Ankyrin Repeat: Protein motif that contains a 33-amino acid long sequence that often occurs in tandem arrays. This repeating sequence of 33-amino acids was discovered in ANKYRIN where it is involved in interaction with the anion exchanger (ANION EXCHANGE PROTEIN 1, ERYTHROCYTE). Ankyrin repeats cooperatively fold into domains that mediate molecular recognition via protein-protein interactions.Ankyrins: A family of membrane-associated proteins responsible for the attachment of the cytoskeleton. Erythrocyte-related isoforms of ankyrin attach the SPECTRIN cytoskeleton to a transmembrane protein (ANION EXCHANGE PROTEIN 1, ERYTHROCYTE) in the erythrocyte plasma membrane. Brain-related isoforms of ankyrin also exist.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Repetitive Sequences, Nucleic Acid: Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).Tankyrases: A group of telomere associated proteins that interact with TRF1 PROTEIN, contain ANKYRIN REPEATS and have poly(ADP-ribose) polymerase activity.Trinucleotide Repeats: Microsatellite repeats consisting of three nucleotides dispersed in the euchromatic arms of chromosomes.Repetitive Sequences, Amino Acid: A sequential pattern of amino acids occurring more than once in the same protein sequence.Spectrin: A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.I-kappa B Proteins: A family of inhibitory proteins which bind to the REL PROTO-ONCOGENE PROTEINS and modulate their activity. In the CYTOPLASM, I-kappa B proteins bind to the transcription factor NF-KAPPA B. Cell stimulation causes its dissociation and translocation of active NF-kappa B to the nucleus.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Tandem Repeat Sequences: Copies of DNA sequences which lie adjacent to each other in the same orientation (direct tandem repeats) or in the opposite direction to each other (INVERTED TANDEM REPEATS).Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Fowlpox: A poxvirus infection of poultry and other birds characterized by the formation of wart-like nodules on the skin and diphtheritic necrotic masses (cankers) in the upper digestive and respiratory tracts.Receptors, Notch: A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN repeats in their cytoplasmic domains. The cytoplasmic domain of notch receptors is released upon ligand binding and translocates to the CELL NUCLEUS where it acts as transcription factor.Immunoglobulin J Recombination Signal Sequence-Binding Protein: A ubiquitously expressed sequence-specific transcriptional repressor that is normally the target of signaling by NOTCH PROTEINS.Receptor, Notch1: A notch receptor that interacts with a variety of ligands and regulates SIGNAL TRANSDUCTION PATHWAYS for multiple cellular processes. It is widely expressed during EMBRYOGENESIS and is essential for EMBRYONIC DEVELOPMENT.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Repressor Proteins: Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Anion Exchange Protein 1, Erythrocyte: A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS.Muscle Proteins: The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.NF-kappa B p50 Subunit: A component of NF-kappa B transcription factor. It is proteolytically processed from NF-kappa B p105 precursor protein and is capable of forming dimeric complexes with itself or with TRANSCRIPTION FACTOR RELA. It regulates expression of GENES involved in immune and inflammatory responses.Minisatellite Repeats: Tandem arrays of moderately repetitive, short (10-60 bases) DNA sequences which are found dispersed throughout the GENOME, at the ends of chromosomes (TELOMERES), and clustered near telomeres. Their degree of repetition is two to several hundred at each locus. Loci number in the thousands but each locus shows a distinctive repeat unit.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Trinucleotide Repeat Expansion: An increased number of contiguous trinucleotide repeats in the DNA sequence from one generation to the next. The presence of these regions is associated with diseases such as FRAGILE X SYNDROME and MYOTONIC DYSTROPHY. Some CHROMOSOME FRAGILE SITES are composed of sequences where trinucleotide repeat expansion occurs.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Transient Receptor Potential Channels: A broad group of eukaryotic six-transmembrane cation channels that are classified by sequence homology because their functional involvement with SENSATION is varied. They have only weak voltage sensitivity and ion selectivity. They are named after a DROSOPHILA mutant that displayed transient receptor potentials in response to light. A 25-amino-acid motif containing a TRP box (EWKFAR) just C-terminal to S6 is found in TRPC, TRPV and TRPM subgroups. ANKYRIN repeats are found in TRPC, TRPV & TRPN subgroups. Some are functionally associated with TYROSINE KINASE or TYPE C PHOSPHOLIPASES.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Proto-Oncogene Proteins c-rel: Cellular DNA-binding proteins encoded by the rel gene (GENES, REL). They are expressed predominately in hematopoietic cells and may play a role in lymphocyte differentiation. Rel frequently combines with other related proteins (NF-KAPPA B, I-kappa B, relA) to form heterodimers that regulate transcription. Rearrangement or overexpression of c-rel can cause tumorigenesis.Spherocytosis, Hereditary: A group of familial congenital hemolytic anemias characterized by numerous abnormally shaped erythrocytes which are generally spheroidal. The erythrocytes have increased osmotic fragility and are abnormally permeable to sodium ions.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Mirabilis: A plant genus of the family NYCTAGINACEAE. Members contain Mirabilis antiviral protein (a ribosome-inactivating protein).Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Protein Engineering: Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Microsatellite Repeats: A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.TRPV Cation Channels: A subgroup of TRP cation channels named after vanilloid receptor. They are very sensitive to TEMPERATURE and hot spicy food and CAPSAICIN. They have the TRP domain and ANKYRIN repeats. Selectivity for CALCIUM over SODIUM ranges from 3 to 100 fold.Suppressor of Cytokine Signaling Proteins: A family of structurally related proteins that are induced by CYTOKINES and negatively regulate cytokine-mediated SIGNAL TRANSDUCTION PATHWAYS. SOCS proteins contain a central SH2 DOMAIN and a C-terminal region of homology known as the SOCS box.Erythrocyte Membrane: The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS.Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Myxoma virus: The type species of LEPORIPOXVIRUS causing infectious myxomatosis, a severe generalized disease, in rabbits. Tumors are not always present.Dinucleotide Repeats: The most common of the microsatellite tandem repeats (MICROSATELLITE REPEATS) dispersed in the euchromatic arms of chromosomes. They consist of two nucleotides repeated in tandem; guanine and thymine, (GT)n, is the most frequently seen.Genome: The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.Molecular Sequence Annotation: The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.

