phosphorylated from ... To begin with, isolation methods such as anti-phosphotyrosine antibodies do not distinguish between isolating tyrosine- ...
The T-Line contains antigens immobilized on a nitrocellulose membrane that HIV antibodies can react to. If a dark C-Line ... OraQuick measures the HIV antibodies in oral fluid, but not saliva. The test kit contains an oral swab attached to the reader, ... The OraQuick ADVANCE Rapid HIV-1/2 Antibody Test is a single-use, qualitative immunoassay that can be purchased over-the- ... There is a window period of approximately 3 months when individuals are still not producing enough antibodies to generate a ...
After immobilizing single-domain antibodies on sensor surfaces sensing human prostate-specific antigen (hPSA) were tested. The ... is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind ... In contrast to common antibodies, two out of six single-domain antibodies survived a temperature of 90 °C (194 °F) without ... With a molecular weight of only 12-15 kDa, single-domain antibodies are much smaller than common antibodies (150-160 kDa) which ...
AMAs immobilize antibodies that capture analytes from the sample applied on the microarray. The target protein is detected ... Other protein microarrays include forward protein microarrays (PMAs) and antibody microarrays (AMAs). PMAs immobilize ... Strips with single band indicate specific antibodies that are suitable for RPMA use. Antibody performance should be also ... In addition, finding the appropriate antibody could require extensive screening of many antibodies by western blotting prior to ...
Here the DNA was immobilized in the well together with an anti-GST antibody. Then cell-free expression mix was added and the ... or C-terminus of each nascent protein will be bound by the capture reagent or antibody, thus immobilizing the proteins to form ... The mRNAs are then arrayed on a slide and immobilized by the binding of biotin to streptavidin that is pre-coated on the slide ... Many proteins, including antibodies, are difficult to express in host cells due to problems with insolubility, disulfide bonds ...
They were immobilized on an agarose matrix and the columns had a high degree of selectivity. In addition to this, antibodies ... Affitins are antibody mimetics and are being developed as an alternative to antibodies as tools in biotechnology. They have ... Affitins consist of 66 amino acids and have a molecular mass of about 7 kDa; this is small compared to antibodies with some 130 ... Unlike antibodies, affitins are produced in vitro, and therefore can be generated more quickly. Due to their small size and ...
Cow's milk antibodies can be detected in the milk and serum sample using SPRM. SPRM is also advantageous to detect the site- ... In order to immobilize BSA on the gold surface, the spots created through PDMS making were functionalized with sulfo-NHS and ... Non-immobilized BSA was rinsed out with PBS and CLEN solution was poured on the spots, unimmobilized CLEN was removed through ... The antibodies were attached to the C16 alkanethiol, which had a terminal carboxylic group. The micro patterned electrode was ...
"Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin ...
Briefly, magnetic beads containing primary antibodies were mixed with labeled secondary antibodies, incubated, and immobilized ... antigens interacting with immobilized antibodies) and homogeneous immunoassays (antigens interacting with antibodies in ... Superparamagnetic nanoparticles were immobilized with anti-IgE antibodies and fluorescently labeled aptamers to quantify IgE ... The magnet is reintroduced and the particles are immobilized and the droplet is moved away. This process is repeated with wash ...
"Affinity purification and enzymatic cleavage of inter-alpha inhibitor proteins using antibody and elastase immobilized on CIM ... "Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification". Journal ...
... non-specific binding is not limited to the antibody-binding sites on the immobilized support; any surface of the antibody or ... irrelevant antibody of the same antibody subclass as the IP antibody is used instead of the IP antibody itself. This approach ... Antibodies that are specific for a particular protein (or group of proteins) are immobilized on a solid-phase substrate such as ... Second, the ability to capture the target protein is directly dependent upon the amount of immobilized antibody used, and ...
The antibody-containing medium is then incubated with the immobilized antigen, either in batch or as the antibody is passed ... A monoclonal antibody (mAb, more rarely called moAb) is an antibody produced from a cell line made by cloning a unique white ... These abnormal antibodies or paraproteins were used to study the structure of antibodies, but it was not yet possible to ... All subsequent antibodies derived this way trace back to a unique parent cell. Monoclonal antibodies can have monovalent ...
After the antigen is immobilized, the detection antibody is added, forming a complex with the antigen. The detection antibody ... Enzyme-linked secondary antibodies are applied as detection antibodies, which bind specifically to the antibody's Fc region ( ... By using an enzyme-linked antibody that binds the Fc region of other antibodies, this same enzyme-linked antibody can be used ... A specially prepared "secondary antibody"-an antibody that binds to other antibodies-is then applied to the plate, followed by ...
The Genous Stent is a bio-engineered coronary stent coated with immobilized anti-CD34 monoclonal antibodies specific to the ... The pro-healing technology has an antibody surface coating that captures circulating CD34+ endothelial progenitor cells to the ...
Immunoaffinity chromatography with monoclonal antibodies immobilized on monolithic column has been successfully used to capture ... to remove the undesirable anti-GST antibodies from the serum and to purify the target antibody. Monoclonal antibodies can also ... This allows any antibodies that recognize the antigen to be captured on the solid support. Elution of the antibodies of ... Immunoaffinity media (detailed below) utilizes antigens' and antibodies' high specificity to separate; immobilized metal ...
