Capital Financing
Anemia, Aplastic
Anemia, Hemolytic
Fanconi Anemia
Anemia, Hemolytic, Autoimmune
Anemia, Hypochromic
Anemia, Macrocytic
Anemia, Pernicious
Anemia, Sickle Cell
Anemia, Sideroblastic
Anemia, Megaloblastic
Infectious Anemia Virus, Equine
Hemoglobins
Anemia, Refractory
Equine Infectious Anemia
Erythropoietin
Chicken anemia virus
Anemia, Dyserythropoietic, Congenital
Anemia, Diamond-Blackfan
Fanconi Anemia Complementation Group Proteins
Iron
Pregnancy Complications, Hematologic
Anemia, Neonatal
Hematinics
Anemia, Refractory, with Excess of Blasts
Fanconi Anemia Complementation Group C Protein
Fanconi Anemia Complementation Group D2 Protein
Hematocrit
Fanconi Anemia Complementation Group A Protein
Endometritis
Anemia, Hemolytic, Congenital Nonspherocytic
Ferritins
Erythrocyte Indices
Blood Transfusion
Erythrocytes
Fanconi Anemia Complementation Group G Protein
Coombs Test
Reticulocyte Count
Iron, Dietary
Iron Compounds
Hepcidins
Erythrocytes, Abnormal
Erythrocyte Transfusion
Mesenchymoma
Vitamin B 12 Deficiency
Erythrocyte Aging
Chromium Alloys
beta-Thalassemia
Isavirus
Life Expectancy
Thalassemia
Fanconi Anemia Complementation Group F Protein
Phenylhydrazines
Fanconi Anemia Complementation Group E Protein
Fetal Hemoglobin
Malaria
Blood Cell Count
Treatment Outcome
Folic Acid Deficiency
Pregnancy
Vitamin B 12
Horses
Erythroblasts
Osmotic Fragility
Reticulocytes
Carteolol
Parasitemia
Risk Factors
Iron Overload
Kidney Failure, Chronic
Mitomycin
Heinz Bodies
Hookworm Infections
Receptors, Transferrin
Hemoglobinopathies
Hemoglobin, Sickle
Malaria, Falciparum
Intrinsic Factor
alpha-Thalassemia
Spherocytosis, Hereditary
Rh Isoimmunization
Chronic Disease
Antimicrobial Cationic Peptides
Hemolysis
Tanzania
Retrospective Studies
Erythroid Precursor Cells
Pregnancy Complications, Parasitic
Antisickling Agents
Parvovirus B19, Human
Folic Acid
Hemoglobins, Abnormal
Hemoglobinuria, Paroxysmal
Malnutrition
Cross-Sectional Studies
Prospective Studies
Glucosephosphate Dehydrogenase Deficiency
Transferrin
Reticulocytosis
Renal Dialysis
Kenya
Salmo salar
Blood Transfusion, Intrauterine
Severity of Illness Index
5-Aminolevulinate Synthetase
Dietary Supplements
Papilloma
Oxymetholone
Follow-Up Studies
Hemoglobin E
Muscular Dystrophies, Limb-Girdle
Glucaric Acid
Hematopoiesis
Bone Marrow Transplantation
Erythroblastosis, Fetal
Protoporphyrins
Immunosuppressive Agents
Iron Isotopes
Drug Administration Schedule
Food, Fortified
Mutation
Autoantibodies to gastrin in patients with pernicious anaemia--a novel antibody. (1/227)
Autoantibodies arise when there is a breakdown in immunological tolerance. Autoantibodies to parietal cells and intrinsic factor are found in autoimmune atrophic gastritis (AAG) and are associated with elevated plasma gastrin. Endogenous gastrin autoantibodies have not been described to date. The aim of this study was to investigate the occurrence of autoantibodies to gastrin. Plasma from 50,000 patients, including more than 2000 with AAG, was tested. Gastrin was measured by radioimmunoassay (RIA) in whole plasma and the presence of autoantibody determined by using a control which omitted assay antibody. The quantity and affinity of gastrin autoantibodies was assessed. Three patients had autoantibodies to gastrin. All three had AAG and pernicious anaemia (PA). The antibodies were of low titre and relatively high affinity. Free circulating plasma gastrin levels were within the normal range, but total gastrin levels were elevated. This is the first description of autoantibodies to endogenous gastrin. The incidence of antibodies to gastrin is low, they are found in association with PA, and they may lead to falsely low measurements of plasma gastrin. (+info)Potential difference across the normal and the abnormal gastric mucosa in man. (2/227)
The mucosal potential difference in the body of the stomach was measured in 18 patients with gastric ulcers, five with gastritis, and three with pernicious anaemia. The results were compared with those of 12 normal volunteers. Significantly lower than normal levels were found in the groups of patients with gastric ulcers and gastritis. The patients with pernicious anaemia had even lower potential differences. In an additional 25 subjects, measurements were made in the duodenal bulb and at five sites in the stomach under direct vision at endoscopy. Biopsies were taken from each site for histology. Subjects with gastritis at the high lesser curve had a significantly lower potential difference at that site than those without gastritis. In the latter group, the potential difference at the high lesser curve was as low as in the antrum, and invariably lower than at the high greater curve. (+info)Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. (3/227)
It has been suggested that vitamin B12 (vit.B12) plays an important role in immune system regulation, but the details are still obscure. In order to examine the action of vit.B12 on cells of the human immune system, lymphocyte subpopulations and NK cell activity were evaluated in 11 patients with vit.B12 deficiency anaemia and in 13 control subjects. Decreases in the number of lymphocytes and CD8+ cells and in the proportion of CD4+ cells, an abnormally high CD4/CD8 ratio, and suppressed NK cell activity were noted in patients compared with control subjects. In all 11 patients and eight control subjects, these immune parameters were evaluated before and after methyl-B12 injection. The lymphocyte counts and number of CD8+ cells increased both in patients and in control subjects. The high CD4/CD8 ratio and suppressed NK cell activity were improved by methyl-B12 treatment. Augmentation of CD3-CD16+ cells occurred in patients after methyl-B12 treatment. In contrast, antibody-dependent cell-mediated cytotoxicity (ADCC) activity, lectin-stimulated lymphocyte blast formation, and serum levels of immunoglobulins were not changed by methyl-B12 treatment. These results indicate that vit.B12 might play an important role in cellular immunity, especially relativing to CD8+ cells and the NK cell system, which suggests effects on cytotoxic cells. We conclude that vit.B12 acts as an immunomodulator for cellular immunity. (+info)The rise in circulating gastrin with age is due to increases in gastric autoimmunity and Helicobacter pylori infection. (4/227)
To assess the effect of increasing age on circulating gastrin, we surveyed serum gastrin, Helicobactor pylori seroantibody status and gastric autoimmunity in 366 hospitalized patients aged 15-90 years. Data were subjected to multivariate analysis, using logarithmic transformation to normalize the distribution of gastrin concentrations (presented as geometric means and 95% CIs). The frequency of H. pylori-positive antibody status increased with age from 28% in the second decade to > 70% beyond the fourth decade. Fasting gastrin concentrations rose significantly from 44 ng/l (41-48) in the second decade to 95 ng/l (67-131) by the eighth decade (p = 0.001) in the total group. Twenty-seven patients (6.8% of the total) tested positive for gastric auto-antibodies: 2% of patients in the second decade, rising to 15.9% in the eighth decade. These patients formed a distinct group with respect to circulating gastrin concentrations. Excluding these 27, fasting gastrin concentrations still rose significantly, from 44 ng/l (41-48) in the second decade, to 67 ng/l (50-89) in the eighth decade (p = 0.003) in the remaining 341 patients. Fasting gastrin concentrations were significantly higher in patients who were H. pylori-seropositive (59 ng/l, 54-64 vs. sero-negative 41 ng/l, 37-46) (p = 0.002), and there was no increase in circulating gastrin concentrations with increasing age in either the H. pylori-positive or the H. pylori-negative group. The increase in circulating fasting gastrin observed with increasing age is due to an increased incidence of gastric antibodies associated with auto-immune atrophic gastritis, and an increased incidence of H. pylori infection. (+info)Thyrogastric autoimmune disease. Studies on the cell-mediated immune system and histocompatibility antigens. (5/227)
Cell-mediated immune responses were studied in autoimmune diseases of thyrogastric type, Hashimoto's thyroiditis and autoimmune pernicious anaemia-type gastritis. Specific cell-mediated immunity was investigated by the leucocyte migration inhibition procedure, and general cell-mediated immunity (T-cell performance) was studied by standard in vivo and in vitro tests. In thyrogastric autoimmune diseases inhibition of migration of leucocytes was induced by thyroglobulin and gastric parietal cell microsomes; under conditions of presumably low cellular sensitization, stimulation of migration was observed. There was no depression of general cell-mediated immunity, in contrast to what occurs in systemic lupus erythematosus and related autoimmune diseases. A weak association of autoimmune gastritis with HL-A3 and HL-A7 (P LESS THAN 0.05) lost significance when an appropriate correction was applied; this weakness with HL-A clearly does not explain the strong genetic component in thyroid and gastric autoimmunity. (+info)Measles antibodies and autoantibodies in autoimmune disorders. (6/227)
Measles CF antibodies have been examined in the sera of patients with a variety of clinical disorders associated with the production of autoantibodies. Previous reports of high-titre reactions in DLE and chronic active hepatitis have been confirmed, the titres in the latter disorder being particularly elevated. Mean antibody titres to measles in patients with rheumatoid arthritis were significantly lower than in matched controls, and an inverse correlation between measles antibody levels and serum globulin levels was found. Measles antibody titres in patients with myasthenia gravis and primary biliary cirrhosis did not differ significantly from those found in controls. However, subdivision of patients with rheumatoid arthritis, myasthenia gravis and primary biliary cirrhosis showed that the presence of anti-nuclear antibody (ANA) was associated with significantly increased measles antibody levels compared with the ANA-negative sera. The presence of gastric parietal cell antibody or thyroid microsomal antibody did not appear to be associated with increased measles antibody levels, whether or not they occurred in association with previous anaemia or thyroid disease. Possible explanations for these findings in terms of immune complex formation and immune hyper-reactivity are discussed. (+info)Serum leptin levels in patients with sideropenic and pernicious anemia: the influence of anemia treatment. (7/227)
Leptin is a 16 kDa protein hormone involved in food intake, energy expenditure regulation and numerous other physiological processes. Recently, leptin has been demonstrated to stimulate hematopoietic stem cells in vitro. The aim of our study was to measure serum leptin and erythropoietin levels in patients with sideropenic (n = 18) and pernicious anemia (n=7) before and during anemia treatment. Blood samples for the blood count, leptin and erythropoietin determinations were obtained by venepunction at the time of the diagnosis of anemia and after partial and complete anemia recovery. The relationships of serum leptin levels to erythropoietin levels and blood count parameters were also studied. No significant differences in serum leptin levels between the groups studied were found. The serum leptin levels in none of groups were modified by treatment of anemia (basal levels, the levels during treatment and after anemia recovery were 13.1+/-14.5 vs 12.8+/-15.6 vs 12.0+/-14.8 ng/ml in patients with sideropenic anemia and 7.8+/-8.5 vs 9.5+/-10.0 vs 8.9+/-6.6 ng/ml in patients with pernicious anemia). The erythropoietin levels were higher at the time of anemia in both groups and decreased significantly after partial or complete recovery. Serum leptin levels in both groups correlated positively with the body mass index. No significant relationships were found between serum leptin levels and erythropoietin values or various parameters of the peripheral blood count. We conclude that serum leptin levels in patients with sideropenic and pernicious anemia positively correlate with the body mass index but are not influenced by the treatment of anemia. (+info)Screening for hypothyroidism in elderly inpatients. (8/227)
Routine biochemical screening for hypothyroidism in 2000 geriatric inpatients proved valuable and practicable and yielded 46 cases (2.3%). A non-specific clinical picture was particularly common, with less than a third of the cases showing "typical" signs and symptoms. Psychiatric manifestations, especially depression, were important and frequent and responded well to thyroxine. There was a preponderance of female cases of hypothyroidism and a strong association with other autoimmune diseases, notably pernicious anaemia and rheumatoid arthritis. (+info)Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, and increased risk of bleeding or infection. Treatment options for aplastic anemia typically involve blood transfusions and immunosuppressive drugs to stimulate the bone marrow to produce new blood cells. In severe cases, a bone marrow transplant may be necessary.