The ankyrin repeat-containing adaptor protein Tvl-1 is a novel substrate and regulator of Raf-1. (1/285)

Tvl-1 is a 269-amino acid ankyrin repeat protein expressed primarily in thymus, lung, and testes that was identified by screening a murine T-cell two-hybrid cDNA library for proteins that associate with the serine-threonine kinase Raf-1. The interaction of Tvl-1 with Raf-1 was confirmed by co-immunoprecipitation of the two proteins from COS-1 cells transiently transfected with Tvl-1 and Raf-1 expression constructs as well as by co-immunoprecipitation of the endogenous proteins from CV-1 and NB2 cells. Tvl-1 interacts with Raf-1 via its carboxyl-terminal ankyrin repeat domain. The same domain also mediates Tvl-1 homodimerization. Tvl-1 was detected by immunofluorescence in both the cytoplasm and the nucleus suggesting that in addition to Raf-1 it may also interact with nuclear proteins. Activated Raf-1 phosphorylates Tvl-1 both in vitro and in vivo. In baculovirus-infected Sf9 insect cells, Tvl-1 potentiates the activation of Raf-1 by Src and Ras while in COS-1 cells it potentiates the activation of Raf-1 by EGF. These data suggest that Tvl-1 is both a target as well as a regulator of Raf-1. The human homologue of Tvl-1 maps to chromosome 19p12, upstream of MEF2B with the two genes in a head to head arrangement.  (+info)

