A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN.
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
A condition of inadequate circulating red blood cells (ANEMIA) or insufficient HEMOGLOBIN due to premature destruction of red blood cells (ERYTHROCYTES).
Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=227650, August 20, 2004)
Acquired hemolytic anemia due to the presence of AUTOANTIBODIES which agglutinate or lyse the patient's own RED BLOOD CELLS.
Anemia characterized by a decrease in the ratio of the weight of hemoglobin to the volume of the erythrocyte, i.e., the mean corpuscular hemoglobin concentration is less than normal. The individual cells contain less hemoglobin than they could have under optimal conditions. Hypochromic anemia may be caused by iron deficiency from a low iron intake, diminished iron absorption, or excessive iron loss. It can also be caused by infections or other diseases, therapeutic drugs, lead poisoning, and other conditions. (Stedman, 25th ed; from Miale, Laboratory Medicine: Hematology, 6th ed, p393)
Anemia characterized by larger than normal erythrocytes, increased mean corpuscular volume (MCV) and increased mean corpuscular hemoglobin (MCH).
A megaloblastic anemia occurring in children but more commonly in later life, characterized by histamine-fast achlorhydria, in which the laboratory and clinical manifestations are based on malabsorption of vitamin B 12 due to a failure of the gastric mucosa to secrete adequate and potent intrinsic factor. (Dorland, 27th ed)
A disease characterized by chronic hemolytic anemia, episodic painful crises, and pathologic involvement of many organs. It is the clinical expression of homozygosity for hemoglobin S.
Anemia characterized by the presence of erythroblasts containing excessive deposits of iron in the marrow.
A disorder characterized by the presence of ANEMIA, abnormally large red blood cells (megalocytes or macrocytes), and MEGALOBLASTS.
A species of LENTIVIRUS, subgenus equine lentiviruses (LENTIVIRUSES, EQUINE), causing acute and chronic infection in horses. It is transmitted mechanically by biting flies, mosquitoes, and midges, and iatrogenically through unsterilized equipment. Chronic infection often consists of acute episodes with remissions.
The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements.
A severe sometimes chronic anemia, usually macrocytic in type, that does not respond to ordinary antianemic therapy.
Hemolytic anemia due to various intrinsic defects of the erythrocyte.
Viral disease of horses caused by the equine infectious anemia virus (EIAV; INFECTIOUS ANEMIA VIRUS, EQUINE). It is characterized by intermittent fever, weakness, and anemia. Chronic infection consists of acute episodes with remissions.
Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
The type species of GYROVIRUS, a small, non-enveloped DNA virus originally isolated from contaminated vaccines in Japan. It causes chicken infectious anemia and may possibly play a key role in hemorrhagic anemia syndrome, anemia dermatitis, and blue wing disease.
A familial disorder characterized by ANEMIA with multinuclear ERYTHROBLASTS, karyorrhexis, asynchrony of nuclear and cytoplasmic maturation, and various nuclear abnormalities of bone marrow erythrocyte precursors (ERYTHROID PRECURSOR CELLS). Type II is the most common of the 3 types; it is often referred to as HEMPAS, based on the Hereditary Erythroblast Multinuclearity with Positive Acidified Serum test.
A rare congenital hypoplastic anemia that usually presents early in infancy. The disease is characterized by a moderate to severe macrocytic anemia, occasional neutropenia or thrombocytosis, a normocellular bone marrow with erythroid hypoplasia, and an increased risk of developing leukemia. (Curr Opin Hematol 2000 Mar;7(2):85-94)
A diverse group of proteins whose genetic MUTATIONS have been associated with the chromosomal instability syndrome FANCONI ANEMIA. Many of these proteins play important roles in protecting CELLS against OXIDATIVE STRESS.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
The co-occurrence of pregnancy and a blood disease (HEMATOLOGIC DISEASES) which involves BLOOD CELLS or COAGULATION FACTORS. The hematologic disease may precede or follow FERTILIZATION and it may or may not have a deleterious effect on the pregnant woman or FETUS.
The mildest form of erythroblastosis fetalis in which anemia is the chief manifestation.
Agents which improve the quality of the blood, increasing the hemoglobin level and the number of erythrocytes. They are used in the treatment of anemias.
Chronic refractory anemia with granulocytopenia, and/or thrombocytopenia. Myeloblasts and progranulocytes constitute 5 to 40 percent of the nucleated marrow cells.
A Fanconi anemia complementation group protein that regulates the activities of CYTOCHROME P450 REDUCTASE and GLUTATHIONE S-TRANSFERASE. It is found predominately in the CYTOPLASM, but moves to the CELL NUCLEUS in response to FANCE PROTEIN.
A Fanconi anemia complementation group protein that undergoes mono-ubiquitination by FANCL PROTEIN in response to DNA DAMAGE. Also, in response to IONIZING RADIATION it can undergo PHOSPHORYLATION by ataxia telangiectasia mutated protein. Modified FANCD2 interacts with BRCA2 PROTEIN in a stable complex with CHROMATIN, and it is involved in DNA REPAIR by homologous RECOMBINATION.
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
A Fanconi anemia complementation group protein that is the most commonly mutated protein in FANCONI ANEMIA. It undergoes PHOSPHORYLATION by PROTEIN KINASE B and forms a complex with FANCC PROTEIN in the CELL NUCLEUS.
The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction.
Any one of a group of congenital hemolytic anemias in which there is no abnormal hemoglobin or spherocytosis and in which there is a defect of glycolysis in the erythrocyte. Common causes include deficiencies in GLUCOSE-6-PHOSPHATE ISOMERASE; PYRUVATE KINASE; and GLUCOSE-6-PHOSPHATE DEHYDROGENASE.
A clinical manifestation consisting of an unnatural paleness of the skin.
The number of RED BLOOD CELLS per unit volume in a sample of venous BLOOD.
Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types.
ERYTHROCYTE size and HEMOGLOBIN content or concentration, usually derived from ERYTHROCYTE COUNT; BLOOD hemoglobin concentration; and HEMATOCRIT. The indices include the mean corpuscular volume (MCV), the mean corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC).
Measurement of hemoglobin concentration in blood.
The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed)
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
A Fanconi anemia complementation group protein that undergoes PHOSPHORYLATION by CDC2 PROTEIN KINASE during MITOSIS. It forms a complex with other FANCONI ANEMIA PROTEINS and helps protect CELLS from DNA DAMAGE by genotoxic agents.
A test to detect non-agglutinating ANTIBODIES against ERYTHROCYTES by use of anti-antibodies (the Coombs' reagent.) The direct test is applied to freshly drawn blood to detect antibody bound to circulating red cells. The indirect test is applied to serum to detect the presence of antibodies that can bind to red blood cells.
The number of RETICULOCYTES per unit volume of BLOOD. The values are expressed as a percentage of the ERYTHROCYTE COUNT or in the form of an index ("corrected reticulocyte index"), which attempts to account for the number of circulating erythrocytes.
Iron or iron compounds used in foods or as food. Dietary iron is important in oxygen transport and the synthesis of the iron-porphyrin proteins hemoglobin, myoglobin, cytochromes, and cytochrome oxidase. Insufficient amounts of dietary iron can lead to iron-deficiency anemia.
Organic and inorganic compounds that contain iron as an integral part of the molecule.
Forms of hepcidin, a cationic amphipathic peptide synthesized in the liver as a prepropeptide which is first processed into prohepcidin and then into the biologically active hepcidin forms, including in human the 20-, 22-, and 25-amino acid residue peptide forms. Hepcidin acts as a homeostatic regulators of iron metabolism and also possesses antimicrobial activity.
Oxygen-carrying RED BLOOD CELLS in mammalian blood that are abnormal in structure or function.
The transfer of erythrocytes from a donor to a recipient or reinfusion to the donor.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
A nutritional condition produced by a deficiency of VITAMIN B 12 in the diet, characterized by megaloblastic anemia. Since vitamin B 12 is not present in plants, humans have obtained their supply from animal products, from multivitamin supplements in the form of pills, and as additives to food preparations. A wide variety of neuropsychiatric abnormalities is also seen in vitamin B 12 deficiency and appears to be due to an undefined defect involving myelin synthesis. (From Cecil Textbook of Medicine, 19th ed, p848)
The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
A disorder characterized by reduced synthesis of the beta chains of hemoglobin. There is retardation of hemoglobin A synthesis in the heterozygous form (thalassemia minor), which is asymptomatic, while in the homozygous form (thalassemia major, Cooley's anemia, Mediterranean anemia, erythroblastic anemia), which can result in severe complications and even death, hemoglobin A synthesis is absent.
A genus in the family ORTHOMYXOVIRIDAE containing one species: Infectious salmon anemia virus.
Deficiency of all three cell elements of the blood, erythrocytes, leukocytes and platelets.
A group of hereditary hemolytic anemias in which there is decreased synthesis of one or more hemoglobin polypeptide chains. There are several genetic types with clinical pictures ranging from barely detectable hematologic abnormality to severe and fatal anemia.
A Fanconi anemia complementation group protein. It is an essential component of a nuclear core complex that protects the GENOME against CHROMOSOMAL INSTABILITY. It interacts directly with FANCG PROTEIN and helps stabilize a complex with FANCA PROTEIN and FANCC PROTEIN.
Diazo derivatives of aniline, used as a reagent for sugars, ketones, and aldehydes. (Dorland, 28th ed)
A Fanconi anemia complementation group protein that interacts with FANCC PROTEIN and FANCD2 PROTEIN. It promotes the accumulation of FANCC protein in the CELL NUCLEUS.
The major component of hemoglobin in the fetus. This HEMOGLOBIN has two alpha and two gamma polypeptide subunits in comparison to normal adult hemoglobin, which has two alpha and two beta polypeptide subunits. Fetal hemoglobin concentrations can be elevated (usually above 0.5%) in children and adults affected by LEUKEMIA and several types of ANEMIA.