Overall, aplastic anemia is a rare and serious condition that requires careful management by a healthcare provider to prevent complications and improve quality of life.
Symptoms of hemolytic anemia may include fatigue, weakness, shortness of breath, dizziness, headaches, and pale or yellowish skin. Treatment options depend on the underlying cause but may include blood transfusions, medication to suppress the immune system, antibiotics for infections, and removal of the spleen (splenectomy) in severe cases.
Prevention strategies for hemolytic anemia include avoiding triggers such as certain medications or infections, maintaining good hygiene practices, and seeking early medical attention if symptoms persist or worsen over time.
It is important to note that while hemolytic anemia can be managed with proper treatment, it may not be curable in all cases, and ongoing monitoring and care are necessary to prevent complications and improve quality of life.
There are currently no cures for Fanconi anemia, but bone marrow transplantation and other supportive therapies can help manage some of the symptoms and improve quality of life. Research into the genetics and molecular biology of Fanconi anemia is ongoing to better understand the disorder and develop new treatments.
Some of the common symptoms of Fanconi anemia include short stature, limb deformities, hearing loss, vision problems, and an increased risk of infections and cancer. Children with Fanconi anemia may also experience developmental delays, learning disabilities, and social and emotional challenges.
The diagnosis of Fanconi anemia is typically made based on a combination of clinical findings, laboratory tests, and genetic analysis. Treatment options for Fanconi anemia depend on the severity of the disorder and may include bone marrow transplantation, blood transfusions, antibiotics, and other supportive therapies.
Fanconi anemia is a rare disorder that affects approximately 1 in 160,000 births worldwide. It is more common in certain populations, such as Ashkenazi Jews and individuals of Spanish descent. Fanconi anemia can be inherited in an autosomal recessive pattern, meaning that a child must inherit two copies of the mutated gene (one from each parent) to develop the disorder.
Overall, Fanconi anemia is a complex and rare genetic disorder that requires specialized medical care and ongoing research to better understand its causes and develop effective treatments. With appropriate management and supportive therapies, individuals with Fanconi anemia can lead fulfilling lives despite the challenges associated with the disorder.
Autoimmune hemolytic anemia (AIHA) is a specific type of hemolytic anemia that occurs when the immune system mistakenly attacks and destroys red blood cells. This can happen due to various underlying causes such as infections, certain medications, and some types of cancer.
In autoimmune hemolytic anemia, the immune system produces antibodies that coat the surface of red blood cells and mark them for destruction by other immune cells called complement proteins. This leads to the premature destruction of red blood cells in the spleen, liver, and other organs.
Symptoms of autoimmune hemolytic anemia can include fatigue, weakness, shortness of breath, jaundice (yellowing of the skin and eyes), dark urine, and a pale or yellowish complexion. Treatment options for AIHA depend on the underlying cause of the disorder, but may include medications to suppress the immune system, plasmapheresis to remove antibodies from the blood, and in severe cases, splenectomy (removal of the spleen) or bone marrow transplantation.
In summary, autoimmune hemolytic anemia is a type of hemolytic anemia that occurs when the immune system mistakenly attacks and destroys red blood cells, leading to premature destruction of red blood cells and various symptoms such as fatigue, weakness, and jaundice. Treatment options depend on the underlying cause of the disorder and may include medications, plasmapheresis, and in severe cases, splenectomy or bone marrow transplantation.
In hypochromic anemia, the RBCs are smaller than normal and have a lower concentration of hemoglobin. This can lead to a decrease in the amount of oxygen being carried to the body's tissues, which can cause fatigue, weakness, and shortness of breath.
There are several possible causes of hypochromic anemia, including:
1. Iron deficiency: Iron is essential for the production of hemoglobin, so a lack of iron can lead to a decrease in hemoglobin levels and the development of hypochromic anemia.
2. Vitamin deficiency: Vitamins such as vitamin B12 and folate are important for the production of red blood cells, so a deficiency in these vitamins can lead to hypochromic anemia.
3. Chronic disease: Certain chronic diseases, such as kidney disease, rheumatoid arthritis, and cancer, can lead to hypochromic anemia.
4. Inherited disorders: Certain inherited disorders, such as thalassemia and sickle cell anemia, can cause hypochromic anemia.
5. Autoimmune disorders: Autoimmune disorders, such as autoimmune hemolytic anemia, can cause hypochromic anemia by destroying red blood cells.
Hypochromic anemia is typically diagnosed through a combination of physical examination, medical history, and laboratory tests such as complete blood counts (CBCs) and serum iron studies. Treatment depends on the underlying cause of the anemia and may include dietary changes, supplements, medication, or blood transfusions.
Symptoms of macrocytic anemia may include fatigue, weakness, pale skin, and shortness of breath. Diagnosis is typically made through a complete blood count (CBC) test that shows an elevated mean corpuscular volume (MCV) and reticulocyte count. Treatment depends on the underlying cause, but may include vitamin supplements, changes in medication, or addressing any underlying medical conditions.
In summary, macrocytic anemia is a type of anemia characterized by large red blood cells that are prone to breakdown and can be caused by various factors. It can cause symptoms such as fatigue, weakness, and shortness of breath, and diagnosis is made through a CBC test. Treatment depends on the underlying cause.
Note: The information provided above is a general definition of the medical condition 'Anemia, Pernicious'. It is not meant to be a substitute for professional medical advice or treatment. If you have any concerns about this condition, you should consult a qualified healthcare professional for proper evaluation and care.
Sickle cell anemia is caused by mutations in the HBB gene that codes for hemoglobin. The most common mutation is a point mutation at position 6, which replaces the glutamic acid amino acid with a valine (Glu6Val). This substitution causes the hemoglobin molecule to be unstable and prone to forming sickle-shaped cells.
The hallmark symptom of sickle cell anemia is anemia, which is a low number of healthy red blood cells. People with the condition may also experience fatigue, weakness, jaundice (yellowing of the skin and eyes), infections, and episodes of severe pain. Sickle cell anemia can also increase the risk of stroke, heart disease, and other complications.
Sickle cell anemia is diagnosed through blood tests that measure hemoglobin levels and the presence of sickle cells. Treatment typically involves managing symptoms and preventing complications with medications, blood transfusions, and antibiotics. In some cases, bone marrow transplantation may be recommended.
Prevention of sickle cell anemia primarily involves avoiding the genetic mutations that cause the condition. This can be done through genetic counseling and testing for individuals who have a family history of the condition or are at risk of inheriting it. Prenatal testing is also available for pregnant women who may be carriers of the condition.
Overall, sickle cell anemia is a serious genetic disorder that can significantly impact quality of life and life expectancy if left untreated. However, with proper management and care, individuals with the condition can lead fulfilling lives and manage their symptoms effectively.
The symptoms of sideroblastic anemia can vary depending on the severity of the condition, but may include fatigue, weakness, pale skin, shortness of breath, and a rapid heart rate. Treatment options for sideroblastic anemia typically involve addressing the underlying genetic cause of the condition, such as through gene therapy or enzyme replacement therapy, and managing symptoms with medication and lifestyle modifications.
In summary, sideroblastic anemia is a rare inherited disorder characterized by abnormalities in iron metabolism that can lead to impaired red blood cell production and various other symptoms. It is important for individuals with this condition to receive timely and appropriate medical attention to manage their symptoms and prevent complications.
Symptoms of megaloblastic anemia may include fatigue, weakness, shortness of breath, pale skin, and weight loss. The condition is typically diagnosed through a physical examination, blood tests (including a complete blood count and blood chemistry tests), and possibly a bone marrow biopsy.
Treatment for megaloblastic anemia usually involves addressing the underlying cause of the condition, such as vitamin B12 or folate supplements. In some cases, medications to stimulate the production of red blood cells may be prescribed. If left untreated, megaloblastic anemia can lead to complications such as heart problems and increased risk of infections.
There are several subtypes of refractory anemia, including:
1. Refractory anemia with excess blasts (RAEB): This type of anemia is characterized by a high number of immature red blood cells in the bone marrow.
2. Refractory anemia with ringed sideroblasts (RARS): This type of anemia is characterized by the presence of abnormal red blood cells that have a "ring-like" appearance under a microscope.
3. Refractory anemia with multilineage dysplasia (RARMD): This type of anemia is characterized by abnormal cell development in the bone marrow, including immature red blood cells, white blood cells, and platelets.
Refractory anemia can be caused by a variety of factors, including genetic mutations, exposure to certain chemicals or toxins, and certain medical conditions such as chronic kidney disease or rheumatoid arthritis. Treatment for refractory anemia typically involves blood transfusions and supportive care, such as folic acid supplements and antibiotics to prevent infection. In some cases, bone marrow transplantation may be recommended.
Prevalence: Anemia, hemolytic, congenital is a rare disorder, affecting approximately 1 in 100,000 to 1 in 200,000 births.
Causes: The condition is caused by mutations in genes that code for proteins involved in hemoglobin synthesis or red blood cell membrane structure. These mutations can lead to abnormal hemoglobin formation, red blood cell membrane instability, and increased susceptibility to oxidative stress, which can result in hemolytic anemia.
Symptoms: Symptoms of anemia, hemolytic, congenital may include jaundice (yellowing of the skin and eyes), fatigue, weakness, pale skin, and shortness of breath. In severe cases, the condition can lead to life-threatening complications such as anemia, infections, and kidney failure.
Diagnosis: Anemia, hemolytic, congenital is typically diagnosed through a combination of physical examination, medical history, and laboratory tests, including blood smear examination, hemoglobin electrophoresis, and mutation analysis.
Treatment: Treatment for anemia, hemolytic, congenital depends on the specific underlying genetic cause and may include blood transfusions, folic acid supplements, antibiotics, and/or surgery to remove the spleen. In some cases, bone marrow transplantation may be necessary.
Prognosis: The prognosis for anemia, hemolytic, congenital varies depending on the specific underlying genetic cause and the severity of the condition. With appropriate treatment, many individuals with this condition can lead relatively normal lives, but in severe cases, the condition can be life-threatening.
The symptoms of EIA can vary in severity and may include fever, loss of appetite, weight loss, depression, and anemia. In severe cases, the disease can lead to death. There is no cure for EIA, but it can be managed with antiretroviral medications and supportive care.
EIA is a significant concern in the equine industry, as infected animals can transmit the disease to other horses and can be a risk to human health. Testing for EIA is done through a blood test, and infected animals are typically euthanized to prevent the spread of the disease.
Previous article Definition of 'Anemia, Sideroblastic, Congenital' Next article Definition of 'Anemia, Diamond-Blackfan'
Source: Genetic Home Reference: NIH
1. Iron deficiency anemia: This is the most common hematologic complication of pregnancy, caused by the increased demand for iron and the potential for poor dietary intake or gastrointestinal blood loss.
2. Thrombocytopenia: A decrease in platelet count, which can be mild and resolve spontaneously or severe and require treatment.
3. Leukemia: Rare but potentially serious, leukemia can occur during pregnancy and may require prompt intervention to ensure the health of both the mother and the fetus.
4. Thrombosis: The formation of a blood clot in a blood vessel, which can be life-threatening for both the mother and the baby if left untreated.
5. Hemorrhage: Excessive bleeding during pregnancy, which can be caused by various factors such as placenta previa or abruption.
6. Preeclampsia: A condition characterized by high blood pressure and damage to organs such as the kidneys and liver, which can increase the risk of hemorrhage and other complications.
7. Ectopic pregnancy: A pregnancy that develops outside of the uterus, often in the fallopian tube, which can cause severe bleeding and be life-threatening if left untreated.
A condition where newborn babies have a lower than normal number of red blood cells or low levels of hemoglobin in their blood. The condition can be caused by various factors such as premature birth, low birth weight, infections, and genetic disorders. Symptoms may include jaundice, fatigue, and difficulty breathing. Treatment options may vary depending on the underlying cause but may include blood transfusions and iron supplements.
Example usage: "Neonatal anemia is a common condition in newborn babies that can be caused by various factors such as premature birth or low birth weight."
The term "refractory" refers to the fact that this type of anemia does not respond well to standard treatments, such as blood transfusions or medications. The term "excess blasts" refers to the presence of a large number of immature cells in the bone marrow.