Improved sensitivity of PCR for diagnosis of human granulocytic ehrlichiosis using epank1 genes of Ehrlichia phagocytophila-group ehrlichiae. (2/285)

The agent of human granulocytic ehrlichiosis (HGE), Ehrlichia phagocytophila, and Ehrlichia equi probably comprise variants of a single Ehrlichia species now called the Ehrlichia phagocytophila genogroup. These variants share a unique 153-kDa protein antigen with ankyrin repeat motifs encoded by the epank1 gene. The epank1 gene was investigated as an improved target for PCR diagnosis of HGE compared with the currently used 16S rRNA gene target. Primers for epank1 flanking a region that spans part of the 5' ankyrin repeat coding region and part of the unique 3' region were synthesized. Blood samples from 31 patients with suspected HGE who were previously tested by 16S rRNA gene (16S) PCR and indirect immunofluorescent antibody test (IFA) were retrospectively tested with the epank1 primers. Eleven patients were 16S PCR positive and had a seroconversion detected by IFA (group A), 10 patients were 16S PCR negative but had a seroconversion detected by IFA (group B), and 10 patients were 16S PCR negative and seronegative (group C). Ten of the 11 group A patients were epank1 PCR positive, all 10 of the group B patients were epank1 PCR positive, and all of the PCR-negative and seronegative patients (group C) were epank1 PCR negative. The epank1 primers are more sensitive than the previously used 16S rRNA gene primers and therefore may be more useful in diagnostic testing for HGE.  (+info)

Alastrim smallpox variola minor virus genome DNA sequences. (3/285)

Alastrim variola minor virus, which causes mild smallpox, was first recognized in Florida and South America in the late 19th century. Genome linear double-stranded DNA sequences (186,986 bp) of the alastrim virus Garcia-1966, a laboratory reference strain from an outbreak associated with 0.8% case fatalities in Brazil in 1966, were determined except for a 530-bp fragment of hairpin-loop sequences at each terminus. The DNA sequences (EMBL Accession No. Y16780) showed 206 potential open reading frames for proteins containing >/=60 amino acids. The amino acid sequences of the putative proteins were compared with those reported for vaccinia virus strain Copenhagen and the Asian variola major strains India-1967 and Bangladesh-1975. About one-third of the alastrim viral proteins were 100% identical to correlates in the variola major strains and the remainder were >/=95% identical. Compared with variola major virus DNA, alastrim virus DNA has additional segments of 898 and 627 bp, respectively, within the left and right terminal regions. The former segment aligns well with sequences in other orthopoxviruses, particularly cowpox and vaccinia viruses, and the latter is apparently alastrim-specific.  (+info)

SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. (4/285)

Notch proteins are transmembrane receptors that mediate intercell communication and direct individual cell fate decisions. The activated intracellular form of Notch, NotchIC, translocates to the nucleus, where it targets the DNA binding protein CBF1. CBF1 mediates transcriptional repression through the recruitment of an SMRT-histone deacetylase-containing corepressor complex. We have examined the mechanism whereby NotchIC overcomes CBF1-mediated transcriptional repression. We identified SKIP (Ski-interacting protein) as a CBF1 binding protein in a yeast two-hybrid screen. Both CBF1 and SKIP are highly conserved evolutionarily, and the SKIP-CBF1 interaction is also conserved in assays using the Caenorhabditis elegans and Drosophila melanogaster SKIP homologs. Protein-protein interaction assays demonstrated interaction between SKIP and the corepressor SMRT. More surprisingly, SKIP also interacted with NotchIC. The SMRT and NotchIC interactions were mutually exclusive. In competition binding experiments SMRT displaced NotchIC from CBF1 and from SKIP. Contact with SKIP is required for biological activity of NotchIC. A mutation in the fourth ankyrin repeat that abolished Notch signal transduction did not affect interaction with CBF1 but abolished interaction with SKIP. Further, NotchIC was unable to block muscle cell differentiation in myoblasts expressing antisense SKIP. The results suggest a model in which NotchIC activates responsive promoters by competing with the SMRT-corepressor complex for contacts on both CBF1 and SKIP.  (+info)