The capture step has been implemented using antibodies bound to magnetic beads as well as antibodies immobilized on flow- ... Antibody-Coupled Magnetic Beads Can Be Reused in Immuno-MRM Assays To Reduce Cost and Extend Antibody Supply. J Proteome Res. ... in which antibodies are used to enrich target proteins, which are analyzed intact by MS; and hybrid methods in which antibodies ... is captured by a sequence-specific anti-peptide antibody. The antibody, together with the captured target peptide, is then ...
The targeted protein was bound to array by antibody coated in the slide and query protein was used to probe the array. The ... They use DNA template encoding the gene of interest fused with GST protein, and it was immobilized in the solid surface. Anti- ... To test protein-protein interaction, the targeted protein cDNA and query protein cDNA were immobilized in a same coated slide. ... Thus, the interaction between the two proteins was visualized with the antibody against HA. When multiple copies of a ...
The test line also contains immobilized antibodies specific to the target analyte, which bind to the migrated analyte bound ... antibody) that has been immobilized on the particle's surface. This marks target particles as they pass through the pad and ... The antibodies bind to the target analyte within the sample and migrate together until they reach the test line. ... Conversely, when the target analyte is present in the sample, it binds to the antibodies to prevent them binding to the fixed ...
Preferably, this unlabeled antibody is immobilized in some way, such as coupled to an agarose bead, coated to a surface, etc. ... Next, the "hot" radiolabeled antibody is allowed to interact with the first antibody-target molecule complex. After extensive ... to present multiple epitopes to the antibodies. One antibody would be radiolabeled as above while the other would remain ... This radiolabeled antigen is then mixed with a known amount of antibody for that antigen, and as a result, the two specifically ...
August 2009). "Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T- ... The use of monoclonal antibodies in cancer therapy was first introduced in 1997 with rituximab, an anti-CD20 antibody for ... and targeting the DCs with antibodies to C-type lectin receptors or agonistic antibodies (e.g., anti-CD40) that are conjugated ... Immunosuppressive antibodies target steps in the immune response. Other drugs modulate immune responses and can be used to ...
... then instead of the diffusion towards the antibodies, the proteins are electrophoresed into an antibody-containing gel in the ... Some variants of affinity immunoelectrophoresis are similar to affinity chromatography by use of immobilized ligands. The open ... 1986). "Antibodies to the glutamate dehydrogenase of Plasmodium falciparum" (PDF). Parasitology. 92 (2): 313-324. doi:10.1017/ ... Proteins are recognized after the timer has expired by incubating gels with certain antibodies, which are then stained with ...
Antibody-antigen interactions can also be used for serological testing, or the detection of circulating antibodies in response ... Cells tend to attach to the surface so they can be easily immobilized. Compared to organelles they remain active for longer ... There are limitations with using antibodies in sensors: 1. The antibody binding capacity is strongly dependent on assay ... Crivianu-Gaita, V; Thompson, M (November 2016). "Aptamers, antibody scFv, and antibody Fab' fragments: An overview and ...
... immobilized with anti-human CD61 antibody". Analytica Chimica Acta. 1091: 160-168. doi:10.1016/j.aca.2019.09.022. hdl:10138/ ...
... using an antibody from a complex mixture. The extract of disrupted tissue or cells is mixed with an antibody against the ... The immobilized protein complex can be accomplished either in a single step or successively. IP can also be used in conjunction ... If the ligand is bound to the receptor-antibody complex, then the acceptor will emit light. When using FRET, it is critical ... This method involves purifying an antigen through the aid of an attached antibody on a solid (beaded) support, such as agarose ...
... using protein A immobilized on porous substrates is the most widely established method for purifying monoclonal antibodies ( ... 1: Antibodies (AF ed.). GE Healthcare. 2016. p. 48. "A Pathogen's Swiss Army Knife". Small Things Considered. Retrieved 2016-08 ... To this end, protein A plays a multifaceted role: By binding the Fc portion of antibodies, protein A renders them inaccessible ... Protein A is often immobilized onto a solid support and used as reliable method for purifying total IgG from crude protein ...
Antibody phage display was later used by Carlos F. Barbas at The Scripps Research Institute to create synthetic human antibody ... By immobilizing a relevant DNA or protein target(s) to the surface of a microtiter plate well, a phage that displays a protein ... Adalimumab, an antibody to TNF alpha, was the world's first fully human antibody to achieve annual sales exceeding $1bn. Below ... Antibody libraries displaying millions of different antibodies on phage are often used in the pharmaceutical industry to ...
Modification-specific antibodies in turn, are used to immunoprecipitate the DNA-histone complexes. Following ... both immunoprecipitated DNA and non-immunoprecipitated onto a microarray containing immobilized gDNA. Analysis of the relative ...
The sensors bind to 8-hydroxydeoxyguanosine (8-OHdG) and is capable of selective binding with antibodies. The presence of 8- ... and carboxyl on its basal surface and edges that can be also used to immobilize or load various biomolecules for biomedical ... atomic thickness and molecularly gateable structure make antibody-functionalized graphene sheets excellent candidates for ...
