An enzyme that catalyzes the formation of anthranilate (o-aminobenzoate) and pyruvic acid from chorismate and glutamine. Anthranilate is the biosynthetic precursor of tryptophan and numerous secondary metabolites, including inducible plant defense compounds. EC 4.1.3.27.
Benzoic acids, salts, or esters that contain an amino group attached to carbon number 2 or 6 of the benzene ring structure.
An enzyme that catalyzes the formation of N-5'-phosphoribosylanthranilic acid from anthranilate and phosphoribosylpyrophosphate, the first step in tryptophan synthesis in E. coli. It exists in a complex with ANTHRANILATE SYNTHASE in bacteria. EC 2.4.2.18.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
An enzyme in the tryptophan biosynthetic pathway. EC 4.1.1.48.
A cyclohexadiene carboxylic acid derived from SHIKIMIC ACID and a precursor for the biosynthesis of UBIQUINONE and the AROMATIC AMINO ACIDS.
Cyclohexanecarboxylic acids are organic compounds consisting of a cyclohexane ring substituted with a carboxylic acid group, typically represented by the structural formula C6H11COOH.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
An enzyme that catalyzes the conversion of L-serine and 1-(indol-3-yl)glycerol 3-phosphate to L-tryptophan and glyceraldehyde 3-phosphate. It is a pyridoxal phosphate protein that also catalyzes the conversion of serine and indole into tryptophan and water and of indoleglycerol phosphate into indole and glyceraldehyde phosphate. (From Enzyme Nomenclature, 1992) EC 4.2.1.20.
Enzymes that catalyze the transfer of nitrogenous groups, primarily amino groups, from a donor, generally an amino acid, to an acceptor, usually a 2-oxoacid. EC 2.6.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria found in soil, water, food, and clinical specimens. It is a prominent opportunistic pathogen for hospitalized patients.
A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
Quinaldines are organic compounds with a pyrazine structure substituted with a quinoline moiety, historically used as fragrances and pharmaceuticals but now mostly replaced by safer and more effective alternatives due to their potential toxicity and irritancy.
The functional hereditary units of BACTERIA.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166)
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
Diazonium compounds are organic derivatives containing the general formula R-N2+X-, where R represents an aryl or alkyl group, and X- is an anion such as bromide or chloride, formed by the reaction of amines with nitrous acid in an acidic medium.
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.
The rate dynamics in chemical or physical systems.

Deletion plasmids from transformants of Pseudomonas aeruginosa trp cells with the RSF1010-trp hybrid plasmid and high levels of enzyme activity from the gene on the plasmid. (1/162)

A RSF1010-trp hybrid plasmid which contained the tryptophan operon of Escherichia coli was introduced into Pseudomonas aeruginosa trp cells by transformation. From the Trp+ transformants several deletion plasmids were obtained, and their physical maps with restriction endonucleases were constructed. P. aeruginosa trp cells with these plasmids showed at first more than 100 times higher levels of tryptophan synthetase beta activity over that of the control P. aeruginosa wild-type cells, but these levels were drastically decreased by 1 week of successive transfers of cultures. This decrease in enzyme activity was found to be due to the change on the plasmids but not to the host cells. The production of E. coli tryptophan synthetase beta enzyme in P. aeruginosa cells was proved by immunological test.  (+info)

The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. (2/162)

Anthranilate synthase catalyzes the synthesis of anthranilate from chorismate and glutamine and is feedback-inhibited by tryptophan. The enzyme of the hyperthermophile Sulfolobus solfataricus has been crystallized in the absence of physiological ligands, and its three-dimensional structure has been determined at 2.5-A resolution with x-ray crystallography. It is a heterotetramer of anthranilate synthase (TrpE) and glutamine amidotransferase (TrpG) subunits, in which two TrpG:TrpE protomers associate mainly via the TrpG subunits. The small TrpG subunit (195 residues) has the known "triad" glutamine amidotransferase fold. The large TrpE subunit (421 residues) has a novel fold. It displays a cleft between two domains, the tips of which contact the TrpG subunit across its active site. Clusters of catalytically essential residues are located inside the cleft, spatially separated from clustered residues involved in feedback inhibition. The structure suggests a model in which chorismate binding triggers a relative movement of the two domain tips of the TrpE subunit, activating the TrpG subunit and creating a channel for passage of ammonia toward the active site of the TrpE subunit. Tryptophan presumably blocks this rearrangement, thus stabilizing the inactive states of both subunits. The structure of the TrpE subunit is a likely prototype for the related enzymes 4-amino 4-deoxychorismate synthase and isochorismate synthase.  (+info)