A protozoan disease caused in humans by four species of the PLASMODIUM genus: PLASMODIUM FALCIPARUM; PLASMODIUM VIVAX; PLASMODIUM OVALE; and PLASMODIUM MALARIAE; and transmitted by the bite of an infected female mosquito of the genus ANOPHELES. Malaria is endemic in parts of Asia, Africa, Central and South America, Oceania, and certain Caribbean islands. It is characterized by extreme exhaustion associated with paroxysms of high FEVER; SWEATING; shaking CHILLS; and ANEMIA. Malaria in ANIMALS is caused by other species of plasmodia.
The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A nutritional condition produced by a deficiency of FOLIC ACID in the diet. Many plant and animal tissues contain folic acid, abundant in green leafy vegetables, yeast, liver, and mushrooms but destroyed by long-term cooking. Alcohol interferes with its intermediate metabolism and absorption. Folic acid deficiency may develop in long-term anticonvulsant therapy or with use of oral contraceptives. This deficiency causes anemia, macrocytic anemia, and megaloblastic anemia. It is indistinguishable from vitamin B 12 deficiency in peripheral blood and bone marrow findings, but the neurologic lesions seen in B 12 deficiency do not occur. (Merck Manual, 16th ed)
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
A cobalt-containing coordination compound produced by intestinal micro-organisms and found also in soil and water. Higher plants do not concentrate vitamin B 12 from the soil and so are a poor source of the substance as compared with animal tissues. INTRINSIC FACTOR is important for the assimilation of vitamin B 12.
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
Enlargement of the spleen.
Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts.
RED BLOOD CELL sensitivity to change in OSMOTIC PRESSURE. When exposed to a hypotonic concentration of sodium in a solution, red cells take in more water, swell until the capacity of the cell membrane is exceeded, and burst.
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION.
The presence of parasites (especially malarial parasites) in the blood. (Dorland, 27th ed)
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Inorganic or organic compounds that contain divalent iron.
Proteins prepared by recombinant DNA technology.
An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989)
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis.
Abnormal intracellular inclusions, composed of denatured hemoglobin, found on the membrane of red blood cells. They are seen in thalassemias, enzymopathies, hemoglobinopathies, and after splenectomy.
Infection of humans or animals with hookworms other than those caused by the genus Ancylostoma or Necator, for which the specific terms ANCYLOSTOMIASIS and NECATORIASIS are available.
Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released.
A group of inherited disorders characterized by structural alterations within the hemoglobin molecule.
A subnormal level of BLOOD PLATELETS.
An abnormal hemoglobin resulting from the substitution of valine for glutamic acid at position 6 of the beta chain of the globin moiety. The heterozygous state results in sickle cell trait, the homozygous in sickle cell anemia.
Malaria caused by PLASMODIUM FALCIPARUM. This is the severest form of malaria and is associated with the highest levels of parasites in the blood. This disease is characterized by irregularly recurring febrile paroxysms that in extreme cases occur with acute cerebral, renal, or gastrointestinal manifestations.
A glycoprotein secreted by the cells of the GASTRIC GLANDS that is required for the absorption of VITAMIN B 12 (cyanocobalamin). Deficiency of intrinsic factor leads to VITAMIN B 12 DEFICIENCY and ANEMIA, PERNICIOUS.
A disorder characterized by reduced synthesis of the alpha chains of hemoglobin. The severity of this condition can vary from mild anemia to death, depending on the number of genes deleted.
A group of familial congenital hemolytic anemias characterized by numerous abnormally shaped erythrocytes which are generally spheroidal. The erythrocytes have increased osmotic fragility and are abnormally permeable to sodium ions.
The process by which fetal Rh+ erythrocytes enter the circulation of an Rh- mother, causing her to produce IMMUNOGLOBULIN G antibodies, which can cross the placenta and destroy the erythrocytes of Rh+ fetuses. Rh isoimmunization can also be caused by BLOOD TRANSFUSION with mismatched blood.
Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care. (Dictionary of Health Services Management, 2d ed)
Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
A republic in eastern Africa, south of UGANDA and north of MOZAMBIQUE. Its capital is Dar es Salaam. It was formed in 1964 by a merger of the countries of TANGANYIKA and ZANZIBAR.
An infant during the first month after birth.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
The cells in the erythroid series derived from MYELOID PROGENITOR CELLS or from the bi-potential MEGAKARYOCYTE-ERYTHROID PROGENITOR CELLS which eventually give rise to mature RED BLOOD CELLS. The erythroid progenitor cells develop in two phases: erythroid burst-forming units (BFU-E) followed by erythroid colony-forming units (CFU-E); BFU-E differentiate into CFU-E on stimulation by ERYTHROPOIETIN, and then further differentiate into ERYTHROBLASTS when stimulated by other factors.
The co-occurrence of pregnancy and parasitic diseases. The parasitic infection may precede or follow FERTILIZATION.
Agents used to prevent or reverse the pathological events leading to sickling of erythrocytes in sickle cell conditions.
The type species of ERYTHROVIRUS and the etiological agent of ERYTHEMA INFECTIOSUM, a disease most commonly seen in school-age children.
A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia.
The persistent eating of nonnutritive substances for a period of at least one month. (DSM-IV)
State of the body in relation to the consumption and utilization of nutrients.
Hemoglobins characterized by structural alterations within the molecule. The alteration can be either absence, addition or substitution of one or more amino acids in the globin part of the molecule at selected positions in the polypeptide chains.
Virus infections caused by the PARVOVIRIDAE.
A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins.
An imbalanced nutritional status resulted from insufficient intake of nutrients to meet normal physiological requirement.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Surgical procedure involving either partial or entire removal of the spleen.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
Disorders of the blood and blood forming tissues.
An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states.
An increase in circulating RETICULOCYTES, which is among the simplest and most reliable signs of accelerated ERYTHROCYTE production. Reticulocytosis occurs during active BLOOD regeneration (stimulation of red bone marrow) and in certain types of ANEMIA, particularly CONGENITAL HEMOLYTIC ANEMIA.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
A republic in eastern Africa, south of ETHIOPIA, west of SOMALIA with TANZANIA to its south, and coastline on the Indian Ocean. Its capital is Nairobi.
Bone marrow diseases, also known as hematologic or blood disorders, refer to conditions that affect the production and function of blood cells within the bone marrow, such as leukemia, lymphoma, myeloma, and aplastic anemia, potentially leading to complications like anemia, neutropenia, thrombocytopenia, and increased susceptibility to infections or bleeding.
Tests used in the analysis of the hemic system.
The condition of being heterozygous for hemoglobin S.
A commercially important species of SALMON in the family SALMONIDAE, order SALMONIFORMES, which occurs in the North Atlantic.
Elements of limited time intervals, contributing to particular results or situations.
In utero transfusion of BLOOD into the FETUS for the treatment of FETAL DISEASES, such as fetal erythroblastosis (ERYTHROBLASTOSIS, FETAL).
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
An enzyme of the transferase class that catalyzes condensation of the succinyl group from succinyl coenzyme A with glycine to form delta-aminolevulinate. It is a pyridoxyal phosphate protein and the reaction occurs in mitochondria as the first step of the heme biosynthetic pathway. The enzyme is a key regulatory enzyme in heme biosynthesis. In liver feedback is inhibited by heme. EC 2.3.1.37.
Products in capsule, tablet or liquid form that provide dietary ingredients, and that are intended to be taken by mouth to increase the intake of nutrients. Dietary supplements can include macronutrients, such as proteins, carbohydrates, and fats; and/or MICRONUTRIENTS, such as VITAMINS; MINERALS; and PHYTOCHEMICALS.
Increased numbers of platelets in the peripheral blood. (Dorland, 27th ed)
A synthetic hormone with anabolic and androgenic properties. It is used mainly in the treatment of anemias. According to the Fourth Annual Report on Carcinogens (NTP 85-002), this compound may reasonably be anticipated to be a carcinogen. (From Merck Index, 11th ed)
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
An abnormal hemoglobin that results from the substitution of lysine for glutamic acid at position 26 of the beta chain. It is most frequently observed in southeast Asian populations.
Suppression of erythropoiesis with little or no abnormality of leukocyte or platelet production.
A sugar acid derived from D-glucose in which both the aldehydic carbon atom and the carbon atom bearing the primary hydroxyl group are oxidized to carboxylic acid groups.
The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY).
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
A condition characterized by the abnormal presence of ERYTHROBLASTS in the circulation of the FETUS or NEWBORNS. It is a disorder due to BLOOD GROUP INCOMPATIBILITY, such as the maternal alloimmunization by fetal antigen RH FACTORS leading to HEMOLYSIS of ERYTHROCYTES, hemolytic anemia (ANEMIA, HEMOLYTIC), general edema (HYDROPS FETALIS), and SEVERE JAUNDICE IN NEWBORN.
Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
Pathological processes of the KIDNEY or its component tissues.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
Stable iron atoms that have the same atomic number as the element iron, but differ in atomic weight. Fe-54, 57, and 58 are stable iron isotopes.
Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience.
Any food that has been supplemented with essential nutrients either in quantities that are greater than those present normally, or which are not present in the food normally. Fortified food includes also food to which various nutrients have been added to compensate for those removed by refinement or processing. (From Segen, Dictionary of Modern Medicine, 1992)
Removal of bone marrow and evaluation of its histologic picture.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A republic in western Africa, south of BURKINA FASO and west of TOGO. Its capital is Accra.