"C1orf112 - Antibodies - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2019-04-29. "C1orf112 - Antibodies - The ... "The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences". ... Antibody immunocytochemistry and immunofluorescent staining of human cell line A-431 indicates C1orf112 is localized to the ... "AB_1848667 Search - The Antibody Registry". antibodyregistry.org. Retrieved 2019-04-29. " ...
Chemical sedation of an elephant is risky and can cause harm to the animal or to the people immobilizing the animal. As such, ... when they are no longer protected by maternal antibodies. Active EEHV infection causes small nodules on the head and trunk, and ... "Production of antibody against elephant endotheliotropic herpesvirus (EEHV) unveils tissue tropisms and routes of viral ... "Evidence of high EEHV antibody seroprevalence and spatial variation among captive Asian elephants (Elephas maximus) in Thailand ...
... activating their surfaces and then immobilizing bio-recognition agents such as single-strand DNA or antibodies. This has the ...
Specific uses of affinity chromatography include antibody affinity, Immobilized metal ion affinity chromatography and ... "The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activities". Cancer ... Using this method, Wilchek collaborated with a team who proved that the binding site of antibodies lies in the Fv portion of ... Early in the 1970s, they exploited Avidin as a probe and developed new methods and reagents to biotinylate antibodies and other ...
Basically, any molecule can be used as recognition element (proteins such as antibodies, DNA/RNA such as aptamers, small ... and on these recognition elements for biomolecules are immobilized. ...
... relies on biosensors with a fiber optic tip upon which the ligand is immobilized. The tip is ... January 2016). "Understanding ForteBio's Sensors for High-Throughput Kinetic and Epitope Screening for Purified Antibodies and ... To prepare for BLI analysis between two unique biomolecules, the ligand is first immobilized onto a bio compatible biosensor ... This creates two separate surfaces: the substrate itself, and the substrate interacting with the molecule immobilized on the ...
The most common example for multivalent binding are the antibodies, and there is extensive research for bispecific antibodies. ... Protein variants expressed on phage surfaces are selected by binding with immobilized targets in vitro. Phages with selected ... Applications of bispecific antibodies cover a broad spectrum that includes diagnosis, imaging, prophylaxis, and therapy. In ... Brinkmann, Ulrich; Kontermann, Roland E. (2017-02-17). "The making of bispecific antibodies". mAbs. 9 (2): 182-212. doi:10.1080 ...
For this, a bait ligand is immobilized on the dextran surface of the SPR crystal. Through a microflow system, a solution with ... Additionally, it allows the mapping of epitopes as antibodies of overlapping epitopes will be associated with an attenuated ... individual steps in sequential binding events can be thoroughly assessed when investigating the suitability between antibodies ...
It can be used as monolayer immobilized on an electrode surface (made e.g. of nafion, or special thin films made by Langmuir- ... Ru tagged antibody based immunoassays, Ru Tagged DNA probes for PCR etc., NADH or H2O2 generation based biosensors, oxalate and ...
According to antibody-based profiling and transcriptomics analysis, RBM3 protein is present in all analysed human tissues and ... "Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity ...
This is often done by incorporating an enzyme, receptor or antibody, that binds to the molecule of interest, into the hydrogel ... The dressing design presents proprietary super-absorbent synthetic smart polymers immobilized in the 3-dimensional fiber matrix ...
It works because ions from the mobile phase interact with the immobilized ions on the stationary phase, thus "shielding" the ... Boi, C. (2007). Membrane adsorbers as purification tools for monoclonal antibody purification. Journal of Chromatography B, 848 ... Membranes can be prepared through isolation of the membrane itself, where membranes are cut into squares and immobilized. A ... Ionizable molecules that are to be purified compete with these exchangeable counterions for binding to the immobilized charges ...
... a peptide recognized by an antibody (GAPVPYPDPLEPR) FLAG-tag, a peptide recognized by an antibody (DYKDDDDK) HA-tag, a peptide ... a protein which binds to immobilized glutathione Green fluorescent protein-tag, a protein which is spontaneously fluorescent ... a peptide recognized by an antibody (GKPIPNPLLGLDST) VSV-tag, a peptide recognized by an antibody (YTDIEMNRLGK) Xpress tag ( ... The tag is recognized by a repertoire of single-domain antibodies AviTag, a peptide allowing biotinylation by the enzyme BirA ...
E-AB biosensors do not require reagents, are inexpensive compared to antibody detection methods, can be used in blood or other ... of aptamer in solution that incubates a clean probe is found to be proportional to the density of aptamers that are immobilized ...
"Immobilized Lectin". legacy.gelifesciences.com. Glyco Station, Lec Chip, Glycan profiling technology Archived 2010-02-23 at the ... Lectins are similar to antibodies in their ability to agglutinate red blood cells. Many legume seeds have been proven to ... Lectin and Lectin Conjugates manufacturer Recombinant Protein Purification Handbook Immobilized lectins, chromatography media ...