Inhibition of TATA-binding protein function by SAGA subunits Spt3 and Spt8 at Gcn4-activated promoters. (3/162)

SAGA is a 1.8-MDa yeast protein complex that is composed of several distinct classes of transcription-related factors, including the adaptor/acetyltransferase Gcn5, Spt proteins, and a subset of TBP-associated factors. Our results indicate that mutations that completely disrupt SAGA (deletions of SPT7 or SPT20) strongly reduce transcriptional activation at the HIS3 and TRP3 genes and that Gcn5 is required for normal HIS3 transcriptional start site selection. Surprisingly, mutations in Spt proteins involved in the SAGA-TBP interaction (Spt3 and Spt8) cause derepression of HIS3 and TRP3 transcription in the uninduced state. Consistent with this finding, wild-type SAGA inhibits TBP binding to the HIS3 promoter in vitro, while SAGA lacking Spt3 or Spt8 is not inhibitory. We detected two distinct forms of SAGA in cell extracts and, strikingly, one lacks Spt8. Conditions that induce HIS3 and TRP3 transcription result in an altered balance between these complexes strongly in favor of the form without Spt8. These results suggest that the composition of SAGA may be dynamic in vivo and may be regulated through dissociable inhibitory subunits.  (+info)

A Bacillus subtilis operon containing genes of unknown function senses tRNATrp charging and regulates expression of the genes of tryptophan biosynthesis. (4/162)

Strains of Bacillus subtilis containing a temperature-sensitive tryptophanyl-tRNA synthetase produce elevated levels of the tryptophan pathway enzymes, when grown at high temperatures in the presence of excess tryptophan. This increase is because of reduced availability of the tryptophan-activated trp RNA-binding attenuation protein (TRAP). To test the hypothesis that this elevated trp gene expression was caused by the overproduction of a transcript capable of binding and sequestering TRAP, a computer program was designed to search the B. subtilis genome sequence for additional potential TRAP binding sites. A region containing a stretch of (G/A)AG trinucleotide repeats, characteristic of a TRAP binding site, was identified in the yczA-ycbK operon. We show that transcriptional regulation of the yczA-ycbK operon is controlled by the T-box antitermination mechanism in response to the level of uncharged tRNA(Trp), and that the presence of a trpS1 mutant allele increases production of the yczA-ycbK transcript. Elevated yczA-ycbK expression was shown to activate transcription of the trp operon. Deletion of the yczA-ycbK operon abolishes the trpS1 effect on trp gene expression. The purpose of increasing expression of the genes of tryptophan biosynthesis in the trpS mutant would be to provide additional tryptophan to overcome the charged tRNA(Trp) deficiency. Therefore, in B. subtilis, as in Escherichia coli, transcription of the tryptophan biosynthetic genes is regulated in response to changes in the extent of charging of tRNA(Trp) as well as the availability of tryptophan.  (+info)

A Bacillus subtilis gene of previously unknown function, yhaG, is translationally regulated by tryptophan-activated TRAP and appears to be involved in tryptophan transport. (5/162)

Computer analysis of the Bacillus subtilis genome sequence revealed a gene with no previously attributed function, yhaG, specifying a transcript containing a presumptive binding site for the tryptophan-activated regulatory protein, TRAP. The presumptive TRAP binding site overlaps the yhaG Shine-Dalgarno sequence and translation initiation region. TRAP was shown to regulate expression of yhaG translationally. Production of the yhaG transcript in vivo was found to compete for the binding of TRAP to other known TRAP binding sites. YhaG is likely to be a transmembrane protein involved in tryptophan transport.  (+info)

The nucleotide sequence of the first externally suppressible--1 frameshift mutant, and of some nearby leaky frameshift mutants. (6/162)

Nine mutants within a 23 nucleotide sequence of the trpE gene of Salmonella typhimurium have been characterized. trpE91, a mutant which is externally suppressible has a single base deletion. Eight (or nine) nucleotides upstream of this deletion, two independently isolated mutations have the same transversion. In combination with trpE91 these mutations lead to partial restoration of synthesis of anthranilate synthetase in the absence of external suppressors. In the transversion the sequence A CA is changed to A AA and this new sequence may be the site where frameshifting occurs to allow leakiness. Leakiness is displayed by two further mutants of the same sign as trpE91, and one of the opposite sign, in the absence of any base substitution or external suppressors. Specific sequences, e.g., UUUC, may be especially prone to frameshifting and this sequence is created at the site of the +1 frameshift mutant which displays leakiness. In the new reading frame generated by the two -1 frame leaky mutants, a tryptophan codon is encountered. Leakiness is necessarily detected in the absence of tryptophan and under these conditions there will be a shortage of charged tryptophan tRNA. The possibility of such functional imbalance leading to frameshifting in these mutants is discussed.  (+info)

Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. (7/162)

A cDNA clone that encodes a feedback-insensitive anthranilate synthase (AS), ASA2, isolated from a 5-methyl-tryptophan (Trp) (5MT)-resistant tobacco cell line under the control of the constitutive cauliflower mosaic virus 35S promoter, was introduced into the forage legume Astragalus sinicus by Agrobacterium rhizogenes with kanamycin selection. The 35S-ASA2 gene was expressed constitutively as demonstrated by northern-blot hybridization analyses and the presence of feedback-insensitive AS. Hairy root lines transformed with 35S-ASA2 grew in concentrations of up to 100 microM 5MT, whereas the controls were completely inhibited by 15 microM 5MT. Expression of the feedback-insensitive ASA2 resulted in a 1.3- to 5.5-fold increase in free Trp. Kinetic studies of the AS activity demonstrate the Trp feedback alterations and indicate that the ASA2 alpha-subunit can interact with the native A. sinicus beta-subunit to form an active enzyme. The ASA2 transcript and high free Trp were also detected in the leaves, stems, and roots of plants regenerated from the transformed hairy roots. Thus, we show for the first time that ASA2 can be used to transform plants of a different species to increase the levels of the essential amino acid Trp and impart 5MT resistance.  (+info)

Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis. (8/162)

Buchnera, the primary bacterial endosymbiont of aphids, is known to provision essential amino acids lacking in the hosts' diet of plant sap. The recent discovery of silenced copies of genes for tryptophan biosynthesis (trpEG) in certain Buchnera lineages suggests a decay in symbiotic functions in some aphid species. However, neither the distribution of pseudogenes among lineages nor the impact of this gene silencing on amino-acid availability in hosts has been assessed. In Buchnera of the aphid Diuraphis noxia, tandem repeats of these pseudogenes have persisted in diverse lineages, and thpEG pseudogenes have originated at least twice within this aphid genus. Measures of amino-acid concentrations in Diuraphis species have shown that the presence of the pseudogene is associated with a decreased availability of tryptophan, indicating that gene silencing decreases nutrient provisioning by symbionts. In Buchnera of Diuraphis, rates of nonsynonymous substitutions are elevated in functional trpE copies, supporting the hypothesis that pseudogene origin and persistence reflect a reduced selection for symbiont biosynthetic contributions. The parallel evolution of trpEG pseudogenes in Buchnera of Diuraphis and certain other aphid hosts suggests that either selection at the host level is not effective or that fitness in these aphids is not limited by tryptophan availability.  (+info)

Anthranilate synthase is a key enzyme in the synthesis of aromatic amino acids, specifically tryptophan. It catalyzes the reaction of chorismate and glutamine to form anthranilate, which is the first committed step in the biosynthetic pathway leading to tryptophan. Anthranilate synthase is a heterotetrameric enzyme composed of two different subunits, ASα and ASβ, in eukaryotes and some bacteria. In other bacteria, anthranilate synthase is a single polypeptide chain with both active sites. The activity of anthranilate synthase is tightly regulated at the transcriptional and allosteric levels to control the flow of carbon into the tryptophan biosynthetic pathway.

Ortho-Aminobenzoates are chemical compounds that contain a benzene ring substituted with an amino group in the ortho position and an ester group in the form of a benzoate. They are often used as pharmaceutical intermediates, plastic additives, and UV stabilizers. In medical contexts, one specific ortho-aminobenzoate, para-aminosalicylic acid (PABA), is an antibiotic used in the treatment of tuberculosis. However, it's important to note that "ortho-aminobenzoates" in general do not have a specific medical definition and can refer to any compound with this particular substitution pattern on a benzene ring.

Anthranilate phosphoribosyltransferase is an enzyme involved in the metabolism of tryptophan, an essential amino acid. This enzyme catalyzes the conversion of anthranilic acid to 1-(o-amino phenyl)phosphoric acid, which is a critical step in the biosynthesis of the aromatic compound known as quinoline.

The reaction catalyzed by anthranilate phosphoribosyltransferase involves the transfer of a phosphoribosyl group from phosphoribosyl pyrophosphate (PRPP) to anthranilic acid, resulting in the formation of 1-(o-amino phenyl)phosphoric acid and pyrophosphate. This reaction is an important part of the tryptophan degradation pathway, which helps regulate the levels of this essential amino acid in the body.