Monocyte-mediated antibody-dependent cellular cytotoxicity: a clinical test of monocyte function. (1/995)

The lack of a simple, rapid, and quantitative test of the functional activity of the monocyte has hampered studies of the contribution of this cell type to host defense and human disease. This report describes an assay of antibody-dependent cellular cytotoxicity, which depends exclusively upon the monocyte as the effector cell and therefore provides a convenient test of monocyte function. In this system, mononuclear leukocytes (MNL) obtained by Ficoll-Hypaque separation of whole blood are cytotoxic for 51Cr-labeled human erythrocyte targets coated with anti-blood group antibody. Removal of phagocytic monocytes from the MNL by iron ingestion, followed by exposure to a magnetic field, completely abolishes all cytotoxic activity from the remaining MNL population. Similarly, in severely mono-cytopenic patients with aplastic anemia, cytotoxic effector activity is absent. In normals and less severely monocytopenic aplastic anemia patients, cytotoxicity correlates significantly (p less than 0.001) with monocyte number. Application of this monocyte-mediated antibody-dependent cellular cytotoxicity assay to the study of patients with the Wiskott-Aldrich syndrome has revealed defective monocyte cytotoxic activity in spite of normal monocyte numbers, suggesting that this test may be useful for the assessment of monocyte function in a variety of clinical situations.  (+info)

Thymic selection by a single MHC/peptide ligand: autoreactive T cells are low-affinity cells. (2/995)

In H2-M- mice, the presence of a single peptide, CLIP, bound to MHC class II molecules generates a diverse repertoire of CD4+ cells. In these mice, typical self-peptides are not bound to class II molecules, with the result that a very high proportion of H2-M- CD4+ cells are responsive to the various peptides displayed on normal MHC-compatible APC. We show here, however, that such "self" reactivity is controlled by low-affinity CD4+ cells. These cells give spectacularly high proliferative responses but are virtually unreactive in certain other assays, e.g., skin graft rejection; responses to MHC alloantigens, by contrast, are intense in all assays. Possible explanations for why thymic selection directed to a single peptide curtails self specificity without affecting alloreactivity are discussed.  (+info)

Rapid autologous marrow recovery and eradication of infectious mononucleosis despite severe immunosuppression following second transplantation for aplastic anemia. (3/995)

A patient with aplastic anemia failed to respond to immunosuppressive therapy and first marrow transplantation (BMT). Recovery of autologous hematopoiesis was rapid following a second stem cell transplant with a non-myeloablative preparatory regimen. The autologous immune response to infectious mononucleosis (IM) 4 weeks post-transplant was normal despite recent and ongoing severe immunosuppression.  (+info)

Fungal prophylaxis by reduction of fungal colonization by oral administration of bovine anti-Candida antibodies in bone marrow transplant recipients. (4/995)

Candida overgrowth and invasion constitute a serious threat with a high mortality in BMT recipients. Currently available topical antifungal prophylaxis is largely ineffective, and as resistance to existing, absorbable drugs for systemic use is rapidly developing, new forms of therapy are needed. We investigated the effect of oral treatment of BMT recipients with a bovine immunoglobulin product derived from animals immunized against several Candida species. The natural Candida colonization was first followed in 19 patients to establish the colonization pattern. Half of the patients were found to be colonized prior to transplantation and altogether 72% were colonized at some point during follow-up. Those with a high pre-transplant concentration of Candida in saliva (>100 CFU/ml) remained colonized throughout the BMT treatment period. The therapeutic effect was monitored in two other patient groups. The first group consisted of nine patients, where, due to a low number of primary colonized patients, response in colonized patients was suggestive of a therapeutic effect. In the second group, 10 patients with a high level of colonization (>100 CFU/ml) were given 10 g daily of the product in three divided doses. The results suggest a treatment-related reduction in Candida colonization in a majority (7/10) of patients and one patient became completely negative. As no adverse effects were noted, our findings encourage additional studies in immunocompromised, transplant patients.  (+info)

Correction of bone marrow failure in dyskeratosis congenita by bone marrow transplantation. (5/995)

Dyskeratosis congenita is recognized by its dermal lesions and constitutional aplastic anemia in some cases. We report successful allogeneic bone marrow transplantation in two siblings with this disease from their sister, and their long term follow-up. We used reduced doses of cyclophosphamide and busulfan for conditioning instead of total body irradiation. Also, we report late adverse effects of transplantation which are not distinguishable from the natural course of disease.  (+info)

Prospective randomized multicenter study comparing cyclosporin alone versus the combination of antithymocyte globulin and cyclosporin for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anaemia Working Party. (6/995)

We report the results of the first prospective randomized multicenter study of immunosuppressive treatment in patients with previously untreated nonsevere aplastic anemia (AA) as defined by a neutrophil count of at least 0.5 x 10(9)/L and transfusion dependence. Patients were randomized to receive cyclosporin (CSA) alone or the combination of horse antithymocyte globulin ([ATG] Lymphoglobuline; Merieux, Lyon, France) and CSA. The endpoint of the study was the hematologic response at 6 months. One hundred fifteen patients were randomized and assessable with a median follow-up period of 36 months; 61 received CSA and 54 ATG and CSA. In the CSA group, the percentage of complete and partial responders was 23% and 23%, respectively, for an overall response rate of 46%. A significantly higher overall response rate of 74% was found in the ATG and CSA group, with 57% complete and 17% partial responders (P =. 02). Compared with CSA alone, the combination of ATG and CSA resulted in a significantly higher median hemoglobin level and platelet count at 6 months. Fewer patients required a second course of treatment before 6 months due to a nonresponse. In the CSA group, 15 of 61 (25%) patients required a course of ATG before 6 months because of disease progression, compared with only 3 of 54 (6%) in the ATG and CSA group. The survival probabilities for the two groups were comparable, 93% (CSA group) and 91% (ATG and CSA group), but at 180 days, the prevalence of patients surviving free of transfusions, which excluded patients requiring second treatment because of nonresponse, death, disease progression, or relapse, was 67% in the CSA group and 90% in the ATG and CSA group (P =.001). We conclude that the combination of ATG and CSA is superior to CSA alone in terms of the hematologic response, the quality of response, and early mortality, and a second course of immunosuppression is less frequently required.  (+info)

Bone marrow transplantation for severe aplastic anemia: the Barcelona Hospital Clinic experience. (7/995)

BACKGROUND AND OBJECTIVE: The outcome of patients with severe aplastic anemia (SAA) has improved considerably over the last decades. Bone marrow transplantation (BMT) is the treatment of choice in young patients who have an HLA-identical sibling donor. This study analyzes the outcome and factors related to survival in patients with SAA receiving BMT in our institution. DESIGN AND METHODS: Between March 1978 and December 1996, 49 consecutive patients received an HLA-identical sibling marrow transplant for SAA. Median age was 21 years (range, 4 to 47) and 15 (31%) were women. Median interval from diagnosis to transplant was 2.6 months (range, 0.5 to 159). Between 1978 and 1982 all patients were conditioned with cyclophosphamide (CY) alone and received methotrexate (MTX) until day 102 as graft-versus-host disease (GvHD) prophylaxis. From 1983 most patients received CY and thoraco-abdominal irradiation (TAI) as the conditioning regimen and cyclosporin A (CSA) as GvHD prophylaxis. RESULTS: Survival probability at 10 years was 55 +/- 7% with a median follow-up for the surviving patients of 8.5 years. The incidences of graft failure, grade II to IV acute GvHD, and chronic GvHD were 21%, 39.5% and 31%, respectively. In multivariate analysis three factors adversely influenced survival: a) age > or = 30 years (p = 0.05); b) > or = 10 transfusion units pre-BMT (p = 0.008); and c) use of long course MTX for GvHD prophylaxis (p = 0.01). One case of squamous-cell carcinoma occurred in a TAI-treated patient 13 years post-transplantation. INTERPRETATION AND CONCLUSIONS: BMT is effective in young patients with SAA who have an HLA-identical sibling donor, particularly if minimally transfused pre-transplant. The introduction of TAI and CSA to our preparative regimen has led to a remarkably increased survival.  (+info)

Fusarium infections in patients with severe aplastic anemia: review and implications for management. (8/995)

BACKGROUND AND OBJECTIVE: The prognosis of severe fungal infections, such as fusarium infections, in patients with aplastic anemia is directly related to the recovery of bone marrow functions. In this study, in vitro anti-Fusarium activity of granulocytes was investigated, the case of disseminated infection in a child with very severe aplastic anemia is reported, and implications for management of such infective complications are discussed. DESIGN AND METHODS: The in vitro efficiency of PMNL from three untreated, normal blood donors and from two G-CSF-treated WBC donors in contrasting the growth of the Fusarium sp strain isolated from the patient we present was measured by a 3H-glucose uptake inhibition assay and confirmed by microscopic examination. RESULTS: Basic growth inhibitory activity of unstimulated PMNL on Fusarium cells was significantly enhanced in the presence of GM-CSF in all three blood donors tested. In one of the two G-CSF-treated donors, in vitro efficiency of PMNL in contrasting the growth of the fungus increased notably after G-CSF treatment. We report the case of a 3-year-old girl with very severe aplastic anemia unresponsive to conventional immunosuppressant therapy who developed a disseminated fusarium infection. The child initially responded to liposomal amphotericin B and granulocyte transfusions from G-CSF stimulated donors. Subsequently she was given a cord blood stem cell transplantation but died of disseminated infection. INTERPRETATION AND CONCLUSIONS: Including the present case, there are only ten reports of invasive infections caused by the genus Fusarium in aplastic anemia patients and only two of the patients survived. In vitro data seem to suggest that in vivo treatment with rh-G-CSF could have a stimulatory effect on the anti-Fusarium activity of neutrophils. Despite the efficacy of granulocyte transfusions by G-CSF-stimulated donors in the temporary control of fusarium infection, treatment of the underlying hematologic disease is required to cure the infection in patients with severe aplastic anemia. Granulocyte transfusions by G-CSF-stimulated donors while awaiting bone marrow recovery following the blood stem cell transplant should be considered.  (+info)

Anemia is a medical condition characterized by a lower than normal number of red blood cells or lower than normal levels of hemoglobin in the blood. Hemoglobin is an important protein in red blood cells that carries oxygen from the lungs to the rest of the body. Anemia can cause fatigue, weakness, shortness of breath, and a pale complexion because the body's tissues are not getting enough oxygen.