Immobilized antibody type Capture ELISA, HRP-labelled antibody Competitive ELISA Competitive ELISA, Immobilized antibody ... Competitive ELISA, Immobilized antigen Control Set Direct ELISA, Biotin-labelled antibody Direct ELISA, HRP-labelled antibody ... 2nd HRPlabelled antibody Sandwich ELISA, AChE-labelled antibody Sandwich ELISA, Biotin-labelled antibody Sandwich ELISA, HRP- ... Glucagon-Like Peptide-2 - Competitive ELISA, Immobilized antibody - Immunoassays. Product filter Glucagon-Like Peptide-2 ...
Influence of lyotropic liquid crystals on the ability of antibodies to bind to surface-immobilized antigens. / Luk, Yan Yeung; ... Influence of lyotropic liquid crystals on the ability of antibodies to bind to surface-immobilized antigens. In: Chemistry of ... Influence of lyotropic liquid crystals on the ability of antibodies to bind to surface-immobilized antigens. Chemistry of ... title = "Influence of lyotropic liquid crystals on the ability of antibodies to bind to surface-immobilized antigens", ...
Suitable as a blocking agent using corresponding antibodies. Bulk and Prepack available at Sigmaaldrich.com. ... immobilized metal affinity chromatography (IMAC). purified by. immobilized metal affinity chromatography (IMAC) ...
If IgG antibodies to norovirus are present, the conjugate will be immobilized in the wells. Residual conjugate is eliminated by ... Antibody con. in dup. 1 for GII.3 ag English Text: Antibody con. in dup. 1 for GII.3 ag Target: Both males and females 16 YEARS ... SSGI1C1 - Antibody con. in dup. 1 for GI.1 ag. Variable Name: SSGI1C1. SAS Label: Antibody con. in dup. 1 for GI.1 ag. English ... SSGI1C2 - Antibody con. in dup. 2 for GI.1 ag. Variable Name: SSGI1C2. SAS Label: Antibody con. in dup. 2 for GI.1 ag. English ...
Protein research products for antibody production and purification. Carrier proteins such as BSA and KLH plus amine reactive ... Also available are Immobilized Protein A/G, Immobilized Protein A and Immobilized Protein G, each crosslinked to agarose beads ... Antibody Production & Purification. The use of peptides for the generation of antibodies against specific peptides has become ... Immobilized Protein G. Immobilized protein G is for binding the constant domains of immunoglobulin (Ig) molecules (see Figure 1 ...
... affinity chromatography using immobilized antibodies was employed. The chemical data on the 3 components fractionated with ... The use of immobilized antibodies allows determination of inert as well as antigenically active material. ... Persons with hypersensitivity pneumonias such as farmers lung usually show precipitating antibodies to antigens such as this. ...
The HIV-1 Western blot is a solid-phase EIA with immobilized viral antigens to detect IgG antibodies to specific HIV proteins. ... A rapid antibody test produces results in 20 minutes or less. Six FDA-approved rapid tests detect the presence of antibodies to ... Results of positive antibody tests in this age group can be unreliable because they may detect persistent maternal antibody. ... Maternal antibody has been demonstrated in children up to 18 months of age, complicating interpretation of positive antibody ...
Immobilize proteins to purify interacting molecules. *Immobilize antibodies in the correct orientation ... Proteins, including antibodies, must have free sulfhydryls for immobilization to the resin. A mild reducing agent, 2- ... The columns, depending on the stability of the immobilized molecule, can be used several times without significant loss of ... The long spacer arm reduces steric hindrance and ensures greater binding of proteins and antibodies during affinity ...
Antibodies Inc.) or rabbit polyclonal anti-Kv7.3 (clone APC-051, dilution 1:1000; Alomone Labs) antibodies, followed by HRP- ... a fraction of cell lysates were reacted with ImmunoPure immobilized streptavidin beads (Pierce). Channel subunits in ... In each panel, the higher and lower blots were probed with anti-Kv7.3 or anti-α-tubulin antibodies, as indicated. NT (t.l.) and ... In each panel, the higher and lower blots were probed with anti-Kv7.2 or anti-α-tubulin antibodies, as indicated. NT (t.l.) and ...
Immobilized LTA was then interrogated with the α-LTA antibody and a subsequent secondary-enzyme conjugated antibody. LTA was ... α-Gram+ monoclonal antibody (ab20344) and α-Sau polyclonal antibody (ab20920). Also, a detection antibody cocktail containing ... The α-LPS antibody only binds to S. Typhimurium LPS and not any of the other LPS or LTA samples. The α-Gram+ and α-Sau antibody ... Lastly, the detection antibody was incubated and the specific signal associated with the antibody and LPS or LTA associated ...
An immobilized capture antibody specific for FGF R3 binds both phosphorylated and unphosphorylated FGF R3. After washing away ... Semi-Automated Cell Panning for Efficient Isolation of FGFR3-Targeting Antibody Authors: B Min, M Yoo, H Kim, M Cho, DH Nam, Y ... Optimized capture and detection antibody pairings with recommended concentrations save lengthy development time ... unbound material, a biotinylated detection antibody is used to detect both phosphorylated and unphosphorylated protein, ...