Deficiencies or mutations in anthranilate phosphoribosyltransferase can lead to various metabolic disorders, including a rare genetic condition known as autosomal recessive alkaptonuria (ARA). ARA is characterized by the accumulation of homogentisic acid and its oxidation product, melanin, in various tissues, leading to joint stiffness, darkened skin, and other symptoms.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Indole-3-glycerol-phosphate synthase (IGPS) is an enzyme that catalyzes the conversion of tryptophan into indole-3-glycerol phosphate, which is a key intermediate in the biosynthesis of various physiologically important compounds such as auxins (a type of plant hormone). In humans, defects in the IGPS enzyme have been associated with the disorder phenylketonuria (PKU), which is characterized by an inability to metabolize the amino acid phenylalanine. However, it's worth noting that IGPS primarily functions in the context of plant and microbial metabolism.

I'm sorry for any confusion, but "Chorismic Acid" is not a recognized term in medical or clinical sciences. It appears that "chorismic acid" is a concept from biochemistry, specifically in the field of amino acid biosynthesis. It is an intermediate compound in the shikimate pathway, which is present in plants and microorganisms but not in animals.

Chorismic acid is a key branchpoint metabolite that leads to the formation of various aromatic amino acids and other important compounds. However, it's not typically mentioned in medical contexts or definitions. If you're looking for information related to its biochemical role, I would be happy to help with that!

Cyclohexanecarboxylic acids are a type of organic compound that consists of a cyclohexane ring, which is a six-carbon saturated hydrocarbon, substituted with a carboxylic acid group (-COOH). This group contains a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (-OH).

The cyclohexane ring can be in various forms, including the chair, boat, or twist-boat conformations, depending on the orientation of its constituent atoms. The carboxylic acid group can ionize to form a carboxylate anion, which is negatively charged and has a deprotonated hydroxyl group.

Cyclohexanecarboxylic acids have various applications in industry and research, including as intermediates in the synthesis of other chemicals, solvents, and pharmaceuticals. They can also be found naturally in some plants and microorganisms.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

Tryptophan synthase is a bacterial enzyme that catalyzes the final step in the biosynthesis of the essential amino acid tryptophan. It is a complex enzyme composed of two types of subunits, α and β, which form an αββα tetrameric structure.

Tryptophan synthase catalyzes the conversion of indole-3-glycerol phosphate (IGP) and L-serine into tryptophan through two separate reactions that occur in a coordinated manner within the active site of the enzyme. In the first reaction, the α subunit catalyzes the breakdown of IGP into indole and glyceraldehyde-3-phosphate (G3P). The indole molecule then moves through a tunnel to the active site of the β subunit, where it is combined with L-serine to form tryptophan in the second reaction.

The overall reaction catalyzed by tryptophan synthase is:

Indole-3-glycerol phosphate + L-serine → L-tryptophan + glyceraldehyde-3-phosphate

Tryptophan synthase plays a critical role in the biosynthesis of tryptophan, which is an essential amino acid that cannot be synthesized by humans and must be obtained through diet. Defects in tryptophan synthase can lead to various genetic disorders, such as hyperbeta-alaninemia and tryptophanuria.

Nitrogenous group transferases are a class of enzymes that catalyze the transfer of nitrogen-containing groups from one molecule to another. These enzymes play a crucial role in various metabolic pathways, including the biosynthesis and degradation of amino acids, nucleotides, and other nitrogen-containing compounds.

The term "nitrogenous group" refers to any chemical group that contains nitrogen atoms. Examples of nitrogenous groups include amino groups (-NH2), amide groups (-CONH2), and cyano groups (-CN). Transferases that move these groups from one molecule to another are classified as nitrogenous group transferases.

These enzymes typically require cofactors such as ATP, NAD+, or other small molecules to facilitate the transfer of the nitrogenous group. They follow the general reaction mechanism of a transferase enzyme, where the substrate (donor) binds to the active site of the enzyme and transfers its nitrogenous group to an acceptor molecule, resulting in the formation of a new product.

Examples of nitrogenous group transferases include:

* Glutamine synthetase, which catalyzes the conversion of glutamate to glutamine by adding an ammonia group (-NH3) from ATP.
* Aspartate transcarbamylase, which catalyzes the transfer of a carbamoyl group (-CO-NH2) from carbamoyl phosphate to aspartate during pyrimidine biosynthesis.
* Argininosuccinate synthetase, which catalyzes the formation of argininosuccinate by transferring an aspartate group from aspartate to citrulline during the urea cycle.

Understanding nitrogenous group transferases is essential for understanding various metabolic pathways and their regulation in living organisms.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

"Serratia marcescens" is a medically significant species of gram-negative, facultatively anaerobic, motile bacillus bacteria that belongs to the family Enterobacteriaceae. It is commonly found in soil, water, and in the gastrointestinal tracts of humans and animals. The bacteria are known for their ability to produce a red pigment called prodigiosin, which gives them a distinctive pink color on many types of laboratory media.