Anemia can be caused by various factors, including nutritional deficiencies (such as iron, vitamin B12, or folate deficiency), blood loss, chronic diseases (such as kidney disease or rheumatoid arthritis), inherited genetic disorders (such as sickle cell anemia or thalassemia), and certain medications.

There are different types of anemia, classified based on the underlying cause, size and shape of red blood cells, and the level of hemoglobin in the blood. Treatment for anemia depends on the underlying cause and may include dietary changes, supplements, medication, or blood transfusions.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

Hemolytic anemia is a type of anemia that occurs when red blood cells are destroyed (hemolysis) faster than they can be produced. Red blood cells are essential for carrying oxygen throughout the body. When they are destroyed, hemoglobin and other cellular components are released into the bloodstream, which can lead to complications such as kidney damage and gallstones.

Hemolytic anemia can be inherited or acquired. Inherited forms of the condition may result from genetic defects that affect the structure or function of red blood cells. Acquired forms of hemolytic anemia can be caused by various factors, including infections, medications, autoimmune disorders, and certain medical conditions such as cancer or blood disorders.

Symptoms of hemolytic anemia may include fatigue, weakness, shortness of breath, pale skin, jaundice (yellowing of the skin and eyes), dark urine, and a rapid heartbeat. Treatment for hemolytic anemia depends on the underlying cause and may include medications, blood transfusions, or surgery.

Fanconi anemia is a rare, inherited disorder that affects the body's ability to produce healthy blood cells. It is characterized by bone marrow failure, congenital abnormalities, and an increased risk of developing certain types of cancer. The condition is caused by mutations in genes responsible for repairing damaged DNA, leading to chromosomal instability and cell death.

The classic form of Fanconi anemia (type A) is typically diagnosed in childhood and is associated with various physical abnormalities such as short stature, skin pigmentation changes, thumb and radial ray anomalies, kidney and genitourinary malformations, and developmental delays. Other types of Fanconi anemia (B-G) may have different clinical presentations but share the common feature of bone marrow failure and cancer predisposition.

Bone marrow failure in Fanconi anemia results in decreased production of all three types of blood cells: red blood cells, white blood cells, and platelets. This can lead to anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). These conditions increase the risk of infections, fatigue, and bleeding.

Individuals with Fanconi anemia have a significantly higher risk of developing various types of cancer, particularly acute myeloid leukemia (AML) and solid tumors such as squamous cell carcinomas of the head, neck, esophagus, and anogenital region.

Treatment for Fanconi anemia typically involves managing symptoms related to bone marrow failure, such as transfusions, growth factors, and antibiotics. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment option for bone marrow failure but carries risks of its own, including graft-versus-host disease and transplant-related mortality. Regular cancer surveillance is essential due to the increased risk of malignancies in these patients.

Hemolytic anemia, autoimmune is a type of anemia characterized by the premature destruction of red blood cells (RBCs) in which the immune system mistakenly attacks and destroys its own RBCs. This occurs when the body produces autoantibodies that bind to the surface of RBCs, leading to their rupture (hemolysis). The symptoms may include fatigue, weakness, shortness of breath, and dark colored urine. The diagnosis is made through blood tests that measure the number and size of RBCs, reticulocyte count, and the presence of autoantibodies. Treatment typically involves suppressing the immune system with medications such as corticosteroids or immunosuppressive drugs, and sometimes removal of the spleen (splenectomy) may be necessary.

Hypochromic anemia is a type of anemia characterized by the presence of red blood cells that have lower than normal levels of hemoglobin and appear paler in color than normal. Hemoglobin is a protein in red blood cells that carries oxygen from the lungs to the rest of the body. In hypochromic anemia, there may be a decrease in the production or increased destruction of red blood cells, leading to a reduced number of red blood cells and insufficient oxygen supply to the tissues.

Hypochromic anemia can result from various underlying medical conditions, including iron deficiency, thalassemia, chronic inflammation, lead poisoning, and certain infections or chronic diseases. Treatment for hypochromic anemia depends on the underlying cause and may include iron supplements, dietary changes, medications, or blood transfusions.

Macrocytic anemia is a type of anemia in which the red blood cells are larger than normal in size (macrocytic). This condition can be caused by various factors such as deficiency of vitamin B12 or folate, alcohol abuse, certain medications, bone marrow disorders, and some inherited genetic conditions.

The large red blood cells may not function properly, leading to symptoms such as fatigue, weakness, shortness of breath, pale skin, and a rapid heartbeat. Macrocytic anemia can be diagnosed through a complete blood count (CBC) test, which measures the size and number of red blood cells in the blood.

Treatment for macrocytic anemia depends on the underlying cause. In cases of vitamin B12 or folate deficiency, supplements or dietary changes may be recommended. If the anemia is caused by medication, a different medication may be prescribed. In severe cases, blood transfusions or injections of vitamin B12 may be necessary.

Pernicious anemia is a specific type of vitamin B12 deficiency anemia that is caused by a lack of intrinsic factor, a protein made in the stomach that is needed to absorb vitamin B12. The absence of intrinsic factor leads to poor absorption of vitamin B12 from food and results in its deficiency.

Vitamin B12 is essential for the production of healthy red blood cells, which carry oxygen throughout the body. Without enough vitamin B12, the body cannot produce enough red blood cells, leading to anemia. Pernicious anemia typically develops slowly over several years and can cause symptoms such as fatigue, weakness, pale skin, shortness of breath, and a decreased appetite.

Pernicious anemia is an autoimmune disorder, which means that the body's immune system mistakenly attacks healthy cells in the stomach lining, leading to a loss of intrinsic factor production. It is more common in older adults, particularly those over 60 years old, and can also be associated with other autoimmune disorders such as type 1 diabetes, Hashimoto's thyroiditis, and Addison's disease.

Treatment for pernicious anemia typically involves vitamin B12 replacement therapy, either through oral supplements or injections of the vitamin. In some cases, dietary changes may also be recommended to ensure adequate intake of vitamin B12-rich foods such as meat, fish, poultry, and dairy products.

Sickle cell anemia is a genetic disorder that affects the hemoglobin in red blood cells. Hemoglobin is responsible for carrying oxygen throughout the body. In sickle cell anemia, the hemoglobin is abnormal and causes the red blood cells to take on a sickle shape, rather than the normal disc shape. These sickled cells are stiff and sticky, and they can block blood vessels, causing tissue damage and pain. They also die more quickly than normal red blood cells, leading to anemia.

People with sickle cell anemia often experience fatigue, chronic pain, and jaundice. They may also have a higher risk of infections and complications such as stroke, acute chest syndrome, and priapism. The disease is inherited from both parents, who must both be carriers of the sickle cell gene. It primarily affects people of African descent, but it can also affect people from other ethnic backgrounds.

There is no cure for sickle cell anemia, but treatments such as blood transfusions, medications to manage pain and prevent complications, and bone marrow transplantation can help improve quality of life for affected individuals. Regular medical care and monitoring are essential for managing the disease effectively.

Sideroblastic anemia is a type of anemia characterized by the presence of ringed sideroblasts in the bone marrow. Ringed sideroblasts are red blood cell precursors that have an abnormal amount of iron accumulated in their mitochondria, which forms a ring around the nucleus. This results in the production of abnormal hemoglobin and impaired oxygen transport.

Sideroblastic anemia can be classified as congenital or acquired. Congenital sideroblastic anemias are caused by genetic defects that affect heme synthesis or mitochondrial function, while acquired sideroblastic anemias are associated with various conditions such as myelodysplastic syndromes, chronic alcoholism, lead toxicity, and certain medications.

Symptoms of sideroblastic anemia may include fatigue, weakness, shortness of breath, and pallor. Diagnosis is typically made through a bone marrow aspiration and biopsy, which can identify the presence of ringed sideroblasts. Treatment depends on the underlying cause but may include iron chelation therapy, vitamin B6 supplementation, or blood transfusions.

Megaloblastic anemia is a type of macrocytic anemia, which is characterized by the presence of large, structurally abnormal, and immature red blood cells called megaloblasts in the bone marrow. This condition arises due to impaired DNA synthesis during erythropoiesis (the process of red blood cell production), often as a result of deficiencies in vitamin B12 or folate, or from the use of certain medications that interfere with DNA synthesis.

The hallmark feature of megaloblastic anemia is the presence of megaloblasts in the bone marrow, which exhibit an asynchrony between nuclear and cytoplasmic maturation. This means that although the cytoplasm of these cells may appear well-developed, their nuclei remain underdeveloped and fragmented. As a result, the peripheral blood shows an increase in mean corpuscular volume (MCV), reflecting the larger size of the red blood cells.

Additional hematological findings include decreased reticulocyte counts, neutrophil hypersegmentation, and occasionally thrombocytopenia or leukopenia. Neurological symptoms may also be present due to the involvement of the nervous system in vitamin B12 deficiency.

Megaloblastic anemia is typically treated with supplementation of the deficient vitamin (B12 or folate), which helps restore normal erythropoiesis and alleviate symptoms over time.

Equine Infectious Anemia (EIA) is a viral disease that affects horses and other equine animals. The causative agent of this disease is the Equine Infectious Anemia Virus (EIAV), which belongs to the family Retroviridae and genus Lentivirus. This virus is primarily transmitted through the transfer of infected blood, most commonly through biting insects such as horseflies and deerflies.

The EIAV attacks the immune system of the infected animal, causing a variety of symptoms including fever, weakness, weight loss, anemia, and edema. The virus has a unique ability to integrate its genetic material into the host's DNA, which can lead to a lifelong infection. Some animals may become chronic carriers of the virus, showing no signs of disease but remaining infectious to others.

There is currently no cure for EIA, and infected animals must be isolated to prevent the spread of the disease. Vaccines are available in some countries, but they do not provide complete protection against infection and may only help reduce the severity of the disease. Regular testing and monitoring of equine populations are essential to control the spread of this virus.