RAEB is a serious and potentially life-threatening condition that can develop into acute myeloid leukemia (AML), a type of cancer that affects the blood and bone marrow. AML is characterized by the rapid growth of abnormal white blood cells, which can crowd out normal cells in the bone marrow and lead to a variety of symptoms, including fatigue, fever, night sweats, and weight loss.
RAEB is usually diagnosed in adults over the age of 60, although it can occur at any age. The condition is often associated with other health problems, such as myelodysplastic syndrome (MDS), a group of disorders that affect the bone marrow and blood cells.
Treatment for RAEB typically involves chemotherapy and/or bone marrow transplantation. The goal of treatment is to slow the progression of the disease, reduce symptoms, and improve quality of life. In some cases, RAEB may be managed with supportive care, such as blood transfusions and antibiotics, to help manage symptoms and prevent complications.
Overall, refractory anemia with excess blasts is a serious and complex condition that requires careful management by a healthcare team of hematologists, oncologists, and other specialists. With appropriate treatment, many people with RAEB are able to achieve long-term remission and improve their quality of life.
Endometritis is a medical condition that affects the endometrium, which is the lining of the uterus. It can cause painful symptoms such as vaginal discharge, fever and abdominal pain. Treatment usually involves antibiotics to clear any infections, hormonal medications to reduce inflammation and promote healing. In severe cases surgery may be necessary to remove infected tissue or repair damaged structures.
Endometritis is an inflammatory condition that affects the endometrium, which lines the uterus. Symptoms include vaginal discharge, fever, painful urination, and abdominal pain. Treatment typically involves antibiotics to clear up any underlying infections, as well as hormonal medications to reduce inflammation and promote healing. In severe cases, surgery may be necessary to remove infected tissue or repair damaged structures.
Endometritis is an inflammatory condition that affects the endometrium, which is the lining of the uterus. It can cause a range of symptoms including vaginal discharge, fever, painful urination and abdominal pain. Treatment typically involves antibiotics to clear up any underlying infections and hormonal medications to reduce inflammation and promote healing. In severe cases surgery may be necessary to remove infected tissue or repair damaged structures.
Endometritis is a medical condition that affects the endometrium, which lines the uterus. Symptoms can include vaginal discharge, fever, painful urination, and abdominal pain. Treatment options may involve antibiotics to clear up any underlying infections as well as hormonal medications to reduce inflammation and promote healing. In severe cases, surgery may be necessary to remove infected tissue or repair damaged structures.
Endometritis is an inflammatory condition that affects the endometrium which lines the uterus. Symptoms can include vaginal discharge fever painful urination and abdominal pain Treatment options may involve antibiotics to clear up any underlying infections as well as hormonal medications to reduce inflammation and promote healing In severe cases surgery may be necessary to remove infected tissue or repair damaged structures.
Pallor is often used as an indicator of underlying disease, particularly in conditions where there is a decrease in the amount of hemoglobin in the blood, such as anemia or blood loss. It can also be a sign of other diseases such as liver cirrhosis, kidney failure, and some types of cancer.
There are different types of pallor, including:
1. Anemic pallor: This is the most common type of pallor and is caused by a decrease in the number of red blood cells or hemoglobin in the blood. It can be seen in conditions such as iron deficiency anemia, vitamin deficiency anemia, and sickle cell anemia.
2. Post-inflammatory pallor: This type of pallor is caused by inflammation that leads to a decrease in blood flow to the skin. It can be seen in conditions such as erythema migrans (Lyme disease), and other inflammatory conditions.
3. Cirrhotic pallor: This type of pallor is caused by liver cirrhosis and is characterized by a pale, washed-out appearance of the skin.
4. Renal pallor: This type of pallor is caused by kidney failure and is characterized by a pale, washed-out appearance of the skin.
5. Cancer pallor: This type of pallor is caused by certain types of cancer, such as carcinomas and lymphomas, and is characterized by a pale, washed-out appearance of the skin.
In summary, pallor is a term used to describe an abnormal paleness or whiteness of the skin that can be caused by a variety of underlying medical conditions. It is often used as an indicator of illness and can be seen in a wide range of conditions, including anemia, inflammation, liver cirrhosis, kidney failure, and certain types of cancer.
Mesenchymomas are relatively rare compared to other types of tumors, but they can be challenging to diagnose and treat due to their diverse clinical presentation and biological behavior. Mesenchymal tumors can be classified into several subtypes based on their histopathology and immunohistochemical features.
Surgery is the primary treatment for mesenchymomas, but the prognosis and outcome can vary depending on the type, size, location, and stage of the tumor. Radiation therapy and chemotherapy may also be used in combination with surgery to improve treatment outcomes. The long-term follow-up of patients with mesenchymomas is essential to monitor for recurrences and to assess the effectiveness of treatment.
Causes:
* Dietary deficiency due to a lack of animal products in the diet
* Malabsorption due to gastrointestinal disorders such as Crohn's disease or celiac disease
* Pernicious anemia, an autoimmune condition that affects the absorption of vitamin B12 in the gut.
* Surgical removal of part of the small intestine
* Certain medications such as metformin and proton pump inhibitors
Symptoms:
* Fatigue, weakness, and shortness of breath
* Pale skin and mouth sores
* Difficulty walking or balance problems
* Numbness or tingling sensations in the hands and feet
* Memory loss and depression
* Poor appetite and weight loss
Diagnosis:
* Blood tests to measure vitamin B12 levels and other related markers such as homocysteine
* Physical examination and medical history to identify risk factors or signs of deficiency
Treatment:
* Dietary changes to include more animal products such as meat, fish, eggs, and dairy products.
* Vitamin B12 supplements in the form of tablets, lozenges, or injections.
* Addressing underlying conditions that may be contributing to the deficiency such as gastrointestinal disorders.
Prevention:
* Consuming animal products as part of a balanced diet
* Avoiding medications that can interfere with vitamin B12 absorption.
There are two main types of beta-thalassemia:
1. Beta-thalassemia major (also known as Cooley's anemia): This is the most severe form of the condition, and it can cause serious health problems and a shortened lifespan if left untreated. Children with this condition are typically diagnosed at birth or in early childhood, and they may require regular blood transfusions and other medical interventions to manage their symptoms and prevent complications.
2. Beta-thalassemia minor (also known as thalassemia trait): This is a milder form of the condition, and it may not cause any noticeable symptoms. People with beta-thalassemia minor have one mutated copy of the HBB gene and one healthy copy, which allows them to produce some normal hemoglobin. However, they may still be at risk for complications such as anemia, fatigue, and a higher risk of infections.
The symptoms of beta-thalassemia can vary depending on the severity of the condition and the age of onset. Common symptoms include:
* Fatigue
* Weakness
* Pale skin
* Shortness of breath
* Frequent infections
* Yellowing of the skin and eyes (jaundice)
* Enlarged spleen
Beta-thalassemia is most commonly found in people of Mediterranean, African, and Southeast Asian ancestry. It is caused by mutations in the HBB gene, which is inherited from one's parents. There is no cure for beta-thalassemia, but it can be managed with blood transfusions, chelation therapy, and other medical interventions. Bone marrow transplantation may also be a viable option for some patients.
In conclusion, beta-thalassemia is a genetic disorder that affects the production of hemoglobin, leading to anemia, fatigue, and other complications. While there is no cure for the condition, it can be managed with medical interventions and bone marrow transplantation may be a viable option for some patients. Early diagnosis and management are crucial in preventing or minimizing the complications of beta-thalassemia.
There are two main types of thalassemia: alpha-thalassemia and beta-thalassemia. Alpha-thalassemia is caused by abnormalities in the production of the alpha-globin chain, which is one of the two chains that make up hemoglobin. Beta-thalassemia is caused by abnormalities in the production of the beta-globin chain.
Thalassemia can cause a range of symptoms, including anemia, fatigue, pale skin, and shortness of breath. In severe cases, it can lead to life-threatening complications such as heart failure, liver failure, and bone deformities. Thalassemia is usually diagnosed through blood tests that measure the levels of hemoglobin and other proteins in the blood.
There is no cure for thalassemia, but treatment can help manage the symptoms and prevent complications. Treatment may include blood transfusions, folic acid supplements, and medications to reduce the severity of anemia. In some cases, bone marrow transplantation may be recommended.
Preventive measures for thalassemia include genetic counseling and testing for individuals who are at risk of inheriting the disorder. Prenatal testing is also available for pregnant women who are carriers of the disorder. In addition, individuals with thalassemia should avoid marriage within their own family or community to reduce the risk of passing on the disorder to their children.
Overall, thalassemia is a serious and inherited blood disorder that can have significant health implications if left untreated. However, with proper treatment and management, individuals with thalassemia can lead fulfilling lives and minimize the risk of complications.
There are several different types of malaria, including:
1. Plasmodium falciparum: This is the most severe form of malaria, and it can be fatal if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
2. Plasmodium vivax: This type of malaria is less severe than P. falciparum, but it can still cause serious complications if left untreated. It is found in many parts of the world, including Africa, Asia, and Latin America.
3. Plasmodium ovale: This type of malaria is similar to P. vivax, but it can cause more severe symptoms in some people. It is found primarily in West Africa.
4. Plasmodium malariae: This type of malaria is less common than the other three types, and it tends to cause milder symptoms. It is found primarily in parts of Africa and Asia.
The symptoms of malaria can vary depending on the type of parasite that is causing the infection, but they typically include:
1. Fever
2. Chills
3. Headache
4. Muscle and joint pain
5. Fatigue
6. Nausea and vomiting
7. Diarrhea
8. Anemia (low red blood cell count)
If malaria is not treated promptly, it can lead to more severe complications, such as:
1. Seizures
2. Coma
3. Respiratory failure
4. Kidney failure
5. Liver failure
6. Anemia (low red blood cell count)
Malaria is typically diagnosed through a combination of physical examination, medical history, and laboratory tests, such as blood smears or polymerase chain reaction (PCR) tests. Treatment for malaria typically involves the use of antimalarial drugs, such as chloroquine or artemisinin-based combination therapies. In severe cases, hospitalization may be necessary to manage complications and provide supportive care.
Prevention is an important aspect of managing malaria, and this can include:
1. Using insecticide-treated bed nets
2. Wearing protective clothing and applying insect repellent when outdoors
3. Eliminating standing water around homes and communities to reduce the number of mosquito breeding sites
4. Using indoor residual spraying (IRS) or insecticide-treated wall lining to kill mosquitoes
5. Implementing malaria control measures in areas where malaria is common, such as distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)
6. Improving access to healthcare services, particularly in rural and remote areas
7. Providing education and awareness about malaria prevention and control
8. Encouraging the use of preventive medications, such as intermittent preventive treatment (IPT) for pregnant women and children under the age of five.
Early diagnosis and prompt treatment are critical in preventing the progression of malaria and reducing the risk of complications and death. In areas where malaria is common, it is essential to have access to reliable diagnostic tools and effective antimalarial drugs.
1. Anemia: Folic acid plays a critical role in the production of red blood cells, so a deficiency can lead to anemia, which can cause fatigue, weakness, and shortness of breath.
2. Birth defects: Folic acid is crucial for fetal development during pregnancy, and a deficiency can increase the risk of birth defects such as spina bifida and cleft palate.
3. Heart disease: Folic acid helps to regulate homocysteine levels in the blood, which are associated with an increased risk of heart disease and stroke.
4. Neurological problems: Folic acid is important for the health of the nervous system, and a deficiency can lead to neurological problems such as cognitive impairment, mood disturbances, and seizures.
5. Poor wound healing: Folic acid is necessary for the production of collagen, which is important for wound healing. A deficiency can lead to slow or poor wound healing.
6. Increased risk of cancer: Some studies suggest that a folic acid deficiency may increase the risk of certain types of cancer, such as colon cancer.
7. Hair loss: Folic acid is important for hair growth, and a deficiency can lead to hair loss.
8. Skin problems: Folic acid is important for skin health, and a deficiency can lead to skin problems such as dry, flaky skin and mouth sores.
9. Mood changes: Folic acid plays a role in the production of neurotransmitters, which are chemicals that regulate mood. A deficiency can lead to mood changes such as depression and anxiety.
10. Fatigue: Folic acid is important for energy metabolism, and a deficiency can lead to fatigue and weakness.
Folic acid deficiency can be caused by a number of factors, including:
1. Poor diet: A diet that is low in folate-rich foods can lead to a deficiency.
2. Malabsorption: Certain medical conditions such as celiac disease and Crohn's disease can lead to malabsorption of folic acid.