"Serratia marcescens" can cause various types of infections, including respiratory tract infections, urinary tract infections, wound infections, and bacteremia (bloodstream infections). It is also known to be an opportunistic pathogen, which means that it primarily causes infections in individuals with weakened immune systems, such as those with chronic illnesses or who are undergoing medical treatments that suppress the immune system.

In healthcare settings, "Serratia marcescens" can cause outbreaks of infection, particularly in patients who are hospitalized for extended periods of time. It is resistant to many commonly used antibiotics, which makes it difficult to treat and control the spread of infections caused by this organism.

In addition to its medical significance, "Serratia marcescens" has also been used as a model organism in various areas of microbiological research, including studies on bacterial motility, biofilm formation, and antibiotic resistance.

In a medical context, feedback refers to the information or data about the results of a process, procedure, or treatment that is used to evaluate and improve its effectiveness. This can include both quantitative data (such as vital signs or laboratory test results) and qualitative data (such as patient-reported symptoms or satisfaction). Feedback can come from various sources, including patients, healthcare providers, medical equipment, and electronic health records. It is an essential component of quality improvement efforts, allowing healthcare professionals to make informed decisions about changes to care processes and treatments to improve patient outcomes.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Enzyme repression is a type of gene regulation in which the production of an enzyme is inhibited or suppressed, thereby reducing the rate of catalysis of the chemical reaction that the enzyme facilitates. This process typically occurs when the end product of the reaction binds to the regulatory protein, called a repressor, which then binds to the operator region of the operon (a group of genes that are transcribed together) and prevents transcription of the structural genes encoding for the enzyme. Enzyme repression helps maintain homeostasis within the cell by preventing the unnecessary production of enzymes when they are not needed, thus conserving energy and resources.

"Pseudomonas" is a genus of Gram-negative, rod-shaped bacteria that are widely found in soil, water, and plants. Some species of Pseudomonas can cause disease in animals and humans, with P. aeruginosa being the most clinically relevant as it's an opportunistic pathogen capable of causing various types of infections, particularly in individuals with weakened immune systems.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants, making infections caused by this bacterium difficult to treat. It can cause a range of healthcare-associated infections, such as pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. In addition, it can also cause external ear infections and eye infections.

Prompt identification and appropriate antimicrobial therapy are crucial for managing Pseudomonas infections, although the increasing antibiotic resistance poses a significant challenge in treatment.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

Quinaldines are not a medical term, but rather an organic chemistry term. They refer to a class of compounds known as quinoline derivatives that contain a substituted pyridine ring and a benzene ring in their structure. Some quinaldines have been used in pharmaceuticals for their antimicrobial properties, but they are not commonly used in modern medicine. Therefore, there is no medical definition for 'quinaldines'.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

A cell-free system is a biochemical environment in which biological reactions can occur outside of an intact living cell. These systems are often used to study specific cellular processes or pathways, as they allow researchers to control and manipulate the conditions in which the reactions take place. In a cell-free system, the necessary enzymes, substrates, and cofactors for a particular reaction are provided in a test tube or other container, rather than within a whole cell.

Cell-free systems can be derived from various sources, including bacteria, yeast, and mammalian cells. They can be used to study a wide range of cellular processes, such as transcription, translation, protein folding, and metabolism. For example, a cell-free system might be used to express and purify a specific protein, or to investigate the regulation of a particular metabolic pathway.

One advantage of using cell-free systems is that they can provide valuable insights into the mechanisms of cellular processes without the need for time-consuming and resource-intensive cell culture or genetic manipulation. Additionally, because cell-free systems are not constrained by the limitations of a whole cell, they offer greater flexibility in terms of reaction conditions and the ability to study complex or transient interactions between biological molecules.

Overall, cell-free systems are an important tool in molecular biology and biochemistry, providing researchers with a versatile and powerful means of investigating the fundamental processes that underlie life at the cellular level.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Genetic transformation is the process by which an organism's genetic material is altered or modified, typically through the introduction of foreign DNA. This can be achieved through various techniques such as:

* Gene transfer using vectors like plasmids, phages, or artificial chromosomes
* Direct uptake of naked DNA using methods like electroporation or chemically-mediated transfection
* Use of genome editing tools like CRISPR-Cas9 to introduce precise changes into the organism's genome.

The introduced DNA may come from another individual of the same species (cisgenic), from a different species (transgenic), or even be synthetically designed. The goal of genetic transformation is often to introduce new traits, functions, or characteristics that do not exist naturally in the organism, or to correct genetic defects.