Hemoglobin (Hb or Hgb) is the main oxygen-carrying protein in the red blood cells, which are responsible for delivering oxygen throughout the body. It is a complex molecule made up of four globin proteins and four heme groups. Each heme group contains an iron atom that binds to one molecule of oxygen. Hemoglobin plays a crucial role in the transport of oxygen from the lungs to the body's tissues, and also helps to carry carbon dioxide back to the lungs for exhalation.

There are several types of hemoglobin present in the human body, including:

* Hemoglobin A (HbA): This is the most common type of hemoglobin, making up about 95-98% of total hemoglobin in adults. It consists of two alpha and two beta globin chains.
* Hemoglobin A2 (HbA2): This makes up about 1.5-3.5% of total hemoglobin in adults. It consists of two alpha and two delta globin chains.
* Hemoglobin F (HbF): This is the main type of hemoglobin present in fetal life, but it persists at low levels in adults. It consists of two alpha and two gamma globin chains.
* Hemoglobin S (HbS): This is an abnormal form of hemoglobin that can cause sickle cell disease when it occurs in the homozygous state (i.e., both copies of the gene are affected). It results from a single amino acid substitution in the beta globin chain.
* Hemoglobin C (HbC): This is another abnormal form of hemoglobin that can cause mild to moderate hemolytic anemia when it occurs in the homozygous state. It results from a different single amino acid substitution in the beta globin chain than HbS.

Abnormal forms of hemoglobin, such as HbS and HbC, can lead to various clinical disorders, including sickle cell disease, thalassemia, and other hemoglobinopathies.

Refractory anemia is a type of anemia that does not respond to typical treatments, such as iron supplements or hormonal therapy. It is often associated with various bone marrow disorders, including myelodysplastic syndromes (MDS), a group of conditions characterized by abnormal blood cell production in the bone marrow.

In refractory anemia, the bone marrow fails to produce enough healthy red blood cells, leading to symptoms such as fatigue, weakness, shortness of breath, and pale skin. The condition can be difficult to treat, and treatment options may include more aggressive therapies such as immunosuppressive drugs, chemotherapy, or stem cell transplantation.

It is important to note that the term "refractory" in this context refers specifically to the lack of response to initial treatments, rather than a specific severity or type of anemia.

Hemolytic anemia, congenital is a type of anemia that is present at birth and characterized by the abnormal breakdown (hemolysis) of red blood cells. This can occur due to various genetic defects that affect the structure or function of the red blood cells, making them more susceptible to damage and destruction.

There are several types of congenital hemolytic anemias, including:

1. Congenital spherocytosis: A condition caused by mutations in genes that affect the shape and stability of red blood cells, leading to the formation of abnormally shaped and fragile cells that are prone to hemolysis.
2. G6PD deficiency: A genetic disorder that affects the enzyme glucose-6-phosphate dehydrogenase (G6PD), which is essential for protecting red blood cells from damage. People with this condition have low levels of G6PD, making their red blood cells more susceptible to hemolysis when exposed to certain triggers such as infections or certain medications.
3. Hereditary elliptocytosis: A condition caused by mutations in genes that affect the structure and flexibility of red blood cells, leading to the formation of abnormally shaped and fragile cells that are prone to hemolysis.
4. Pyruvate kinase deficiency: A rare genetic disorder that affects an enzyme called pyruvate kinase, which is essential for the production of energy in red blood cells. People with this condition have low levels of pyruvate kinase, leading to the formation of fragile and abnormally shaped red blood cells that are prone to hemolysis.

Symptoms of congenital hemolytic anemia can vary depending on the severity of the condition but may include fatigue, weakness, pale skin, jaundice, dark urine, and an enlarged spleen. Treatment may involve blood transfusions, medications to manage symptoms, and in some cases, surgery to remove the spleen.

Equine infectious anemia (EIA) is a viral disease that affects horses and other equine animals. It is caused by the Equine Infectious Anemia Virus (EIAV), which is transmitted through the bloodstream of infected animals, often through biting insects such as horseflies and deerflies.

The symptoms of EIA can vary widely, but often include fever, weakness, weight loss, anemia, and edema. In severe cases, the disease can cause death. There is no cure for EIA, and infected animals must be isolated to prevent the spread of the virus.

EIA is diagnosed through blood tests that detect the presence of antibodies to the virus. Horses that test positive for EIA are typically euthanized or permanently quarantined. Prevention measures include testing horses before they are bought, sold, or moved, as well as controlling insect populations and using insect repellents. Vaccines are not available for EIA in most countries.

Erythropoietin (EPO) is a hormone that is primarily produced by the kidneys and plays a crucial role in the production of red blood cells in the body. It works by stimulating the bone marrow to produce more red blood cells, which are essential for carrying oxygen to various tissues and organs.

EPO is a glycoprotein that is released into the bloodstream in response to low oxygen levels in the body. When the kidneys detect low oxygen levels, they release EPO, which then travels to the bone marrow and binds to specific receptors on immature red blood cells called erythroblasts. This binding triggers a series of events that promote the maturation and proliferation of erythroblasts, leading to an increase in the production of red blood cells.

In addition to its role in regulating red blood cell production, EPO has also been shown to have neuroprotective effects and may play a role in modulating the immune system. Abnormal levels of EPO have been associated with various medical conditions, including anemia, kidney disease, and certain types of cancer.

EPO is also used as a therapeutic agent for the treatment of anemia caused by chronic kidney disease, chemotherapy, or other conditions that affect red blood cell production. Recombinant human EPO (rhEPO) is a synthetic form of the hormone that is produced using genetic engineering techniques and is commonly used in clinical practice to treat anemia. However, misuse of rhEPO for performance enhancement in sports has been a subject of concern due to its potential to enhance oxygen-carrying capacity and improve endurance.

Chicken anemia virus (CAV) is a small, non-enveloped DNA virus that belongs to the family *Circoviridae* and genus *Gyrovirus*. It primarily infects chickens and causes a variety of clinical signs, including severe anemia, immunosuppression, and runting in young birds.

The virus is highly contagious and can be spread through horizontal transmission via feces, contaminated equipment, or vertically from infected breeder hens to their offspring. CAV infection can lead to significant economic losses in the poultry industry due to decreased growth rates, increased mortality, and reduced egg production.

In addition to its impact on the poultry industry, CAV has also been used as a vector for gene delivery in biomedical research. Its small genome size and ability to infect a wide range of avian species make it an attractive candidate for vaccine development and gene therapy applications.

Dyserythropoietic anemia, congenital is a rare type of inherited anemia characterized by ineffective red blood cell production (erythropoiesis) in the bone marrow. This means that the body has difficulty producing healthy and fully mature red blood cells. The condition is caused by mutations in genes responsible for the development and maturation of red blood cells, leading to the production of abnormally shaped and dysfunctional red blood cells.

There are two main types of congenital dyserythropoietic anemia (CDA), type I and type II, each caused by different genetic mutations:

1. CDA Type I (HEMPAS): This form is caused by a mutation in the SEC23B gene. It typically presents in early childhood with mild to moderate anemia, jaundice, and splenomegaly (enlarged spleen). The severity of the condition can vary widely among affected individuals.
2. CDA Type II (HIEM): This form is caused by a mutation in the KIF23 gene or, less commonly, the TCIRG1 gene. It typically presents in infancy with moderate to severe anemia, hepatomegaly (enlarged liver), and splenomegaly. The condition can lead to iron overload due to repeated blood transfusions, which may require chelation therapy to manage.

Both types of congenital dyserythropoietic anemia are characterized by ineffective erythropoiesis, abnormal red blood cell morphology, and increased destruction of red blood cells (hemolysis). Treatment typically involves supportive care, such as blood transfusions to manage anemia, and occasionally chelation therapy to address iron overload. In some cases, bone marrow transplantation may be considered as a curative option.

Diamond-Blackfan anemia is a rare, congenital bone marrow failure disorder characterized by a decreased production of red blood cells (erythroblasts) in the bone marrow. This results in a reduced number of circulating red blood cells, leading to anemia and related symptoms such as fatigue, weakness, and pallor. The disorder is typically diagnosed in infancy or early childhood and can also be associated with physical abnormalities.

The exact cause of Diamond-Blackfan anemia is not fully understood, but it is believed to involve genetic mutations that affect the development and function of the bone marrow. In many cases, the disorder is inherited in an autosomal dominant manner, meaning that a child has a 50% chance of inheriting the mutated gene from an affected parent. However, some cases may arise spontaneously due to new genetic mutations.

Treatment for Diamond-Blackfan anemia typically involves regular blood transfusions to maintain adequate red blood cell levels and alleviate symptoms. Corticosteroid therapy may also be used to stimulate red blood cell production in some cases. In severe or refractory cases, stem cell transplantation may be considered as a curative treatment option.

Fanconi anemia (FA) is a genetic disorder characterized by various developmental abnormalities, bone marrow failure, and increased risk of malignancies. It is caused by mutations in genes involved in the FA complementation group, which are responsible for repairing damaged DNA.

The FA complementation group proteins include FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ/BRIP1, FANCL, FANCM, and FAAP100. These proteins work together to form the FA core complex, which is responsible for monoubiquitinating FANCD2 and FANCI in response to DNA damage. This modification allows for the recruitment of downstream effectors that facilitate DNA repair and maintain genomic stability.