3. Pregnancy and lactation: Women who are pregnant or breastfeeding have a higher need for folic acid, and may be at risk for deficiency if they do not consume enough.
4. Alcoholism: Heavy alcohol consumption can interfere with the absorption of folic acid.
5. Certain medications: Some medications, such as antacids and proton pump inhibitors, can interfere with the absorption of folic acid.
To diagnose a folic acid deficiency, a healthcare provider may perform a physical exam, take a medical history, and order blood tests to measure folic acid levels. Treatment for a folic acid deficiency typically involves dietary changes and supplements. Dietary changes may include consuming more folate-rich foods, such as leafy green vegetables, legumes, and whole grains. Supplements may include folic acid tablets or liquid supplements. In severe cases of deficiency, injections of folic acid may be necessary. It is important to seek medical attention if you suspect a folic acid deficiency, as untreated deficiencies can lead to serious health problems.
The term splenomegaly is used to describe any condition that results in an increase in the size of the spleen, regardless of the underlying cause. This can be caused by a variety of factors, such as infection, inflammation, cancer, or genetic disorders.
Splenomegaly can be diagnosed through a physical examination, where the doctor may feel the enlarged spleen during an abdominal palpation. Imaging tests, such as ultrasound, computed tomography (CT) scans, or magnetic resonance imaging (MRI), may also be used to confirm the diagnosis and evaluate the extent of the splenomegaly.
Treatment for splenomegaly depends on the underlying cause. For example, infections such as malaria or mononucleosis are treated with antibiotics, while cancerous conditions may require surgical intervention or chemotherapy. In some cases, the spleen may need to be removed, a procedure known as splenectomy.
In conclusion, splenomegaly is an abnormal enlargement of the spleen that can be caused by various factors and requires prompt medical attention for proper diagnosis and treatment.
Sources:
1. Dictionary of Medical Microbiology, Second Edition. Edited by A. S. Chakrabarti and S. K. Das. Springer, 2012.
2. Medical Microbiology, Fourth Edition. Edited by P. R. Murray, K. S. N air, and M. J. Laurence. Mosby, 2014.
Symptoms of iron overload can include fatigue, weakness, joint pain, and abdominal discomfort. Treatment for iron overload usually involves reducing iron intake and undergoing regular phlebotomy (blood removal) to remove excess iron from the body. In severe cases, iron chelation therapy may be recommended to help remove excess iron from tissues and organs.
In addition to these medical definitions and treatments, there are also some key points to keep in mind when it comes to iron overload:
1. Iron is essential for human health, but too much of it can be harmful. The body needs a certain amount of iron to produce hemoglobin, the protein in red blood cells that carries oxygen throughout the body. However, excessive iron levels can damage organs and tissues.
2. Hereditary hemochromatosis is the most common cause of iron overload. This genetic disorder causes the body to absorb too much iron from food, leading to its accumulation in organs and tissues.
3. Iron overload can increase the risk of certain diseases, such as liver cirrhosis, diabetes, and heart disease. It can also lead to a condition called hemosiderosis, which is characterized by the deposition of iron in tissues and organs.
4. Phlebotomy is a safe and effective treatment for iron overload. Regular blood removal can help reduce excess iron levels and prevent complications such as liver damage, heart failure, and anemia.
5. Iron chelation therapy may be recommended in severe cases of iron overload. This involves using drugs to remove excess iron from tissues and organs, but it is not always necessary and can have potential side effects.
A condition in which the kidneys gradually lose their function over time, leading to the accumulation of waste products in the body. Also known as chronic kidney disease (CKD).
Prevalence:
Chronic kidney failure affects approximately 20 million people worldwide and is a major public health concern. In the United States, it is estimated that 1 in 5 adults has CKD, with African Americans being disproportionately affected.
Causes:
The causes of chronic kidney failure are numerous and include:
1. Diabetes: High blood sugar levels can damage the kidneys over time.
2. Hypertension: Uncontrolled high blood pressure can cause damage to the blood vessels in the kidneys.
3. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste and excess fluids from the blood.
4. Interstitial nephritis: Inflammation of the tissue between the kidney tubules.
5. Pyelonephritis: Infection of the kidneys, usually caused by bacteria or viruses.
6. Polycystic kidney disease: A genetic disorder that causes cysts to grow on the kidneys.
7. Obesity: Excess weight can increase blood pressure and strain on the kidneys.
8. Family history: A family history of kidney disease increases the risk of developing chronic kidney failure.
Symptoms:
Early stages of chronic kidney failure may not cause any symptoms, but as the disease progresses, symptoms can include:
1. Fatigue: Feeling tired or weak.
2. Swelling: In the legs, ankles, and feet.
3. Nausea and vomiting: Due to the buildup of waste products in the body.
4. Poor appetite: Loss of interest in food.
5. Difficulty concentrating: Cognitive impairment due to the buildup of waste products in the brain.
6. Shortness of breath: Due to fluid buildup in the lungs.
7. Pain: In the back, flank, or abdomen.
8. Urination changes: Decreased urine production, dark-colored urine, or blood in the urine.
9. Heart problems: Chronic kidney failure can increase the risk of heart disease and heart attack.
Diagnosis:
Chronic kidney failure is typically diagnosed based on a combination of physical examination findings, medical history, laboratory tests, and imaging studies. Laboratory tests may include:
1. Blood urea nitrogen (BUN) and creatinine: Waste products in the blood that increase with decreased kidney function.
2. Electrolyte levels: Imbalances in electrolytes such as sodium, potassium, and phosphorus can indicate kidney dysfunction.
3. Kidney function tests: Measurement of glomerular filtration rate (GFR) to determine the level of kidney function.
4. Urinalysis: Examination of urine for protein, blood, or white blood cells.
Imaging studies may include:
1. Ultrasound: To assess the size and shape of the kidneys, detect any blockages, and identify any other abnormalities.
2. Computed tomography (CT) scan: To provide detailed images of the kidneys and detect any obstructions or abscesses.
3. Magnetic resonance imaging (MRI): To evaluate the kidneys and detect any damage or scarring.
Treatment:
Treatment for chronic kidney failure depends on the underlying cause and the severity of the disease. The goals of treatment are to slow progression of the disease, manage symptoms, and improve quality of life. Treatment may include:
1. Medications: To control high blood pressure, lower cholesterol levels, reduce proteinuria, and manage anemia.
2. Diet: A healthy diet that limits protein intake, controls salt and water intake, and emphasizes low-fat dairy products, fruits, and vegetables.
3. Fluid management: Monitoring and control of fluid intake to prevent fluid buildup in the body.
4. Dialysis: A machine that filters waste products from the blood when the kidneys are no longer able to do so.
5. Transplantation: A kidney transplant may be considered for some patients with advanced chronic kidney failure.
Complications:
Chronic kidney failure can lead to several complications, including:
1. Heart disease: High blood pressure and anemia can increase the risk of heart disease.
2. Anemia: A decrease in red blood cells can cause fatigue, weakness, and shortness of breath.
3. Bone disease: A disorder that can lead to bone pain, weakness, and an increased risk of fractures.
4. Electrolyte imbalance: Imbalances of electrolytes such as potassium, phosphorus, and sodium can cause muscle weakness, heart arrhythmias, and other complications.
5. Infections: A decrease in immune function can increase the risk of infections.
6. Nutritional deficiencies: Poor appetite, nausea, and vomiting can lead to malnutrition and nutrient deficiencies.
7. Cardiovascular disease: High blood pressure, anemia, and other complications can increase the risk of cardiovascular disease.
8. Pain: Chronic kidney failure can cause pain, particularly in the back, flank, and abdomen.
9. Sleep disorders: Insomnia, sleep apnea, and restless leg syndrome are common complications.
10. Depression and anxiety: The emotional burden of chronic kidney failure can lead to depression and anxiety.
1. Types of Hookworms: There are two main types of hookworms that can infect humans: Ancylostoma duodenale and Necator americanus. A. duodenale is more common in temperate climates, while N. americanus is found in tropical and subtropical regions.
2. Transmission: Hookworms are typically spread through contact with contaminated feces or soil. This can happen when someone ingests food or water that has been contaminated with hookworm eggs or larvae. In rare cases, hookworms can also be transmitted through blood transfusions or organ transplants.
3. Symptoms: The symptoms of hookworm infections can vary depending on the severity of the infection and the number of worms present. Common symptoms include diarrhea, abdominal pain, fatigue, weight loss, and anemia. In severe cases, hookworms can cause inflammation of the intestines, which can lead to complications such as bowel obstruction or perforation.
4. Diagnosis: Hookworm infections are typically diagnosed through a stool sample or blood test. A doctor may also perform a physical examination and take a medical history to help determine the presence of hookworms.
5. Treatment: Hookworm infections can be treated with antiparasitic medications, such as albendazole or mebendazole. These medications work by killing the worms in the intestines, which helps to relieve symptoms and prevent complications. In some cases, treatment may also involve addressing any underlying conditions that have been exacerbated by the hookworm infection, such as anemia or malnutrition.
6. Prevention: The best way to prevent hookworm infections is to practice good hygiene and avoid contact with contaminated feces or soil. This includes washing your hands frequently, especially after using the bathroom or before handling food. Additionally, wearing shoes when outdoors can help reduce the risk of contracting a hookworm infection through contact with contaminated soil.
The most common types of hemoglobinopathies include:
1. Sickle cell disease: This is caused by a point mutation in the HBB gene that codes for the beta-globin subunit of hemoglobin. It results in the production of sickle-shaped red blood cells, which can cause anemia, infections, and other complications.
2. Thalassemia: This is a group of genetic disorders that affect the production of hemoglobin and can result in anemia, fatigue, and other complications.
3. Hemophilia A: This is caused by a defect in the F8 gene that codes for coagulation factor VIII, which is essential for blood clotting. It can cause bleeding episodes, especially in males.
4. Glucose-6-phosphate dehydrogenase (G6PD) deficiency: This is caused by a point mutation in the G6PD gene that codes for an enzyme involved in red blood cell production. It can cause hemolytic anemia, especially in individuals who consume certain foods or medications.
5. Hereditary spherocytosis: This is caused by point mutations in the ANK1 or SPTA1 genes that code for proteins involved in red blood cell membrane structure. It can cause hemolytic anemia and other complications.
Hemoglobinopathies can be diagnosed through genetic testing, such as DNA sequencing or molecular genetic analysis. Treatment options vary depending on the specific disorder but may include blood transfusions, medications, and in some cases, bone marrow transplantation.
There are several possible causes of thrombocytopenia, including:
1. Immune-mediated disorders such as idiopathic thrombocytopenic purpura (ITP) or systemic lupus erythematosus (SLE).
2. Bone marrow disorders such as aplastic anemia or leukemia.
3. Viral infections such as HIV or hepatitis C.
4. Medications such as chemotherapy or non-steroidal anti-inflammatory drugs (NSAIDs).
5. Vitamin deficiencies, especially vitamin B12 and folate.
6. Genetic disorders such as Bernard-Soulier syndrome.
7. Sepsis or other severe infections.
8. Disseminated intravascular coagulation (DIC), a condition where blood clots form throughout the body.
9. Postpartum thrombocytopenia, which can occur in some women after childbirth.
Symptoms of thrombocytopenia may include easy bruising, petechiae (small red or purple spots on the skin), and prolonged bleeding from injuries or surgical sites. Treatment options depend on the underlying cause but may include platelet transfusions, steroids, immunosuppressive drugs, and in severe cases, surgery.
In summary, thrombocytopenia is a condition characterized by low platelet counts that can increase the risk of bleeding and bruising. It can be caused by various factors, and treatment options vary depending on the underlying cause.
Falciparum malaria can cause a range of symptoms, including fever, chills, headache, muscle and joint pain, fatigue, nausea, and vomiting. In severe cases, the disease can lead to anemia, organ failure, and death.
Diagnosis of falciparum malaria typically involves a physical examination, medical history, and laboratory tests to detect the presence of parasites in the blood or other bodily fluids. Treatment usually involves the use of antimalarial drugs, such as artemisinin-based combination therapies (ACTs) or quinine, which can effectively cure the disease if administered promptly.
Prevention of falciparum malaria is critical to reducing the risk of infection, and this includes the use of insecticide-treated bed nets, indoor residual spraying (IRS), and preventive medications for travelers to high-risk areas. Eliminating standing water around homes and communities can also help reduce the number of mosquitoes and the spread of the disease.