Immobilized Lectin, 2mL, pre-packed in column with separate elution buffers and instruction booklet. ... Lens culinaris Gel -LcH- Immobilized Lectin, 2mL, pre-packed in column with separate elution buffers and instruction booklet. ... Lens culinaris Gel -LcH- Immobilized Lectin, 2mL, pre-packed in column with separate elution buffers and instruction booklet. ...
Species having an affinity to the immobilized antibody form complex (Fig1 A). Kon is then determined via a simple exponential ... Secondary antibodies and enzymes will then yield fluorescence detection. This device is not limited to specific antibodies and ... Diffusion based antibody capture assays require up to overnight incubation along with trained staff and medium laboratory ... After immobilization, antibody probes are injected to the EIG to detect protein targets. In this presentation, assay ...
Anti-V5 Antibody. Catalogue Numbre: RV5-45A, Supplied by Immunology Consultatnt Laboratory& Distributed by Gentaur in UK & ... Agarose Immobilized Product Type: Primary Antibody Antibody Clonality: Polyclonal ... Anti-V5 Antibody , RV5-45A Immunology Consultant Laboratory Anti-V5 Antibody , RV5-45A. (No reviews yet) Write a Review Write a ... Anti-V5 Antibody , RV5-45A-Z , Immunology Consultatnt Laboratory Host: Rabbit Format: Unconjugated AP Product Type: Primary ...
Blocking effect of sperm immobilizing antibodies on sperm penetration of human zona pellucida. Journal of in vitro ... Antibodies to oocytes are introduced as a possible marker for this failure [16]. ZP, which is formed at the early stage of ... Incidence of anti-zona pellucida and anti-sperm antibodies among infertile Jordanian women and its relation to mycoplasmas ... Anti-zona pellucida antibodies in follicular fluid and out come of ICSI. Middle East Fertility Society journal, 2006, 11(1):35- ...
Investigation of antibody responses to variant Dengue virus proteins demonstrate new mechanisms that could increase the ... Resistance to 7M Urea is measuring the avidity of a divalent binding of antibody to immobilized target. The competition assay ... IgM antibodies from E4 boost GC show evidence of prior selection. If E4 boost induced B-cells are memory derived the antibodies ... Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen than antibodies from a primary response ...
... a technique that employs immobilized antibodies to selectively capture specific analytes using molecular recognition via ... antibody?antigen interactions. Recently, the introduction of commercial products for specific high-volume environmental and ... The antibodies are immobilized onto solid supports such as silica or polymeric adsorbents that are classified as immunosorbents ... The particular substrate used to immobilize the antibody has a direct influence on the binding density but there must be a ...
Immobilized Antibodies 28% * Ligands 26% * beta 2-Microglobulin 25% * Retinol-Binding Proteins 24% ...
We obtained for the first time a non-activating human IgG1κ anti-PR3 monoclonal antibody (mAb) named 4C3. This new mAb binds ... We obtained for the first time a non-activating human IgG1κ anti-PR3 monoclonal antibody (mAb) named 4C3. This new mAb binds ... is a severe autoimmune vasculitis associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA) mainly ... is a severe autoimmune vasculitis associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA) mainly ...
Interpretive Summary: This manuscript provides details on how to use an antibody to conduct a Western blot immunoassay for the ... and selective immunodetection of an immobilized antigen. This is an important and routine method for protein analysis that ... depends on the specificity of antibody-antigen interaction and is useful for the qualitative or semi-quantitative ...
... or specific anti-viral antibodies in blood/serum. Due to the current pandemic situation, a development of point-of-care ... while the detection of IgG antibodies and IgM antibodies acting against SARS-CoV-2 may be an indication of infection. Moreover ... proteins is immobilized in accordance with the determined formula, performing the function of a probe. The material captured ... the detection of IgM antibodies usually indicates a recent exposure to SARS-CoV-2, whereas the detection of IgG antibodies in ...
... antibody with inhibitory activity against human Factor V. The solid phase immunoglobulin quantitatively bound Factor V from ... The resulting preparation was applied to a column containing an immobilized immunoadsorbent consisting of an IgG fraction ...
Rabbit polyclonal Collagen IV antibody. Validated in WB, IP, ELISA, IHC, ICC/IF and tested in Mouse, Rat, Hamster, Cow, Dog, ... Immunoaffinity chromatography using immobilized antigens followed by extensive cross-adsorption against other collagens, human ... Primary antibodies. Secondary antibodies. ELISA and Matched Antibody Pair Kits. Cell and tissue imaging tools. Cellular and ... Primary antibody notes. This antibody is well suited to detect extracellular matrix proteins in normal as well as disease state ...
... making an immobilized capture antibody-heterophilic antibody/HAAA-tracer antibody sandwich, which results in a false positive ... tracer antibody, and other components. This excess of nonspecific antibodies overwhelming saturates heterophilic antibodies and ... Each human antibody is bivalent, so if an HAAA or heterophilic antibody is present in a persons serum, it can bind and link ... The capture and tracer antibodies used for hCG testing may be goat, sheep, or rabbit polyclonal antibodies or mouse, goat, or ...