Defects in any of these FA complementation group proteins can lead to Fanconi anemia, with varying clinical manifestations depending on the specific gene involved and the severity of the mutation.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Hematologic pregnancy complications refer to disorders related to the blood and blood-forming tissues that occur during pregnancy. These complications can have serious consequences for both the mother and the fetus if not properly managed. Some common hematologic pregnancy complications include:

1. Anemia: A condition characterized by a decrease in the number of red blood cells or hemoglobin in the blood, which can lead to fatigue, weakness, and shortness of breath. Iron-deficiency anemia is the most common type of anemia during pregnancy.
2. Thrombocytopenia: A condition characterized by a decrease in the number of platelets (cells that help blood clot) in the blood. Mild thrombocytopenia is relatively common during pregnancy, but severe thrombocytopenia can increase the risk of bleeding during delivery.
3. Gestational thrombotic thrombocytopenic purpura (GTTP): A rare but serious disorder that can cause blood clots to form in small blood vessels throughout the body, leading to a decrease in the number of platelets and red blood cells. GTTP can cause serious complications such as stroke, kidney failure, and even death if not promptly diagnosed and treated.
4. Disseminated intravascular coagulation (DIC): A condition characterized by abnormal clotting and bleeding throughout the body. DIC can be triggered by various conditions such as severe infections, pregnancy complications, or cancer.
5. Hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome: A serious complication of pregnancy that can cause damage to the liver and lead to bleeding. HELLP syndrome is often associated with preeclampsia, a condition characterized by high blood pressure and damage to organs such as the liver and kidneys.

It's important for pregnant women to receive regular prenatal care to monitor for these and other potential complications, and to seek prompt medical attention if any concerning symptoms arise.

Neonatal anemia is a condition characterized by a lower-than-normal number of red blood cells or lower-than-normal levels of hemoglobin in the blood of a newborn infant. Hemoglobin is the protein in red blood cells that carries oxygen to the body's tissues.

There are several types and causes of neonatal anemia, including:

1. Anemia of prematurity: This is the most common type of anemia in newborns, especially those born before 34 weeks of gestation. It occurs due to a decrease in red blood cell production and a shorter lifespan of red blood cells in premature infants.
2. Hemolytic anemia: This type of anemia is caused by the destruction of red blood cells at a faster rate than they can be produced. It can result from various factors, such as incompatibility between the mother's and baby's blood types, genetic disorders like G6PD deficiency, or infections.
3. Fetomaternal hemorrhage: This condition occurs when there is a significant transfer of fetal blood into the maternal circulation during pregnancy or childbirth, leading to anemia in the newborn.
4. Iron-deficiency anemia: Although rare in newborns, iron-deficiency anemia can occur if the mother has low iron levels during pregnancy, and the infant does not receive adequate iron supplementation after birth.
5. Anemia due to nutritional deficiencies: Rarely, neonatal anemia may result from a lack of essential vitamins or minerals like folate, vitamin B12, or copper in the newborn's diet.

Symptoms of neonatal anemia can vary but may include pallor, lethargy, poor feeding, rapid heartbeat, and difficulty breathing. Diagnosis typically involves a complete blood count (CBC) to measure red blood cell count, hemoglobin levels, and other parameters. Treatment depends on the underlying cause of anemia and may include iron supplementation, transfusions, or management of any underlying conditions.

Hematinics are a class of medications and dietary supplements that are used to enhance the production of red blood cells or hemoglobin in the body. They typically contain iron, vitamin B12, folic acid, or other nutrients that are essential for the synthesis of hemoglobin and the formation of red blood cells.

Iron is a critical component of hematinics because it plays a central role in the production of hemoglobin, which is the protein in red blood cells that carries oxygen throughout the body. Vitamin B12 and folic acid are also important nutrients for red blood cell production, as they help to regulate the growth and division of red blood cells in the bone marrow.

Hematinics are often prescribed to treat anemia, which is a condition characterized by a low red blood cell count or abnormally low levels of hemoglobin in the blood. Anemia can be caused by a variety of factors, including nutritional deficiencies, chronic diseases, and inherited genetic disorders.

Examples of hematinics include ferrous sulfate (an iron supplement), cyanocobalamin (vitamin B12), and folic acid. These medications are available in various forms, such as tablets, capsules, and liquids, and can be taken orally or by injection. It is important to follow the dosage instructions carefully and to inform your healthcare provider of any other medications you are taking, as hematinics can interact with certain drugs and may cause side effects.

Refractory anemia with excess blasts is a type of blood disorder that is characterized by the presence of increased numbers of immature blood cells, or "blasts," in the bone marrow and peripheral blood. This condition is considered a subtype of myelodysplastic syndrome (MDS), which is a group of disorders caused by abnormalities in the production of blood cells in the bone marrow.

In refractory anemia with excess blasts, the bone marrow fails to produce sufficient numbers of healthy red blood cells, white blood cells, and platelets. This results in anemia (low red blood cell count), neutropenia (low white blood cell count), and thrombocytopenia (low platelet count). Additionally, there is an increased number of blasts in the bone marrow and peripheral blood, which can indicate the development of acute myeloid leukemia (AML), a more aggressive form of blood cancer.

Refractory anemia with excess blasts is considered "refractory" because it does not respond well to treatment, including chemotherapy and stem cell transplantation. The prognosis for this condition varies depending on the severity of the disease and other individual factors, but it is generally poor, with many patients progressing to AML within a few years.

Fanconi anemia complementation group C protein, also known as FANCC protein, is a component of the Fanconi anemia (FA) DNA repair pathway. This protein plays a critical role in protecting cells from oxidative stress and maintaining genomic stability. Mutations in the FANCC gene can lead to Fanconi anemia, a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and increased risk of cancer.

FANCC protein functions as part of a complex that includes other FA proteins, which work together to repair DNA damage caused by interstrand crosslinks (ICLs) - a type of DNA lesion that can lead to genomic instability and cancer. When the FA pathway is activated in response to ICLs, FANCC protein undergoes monoubiquitination, which allows it to interact with other proteins involved in DNA repair and chromatin remodeling.

Defects in the FANCC protein can result in impaired DNA repair and increased sensitivity to DNA-damaging agents, leading to the characteristic features of Fanconi anemia. Additionally, mutations in the FANCC gene have been associated with an increased risk of developing acute myeloid leukemia (AML) and other cancers.

Fanconi Anemia Complementation Group D2 Protein, also known as FANCD2 protein, is a key player in the Fanconi anemia (FA) pathway, which is a DNA repair pathway that helps to maintain genomic stability. The FA pathway is responsible for the repair of DNA interstrand cross-links (ICLs), which are harmful lesions that can lead to genomic instability and cancer.

FANCD2 protein is part of the E3 ubiquitin ligase complex that monoubiquitinates FANCI protein, forming a heterodimeric complex known as ID2. The monoubiquitination of FANCD2/FANCI is a critical step in the FA pathway and is required for the recruitment of downstream repair factors to the site of DNA damage.

Mutations in the gene that encodes FANCD2 protein can lead to Fanconi anemia, a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk of cancer. The disease is typically inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

Fanconi anemia complementation group A protein (FANCA) is a protein encoded by the FANCA gene in humans. It is a part of the Fanconi anemia (FA) pathway, which is a group of proteins that play a critical role in maintaining genomic stability and preventing cancer.

The FA pathway is involved in the repair of DNA interstrand crosslinks (ICLs), which are harmful lesions that can block replication and transcription of DNA. FANCA protein, along with other FA proteins, forms a complex called the "FA core complex" that monoubiquitinates another FA protein called FANCD2. This monoubiquitination event is essential for the recruitment of downstream repair factors to damaged DNA and restoration of normal DNA structure.

Mutations in the FANCA gene can lead to Fanconi anemia, a rare genetic disorder characterized by congenital abnormalities, bone marrow failure, and increased risk of cancer. The disease is typically inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

Erythropoiesis is the process of forming and developing red blood cells (erythrocytes) in the body. It occurs in the bone marrow and is regulated by the hormone erythropoietin (EPO), which is produced by the kidneys. Erythropoiesis involves the differentiation and maturation of immature red blood cell precursors called erythroblasts into mature red blood cells, which are responsible for carrying oxygen to the body's tissues. Disorders that affect erythropoiesis can lead to anemia or other blood-related conditions.

Hemolytic anemia, congenital nonspherocytic is a rare type of inherited anemia characterized by the premature destruction (hemolysis) of red blood cells. This condition is caused by defects in enzymes or proteins that help maintain the structural integrity and function of red blood cells.

In this form of hemolytic anemia, the red blood cells are not spherical in shape like spherocytes; instead, they may be oval or elongated. The most common types of congenital nonspherocytic hemolytic anemia are caused by deficiencies in enzymes such as glucose-6-phosphate dehydrogenase (G6PD) and pyruvate kinase.

Symptoms of this condition may include fatigue, weakness, pale skin, jaundice, dark urine, and an enlarged spleen. Treatment may involve blood transfusions, medications to manage symptoms, and avoidance of certain triggers that can exacerbate the hemolysis. In some cases, a bone marrow transplant may be considered as a curative treatment option.

Pallor is a medical term that refers to an abnormal pale appearance of the skin, mucous membranes, or nail beds. It can be a sign of various underlying medical conditions such as anemia (a decrease in red blood cells or hemoglobin), blood loss, malnutrition, vitamin deficiencies, or certain diseases that affect circulation or oxygenation of the blood. Pallor can also occur due to emotional distress or fear, leading to a temporary reduction in blood flow to the skin. It is important to note that pallor should be evaluated in conjunction with other symptoms and medical history for an accurate diagnosis.

Erythrocyte count, also known as red blood cell (RBC) count, is a laboratory test that measures the number of red blood cells in a sample of blood. Red blood cells are important because they carry oxygen from the lungs to the rest of the body. A low erythrocyte count may indicate anemia, while a high count may be a sign of certain medical conditions such as polycythemia. The normal range for erythrocyte count varies depending on a person's age, sex, and other factors.

Ferritin is a protein in iron-metabolizing cells that stores iron in a water-soluble form. It is found inside the cells (intracellular) and is released into the bloodstream when the cells break down or die. Measuring the level of ferritin in the blood can help determine the amount of iron stored in the body. High levels of ferritin may indicate hemochromatosis, inflammation, liver disease, or other conditions. Low levels of ferritin may indicate anemia, iron deficiency, or other conditions.