In summary, falciparum malaria is a severe and life-threatening form of malaria caused by the Plasmodium falciparum parasite, which is responsible for the majority of malaria-related deaths worldwide. Prompt diagnosis and treatment are essential to prevent complications and death from this disease. Prevention measures include the use of bed nets, indoor spraying, and preventive medications, as well as reducing standing water around homes and communities.
There are two main forms of alpha-Thalassemia:
1. Alpha-thalassemia major (also known as Hemoglobin Bart's hydrops fetalis): This is a severe form of the disorder that can cause severe anemia, enlarged spleen, and death in infancy. It is caused by a complete absence of one or both of the HBA1 or HBA2 genes.
2. Alpha-thalassemia minor (also known as Hemoglobin carrier state): This form of the disorder is milder and may not cause any symptoms at all. It is caused by a partial deletion of one or both of the HBA1 or HBA2 genes.
People with alpha-thalassemia minor may have slightly lower levels of hemoglobin and may be more susceptible to anemia, but they do not typically experience any severe symptoms. Those with alpha-thalassemia major, on the other hand, are at risk for serious complications such as anemia, infections, and organ failure.
There is no cure for alpha-thalassemia, but treatment options include blood transfusions, iron chelation therapy, and management of associated complications. Screening for alpha-thalassemia is recommended for individuals who are carriers of the disorder, as well as for those who have a family history of the condition.
Also known as: Hereditary spherocytosis (HSS)
Previous article Sphenoid sinus
Next article Splenic infarction
Isoimmunization is a condition that occurs when an individual has antibodies against their own red blood cell antigens, specifically the Rh antigen. This can happen due to various reasons such as:
1. Incompatibility between the mother's and father's Rh antigens, leading to the development of antibodies in the mother during pregnancy or childbirth.
2. Blood transfusions from an incompatible donor.
3. Certain medical conditions like autoimmune hemolytic anemia or bone marrow transplantation.
Rh isoimmunization can lead to a range of complications, including:
1. Hemolytic disease of the newborn: This is a condition where the baby's red blood cells are destroyed by the mother's antibodies, leading to anemia, jaundice, and other serious complications.
2. Rh hemolytic crisis: This is a severe and potentially life-threatening complication that can occur during pregnancy or childbirth.
3. Chronic hemolytic anemia: This is a condition where the red blood cells are continuously destroyed, leading to anemia and other complications.
Rh isoimmunization can be diagnosed through blood tests such as the direct antiglobulin test (DAT) or the indirect Coombs test (ICT). Treatment typically involves managing any underlying conditions and monitoring for complications. In severe cases, a bone marrow transplant may be necessary. Prevention is key, and women who are Rh-negative should receive an injection of Rh immune globulin during pregnancy to prevent the development of antibodies against the Rh antigen.
The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the World Health Organization (WHO). In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.
In this article, we will explore the definition and impact of chronic diseases, as well as strategies for managing and living with them. We will also discuss the importance of early detection and prevention, as well as the role of healthcare providers in addressing the needs of individuals with chronic diseases.
What is a Chronic Disease?
A chronic disease is a condition that lasts for an extended period of time, often affecting daily life and activities. Unlike acute diseases, which have a specific beginning and end, chronic diseases are long-term and persistent. Examples of chronic diseases include:
1. Diabetes
2. Heart disease
3. Arthritis
4. Asthma
5. Cancer
6. Chronic obstructive pulmonary disease (COPD)
7. Chronic kidney disease (CKD)
8. Hypertension
9. Osteoporosis
10. Stroke
Impact of Chronic Diseases
The burden of chronic diseases is significant, with over 70% of deaths worldwide attributed to them, according to the WHO. In addition to the physical and emotional toll they take on individuals and their families, chronic diseases also pose a significant economic burden, accounting for a large proportion of healthcare expenditure.
Chronic diseases can also have a significant impact on an individual's quality of life, limiting their ability to participate in activities they enjoy and affecting their relationships with family and friends. Moreover, the financial burden of chronic diseases can lead to poverty and reduce economic productivity, thus having a broader societal impact.
Addressing Chronic Diseases
Given the significant burden of chronic diseases, it is essential that we address them effectively. This requires a multi-faceted approach that includes:
1. Lifestyle modifications: Encouraging healthy behaviors such as regular physical activity, a balanced diet, and smoking cessation can help prevent and manage chronic diseases.
2. Early detection and diagnosis: Identifying risk factors and detecting diseases early can help prevent or delay their progression.
3. Medication management: Effective medication management is crucial for controlling symptoms and slowing disease progression.
4. Multi-disciplinary care: Collaboration between healthcare providers, patients, and families is essential for managing chronic diseases.
5. Health promotion and disease prevention: Educating individuals about the risks of chronic diseases and promoting healthy behaviors can help prevent their onset.
6. Addressing social determinants of health: Social determinants such as poverty, education, and employment can have a significant impact on health outcomes. Addressing these factors is essential for reducing health disparities and improving overall health.
7. Investing in healthcare infrastructure: Investing in healthcare infrastructure, technology, and research is necessary to improve disease detection, diagnosis, and treatment.
8. Encouraging policy change: Policy changes can help create supportive environments for healthy behaviors and reduce the burden of chronic diseases.
9. Increasing public awareness: Raising public awareness about the risks and consequences of chronic diseases can help individuals make informed decisions about their health.
10. Providing support for caregivers: Chronic diseases can have a significant impact on family members and caregivers, so providing them with support is essential for improving overall health outcomes.
Conclusion
Chronic diseases are a major public health burden that affect millions of people worldwide. Addressing these diseases requires a multi-faceted approach that includes lifestyle changes, addressing social determinants of health, investing in healthcare infrastructure, encouraging policy change, increasing public awareness, and providing support for caregivers. By taking a comprehensive approach to chronic disease prevention and management, we can improve the health and well-being of individuals and communities worldwide.
There are two main types of hemolysis:
1. Intravascular hemolysis: This type occurs within the blood vessels and is caused by factors such as mechanical injury, oxidative stress, and certain infections.
2. Extravascular hemolysis: This type occurs outside the blood vessels and is caused by factors such as bone marrow disorders, splenic rupture, and certain medications.
Hemolytic anemia is a condition that occurs when there is excessive hemolysis of RBCs, leading to a decrease in the number of healthy red blood cells in the body. This can cause symptoms such as fatigue, weakness, pale skin, and shortness of breath.
Some common causes of hemolysis include:
1. Genetic disorders such as sickle cell anemia and thalassemia.
2. Autoimmune disorders such as autoimmune hemolytic anemia (AIHA).
3. Infections such as malaria, babesiosis, and toxoplasmosis.
4. Medications such as antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and blood thinners.
5. Bone marrow disorders such as aplastic anemia and myelofibrosis.
6. Splenic rupture or surgical removal of the spleen.
7. Mechanical injury to the blood vessels.
Diagnosis of hemolysis is based on a combination of physical examination, medical history, and laboratory tests such as complete blood count (CBC), blood smear examination, and direct Coombs test. Treatment depends on the underlying cause and may include supportive care, blood transfusions, and medications to suppress the immune system or prevent infection.
Examples of pregnancy complications, parasitic include:
1. Toxoplasmosis: This is a condition caused by the Toxoplasma gondii parasite, which can infect the mother and/or the fetus during pregnancy. Symptoms include fever, headache, and fatigue. In severe cases, toxoplasmosis can cause birth defects, such as intellectual disability, blindness, and deafness.
2. Malaria: This is a condition caused by the Plasmodium spp. parasite, which can be transmitted to the mother and/or the fetus during pregnancy. Symptoms include fever, chills, and flu-like symptoms. In severe cases, malaria can cause anemia, organ failure, and death.
3. Schistosomiasis: This is a condition caused by the Schistosoma spp. parasite, which can infect the mother and/or the fetus during pregnancy. Symptoms include abdominal pain, diarrhea, and fatigue. In severe cases, schistosomiasis can cause organ damage and infertility.
Pregnancy complications, parasitic can be diagnosed through blood tests, imaging studies, and other medical procedures. Treatment depends on the type of parasite and the severity of the infection. In some cases, treatment may involve antibiotics, antimalarial drugs, or anti-parasitic medications.
Preventive measures for pregnancy complications, parasitic include:
1. Avoiding contact with cat feces, as Toxoplasma gondii can be transmitted through contaminated soil and food.
2. Avoiding travel to areas where malaria and other parasitic infections are common.
3. Taking antimalarial medications before and during pregnancy if living in an area where malaria is common.
4. Using insecticide-treated bed nets and wearing protective clothing to prevent mosquito bites.
5. Practicing good hygiene, such as washing hands regularly, especially after handling food or coming into contact with cats.
6. Avoiding drinking unpasteurized dairy products and undercooked meat, as these can increase the risk of infection.
7. Ensuring that any water used for cooking or drinking is safe and free from parasites.
Preventive measures for pregnancy complications, parasitic are important for women who are pregnant or planning to become pregnant, as well as for their partners and healthcare providers. By taking these preventive measures, the risk of infection and complications can be significantly reduced.
In conclusion, pregnancy complications, parasitic are a serious issue that can have severe consequences for both the mother and the fetus. However, by understanding the causes, risk factors, symptoms, diagnosis, treatment, and preventive measures, women can take steps to protect themselves and their unborn babies from these infections. It is important for healthcare providers to be aware of these issues and provide appropriate education and care to pregnant women to reduce the risk of complications.
FAQs
1. What are some common parasitic infections that can occur during pregnancy?
Ans: Some common parasitic infections that can occur during pregnancy include malaria, toxoplasmosis, and cytomegalovirus (CMV).
2. How do parasitic infections during pregnancy affect the baby?
Ans: Parasitic infections during pregnancy can have serious consequences for the developing fetus, including birth defects, growth restriction, and stillbirth.
3. Can parasitic infections during pregnancy be treated?
Ans: Yes, parasitic infections during pregnancy can be treated with antibiotics and other medications. Early detection and treatment are important to prevent complications.
4. How can I prevent parasitic infections during pregnancy?
Ans: Preventive measures include avoiding areas where parasites are common, using insect repellents, wearing protective clothing, and practicing good hygiene. Pregnant women should also avoid undercooked meat and unpasteurized dairy products.
5. Do all pregnant women need to be tested for parasitic infections?
Ans: No, not all pregnant women need to be tested for parasitic infections. However, certain groups of women, such as those who live in areas where parasites are common or have a history of previous parasitic infections, may need to be tested and monitored more closely.
6. Can I prevent my baby from getting a parasitic infection during pregnancy?
Ans: Yes, there are several steps you can take to reduce the risk of your baby getting a parasitic infection during pregnancy, such as avoiding certain foods and taking antibiotics if necessary. Your healthcare provider can provide guidance on how to prevent and treat parasitic infections during pregnancy.
7. How are parasitic infections diagnosed during pregnancy?
Ans: Parasitic infections can be diagnosed through blood tests, stool samples, or imaging tests such as ultrasound or MRI. Your healthcare provider may also perform a physical exam and take a medical history to determine the likelihood of a parasitic infection.
8. Can parasitic infections cause long-term health problems for my baby?
Ans: Yes, some parasitic infections can cause long-term health problems for your baby, such as developmental delays or learning disabilities. In rare cases, parasitic infections can also lead to more serious complications, such as organ damage or death.
9. How are parasitic infections treated during pregnancy?
Ans: Treatment for parasitic infections during pregnancy may involve antibiotics, antiparasitic medications, or other supportive care. Your healthcare provider will determine the best course of treatment based on the severity and type of infection, as well as your individual circumstances.
10. Can I take steps to prevent parasitic infections during pregnancy?
Ans: Yes, there are several steps you can take to prevent parasitic infections during pregnancy, such as avoiding undercooked meat and fish, washing fruits and vegetables thoroughly, and practicing good hygiene. Additionally, if you have a higher risk of parasitic infections due to travel or other factors, your healthcare provider may recommend preventative medications or screening tests.
11. I'm pregnant and have been exposed to a parasitic infection. What should I do?
Ans: If you suspect that you have been exposed to a parasitic infection during pregnancy, it is important to seek medical attention immediately. Your healthcare provider can perform tests to determine if you have an infection and provide appropriate treatment to prevent any potential complications for your baby.