This technique has broad applications in various fields, including molecular biology, biotechnology, and medical research, where it can be used to study gene function, develop genetically modified organisms (GMOs), create cell lines for drug screening, and even potentially treat genetic diseases through gene therapy.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

Diazonium compounds are a class of organic compounds that contain the functional group -N=N+E-, where E- represents a halide ion or an organic cation. They are typically prepared by treating an aromatic primary amine with nitrous acid (HNO2) in an acidic medium, which results in the formation of a diazonium ion.

The general reaction can be represented as follows:

R-NH2 + HNO2 + HX → R-N=N+X- + 2H2O

where R represents the aromatic ring and X- is a halide ion (Cl-, Br-, or I-).

Diazonium compounds are important intermediates in organic synthesis, particularly in the preparation of azo dyes and other colored compounds. They are also useful for introducing functional groups into aromatic rings through various chemical reactions such as sandmeyer reaction, gattermann reaction etc. However, diazonium salts are generally unstable and can decompose explosively if heated or subjected to strong shock or friction. Therefore, they must be handled with care.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

... anthranilate + pyruvate + L-glutamate Anthranilate synthase creates anthranilate, an important intermediate in the biosynthesis ... Anthranilate synthase catalyzes the change from chorismate to anthranilate. As its other substrate, it can use either glutamine ... The subunits of anthranilate synthase are encoded by the trpE and trpD genes in E. coli, both of which appear in the trp operon ... The enzyme anthranilate synthase (EC 4.1.3.27) catalyzes the chemical reaction chorismate + L-glutamine ⇌ {\displaystyle \ ...
Tryptophan biosynthesis involves conversion of chorismate to anthranilate using anthranilate synthase. This enzyme requires ... Anthranilate synthase is regulated by the gene products of trpE and trpG. trpE encodes the first subunit, which binds to ... Anthranilate synthase is also regulated by feedback inhibition: tryptophan is a co-repressor to the TrpR repressor. The ... Enzymes involved in this biosynthesis include acetolactate synthase (also known as acetohydroxy acid synthase), acetohydroxy ...
The roles of their products are: TrpE (P00895): Anthranilate synthase produces anthranilate. TrpD (P00904): Cooperates with ... The Indole-3-glycerol-phosphate synthase on the same protein then turns the product into (1S,2R)-1-C-(indol-3-yl)glycerol 3- ... TrpC (P00909): Phosphoribosylanthranilate isomerase domain first turns N-(5-phospho-β-D-ribosyl)anthranilate into 1-(2- ...
... is biosynthesized from chorismic acid by the action of anthranilate synthase. In organisms capable of ... Anthranilate-based insect repellents have been proposed as replacements for DEET. Fenamic acid is a derivative of anthranilic ... The anion [C6H4(NH2)(CO2)]−, obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was ... Kynureninase 3-Aminobenzoic acid 4-Aminobenzoic acid Methyl anthranilate "Front Matter". Nomenclature of Organic Chemistry : ...
First, chorismate is converted to anthranilate by the alpha-subunit of anthranilate synthase (ASA). Anthranilate reacts with 5- ... synthase to yield indole. The beta-subunit of tryptophan synthase (TSB) catalyzes condensation of indole with serine, leading ... Condensation of IPP and dimethylallyl diphosphate (DMAPP) yields geranyl diphosphate (GPP). The geraniol synthase (GS) then ... from MVA or MEP pathway are converted to strictosidine through a condensation reaction catalyzed by strictosidine synthase. ...
Li, J; Last, R. L. (1996). "The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated ... "Isolation of cDNAs encoding the tryptophan pathway enzyme indole-3-glycerol phosphate synthase from Arabidopsis thaliana". ...
"Indoleglycerol phosphate synthase-phosphoribosyl anthranilate isomerase: comparison of the bifunctional enzyme from Escherichia ... anthranilate contains inhibitors, but not if it is generated by anthranilate phosphoribosyltransferase) 26300 (Bacillus ... component lib of the anthranilate synthetase complex has N-(5'-phosphoribosyl)anthranilate isomerase and indole-3-glycerol ... The systematic name of this enzyme class is N-(5-phospho-beta-D-ribosyl)anthranilate aldose-ketose-isomerase. Other names in ...