Erythrocyte indices are a set of calculated values that provide information about the size and hemoglobin content of red blood cells (erythrocytes). These indices are commonly used in the complete blood count (CBC) test to help diagnose various types of anemia and other conditions affecting the red blood cells.

The three main erythrocyte indices are:

1. Mean Corpuscular Volume (MCV): This is the average volume of a single red blood cell, measured in femtoliters (fL). MCV helps to differentiate between microcytic, normocytic, and macrocytic anemia. Microcytic anemia is characterized by low MCV values (100 fL).
2. Mean Corpuscular Hemoglobin (MCH): This is the average amount of hemoglobin present in a single red blood cell, measured in picograms (pg). MCH helps to assess the oxygen-carrying capacity of red blood cells. Low MCH values may indicate hypochromic anemia, where the red blood cells have reduced hemoglobin content.
3. Mean Corpuscular Hemoglobin Concentration (MCHC): This is the average concentration of hemoglobin in a single red blood cell, measured as a percentage. MCHC reflects the hemoglobin concentration relative to the size of the red blood cells. Low MCHC values may indicate hypochromic anemia, while high MCHC values could suggest spherocytosis or other conditions affecting red blood cell shape and integrity.

These erythrocyte indices are calculated based on the red blood cell count, hemoglobin concentration, and hematocrit results obtained from a CBC test. They provide valuable information for healthcare professionals to diagnose and manage various hematological conditions.

Hemoglobinometry is a method used to measure the amount or concentration of hemoglobin (Hb) in blood. Hemoglobin is a protein in red blood cells that carries oxygen throughout the body. Hemoglobinometry is typically performed on a sample of whole blood and can be done using various methods, including spectrophotometry, colorimetry, or automated analyzers.

The results of hemoglobinometry are reported in units of grams per deciliter (g/dL) or grams per liter (g/L). Normal values for hemoglobin concentration vary depending on factors such as age, sex, and altitude, but in general, a healthy adult male should have a hemoglobin level between 13.5 and 17.5 g/dL, while a healthy adult female should have a level between 12.0 and 15.5 g/dL.

Hemoglobinometry is an important diagnostic tool in the evaluation of various medical conditions, including anemia, polycythemia, and respiratory disorders. It can help identify the cause of symptoms such as fatigue, shortness of breath, or dizziness and guide treatment decisions.

A blood transfusion is a medical procedure in which blood or its components are transferred from one individual (donor) to another (recipient) through a vein. The donated blood can be fresh whole blood, packed red blood cells, platelets, plasma, or cryoprecipitate, depending on the recipient's needs. Blood transfusions are performed to replace lost blood due to severe bleeding, treat anemia, support patients undergoing major surgeries, or manage various medical conditions such as hemophilia, thalassemia, and leukemia. The donated blood must be carefully cross-matched with the recipient's blood type to minimize the risk of transfusion reactions.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Fanconi anemia (FA) is a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and increased risk of malignancies. It is caused by mutations in genes responsible for the repair of DNA damage. There are several complementation groups (A, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P) in Fanconi anemia, based on the genetic defect and the protein it affects.

FA Complementation Group G Protein is also known as FANCG protein or FACA protein. It is a component of the FA/BRCA DNA repair pathway, which plays a crucial role in maintaining genomic stability by repairing DNA interstrand crosslinks (ICLs) and other forms of DNA damage. The FANCG protein functions as a bridge between the upstream FA complex and the downstream FANCD2/FANCI complex in this pathway.

Mutations in the FANCG gene can lead to Fanconi anemia Complementation Group G, which is characterized by bone marrow failure, congenital abnormalities, and increased risk of malignancies, similar to other FA complementation groups. The diagnosis of FA Complementation Group G typically involves genetic testing to identify mutations in the FANCG gene. Treatment may include hematopoietic stem cell transplantation, androgen therapy, and surveillance for malignancies.

The Coombs test is a laboratory procedure used to detect the presence of antibodies on the surface of red blood cells (RBCs). It is named after the scientist, Robin Coombs, who developed the test. There are two types of Coombs tests: direct and indirect.

1. Direct Coombs Test (DCT): This test is used to detect the presence of antibodies directly attached to the surface of RBCs. It is often used to diagnose hemolytic anemia, a condition in which RBCs are destroyed prematurely, leading to anemia. A positive DCT indicates that the patient's RBCs have been coated with antibodies, which can occur due to various reasons such as autoimmune disorders, blood transfusion reactions, or drug-induced immune hemolysis.
2. Indirect Coombs Test (ICT): This test is used to detect the presence of antibodies in the patient's serum that can agglutinate (clump) foreign RBCs. It is commonly used before blood transfusions or during pregnancy to determine if the patient has antibodies against the RBCs of a potential donor or fetus, respectively. A positive ICT indicates that the patient's serum contains antibodies capable of binding to and agglutinating foreign RBCs.

In summary, the Coombs test is a crucial diagnostic tool in identifying various hemolytic disorders and ensuring safe blood transfusions by detecting the presence of harmful antibodies against RBCs.

A reticulocyte count is a laboratory test that measures the percentage of reticulocytes in the peripheral blood. Reticulocytes are immature red blood cells produced in the bone marrow and released into the bloodstream. They contain residual ribosomal RNA, which gives them a reticular or net-like appearance under a microscope when stained with certain dyes.

The reticulocyte count is often used as an indicator of the rate of red blood cell production in the bone marrow. A higher than normal reticulocyte count may indicate an increased production of red blood cells, which can be seen in conditions such as hemolysis, blood loss, or response to treatment of anemia. A lower than normal reticulocyte count may suggest a decreased production of red blood cells, which can be seen in conditions such as bone marrow suppression, aplastic anemia, or vitamin deficiencies.

The reticulocyte count is usually expressed as a percentage of the total number of red blood cells, but it can also be reported as an absolute reticulocyte count (the actual number of reticulocytes per microliter of blood). The normal range for the reticulocyte count varies depending on the laboratory and the population studied.

Dietary iron is a vital nutrient that plays a crucial role in the production of hemoglobin, a protein in red blood cells responsible for carrying oxygen throughout the body. It is also essential for various other bodily functions, including energy production and immune function.

There are two forms of dietary iron: heme and non-heme. Heme iron is found in animal products such as meat, poultry, and fish, while non-heme iron is found in plant-based foods such as beans, lentils, tofu, spinach, and fortified cereals.

The recommended daily intake of dietary iron varies depending on age, sex, and other factors. For example, adult men typically require 8 milligrams (mg) per day, while adult women need 18 mg per day. Pregnant women may require up to 27 mg per day, while breastfeeding women need around 9-10 mg per day.

It is important to note that the absorption of non-heme iron from plant-based foods can be enhanced by consuming them with vitamin C-rich foods or drinks, such as citrus fruits, strawberries, and bell peppers. On the other hand, certain substances such as tannins (found in tea and coffee) and phytates (found in whole grains and legumes) can inhibit the absorption of non-heme iron.

Iron compounds refer to chemical substances that contain iron (Fe) combined with other elements. Iron is an essential mineral for the human body, playing a crucial role in various bodily functions such as oxygen transport, DNA synthesis, and energy production.

There are several types of iron compounds, including:

1. Inorganic iron salts: These are commonly used in dietary supplements and fortified foods to treat or prevent iron deficiency anemia. Examples include ferrous sulfate, ferrous gluconate, and ferric iron.
2. Heme iron: This is the form of iron found in animal products such as meat, poultry, and fish. It is more easily absorbed by the body compared to non-heme iron from plant sources.
3. Non-heme iron: This is the form of iron found in plant-based foods such as grains, legumes, fruits, and vegetables. It is not as well-absorbed as heme iron but can be enhanced by consuming it with vitamin C or other organic acids.

It's important to note that excessive intake of iron compounds can lead to iron toxicity, which can cause serious health problems. Therefore, it's essential to follow recommended dosages and consult a healthcare professional before taking any iron supplements.

Hepcidin is a peptide hormone primarily produced in the liver that plays a crucial role in regulating iron homeostasis within the body. It acts by inhibiting the absorption of dietary iron in the intestines and the release of iron from storage sites, such as macrophages, into the bloodstream. By reducing the amount of iron available for use, hepcidin helps prevent excessive iron accumulation in tissues, which can be harmful and contribute to the development of various diseases, including iron overload disorders and certain types of anemia. The production of hepcidin is regulated by several factors, including iron levels, inflammation, and erythropoiesis (the production of red blood cells).

Abnormal erythrocytes refer to red blood cells that have an abnormal shape, size, or other characteristics. This can include various types of abnormalities such as:

1. Anisocytosis: Variation in the size of erythrocytes.
2. Poikilocytosis: Variation in the shape of erythrocytes, including but not limited to teardrop-shaped cells (dacrocytes), crescent-shaped cells (sickle cells), and spherical cells (spherocytes).
3. Anemia: A decrease in the total number of erythrocytes or a reduction in hemoglobin concentration, which can result from various underlying conditions such as iron deficiency, chronic disease, or blood loss.
4. Hemoglobinopathies: Abnormalities in the structure or function of hemoglobin, the protein responsible for carrying oxygen in erythrocytes, such as sickle cell anemia and thalassemia.
5. Inclusion bodies: Abnormal structures within erythrocytes, such as Heinz bodies (denatured hemoglobin) or Howell-Jolly bodies (nuclear remnants).

These abnormalities can be detected through a complete blood count (CBC) and peripheral blood smear examination. The presence of abnormal erythrocytes may indicate an underlying medical condition, and further evaluation is often necessary to determine the cause and appropriate treatment.

An erythrocyte transfusion, also known as a red blood cell (RBC) transfusion, is the process of transferring compatible red blood cells from a donor to a recipient. This procedure is typically performed to increase the recipient's oxygen-carrying capacity, usually in situations where there is significant blood loss, anemia, or impaired red blood cell production.