12. Can I breastfeed while taking medication for a parasitic infection?
Ans: It may be safe to breastfeed while taking medication for a parasitic infection, but it is important to consult with your healthcare provider before doing so. Some medications may not be safe for your baby and could potentially be passed through your milk. Your healthcare provider can provide guidance on the safest treatment options for you and your baby.
13. What are some common complications of parasitic infections during pregnancy?
Ans: Complications of parasitic infections during pregnancy can include miscarriage, preterm labor, low birth weight, and congenital anomalies. In rare cases, parasitic infections can also be transmitted to the baby during pregnancy or childbirth, which can lead to serious health problems for the baby.
14. Can I get a parasitic infection from my pet?
Ans: Yes, it is possible to get a parasitic infection from your pet if you come into contact with their feces or other bodily fluids. For example, toxoplasmosis can be transmitted through contact with cat feces, while hookworm infections can be spread through contact with contaminated soil or feces. It is important to practice good hygiene and take precautions when handling pets or coming into contact with potentially contaminated areas.
15. How can I prevent parasitic infections?
Ans: Preventing parasitic infections involves taking steps to avoid exposure to parasites and their vectors, as well as practicing good hygiene and taking precautions when traveling or engaging in activities that may put you at risk. Some ways to prevent parasitic infections include:
* Avoiding undercooked meat, especially pork and wild game
* Avoiding raw or unpasteurized dairy products
* Avoiding contaminated water and food
* Washing your hands frequently, especially after using the bathroom or before handling food
* Avoiding contact with cat feces, as toxoplasmosis can be transmitted through contact with cat feces
* Using protective clothing and insect repellent when outdoors in areas where parasites are common
* Keeping your home clean and free of clutter to reduce the risk of parasite infestations
* Avoiding touching or eating wild animals or plants that may be contaminated with parasites
16. What are some common misconceptions about parasitic infections?
Ans: There are several common misconceptions about parasitic infections, including:
* All parasites are the same and have similar symptoms
* Parasitic infections are only a problem for people who live in developing countries or have poor hygiene
* Only certain groups of people, such as children or pregnant women, are at risk for parasitic infections
* Parasitic infections are rare in developed countries
* All parasites can be treated with antibiotics
* Parasitic infections are not serious and do not require medical attention
17. How can I diagnose a parasitic infection?
Ans: Diagnosing a parasitic infection typically involves a combination of physical examination, medical history, and laboratory tests. Some common methods for diagnosing parasitic infections include:
* Physical examination to look for signs such as skin lesions or abdominal pain
* Blood tests to check for the presence of parasites or their waste products
* Stool tests to detect the presence of parasite eggs or larvae
* Imaging tests, such as X-rays or CT scans, to look for signs of parasite infection in internal organs
* Endoscopy, which involves inserting a flexible tube with a camera into the body to visualize the inside of the digestive tract and other organs.
18. How are parasitic infections treated?
Ans: Treatment for parasitic infections depends on the type of parasite and the severity of the infection. Some common methods for treating parasitic infections include:
* Antiparasitic drugs, such as antibiotics or antimalarials, to kill the parasites
* Supportive care, such as fluids and electrolytes, to manage symptoms and prevent complications
* Surgery to remove parasites or repair damaged tissues
* Antibiotics to treat secondary bacterial infections that may have developed as a result of the parasitic infection.
It is important to seek medical attention if you suspect that you have a parasitic infection, as untreated infections can lead to serious complications and can be difficult to diagnose.
19. How can I prevent parasitic infections?
Ans: Preventing parasitic infections involves taking steps to avoid contact with parasites and their vectors, as well as maintaining good hygiene practices. Some ways to prevent parasitic infections include:
* Avoiding undercooked meat and unpasteurized dairy products, which can contain harmful parasites such as Trichinella spiralis and Toxoplasma gondii
* Washing your hands frequently, especially after using the bathroom or before eating
* Avoiding contact with contaminated water or soil, which can harbor parasites such as Giardia and Cryptosporidium
* Using insecticides and repellents to prevent mosquito bites, which can transmit diseases such as malaria and dengue fever
* Wearing protective clothing and applying insect repellent when outdoors in areas where ticks and other vectors are common
* Avoiding contact with animals that may carry parasites, such as dogs and cats that can transmit Toxoplasma gondii
* Using clean water and proper sanitation to prevent the spread of parasitic infections in communities and developing countries.
It is also important to be aware of the risks of parasitic infections when traveling to areas where they are common, and to take appropriate precautions such as avoiding undercooked meat and unpasteurized dairy products, and using insecticides and repellents to prevent mosquito bites.
20. What is the prognosis for parasitic infections?
Ans: The prognosis for parasitic infections varies depending on the specific type of infection and the severity of symptoms. Some parasitic infections can be easily treated with antiparasitic medications, while others may require more extensive treatment and management.
In general, the prognosis for parasitic infections is good if the infection is detected early and properly treated. However, some parasitic infections can cause long-term health problems or death if left untreated. It is important to seek medical attention if symptoms persist or worsen over time.
It is also important to note that some parasitic infections can be prevented through public health measures such as using clean water and proper sanitation, and controlling the spread of insect vectors. Prevention is key to avoiding the negative outcomes associated with these types of infections.
21. What are some common complications of parasitic infections?
Ans: Some common complications of parasitic infections include:
* Anemia and other blood disorders, such as thrombocytopenia and leukopenia
* Allergic reactions to parasite antigens
* Inflammation and damage to organs and tissues, such as the liver, kidneys, and brain
* Increased risk of infections with other microorganisms, such as bacteria and viruses
* Malnutrition and deficiencies in essential nutrients
* Organ failure and death.
22. Can parasitic infections be prevented? If so, how?
Ans: Yes, some parasitic infections can be prevented through public health measures such as:
* Using clean water and proper sanitation to reduce the risk of ingesting infected parasites.
* Avoiding contact with insect vectors, such as mosquitoes and ticks, by using repellents, wearing protective clothing, and staying indoors during peak biting hours.
* Properly cooking and storing food to kill parasites that may be present.
* Avoiding consuming undercooked or raw meat, especially pork and wild game.
* Practicing safe sex to prevent the transmission of parasitic infections through sexual contact.
* Keeping children away from areas where they may come into contact with contaminated soil or water.
* Using antiparasitic drugs and other treatments as recommended by healthcare providers.
* Implementing control measures for insect vectors, such as spraying insecticides and removing breeding sites.
30. Can parasitic infections be treated with antibiotics? If so, which ones and why?
Ans: No, antibiotics are not effective against parasitic infections caused by protozoa, such as giardiasis and amoebiasis, because these organisms are not bacteria. However, antibiotics may be used to treat secondary bacterial infections that can develop as a complication of parasitic infections.
32. What is the difference between a parasite and a pathogen?
Ans: A parasite is an organism that lives on or in another organism, called the host, and feeds on the host's tissues or fluids without providing any benefits. A pathogen, on the other hand, is an organism that causes disease. While all parasites are pathogens, not all pathogens are parasites. For example, bacteria and viruses can cause diseases but are not considered parasites because they do not live within the host's body.
People with pica may eat these items in secret and experience a sense of relief or satisfaction after consuming them. The condition is more common in children and adolescents, but it can also affect adults. Pica can lead to nutritional deficiencies, gastrointestinal problems, and other health issues if the eaten items are not digestible or contain harmful substances.
Treatment for pica usually involves addressing any underlying mental health issues and providing education on nutrition and healthy eating habits. In some cases, medication may be prescribed to help manage symptoms. It is important to seek medical attention if you or someone you know is experiencing symptoms of pica, as early intervention can help prevent complications and improve overall health.
The most common parvoviridae infection in animals is feline panleukopenia (FPV) or canine parvovirus (CPV), which affects dogs and cats. These infections are highly contagious and can cause a range of symptoms, including fever, vomiting, diarrhea, lethargy, and loss of appetite. In severe cases, they can lead to life-threatening complications such as anemia, bone marrow failure, and death.
There is no specific treatment for parvoviridae infections, but supportive care such as fluid therapy, antibiotics, and anti-inflammatory medication can help manage symptoms and prevent complications. Vaccination is the most effective way to prevent parvoviridae infections, and vaccines are available for dogs, cats, and other animals.
In humans, parvoviridae infections are rare but can occur through contact with infected animals or contaminated feces. The most common human parvoviridae infection is erythema infectiosum (Fifth disease), which causes a rash, fever, and mild symptoms. Pregnant women who contract parvoviridae infections may experience complications such as miscarriage or preterm labor. There is no specific treatment for human parvoviridae infections, but supportive care can help manage symptoms.
The disorder is caused by mutations in the HBB gene that codes for the beta-globin subunit of hemoglobin. These mutations result in the production of abnormal hemoglobins that are unstable and prone to breakdown, leading to the release of free hemoglobin into the urine.
HP is classified into two types based on the severity of symptoms:
1. Type 1 HP: This is the most common form of the disorder and is characterized by mild to moderate anemia, occasional hemoglobinuria, and a normal life expectancy.
2. Type 2 HP: This is a more severe form of the disorder and is characterized by severe anemia, recurrent hemoglobinuria, and a shorter life expectancy.
There is no cure for HP, but treatment options are available to manage symptoms and prevent complications. These may include blood transfusions, folic acid supplements, and medications to reduce the frequency and severity of hemoglobinuria episodes.
1. Protein-energy malnutrition (PEM): This type of malnutrition is caused by a lack of protein and energy in the diet. It is common in developing countries and can lead to weight loss, weakness, and stunted growth in children.
2. Iron deficiency anemia: This type of malnutrition is caused by a lack of iron in the diet, which is necessary for the production of hemoglobin in red blood cells. Symptoms include fatigue, weakness, and shortness of breath.
3. Vitamin and mineral deficiencies: Malnutrition can also be caused by a lack of essential vitamins and minerals such as vitamin A, vitamin D, calcium, and iodine. Symptoms vary depending on the specific deficiency but can include skin problems, impaired immune function, and poor wound healing.
4. Obesity: This type of malnutrition is caused by consuming too many calories and not enough nutrients. It can lead to a range of health problems including diabetes, high blood pressure, and heart disease.
Signs and symptoms of malnutrition can include:
* Weight loss or weight gain
* Fatigue or weakness
* Poor wound healing
* Hair loss
* Skin problems
* Increased infections
* Poor appetite or overeating
* Digestive problems such as diarrhea or constipation
* Impaired immune function
Treatment for malnutrition depends on the underlying cause and may include:
* Dietary changes: Eating a balanced diet that includes a variety of nutrient-rich foods can help to correct nutrient deficiencies.
* Nutritional supplements: In some cases, nutritional supplements such as vitamins or minerals may be recommended to help address specific deficiencies.
* Medical treatment: Certain medical conditions that contribute to malnutrition, such as digestive disorders or infections, may require treatment with medication or other interventions.
Prevention is key, and there are several steps you can take to help prevent malnutrition:
* Eat a balanced diet that includes a variety of nutrient-rich foods.
* Avoid restrictive diets or fad diets that limit specific food groups.
* Stay hydrated by drinking plenty of water.
* Avoid excessive alcohol consumption, which can interfere with nutrient absorption and lead to malnutrition.
* Maintain a healthy weight through a combination of a balanced diet and regular exercise.
It is important to note that malnutrition can be subtle and may not always be easily recognizable. If you suspect you or someone you know may be experiencing malnutrition, it is important to seek medical attention to receive an accurate diagnosis and appropriate treatment.
The condition is inherited in an X-linked recessive pattern, meaning that the gene for G6PD deficiency is located on the X chromosome and affects males more frequently than females. Females may also be affected but typically have milder symptoms or may be carriers of the condition without experiencing any symptoms themselves.
G6PD deficiency can be caused by mutations in the G6PD gene, which can lead to a reduction in the amount of functional enzyme produced. The severity of the condition depends on the specific nature of the mutation and the degree to which it reduces the activity of the enzyme.
Symptoms of G6PD deficiency may include jaundice (yellowing of the skin and eyes), fatigue, weakness, and shortness of breath. In severe cases, the condition can lead to hemolytic anemia, which is characterized by the premature destruction of red blood cells. This can be triggered by certain drugs, infections, or foods that contain high levels of oxalic acid or other oxidizing agents.
Diagnosis of G6PD deficiency typically involves a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment is focused on managing symptoms and preventing complications through dietary modifications, medications, and avoidance of triggers such as certain drugs or infections.