... made from shikimate and is then attacked by nascent ammonia to produce the ortho aminobenzoate isomer by anthranilate synthase ... Enaminomycin C is formed from anthranilate, which is made via the shikimate pathway as well. Subsequent oxidation is followed ... Farinamycin is made of three different components: 3-OH-anthranilate (3-HAA), 3,4-aminohydroxybenzamide (3,4-AHBAm) and the ... natural product Enaminomycin C. 3-OH anthranilate is derived from the central shikimate pathway metabolite chorismate. ...
... may refer to: Time-resolved photon emission Anthranilate synthase, an enzyme This disambiguation page lists articles ...
In plants, the enzyme anthranilate synthase (AS) is composed of two subunits that modulate the production or suppression of ...
Enzymes with similar structures to aminodeoxychorismate synthase are: Anthranilate synthase (TrpE) Isochorismate synthase (MenF ... It is believed that aminodeoxychorismate synthase may have evolved from anthranilate synthase (TrpE) - an enzyme that catalyses ... Aminodeoxychorismate synthase ADC synthase 4-amino-4-deoxychorismate synthase PabB In certain microbial species such as ... Formerly aminodeoxychorismate synthase was referred to as PABA synthase; however this name is no longer recommended as it is ...
... the second component of anthranilate synthase and 4-amino-4-deoxychorismate (ADC) synthase; CTP synthase; GMP synthase; ... This activity is found in a range of biosynthetic enzymes, including glutamine amidotransferase, anthranilate synthase ... glutamine-dependent carbamoyl-phosphate synthase; phosphoribosylformylglycinamidine synthase II; and the histidine ... or as domains in a much larger multifunctional synthase protein, such as CPSase. On the basis of sequence similarities two ...
... a virtual library of potential herbicidal inhibitors of the enzyme anthranilate synthase was generated by keeping the core ...
The Structures of Anthranilate Synthase of Serratia Marcescens Crystallized in the Presence of (i) its substrates, Chorismate ...
... anthranilate synthase EC 4.1.3.28: Now EC 2.3.3.3, citrate (Re)-synthase EC 4.1.3.29: Now EC 2.3.3.4, decylhomocitrate synthase ... 11-diene synthase EC 4.2.3.25: S-linalool synthase EC 4.2.3.26: R-linalool synthase EC 4.2.3.27: isoprene synthase EC 4.2.3.28 ... α-santalene synthase EC 4.2.3.83: β-santalene synthase EC 4.2.3.84: 10-epi-γ-eudesmol synthase EC 4.2.3.85: α-eudesmol synthase ... cubebol synthase EC 4.2.3.92: (+)-γ-cadinene synthase EC 4.2.3.93: δ-guaiene synthase EC 4.2.3.94: γ-curcumene synthase EC 4.2. ...
... anthranilate N-benzoyltransferase, biphenyl synthase, glycine N-benzoyltransferase, ornithine N-benzoyltransferase and ... It is a substrate in the formation of xanthonoids in Hypericum androsaemum by benzophenone synthase, condensing a molecule of ...
... anthranilate phosphoribosyltransferase MeSH D08.811.600.085 - anthranilate synthase MeSH D08.811.600.116 - aspartate ... riboflavin synthase MeSH D08.811.913.225.825 - spermidine synthase MeSH D08.811.913.225.912 - spermine synthase MeSH D08.811. ... anthranilate synthase MeSH D08.811.520.224.600.700 - isocitrate lyase MeSH D08.811.520.224.800 - tryptophanase MeSH D08.811. ... nitric oxide synthase type i MeSH D08.811.682.664.500.772.500 - nitric oxide synthase type ii MeSH D08.811.682.664.500.772.750 ...
Creighton TE; Yanofsky C (1970). "Chorismate to tryptophan (Escherichia coli) - Anthranilate synthetase, PR transferase, PRA ... indoleglycerol phosphate synthase, indole-3-glycerophosphate synthase, 1-(2-carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate ... The enzyme indole-3-glycerol-phosphate synthase (IGPS) (EC 4.1.1.48) catalyzes the chemical reaction 1-(2-carboxyphenylamino)-1 ... anthranilate isomerase (EC 5.3.1.24) (PRAI) activity, the third step of tryptophan biosynthesis. In fungi, IGPS is the central ...