Analysis of notch lacking the carboxyl terminus identified in Drosophila embryos. (5/285)

The cell surface receptor Notch is required during development of Drosophila melanogaster for differentiation of numerous tissues. Notch is often required for specification of precursor cells by lateral inhibition and subsequently for differentiation of tissues from these precursor cells. We report here that certain embryonic cells and tissues that develop after lateral inhibition, like the connectives and commissures of the central nervous system, are enriched for a form of Notch not recognized by antibodies made against the intracellular region carboxy-terminal of the CDC10/Ankyrin repeats. Western blotting and immunoprecipitation analyses show that Notch molecules lacking this region are produced during embryogenesis and form protein complexes with the ligand Delta. Experiments with cultured cells indicate that Delta promotes accumulation of a Notch intracellular fragment lacking the carboxyl terminus. Furthermore, Notch lacking the carboxyl terminus functions as a receptor for Delta. These results suggest that Notch activities during development include generation and activity of a truncated receptor we designate NDeltaCterm.  (+info)

Molecular cloning and characterization of SRAM, a novel insect rel/ankyrin-family protein present in nuclei. (6/285)

Previously, we purified a 59-kDa protein that binds to the kappaB motif of the Sarcophaga lectin gene. Here we report its cDNA cloning and some of its characteristics as a novel member of the Rel/Ankyrin-family. This protein, named SRAM, contained a Rel homology domain, a nuclear localization signal and 4 ankyrin repeats, but lacked the Ser-rich domain and PEST sequence that Relish contained. We found that SRAM was localized in the nuclei of NIH-Sape-4 cells, which are an embryonic cell line of Sarcophaga. The Sarcophaga lectin gene promoter containing tandem repeats of the kappaB motifs was activated in NIH-Sape-4 cells. In Drosophila mbn-2 cells, Dif alone activated this reporter gene and a cooperative effect was detected when SRAM and Dif were co-transfected, although SRAM alone did not activate it. This is the first report of a Rel/Ankyrin molecule that exists in the nuclei.  (+info)

The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization. (7/285)

Ankyrins are linker proteins, which connect various membrane proteins, including members of the L1 family of neural cell adhesion molecules, with the submembranous actin-spectrin skeleton. Here we report the cloning and characterization of a second, novel Drosophila ankyrin gene (Dank2) that appears to be the result of a gene duplication event during arthropod evolution. The Drosophila L1-type protein neuroglian interacts with products from both Drosophila ankyrin genes. Whereas the previously described ankyrin gene is ubiquitously expressed during embryogenesis, the expression of Dank2 is restricted to the nervous system in the Drosophila embryo. The absence of neuroglian protein in a neuroglian null mutant line causes decreased levels of Dank2 protein in most neuronal cells. This suggests that neuroglian is important for the stability of Dank2 protein. However, neuroglian is not required for Dank2 axonal localization. In temperature-sensitive neuroglian mutants in which neuroglian protein is mislocated at the restrictive temperature to an intracellular location in the neuronal soma, Dank2 protein can still be detected along embryonic nerve tracts.  (+info)

Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. (8/285)