Fluorescent treponemal antibody-absorption (FTA-ABS) *Immobilized T. pallidum , patient serum , fluorescently tagged anti-human ... Viremia decreases, anti-HIV antibody titers increase*Bodys immune system clears viral particles from blood *HIV remains in ... Serology - detect antibodies against M. pneumoniae via complement fixation or enzyme agglutination ...
Plx4-specific antibodies were purified against GST-C-Plx4 immobilized on resin (Ultralink Biosupport; Thermo Fisher Scientific ... Antibodies. Anti-Plx4 antibody was obtained by immunizing rabbits with GST fused to the C-terminal 85 amino acids of Plx4 ( ... The Plx4 antibody recognized human Plk4 specifically as determined by antibody-blocking experiments in U2OS cells and was used ... Coverslips were incubated in primary antibodies diluted in blocking solution as previously indicated (see Antibodies), and ...
Bound antibodies were demonstrated with the Bond Polymer Refined Detection kit (Leica DS 9800), and the cells were ... Cells were immobilized on SuperFrost Plus Slides (Thermo Fisher Scientific Inc., Waltham, MA, USA), using cytospin preparations ... H2O2 followed by incubation with syndecan-1 primary antibody (CD138, clone MI15, diluted 1 : 100, IgG1, DakoCytomation, CA, USA ... were diagnosed by histopathology and/or cytolopathology supported by immunocytochemistry with at least 4 antibodies. Patients ...
It is recommended for the aPL antibody report to include the antibodies for aCL and aβ2GPI IgG and IgM antibodies in numerical ... In the immunoassays, targets are immobilized on a solid surface that may be amenable for manual, semi- automated or automated ... The recognition that certain aPL antibody types, the number of positive aPL antibodies, or combination of aPL antibodies may be ... IgG isotype antibodies have higher risk for APS compared to IgM.. While laboratory investigation of aPL antibodies is method- ...
... recombinant allergen immobilized via a monoclonal antibody to crystalline bacterial cell-surface layers.. ... Gaa, R; Menang-Ndi, E; Pratapa, S; Nguyen, C; Kumar, S; Doerner, A Versatile and rapid microfluidics-assisted antibody ... selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries ...
  • Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen than antibodies from a primary response, confirming a memory origin. (elifesciences.org)
  • In this month?s installment, columnist Ron Majors covers the field of immunoextraction, a technique that employs immobilized antibodies to selectively capture specific analytes using molecular recognition via antibody?antigen interactions. (chromatographyonline.com)
  • Such sorbents involve antigen-antibody interactions that are based upon molecular recognition and, thus, are very specific. (chromatographyonline.com)
  • In the medical sense, an antibody is an immunoglobulin, a specialized immune protein, produced by the body's immune system because of the introduction of a foreign agent called an antigen. (chromatographyonline.com)
  • The antibody possesses the remarkable ability to combine with the very antigen that triggered its production. (chromatographyonline.com)
  • This manuscript provides details on how to use an antibody to conduct a Western blot immunoassay for the detection of a target antigen from a diagnostic sample and obtain its mass. (usda.gov)
  • Western blotting is a technique that involves the separation of proteins by gel electrophoresis, their blotting or transfer to a membrane, and selective immunodetection of an immobilized antigen. (usda.gov)
  • This is an important and routine method for protein analysis that depends on the specificity of antibody-antigen interaction and is useful for the qualitative or semi-quantitative identification of specific proteins and their molecular weight from a complex mixture. (usda.gov)
  • Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. (bvsalud.org)
  • The 'Dengue Duo (AgNS1/IgM/IgG)' kit from SD Bioline was used for the rapid diagnosis through the detection of NS1 antigen and IgM/IgG antibodies in plasma. (bvsalud.org)
  • We report an experimental study of the influence of lyotropic liquid crystalline phases on the ability of antibodies to bind to protein antigens immobilized on surfaces when the antibodies are delivered and bind to the antigens from the lyotropic liquid crystals (LCs). (syr.edu)
  • Persons with hypersensitivity pneumonias such as farm er's lung usually show precipitating antibodies to antigens such as this. (cdc.gov)
  • Vaccines induce memory B-cells that provide high affinity secondary antibody responses to identical antigens. (elifesciences.org)
  • This reveals a new process of antibody memory, that IgM memory cells with fewer mutations participate in secondary responses to variant antigens, demonstrating how the hierarchical structure of B-cell memory is used and indicating the potential and limits of cross-reactive antibody based immunity. (elifesciences.org)
  • Immunoaffinity chromatography using immobilized antigens followed by extensive cross-adsorption against other collagens, human serum proteins and non-collagen extracellular matrix proteins to remove any unwanted specificities. (abcam.com)
  • and being a laborious task involving two previous steps, SDS-PAGE and Western blot, we evaluated the shelf life of nitrocel ulose membranes containing the immobilized P. brasiliensis antigens, stored at -20 oC for 7, 15, 30, 45, 60 and 90 days. (bvsalud.org)