... mycocerosate synthase EC 2.3.1.112: D-tryptophan N-malonyltransferase EC 2.3.1.113: anthranilate N-malonyltransferase EC 2.3. ... 2-ethylmalate synthase EC 2.3.3.7: 3-ethylmalate synthase EC 2.3.3.8: ATP citrate synthase EC 2.3.3.9: malate synthase EC 2.3. ... synthase EC 2.3.3.2: decylcitrate synthase EC 2.3.3.3: citrate (Re)-synthase EC 2.3.3.4: decylhomocitrate synthase EC 2.3.3.5: ... synthase EC 2.4.1.12: cellulose synthase (UDP-forming) EC 2.4.1.13: sucrose synthase EC 2.4.1.14: sucrose-phosphate synthase EC ...
It is an intermediate in the biosynthesis of tryptophan, where it stays inside the tryptophan synthase molecule between the ... Indole is biosynthesized in the shikimate pathway via anthranilate. ...
... anthranilate-CoA ligase EC 6.2.1.33: 4-chlorobenzoate-CoA ligase EC 6.2.1.34: trans-feruloyl-CoA synthase EC 6.2.1.35: acetate ... c-diamide synthase EC 6.3.5.12: Ni-sirohydrochlorin a,c-diamide synthase * EC 6.3.5.13: lipid II isoglutaminyl synthase ( ... thioglycine synthase * EC 6.2.2.2: oxazoline synthase * EC 6.2.2.3: thiazoline synthase * * No Wikipedia article EC 6.3.1.1: ... 2-hydroxypropanoate synthase * EC 6.3.2.56: staphyloferrin B synthase * EC 6.3.2.57: staphyloferrin A synthase * EC 6.3.2.58: D ...
Anthranilate-CoA ligase EC 6.2.1.33: 4-chlorobenzoate-CoA ligase EC 6.2.1.34: Trans-feruloyl-CoA synthase EC 6.2.1.35: ACP-SH: ... Thiazole synthase EC 2.8.1.11: Molybdopterin synthase sulfurtransferase EC 2.8.1.12: Molybdopterin synthase EC 2.8.1.13: tRNA- ... Biotin synthase EC 2.8.1.7: Cysteine desulfurase EC 2.8.1.8: Lipoyl synthase EC 2.8.1.9: Molybdenum cofactor sulfurtransferase ... EC 1.21.3 Isopenicillin N synthase EC 1.21.3.1 Tetrahydrocannabinolic acid synthase EC 1.21.3.7 Category:EC 1.21.4 Category:EC ...
Plants and microorganisms commonly synthesize tryptophan from shikimic acid or anthranilate: anthranilate condenses with ... In the last step, tryptophan synthase catalyzes the formation of tryptophan from indole and the amino acid serine. The ... The conversion is catalyzed by the enzyme tryptophan synthase. There was a large outbreak of eosinophilia-myalgia syndrome (EMS ...
2. N-formyl-L-kynurenine is converted to anthranilate by the pathway-specific kynureninase, AntP. 3. Anthranilate is activated ... Antimycins are produced by a non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) assembly complex which acts as ... 4. Anthranilate is converted to 3-aminosalicylate by a multicomponent oxygenase, AntHIJKL. 5. 3-Aminosalicylate is presented to ...
2-oxobutyrate synthase - (2,3-dihydroxybenzoyl)adenylate synthase - 2,4-Dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase - ... anthranilate adenylyltransferase - anti-sense strand - antibiotic resistance - antibody - antisense - antisense strand - AP-1 ... licodione synthase - ligase - linear epitope - linkage - linker protein - linoleate diol synthase - lipofectin - ... vanillin synthase - VanY protein domain - Var1 protein domain - vax2os1 - vector - VEK-30 protein domain - vinorine hydroxylase ...
... with the first step being N-alkylation of anthranilic acid catalysed by the enzyme anthranilate phosphoribosyltransferase. ... Mechanistic Analysis of the Bacterial Hydroxymethylpyrimidine Phosphate Synthase". Angewandte Chemie International Edition. 49 ...
In another study involving the S. solfataricus indole-3-glycerol phosphate synthase TIM barrel protein, a conserved βαβαβ ... anthranilate (PRA) to 1-(O-carboxyphenylamino)- 1'-deoxyribulose-5'-phosphate (CdRP). PriA is a TIM barrel enzyme that ... These clamps (or hydrophobic side chain bridge analogs) are conserved in 3 indole-3-glycerolphosphate synthase TIM barrel ... indole-3-glycerol phosphate synthase, by hydrogen exchange mass spectrometry and Gō model simulation". Journal of Molecular ...
... pyruvate synthase EC 1.2.7.2: Now included with EC 1.2.7.1, pyruvate synthase. EC 1.2.7.3: 2-oxoglutarate synthase EC 1.2.7.4: ... anthranilate 1,2-dioxygenase (deaminating, decarboxylating) EC 1.14.12.2: Now EC 1.14.13.35 anthranilate 3-monooxygenase ( ... berbamunine synthase EC 1.1.3.35: Now EC 1.14.21.4, salutaridine synthase EC 1.1.3.36: Now EC 1.14.21.5, (S)-canadine synthase ... clavaminate synthase EC 1.14.11.22: Now EC 1.14.20.5, flavone synthase EC 1.14.11.23: Now EC 1.14.20.6, flavonol synthase EC ...

No FAQ available that match "anthranilate synthase"

No images available that match "anthranilate synthase"