CARP, a cardiac doxorubicin (adriamycin)-responsive protein, has been identified as a nuclear protein whose expression is downregulated in response to doxorubicin. In the present study, we tested the hypothesis that CARP serves as a reliable genetic marker of cardiac hypertrophy in vivo and in vitro. CARP expression was markedly increased in 3 distinct models of cardiac hypertrophy in rats: constriction of abdominal aorta, spontaneously hypertensive rats, and Dahl salt-sensitive rats. In addition, we found that CARP mRNA levels correlate very strongly with the brain natriuretic peptide mRNA levels in Dahl rats. Transient transfection assays into primary cultures of neonatal rat cardiac myocytes indicate that transcription from the CARP and brain natriuretic peptide promoters is stimulated by overexpression of p38 and Rac1, components of the stress-activated mitogen-activated protein kinase pathways. Mutation analysis and electrophoretic mobility shift assays indicated that the M-CAT element can serve as a binding site for nuclear factors, and this element is important for the induction of CARP promoter activity by p38 and Rac1. Thus, our data suggest that M-CAT element is responsible for the regulation of the CARP gene in response to the activation of stress-responsive mitogen-activated protein kinase pathways. Moreover, given that activation of these pathways is associated with cardiac hypertrophy, we propose that CARP represents a novel genetic marker of cardiac hypertrophy.  (+info)

  • Ankyrin (ANK) repeat containing proteins are evolutionary conserved and have functions in crucial cellular processes like cell cycle regulation and signal transduction. (
  • Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. (
  • More recently, several ARD [AR (ankyrin repeat) domain]-containing proteins were identified as FIH substrates using FIH interaction assays. (
  • Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. (
  • Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). (
  • The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. (
  • However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. (
  • The N-terminal cytoplasmic domain of TRPC, TRPV, and ANKTM (TRPA) channels contain ankyrin repeats, whereas the TRPC and TRPM contain proline-rich regions in the region just C-terminal to the predicted 6TM segment ( Fig. 2 ). (
  • GABPβ contains four-and-a-half ankyrin repeats at its NH 2 -terminus that mediate heterodimerization with GABPα ( 17 ). (
  • Transient receptor potential ankyrin 1 (TRPA1) is an ion channel known to mediate nociception and neurogenic inflammation, and to be activated by reactive oxygen and nitrogen species (ROS and RNS) produced at the sites of inflammation. (
  • Biopharmaceutical company Cubist Pharmaceuticals Inc (NASDAQ:CBST) and Hydra Biosciences Inc announced on Tuesday the joint proposal to commence a Phase 1 clinical study for a small molecule antagonist of the human Transient Receptor Potential Ankyrin repeat 1 (TRPA1) ion channel. (
  • today announced plans to begin a Phase 1 clinical trial for a small molecule antagonist of the human Transient Receptor Potential Ankyrin repeat 1 (TRPA1) ion channel discovered in a collaboration between Cubist and Hydra. (
  • o-Chlorobenzylidene malononitrile (CS) is a selective and potent agonist of the transient receptor potential ankyrin repeat 1 (TRPA1), which is a transducer molecule in nociceptors sensing reactive chemical species. (
  • Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). (
  • Transient Receptor Potential Ankyrin-1 (TRPA1) Channel Contributes to Myocardial Ischemia-Reperfusion Injury. (
  • Ionic channels such as the transient receptor potential ankyrin 1 (TRPA1) are essential for the detection and transmission of painful stimuli. (
  • In a one-year re-integration phase I will perform follow-up mechanistic structural studies in the Olga Mayans lab (University of Liverpool) to determine the structural basis how the CARP (cardiac ankyrin repeat protein)-titin signaling axis mediates cardiomyocyte protection, and in the Labeit lab (University of Heidelberg, Medical Faculty Mannheim) how to perturb activity of this complex by small molecules. (
  • Arpps amino acid sequence is usually highly homologous to that of human cardiac ankyrin-repeated protein (Carp) (52% identical). (
  • 2005). Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein. (
  • More extensive design strategies have used combinatorial sequences to "evolve" ankyrin-repeat motifs that specifically recognize particular protein targets, a technique that has been presented as a possible alternative to antibody design for applications requiring high-affinity binding. (
  • Using proton-exchange methods in the presence and absence of chemical denaturation, we evaluated the stability of this ankyrin scaffold in a residue-resolved manner. (