Overall, G6PD deficiency is a relatively common genetic disorder that can have significant health implications if left untreated. Understanding the causes, symptoms, and treatment options for this condition is important for ensuring appropriate care and management for individuals affected by it.
Examples of hematologic diseases include:
1. Anemia - a condition where there are not enough red blood cells or hemoglobin in the body.
2. Leukemia - a type of cancer that affects the bone marrow and blood, causing an overproduction of immature white blood cells.
3. Lymphoma - a type of cancer that affects the lymphatic system, including the bone marrow, spleen, and lymph nodes.
4. Thalassemia - a genetic disorder that affects the production of hemoglobin, leading to anemia and other complications.
5. Sickle cell disease - a genetic disorder that affects the production of hemoglobin, causing red blood cells to become sickle-shaped and prone to breaking down.
6. Polycythemia vera - a rare disorder where there is an overproduction of red blood cells.
7. Myelodysplastic syndrome - a condition where the bone marrow produces abnormal blood cells that do not mature properly.
8. Myeloproliferative neoplasms - a group of conditions where the bone marrow produces excessive amounts of blood cells, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis.
9. Deep vein thrombosis - a condition where a blood clot forms in a deep vein, often in the leg or arm.
10. Pulmonary embolism - a condition where a blood clot travels to the lungs and blocks a blood vessel, causing shortness of breath, chest pain, and other symptoms.
These are just a few examples of hematologic diseases, but there are many others that can affect the blood and bone marrow. Treatment options for these diseases can range from watchful waiting and medication to surgery, chemotherapy, and stem cell transplantation. It is important to seek medical attention if you experience any symptoms of hematologic disease, as early diagnosis and treatment can improve outcomes.
The term "reticulocytosis" is derived from the Latin words "reticulum," meaning net-like, and "cytosis," meaning the condition of cells. This refers to the characteristic net-like appearance of reticulocytes under a microscope.
There are several possible causes of reticulocytosis, including:
1. Inherited disorders such as hereditary elliptocytosis, hereditary spherocytosis, and pyruvate kinase (PK) deficiency.
2. Acquired disorders such as hemolytic anemia, thalassemia, and sickle cell disease.
3. Infections such as malaria, dengue fever, and babesiosis.
4. Medications such as antibiotics, chemotherapy drugs, and anti-inflammatory medications.
5. Other conditions such as chronic kidney disease, liver disease, and autoimmune disorders.
Reticulocytosis can be diagnosed through a blood test called a complete blood count (CBC) or a reticulocyte count. Treatment depends on the underlying cause of the condition. In some cases, no treatment may be necessary, while in other cases, medication or blood transfusions may be required.
1. Leukemia: A type of cancer that affects the blood and bone marrow, characterized by an overproduction of immature white blood cells.
2. Lymphoma: A type of cancer that affects the immune system, often involving the lymph nodes and other lymphoid tissues.
3. Multiple myeloma: A type of cancer that affects the plasma cells in the bone marrow, leading to an overproduction of abnormal plasma cells.
4. Myelodysplastic syndrome (MDS): A group of disorders characterized by the impaired development of blood cells in the bone marrow.
5. Osteopetrosis: A rare genetic disorder that causes an overgrowth of bone, leading to a thickened bone marrow.
6. Bone marrow failure: A condition where the bone marrow is unable to produce enough blood cells, leading to anemia, infection, and other complications.
7. Myelofibrosis: A condition characterized by the scarring of the bone marrow, which can lead to an overproduction of blood cells and an increased risk of bleeding and infection.
8. Polycythemia vera: A rare blood disorder that causes an overproduction of red blood cells, leading to an increased risk of blood clots and other complications.
9. Essential thrombocythemia: A rare blood disorder that causes an overproduction of platelets, leading to an increased risk of blood clots and other complications.
10. Myeloproliferative neoplasms (MPNs): A group of rare blood disorders that are characterized by the overproduction of blood cells and an increased risk of bleeding and infection.
These are just a few examples of bone marrow diseases. There are many other conditions that can affect the bone marrow, and each one can have a significant impact on a person's quality of life. If you suspect that you or someone you know may have a bone marrow disease, it is important to seek medical attention as soon as possible. A healthcare professional can perform tests and provide a proper diagnosis and treatment plan.
Sickle cell trait is relatively common in certain populations, such as people of African, Mediterranean, or Middle Eastern descent. It is estimated that about 1 in 12 African Americans carry the sickle cell gene, and 1 in 500 are homozygous for the trait (meaning they have two copies of the sickle cell gene).
Although people with sickle cell trait do not develop sickle cell anemia, they can experience certain complications related to the trait. For example, they may experience episodes of hemolytic crisis, which is a condition in which red blood cells are destroyed faster than they can be replaced. This can occur under certain conditions, such as dehydration or infection.
There are several ways that sickle cell trait can affect an individual's life. For example, some people with the trait may experience discrimination or stigma based on their genetic status. Additionally, individuals with sickle cell trait may be more likely to experience certain health problems, such as kidney disease or eye damage, although these risks are generally low.
There is no cure for sickle cell trait, but it can be managed through proper medical care and self-care. Individuals with the trait should work closely with their healthcare provider to monitor their health and address any complications that arise.
Overall, sickle cell trait is a relatively common genetic condition that can have significant implications for an individual's life. It is important for individuals with the trait to understand their risk factors and take steps to manage their health and well-being.
Papillomas can occur anywhere on the body, but they are most commonly found on the face, neck, and scalp. They may appear as small bumps or growths that look like a wart. In some cases, papillomas may be associated with human papillomavirus (HPV) infection.
Papillomas are typically diagnosed through a physical examination of the affected area. In some cases, a biopsy may be performed to confirm the diagnosis and rule out other potential causes. Treatment for papillomas usually involves removal of the growth through a minor surgical procedure or cryotherapy (freezing).
Papillomas are not cancerous and do not typically pose any long-term health risks. However, they may be unsightly and can cause psychological distress for some people. In these cases, treatment may be sought for cosmetic reasons. It is important to note that papillomas should not be confused with squamous cell carcinoma, a type of skin cancer that can resemble a papilloma in appearance but has the potential to be more aggressive and harmful.
There are several subtypes of LGMD, each caused by mutations in different genes that code for proteins involved in muscle function and structure. The most common forms of LGMD include:
1. Muscular dystrophy-dystroglycanopathy type A (MDDGA): This is a severe form of LGMD caused by mutations in the DAG1 gene, which codes for the protein dystroglycan. Symptoms typically appear in infancy and progress rapidly, leading to early death.
2. Limb-girdle muscular dystrophy type 1A (LGMD1A): This is a mild form of LGMD caused by mutations in the LAMA2 gene, which codes for the protein laminin alpha 2 chain. Symptoms typically appear in childhood and progress slowly over time.
3. Limb-girdle muscular dystrophy type 2B (LGMD2B): This is a severe form of LGMD caused by mutations in the CAV3 gene, which codes for the protein caveolin-3. Symptoms typically appear in childhood and progress rapidly, leading to early death.
There is currently no cure for LGMD, but various treatments are available to manage symptoms and slow disease progression. These may include physical therapy, orthotics and assistive devices, pain management medications, and respiratory support as needed. Research into the genetic causes of LGMD is ongoing, with the goal of developing new and more effective treatments for this debilitating group of disorders.
The condition is caused by sensitization of the mother's immune system to the Rh factor, which can occur when the mother's blood comes into contact with the fetus's blood during pregnancy or childbirth. The antibodies produced by the mother's immune system can attack the red blood cells of the fetus, leading to hemolytic anemia and potentially causing stillbirth or death in the newborn.
Erythroblastosis fetalis is diagnosed through blood tests that measure the levels of antibodies against the Rh factor. Treatment typically involves the administration of Rh immune globulin, which can help to prevent the mother's immune system from producing more antibodies against the Rh factor and reduce the risk of complications for the fetus. In severe cases, a blood transfusion may be necessary to increase the newborn's red blood cell count.
Erythroblastosis fetalis is a serious condition that requires close monitoring and proper medical management to prevent complications and ensure the best possible outcome for both the mother and the baby.
Types of Kidney Diseases:
1. Acute Kidney Injury (AKI): A sudden and reversible loss of kidney function that can be caused by a variety of factors, such as injury, infection, or medication.
2. Chronic Kidney Disease (CKD): A gradual and irreversible loss of kidney function that can lead to end-stage renal disease (ESRD).
3. End-Stage Renal Disease (ESRD): A severe and irreversible form of CKD that requires dialysis or a kidney transplant.
4. Glomerulonephritis: An inflammation of the glomeruli, the tiny blood vessels in the kidneys that filter waste products.
5. Interstitial Nephritis: An inflammation of the tissue between the tubules and blood vessels in the kidneys.
6. Kidney Stone Disease: A condition where small, hard mineral deposits form in the kidneys and can cause pain, bleeding, and other complications.
7. Pyelonephritis: An infection of the kidneys that can cause inflammation, damage to the tissues, and scarring.
8. Renal Cell Carcinoma: A type of cancer that originates in the cells of the kidney.
9. Hemolytic Uremic Syndrome (HUS): A condition where the immune system attacks the platelets and red blood cells, leading to anemia, low platelet count, and damage to the kidneys.
Symptoms of Kidney Diseases:
1. Blood in urine or hematuria
2. Proteinuria (excess protein in urine)
3. Reduced kidney function or renal insufficiency
4. Swelling in the legs, ankles, and feet (edema)
5. Fatigue and weakness
6. Nausea and vomiting
7. Abdominal pain
8. Frequent urination or polyuria
9. Increased thirst and drinking (polydipsia)
10. Weight loss
Diagnosis of Kidney Diseases:
1. Physical examination
2. Medical history
3. Urinalysis (test of urine)
4. Blood tests (e.g., creatinine, urea, electrolytes)
5. Imaging studies (e.g., X-rays, CT scans, ultrasound)
6. Kidney biopsy
7. Other specialized tests (e.g., 24-hour urinary protein collection, kidney function tests)
Treatment of Kidney Diseases:
1. Medications (e.g., diuretics, blood pressure medication, antibiotics)
2. Diet and lifestyle changes (e.g., low salt intake, increased water intake, physical activity)
3. Dialysis (filtering waste products from the blood when the kidneys are not functioning properly)
4. Kidney transplantation ( replacing a diseased kidney with a healthy one)
5. Other specialized treatments (e.g., plasmapheresis, hemodialysis)
Prevention of Kidney Diseases:
1. Maintaining a healthy diet and lifestyle
2. Monitoring blood pressure and blood sugar levels
3. Avoiding harmful substances (e.g., tobacco, excessive alcohol consumption)
4. Managing underlying medical conditions (e.g., diabetes, high blood pressure)
5. Getting regular check-ups and screenings
Early detection and treatment of kidney diseases can help prevent or slow the progression of the disease, reducing the risk of complications and improving quality of life. It is important to be aware of the signs and symptoms of kidney diseases and seek medical attention if they are present.
Pernicious anemia
Nitrous oxide
Autoimmune polyendocrine syndrome type 1
Nutritional neuroscience
Vitamin B12
Diphyllobothrium
List of autoimmune diseases
Ashby technique
Anemia
Henry G. Bieler
Nina Lawson
Schilling test
Cubam
Timothy Sylvester Hogan (politician)
Abbie Lathrop
Subacute combined degeneration of spinal cord
Megaloblastic anemia
Insulin
Lyubov Dostoevskaya
Parietal cell
Vagotomy
Seymour Hutner
Primidone
Robert Bruce McCoy
Nutritional anemia
George Minot
Ogden Bruton
Alexander Graham Bell
Mary Todd Lincoln
Cabot rings
Gastrointestinal disease
John Frederick Wilkinson
Postpartum psychosis
Association of American Physicians
Josiah K. Lilly Jr.