  • We obtained for the first time a non-activating human IgG1κ anti-PR3 monoclonal antibody (mAb) named 4C3. (frontiersin.org)
  • Product Description Anti-c-Myc Tag (9E10) Affinity Gel consists of anti-c-myc monoclonal antibody (clone 9E10), covalently immobilized onto 6% high density glyoxal agarose beads. (biolegend.com)
  • Binding Specificity Mouse monoclonal antibody 9E10 recognizes the c-myc epitope N-EQKLSEEDL-C and is purified through Protein G chromatography. (biolegend.com)
  • We offer a wide variety of carrier proteins for the successful generation of antibodies.Our ActiveHOOK ™ products include both ActiveHOOK ™ BSA (maleimide activated bovine serum albumin) and ActiveHOOK ™ KLH (maleimide activated keyhole limpet hemocyanin). (gbiosciences.com)
  • An important tool in research is the generation of peptide and protein affinity columns for the purification of antibodies and for the discovery of important interacting proteins and cofactors. (gbiosciences.com)
  • The Sulfhydryl Coupling Resin Columns utilizes iodoacetyl groups that specifically react with free sulfhydryls to form covalent, permanent thioether bonds (see figure).The long spacer arm reduces steric hindrance and ensures greater binding of proteins and antibodies during affinity purification. (thomassci.com)
  • Proteins, including antibodies, must have free sulfhydryls for immobilization to the resin. (thomassci.com)
  • We immunised mice sequentially with identical or variant Dengue-virus envelope proteins and analysed antibody and germinal-centre (GC) responses. (elifesciences.org)
  • Certain B cells can recognise the invader and produce specific proteins, the antibodies, which can target and kill the invader. (elifesciences.org)
  • Non-specific cross reaction of anti-collagen antibodies with other human serum proteins or non-collagen extracellular matrix proteins is negligible. (abcam.com)
  • This antibody is well suited to detect extracellular matrix proteins in normal as well as disease state tissues. (abcam.com)
  • Also available are Immobilized Protein A/G , Immobilized Protein A and Immobilized Protein G , each crosslinked to agarose beads. (gbiosciences.com)
  • Or, Protein A Magnetic Beads , Protein G Magnetic Beads , and Protein A/G Magnetic Beads for rapid and affordable isolation of antibodies. (gbiosciences.com)
  • The buffers are ideal for the purification of antibodies from Protein A, Protein G and Protein A/G&n. (gbiosciences.com)
  • Immobilized protein G is for binding the constant domains of immunoglobulin (Ig) molecules (see Figure 1). (gbiosciences.com)
  • After washing away unbound material, a biotinylated detection antibody is used to detect both phosphorylated and unphosphorylated protein, utilizing a standard Streptavidin-HRP format. (rndsystems.com)
  • The most variant protein re-stimulated GCs with the highest proportion of IgM+ cells with the most diverse, least mutated V-genes and with a slower but efficient serum antibody response. (elifesciences.org)
  • The antibody conjugated affinity resin can bind to epitope at N-terminal, C-terminal, and internal locations of a fusion protein. (biolegend.com)
  • There are other recombinant monoclonal options, such as Recombinant Anti-Collagen IV antibody . (abcam.com)
  • Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. (abcam.com)
  • The 2006 revised Sapporo laboratory criteria for APS as previously mentioned includes the lupus anticoagulant tests as well as immunoassays for the detection of IgG and IgM antibodies to cardiolipin (CL) and β2GPI. (aacc.org)
  • I will be addressing the rationale for these suggestions during the course of this presentation with a focus on the immunoassays for the detection of IgG and IgM antibodies to CL and β2GPI. (aacc.org)
  • Residual sample is eliminated by washing and conjugate (enzyme labeled antibodies to human IgG) is added and incubated. (cdc.gov)
  • G-Biosciences IgG Binding, Wash & Elution Buffers are designed for the non-denaturing, high yield purification of antibodies from IgG affinity purification resins. (gbiosciences.com)
  • P. lutzii1-5 In endemic areas, the estimated incidence suggest that at least two serological tests for specific is approximately one to three cases per 100.000 antibody detection should be used in cases of inhabitants per year6. (bvsalud.org)
  • Taken together, this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications. (bvsalud.org)
  • The speci- keys and humans in areas of high disease prevalence, re- fi city of a subset of these antibodies is shown in Figure 1. (cdc.gov)
  • A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. (bvsalud.org)
  • antibodies such as 17E4 could detect and distinguish among the primate malarias and 7G9 specifi cally bind only to P. falciparum LDH, would not only benefi t individual patients but would also whereas antibodies such as 11D9 and 13H11 bind only to provide an important epidemiologic tool to monitor the P. vivax LDH. (cdc.gov)
  • Results of positive antibody tests in this age group can be unreliable because they may detect persistent maternal antibody. (cdc.gov)
  • One GPL/MPL unit is defined as the cardiolipin-binding activity of 1 g/ml of affinity-purified IgG or IgM aCL antibody. (aacc.org)
  • The overall prevalence of DENV IgM and IgG antibodies was 3.2% and 37.3% respectively. (bvsalud.org)