Alexander Faris
Edward Bliss
List of ICD-9 codes 280-289: diseases of the blood and blood-forming organs
Alkaline phosphatase
James Deering
Consuelo Clark-Stewart
Horace Barker
Spleen
Gastric bypass surgery
Murder on the Blackboard
Hepatosplenomegaly
George Bernard Shaw
James Scarth Combe
Blurred vision
Diphyllobothriasis
John Christie (landowner)
Annie Oakley
Muckhart
Elisha K. Green
Pernicious Anemia Differential Diagnoses
Pernicious anemia: MedlinePlus Medical Encyclopedia
Pernicious Anemia - Medical Dictionary / Glossary | Medindia
Pernicious Anaemia Society | Improving the Diagnosis & Treatment
The discovery of Pernicious anaemia
An evaluation of simultaneously administered free and intrinsic factor bound radioactive cyanocobalamin in the diagnosis of...
pernicious anemia Archives - Blue Heron Acupuncture & Herbs
Recommendations for the Use of Folic Acid to Reduce the Number
of Cases of Spina Bifida and Other Neural Tube Defects
Stomach cancer | Lima Memorial Health System
October 1987 - Volume 9 - Issue 5 : Journal of Clinical Gastroenterology
Vegans and B12
Complications of Diabetes Mellitus
Neurologic abnormalities in cobalamin deficiency are associated with higher cobalamin 'analogue' values than are hematologic...
Premature Gray Hair Might Indicate Lack Of This Vitamin - LifeHack
CDC | Toxic Syndrome Description: Nerve Agent and Organophosphate Pesticide Poisoning
Hemolytic anemia in a 26-year-old woman with vomiting and fatigue | CMAJ
Binding of Folic Acid to Serum Proteins | Acta Haematologica | Karger Publishers
Causes and Risk Factors of Vitiligo
Danny T. Shearer, MD| Gastroenterology | MedStar Health
Advanced Search Results - Public Health Image Library(PHIL)
Canker Sores (Aphthous Ulcers) - Symptoms and Diagnosis
Kids.Net.Au - Encyclopedia ...
Gastritis: Symptoms, Causes, Treatments, and More
The Vitamin B scam. Don't trust Boots - DC's Improbable Science
B12 deficiency: a silent epidemic with serious consequences
WHO EMRO | Serum folate and vitamin B12 status in healthy Iranian adults | Volume 15, issue 5 | EMHJ volume 15, 2009
Hashimoto's Thyroiditis | Cooper University Health Care
Deficiency15
- By definition, pernicious anemia refers specifically to vitamin B12 deficiency resulting from a lack of production of intrinsic factor (IF) in the stomach. (medscape.com)
- Pernicious anemia must be differentiated from other disorders that interfere with the absorption and metabolism of vitamin B12 and produce cobalamin deficiency, with the development of a macrocytic anemia and neurologic complications. (medscape.com)
- Go to Anemia , Iron Deficiency Anemia , and Chronic Anemia for complete information on these topics. (medscape.com)
- Pernicious Anaemia is the most common cause of a vitamin B12 deficiency. (pernicious-anaemia-society.org)
- These differences between patients with hematologic disturbances and patients with neurologic disturbances, and the inverse relationship of "analogue" level with severity of anemia, suggest that the disproportionate accumulation of analogues may explain why some patients with cobalamin deficiency display neurologic abnormalities while others do not. (nih.gov)
- Vitamin B12 deficiency leading to pernicious anemia may occur. (cdc.gov)
- Both microangiopathic anemia and cobalamin (vitamin B 12 ) deficiency should be considered. (cmaj.ca)
- Severe B12 deficiency in conditions like pernicious anemia (an autoimmune condition where the body destroys intrinsic factor, a protein necessary for the absorption of B12) used to be fatal until scientists figured out death could be prevented by feeding patients raw liver (which contains high amounts of B12). (thehealthyskeptic.org)
- But anemia is the final stage of B12 deficiency. (thehealthyskeptic.org)
- Long before anemia sets in, B12 deficiency causes several other problems, including fatigue, lethargy, weakness, memory loss and neurological and psychiatric problems. (thehealthyskeptic.org)
- B12 deficiency occurs in four stages, beginning with declining blood levels of the vitamin (stage I), progressing to low cellular concentrations of the vitamin (stage II), an increased blood level of homocysteine and a decreased rate of DNA synthesis (stage III), and finally, pernicious anemia (stage IV). (thehealthyskeptic.org)
- Vitamin B12 (cobalamin) and/or folic acid deficiency can cause a characteristic megalo-blastic anaemia. (who.int)
- While deficiency of cobalamin and folic acid produce anaemia, only vitamin B12 deficiency has the potential to cause neurological changes [1-4]. (who.int)
- It is generally assumed that due to efficient enterohepatic recycling of the vitamin, B12 deficiency is unlikely to occur except in special circumstances such as long-term consumption of a strictly vegetarian diet, pernicious anaemia and malabsorption syndromes. (who.int)
- Vitamin B12 (cobalamin) and/or folic This was a population-based cross-sectional acid deficiency can cause a characteristic study with cluster random sampling on megalo blastic anaemia. (who.int)
Symptoms of pernicious anemia2
- Pernicious anemia may rarely be associated with liver disease (eg, primary biliary cholangitis, autoimmune hepatitis, interferon-treated hepatitis C). Yan et al report two cases of pernicious anemia in patients with cryptogenic cirrhosis, in both of whom the neuropsychiatric symptoms of pernicious anemia were initially attributed to hepatic encephalopathy. (medscape.com)
- In adults, symptoms of pernicious anemia are usually not seen until after age 30. (medlineplus.gov)
Patients with pernicious3
- Longitudinal study of Chinese patients with pernicious anaemia. (medscape.com)
- An analysis limited to 47 patients with pernicious anemia yielded similar findings. (nih.gov)
- Because of the higher "analogue" levels, the assay done with R binder failed to register low cobalamin levels in 33 of 76 patients with low cobalamin levels and primarily neurologic abnormality (compared with only two of 19 with hematologic abnormality) and in 10 of 20 patients with pernicious anemia who had neurologic abnormalities (compared with only two of 12 without such abnormalities). (nih.gov)
Malabsorption2
- A megaloblastic anemia occurring in children but more commonly in later life, characterized by histamine-fast achlorhydria, in which the laboratory and clinical manifestations are based on malabsorption of vitamin B 12 due to a failure of the gastric mucosa to secrete adequate and potent intrinsic factor. (bvsalud.org)
- Inclusion cri- consumption of a strictly vegetarian diet, teria were being healthy and aged 20-80 pernicious anaemia and malabsorption syn- years. (who.int)
Congenital2
- This is called congenital pernicious anemia. (medlineplus.gov)
- The work of my small laboratory in the national program for prevention of mental retardation by early diagnosis of congenital hypothyroidism, and finally screening of early markers of initial stages of dementia en elderly people. (bvsalud.org)
Megaloblastic4
- Thiamine-responsive megaloblastic anemia syndrome (TRMA) is an autosomal recessive disorder characterized by megaloblastic anemia, progressive sensorineural hearing loss, and diabetes mellitus. (medscape.com)
- Onset of megaloblastic anemia occurs between infancy and adolescence. (medscape.com)
- Megaloblastic Anemias. (medscape.com)
- Anusha V. Pernicious anemia/megaloblastic anemia. (medlineplus.gov)
Vitamin B127
- A type of anemia (low red blood cell count) caused by the body's inability to absorb vitamin B12. (medindia.net)
- Pernicious anemia is a decrease in red blood cells that occurs when the intestines cannot properly absorb vitamin B12. (medlineplus.gov)
- Pernicious anemia is a type of vitamin B12 anemia. (medlineplus.gov)
- There is no known way to prevent this type of vitamin B12 anemia. (medlineplus.gov)
- Pernicious Anaemia is caused by either the patient not producing Intrinsic Factor that is needed to bind with vitamin B12 from food before it enters the blood stream or the Intrinsic Factor is being produced but is then destroyed by antibodies to the Intrinsic Factor - auto-immune Pernicious Anaemia. (pernicious-anaemia-society.org)
- Disease caused by vitamin B12 defficiency was first described by Addison in 1855, and became known as Addison's anaemia or Biermer's anaemia. (animalresearch.info)
- Since then, bacteria can now be used to produce vitamin B12 in large quantities, and pernicious anaemia has been easily diagnosed. (animalresearch.info)
Gastritis1
- If the gastritis is caused by pernicious anemia , B12 vitamin shots will be given. (webmd.com)
Autoimmune3
- To evaluate for autoimmune hemolytic anemia, we ordered a direct Coomb test, which was negative. (cmaj.ca)
- This result, combined with a normal total complement test, allowed us to conclude that a diagnosis of autoimmune hemolytic anemia was unlikely. (cmaj.ca)
- Direct Coomb tests have a sensitivity of 90%-95% and specificity of 99% in diagnosing autoimmune hemolytic anemia. (cmaj.ca)
Diagnosis2
- Pathophysiology and laboratory diagnosis of pernicious anemia. (medscape.com)
- Bizzaro N, Antico A. Diagnosis and classification of pernicious anemia. (medscape.com)
Folic acid1
- Folic acid may mask pernicious anemia. (empr.com)
Stomach1
- Some people with this condition go on to develop pernicious anemia or other stomach problems, including cancer. (cancer.org)
Factor in the liver3
- George Minot and William Murphy investigated which factor in the liver was responsible for the treatment of anaemia in dogs, and found that it was iron. (animalresearch.info)
- They also discovered that a soluble factor in the liver juices was responsible for the effects on pernicious anaemia. (animalresearch.info)
- This knowledge led others to isolate a crystalline factor in the liver which was effective against pernicious anemia. (womens-health-club.com)
Intrinsic1
- Babies with this type of anemia do not make enough intrinsic factor. (medlineplus.gov)
Occur1
- Pernicious anemia can also occur after gastric bypass surgery. (medlineplus.gov)
Workup1
- All of the above are appropriate diagnostic tests for further workup of a hemolytic anemia for this patient. (cmaj.ca)
Infection2
Liver4
- He found that dogs which ate large amounts of liver recovered quickly from anaemia due to blood loss. (animalresearch.info)
- He went on to investigate the effects of liver consumption on pernicious anaemia, and in 1920 he published a paper on how eating liver had beneficial effects on sufferers of pernicious anaemia. (animalresearch.info)
- and this factor was proportional to the antipernicious anemia activity of the liver extract. (womens-health-club.com)
- Almost simultaneously, in England, Lester Smith was conducting clinical trials with purer extracts of the liver exhibiting antiperniciolls anemia activity. (womens-health-club.com)
Condition1
- Anemia is a condition in which the body does not have enough healthy red blood cells. (medlineplus.gov)
Findings1
- These findings were published in 1926 ANCHOR , and they shared the Nobel Prize for medicine with Whipple in 1934 for the treatment for pernicious anaemia. (animalresearch.info)
Article1
- No article was found for Anemia, Pernicious and FUT6[original query] . (cdc.gov)
People3
- People with pernicious anemia may have gastric polyps. (medlineplus.gov)
- People with pernicious anemia are more likely to have fractures of the back, upper leg, and upper forearm. (medlineplus.gov)
- We even bought a book that said that people more prone to pernicious anemia were tall, pale, and had large ears. (wordgathering.com)
Cases1
- In rare cases, pernicious anemia is passed down through families. (medlineplus.gov)
Cancer1
- Cancer Risk After Pernicious Anemia in the US Elderly Population. (medscape.com)
Types1
- There are many types of anemia. (medlineplus.gov)
Large1
- To assess for underlying microangiopathic hemolytic anemia, we requested a peripheral blood smear, which showed polychromatophilia, macro-ovalocytes, hypersegmented neutrophils and large platelets ( Figures 1 and 2 ). (cmaj.ca)
Point1
- After many months of work, the Pernicious Anaemia JLA PSP has reached the most important point in the partnership to date - the workshops. (pernicious-anaemia-society.org)
Blood cell1
- The doctor may perform various blood tests, such as checking your red blood cell count to determine whether you have anemia , which means that you do not have enough red blood cells. (webmd.com)
Share1
- Come and join us, and other other members of the society to share your experience of living with Pernicious Anaemia in a supportive and friendly environment. (pernicious-anaemia-society.org)
Questions2
- If you have been recently diagnosed with Pernicious Anaemia, or if you suspect that you might have Pernicious Anaemia you will probably have lots of questions that you would like answers to. (pernicious-anaemia-society.org)
- My father asked Dr. Brett a lot of questions: if it wasn't pernicious anemia, why was I experiencing nerve pain? (wordgathering.com)
Diet1
- He set out to investigate the effects of diet on anaemia, and bled dogs until they became anaemic, feeding them special diets and noting the effects on their recovery. (animalresearch.info)
Pain1
- The hematologist had said that my red blood cells were not indicative of pernicious anemia and whatever pain I was experiencing was related to my back. (wordgathering.com)