  • P. knowlesi ratory conditions, several monkey malarias are capable of binds to both the "falciparum-specifi c" (17E4/7G9) and the infecting humans and that P. knowlesi can be transmit- "vivax-specifi c" (11D9/13H11) antibodies (Figure 1, pan- ted to humans by mosquito bite ( 6,7 ). (cdc.gov)
  • An immobilized capture antibody specific for FGF R3 binds both phosphorylated and unphosphorylated FGF R3. (rndsystems.com)
  • Simple Antibody Biotinylation The HOOK™ IgG Biotinylation (Sulfhydryl) kit is designed for the efficient biotinylation of IgG molecules by immobilizing the IgG molecules on a solid support (Figure 1). (gbiosciences.com)
  • If present, anti-norovirus antibodies are immobilized in the wells. (cdc.gov)
  • If IgG antibodies to norovirus are present, the conjugate will be immobilized in the wells. (cdc.gov)
  • See other anti-rabbit secondary antibodies that can be used with this antibody. (abcam.com)
  • Lens culinaris Gel -LcH- Immobilized Lectin, 2mL, pre-packed in column with separate elution buffers and instruction booklet. (eylabs.com)
  • Versatile and rapid microfluidics-assisted antibody discovery. (boku.ac.at)
  • We found that the binding of antibodies to vesicular stomatitis virus (VSV) that was inoculated into human epitheloid cervical carcinoma cells was highly specific in the lyotropic LC prepared from DSCG. (syr.edu)
  • The use of peptides for the generation of antibodies against specific peptides has become an essential tool in proteomic research. (gbiosciences.com)
  • In addition, an earlier article discussed molecular imprinted polymers (MIPS) (7), that, in principle, mimic antibodies but involve the formation of a specific molecular imprint (cavity) on the surface of the sorbent formed by a template molecule while ISs are prepared by the immobilization of an antibody onto the surface of a solid support. (chromatographyonline.com)
  • Antiphospholipid antibody syndrome (commonly referred to as APS) is a systemic autoimmune disease characterized by the presence of antiphospholipid (aPL) antibodies in association with thrombosis and/or specific pregnancy-related morbidities. (aacc.org)
  • After selection, EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. (bvsalud.org)
  • 1985. Specific bronchoalveolar lavage IgG antibody in hypersensitivity pneumonitis from diphenylmethane diisocyanate. (cdc.gov)
  • The columns, depending on the stability of the immobilized molecule, can be used several times without significant loss of activity. (thomassci.com)
  • Fluoresence microscopy was used to image antihuman IgG that bound to the immobilized human IgG. (syr.edu)
  • The resulting preparation was applied to a column containing an immobilized immunoadsorbent consisting of an IgG fraction containing a naturally occurring human monoclonal (IgG4λ) antibody with inhibitory activity against human Factor V. The solid phase immunoglobulin quantitatively bound Factor V from human plasma. (jci.org)
  • Antibodies that are chemically bound to a substrate material which renders their location fixed. (bvsalud.org)
  • Antibody binding in the other LCs was prevented by a number of mechanisms, including denaturation of the IgG (anionic surfactants) as well as slow mass transport due to high viscosity of the LC phases (nonionic surfactants). (syr.edu)
  • Data was compiled after all the antibody testing was completed. (cdc.gov)
  • 18 months of age who test positive for HIV antibodies should receive further testing with DNA or RNA assays. (cdc.gov)
  • These are generally referred to as 'criteria' aPL antibody tests. (aacc.org)
  • For aCL IgG and IgM determinations, antibody cut-off values greater than 40 GPL or MPL units or more than the 99th percentile for the testing laboratory's population were recommended to be positive. (aacc.org)
  • In the case of a β2GPI IgG and IgM antibodies, cut-off values greater than 99th percentile for the laboratory's population was recommended to determine positive results. (aacc.org)
  • Granulomatosis with polyangiitis (GPA) is a severe autoimmune vasculitis associated with the presence of anti-neutrophil cytoplasmic antibodies (ANCA) mainly targeting proteinase 3 (PR3), a neutrophilic serine proteinase. (frontiersin.org)
  • therefore, the presence of aPL antibody is an absolute requirement for the appropriate diagnosis of this disease. (aacc.org)
  • Suitable as a blocking agent using corresponding antibodies. (sigmaaldrich.com)
  • A mild reducing agent, 2-Mercaptoethylamine, is supplied to reduce the hinge region disulfide bonds of antibodies, while preserving the functionally crucial disulfide bonds between the heavy and light chains. (thomassci.com)
  • The first step in the production of an IS is to design an antibody with the capability of molecular recognition of one analyte or for a group of analytes. (chromatographyonline.com)
  • In vasculitis nomenclature, it is part of the group of anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV): GPA is associated with cytoplasmic ANCA (cANCA), detected by immunofluorescence (IF) on fixed neutrophils ( 1 ). (frontiersin.org)
  • Detecting P. knowlesi in Although the current overall incidence of P. knowlesi monkeys, which often are co-infected with several other infection in humans is low, an exacerbating problem is malaria parasites, is also important and can be achieved that it can be consistently misdiagnosed by microscopy with the same panel of antibodies. (cdc.gov)
  • The use of immobilized antibodies allows determination of inert as well as antigenically active material. (cdc.gov)