During the transfusion, the donor's red blood cells are collected, typed, and tested for compatibility with the recipient's blood to minimize the risk of a transfusion reaction. Once compatible units are identified, they are infused into the recipient's circulation through a sterile intravenous (IV) line. The recipient's body will eventually eliminate the donated red blood cells within 100-120 days as part of its normal turnover process.

Erythrocyte transfusions can be lifesaving in various clinical scenarios, such as trauma, surgery, severe anemia due to chronic diseases, and hematologic disorders. However, they should only be used when necessary, as there are potential risks associated with the procedure, including allergic reactions, transmission of infectious diseases, transfusion-related acute lung injury (TRALI), and iron overload in cases of multiple transfusions.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Vitamin B12 deficiency is a condition characterized by insufficient levels of vitamin B12 in the body, leading to impaired production of red blood cells, nerve function damage, and potential neurological complications. Vitamin B12 is an essential nutrient that plays a crucial role in DNA synthesis, fatty acid metabolism, and maintaining the health of the nervous system.

The medical definition of vitamin B12 deficiency includes:

1. Reduced serum or whole blood vitamin B12 concentrations (typically below 200 pg/mL or 145 pmol/L)
2. Presence of clinical symptoms and signs, such as:
* Fatigue, weakness, and lethargy
* Pale skin, shortness of breath, and heart palpitations due to anemia (megaloblastic or macrocytic anemia)
* Neurological symptoms like numbness, tingling, or burning sensations in the hands and feet (peripheral neuropathy), balance problems, confusion, memory loss, and depression
3. Laboratory findings consistent with deficiency, such as:
* Increased mean corpuscular volume (MCV) of red blood cells
* Reduced numbers of red and white blood cells and platelets in severe cases
* Elevated homocysteine and methylmalonic acid levels in the blood due to impaired metabolism

The most common causes of vitamin B12 deficiency include dietary insufficiency (common in vegetarians and vegans), pernicious anemia (an autoimmune condition affecting intrinsic factor production), gastrointestinal disorders (such as celiac disease, Crohn's disease, or gastric bypass surgery), and certain medications that interfere with vitamin B12 absorption.

Untreated vitamin B12 deficiency can lead to severe complications, including irreversible nerve damage, cognitive impairment, and increased risk of cardiovascular diseases. Therefore, prompt diagnosis and treatment are essential for preventing long-term health consequences.

Erythrocyte aging, also known as red cell aging, is the natural process of changes and senescence that occur in red blood cells (erythrocytes) over time. In humans, mature erythrocytes are devoid of nuclei and organelles, and have a lifespan of approximately 120 days.

During aging, several biochemical and structural modifications take place in the erythrocyte, including:

1. Loss of membrane phospholipids and proteins, leading to increased rigidity and decreased deformability.
2. Oxidative damage to hemoglobin, resulting in the formation of methemoglobin and heinz bodies.
3. Accumulation of denatured proteins and aggregates, which can impair cellular functions.
4. Changes in the cytoskeleton, affecting the shape and stability of the erythrocyte.
5. Increased expression of surface markers, such as Band 3 and CD47, that signal the spleen to remove aged erythrocytes from circulation.

The spleen plays a crucial role in removing senescent erythrocytes by recognizing and phagocytosing those with altered membrane composition or increased expression of surface markers. This process helps maintain the overall health and functionality of the circulatory system.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Beta-thalassemia is a genetic blood disorder that affects the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. Specifically, beta-thalassemia is caused by mutations in the beta-globin gene, which leads to reduced or absent production of the beta-globin component of hemoglobin.

There are two main types of beta-thalassemia:

1. Beta-thalassemia major (also known as Cooley's anemia): This is a severe form of the disorder that typically becomes apparent in early childhood. It is characterized by a significant reduction or absence of beta-globin production, leading to anemia, enlarged spleen and liver, jaundice, and growth retardation.
2. Beta-thalassemia intermedia: This is a milder form of the disorder that may not become apparent until later in childhood or even adulthood. It is characterized by a variable reduction in beta-globin production, leading to mild to moderate anemia and other symptoms that can range from nonexistent to severe.

Treatment for beta-thalassemia depends on the severity of the disorder and may include blood transfusions, iron chelation therapy, and/or bone marrow transplantation. In some cases, genetic counseling and prenatal diagnosis may also be recommended for families with a history of the disorder.

I'm sorry for any confusion, but "Isavirus" is not a commonly used medical term or a name of a specific disease in humans or animals. It appears to be a term used in virology to describe a group of viruses that infect certain marine algae. Isaviruses are double-stranded RNA viruses that belong to the family "Rironaviridae" and order "Ligamenvirales." They infect a variety of marine diatoms, which are important primary producers in marine ecosystems.

If you have any questions related to human or animal health, I would be happy to help with those!

Pancytopenia is a medical condition characterized by a reduction in the number of all three types of blood cells in the peripheral blood: red blood cells (anemia), white blood cells (leukopenia), and platelets (thrombocytopenia). This condition can be caused by various underlying diseases, including bone marrow disorders, viral infections, exposure to toxic substances or radiation, vitamin deficiencies, and certain medications. Symptoms of pancytopenia may include fatigue, weakness, increased susceptibility to infections, and easy bruising or bleeding.

Thalassemia is a group of inherited genetic disorders that affect the production of hemoglobin, a protein in red blood cells responsible for carrying oxygen throughout the body. The disorder results in less efficient or abnormal hemoglobin, which can lead to anemia, an insufficient supply of oxygen-rich red blood cells.

There are two main types of Thalassemia: alpha and beta. Alpha thalassemia occurs when there is a problem with the alpha globin chain production, while beta thalassemia results from issues in beta globin chain synthesis. These disorders can range from mild to severe, depending on the number of genes affected and their specific mutations.

Severe forms of Thalassemia may require regular blood transfusions, iron chelation therapy, or even a bone marrow transplant to manage symptoms and prevent complications.

Fanconi anemia complementation group F protein (FA-F) is a protein that is encoded by the FANCF gene in humans. It is a part of the Fanconi anemia (FA) pathway, which is a DNA damage response pathway that helps to protect genomic stability.

The FA pathway is involved in the repair of interstrand crosslinks (ICLs), which are a type of DNA damage that can cause genetic instability and lead to cancer. The FA-F protein is part of the E3 ubiquitin ligase complex, which includes FANCL, FANCB, and FANCC proteins, that ubiquitinate and degrade the FANCD2-FANCI heterodimer at ICLs.

Mutations in the FANCF gene can lead to Fanconi anemia, a rare genetic disorder characterized by congenital abnormalities, bone marrow failure, and increased risk of cancer. The FA-F protein is essential for the normal function of the FA pathway, and its dysfunction can result in genomic instability and predisposition to malignancy.

Phenylhydrazines are organic compounds that contain a phenyl group (a benzene ring with a hydrogen atom substituted by a hydroxy group) and a hydrazine group (-NH-NH2). They are aromatic amines that have been used in various chemical reactions, including the formation of azos and hydrazones. In medicine, phenylhydrazines were once used as vasodilators to treat angina pectoris, but their use has largely been discontinued due to their toxicity and potential carcinogenicity.

Fanconi anemia complementation group E protein, also known as FANCE protein, is a crucial component of the Fanconi anemia (FA) pathway, which is a DNA repair mechanism that helps to maintain genomic stability. The FA pathway is responsible for the repair of interstrand crosslinks (ICLs), a type of DNA damage that can lead to cell death or tumorigenesis if not properly repaired.

The FANCE protein is part of the E complex, which includes several other proteins including FANCA, FANCC, and FANCE. This complex plays a role in recognizing and initiating the repair of ICLs. Specifically, FANCE helps to recruit other FA proteins to the site of DNA damage and facilitates their assembly into a larger protein complex that can carry out the repair process.

Mutations in the gene that encodes the FANCE protein can lead to Fanconi anemia, a rare genetic disorder characterized by bone marrow failure, congenital abnormalities, and an increased risk of cancer. Individuals with FA often require frequent blood transfusions and may eventually need a bone marrow transplant to survive. They also have an increased risk of developing various types of cancer, including leukemia and solid tumors.

Fetal hemoglobin (HbF) is a type of hemoglobin that is produced in the fetus and newborn babies. It is composed of two alpha-like globin chains and two gamma-globin chains, designated as α2γ2. HbF is the primary form of hemoglobin during fetal development, replacing the embryonic hemoglobin (HbG) around the eighth week of gestation.

The unique property of HbF is its higher affinity for oxygen compared to adult hemoglobin (HbA), which helps ensure adequate oxygen supply from the mother to the developing fetus. After birth, as the newborn starts breathing on its own and begins to receive oxygen directly, the production of HbF gradually decreases and is usually replaced by HbA within the first year of life.

In some genetic disorders like sickle cell disease and beta-thalassemia, persistence of HbF into adulthood can be beneficial as it reduces the severity of symptoms due to its higher oxygen-carrying capacity and less polymerization tendency compared to HbS (in sickle cell disease) or unpaired alpha chains (in beta-thalassemia). Treatments like hydroxyurea are used to induce HbF production in these patients as a therapeutic approach.

Malaria is not a medical definition itself, but it is a disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. Here's a simple definition:

Malaria: A mosquito-borne infectious disease caused by Plasmodium parasites, characterized by cycles of fever, chills, and anemia. It can be fatal if not promptly diagnosed and treated. The five Plasmodium species known to cause malaria in humans are P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi.

A "Blood Cell Count" is a medical laboratory test that measures the number of red blood cells (RBCs), white blood cells (WBCs), and platelets in a sample of blood. This test is often used as a part of a routine check-up or to help diagnose various medical conditions, such as anemia, infection, inflammation, and many others.

The RBC count measures the number of oxygen-carrying cells in the blood, while the WBC count measures the number of immune cells that help fight infections. The platelet count measures the number of cells involved in clotting. Abnormal results in any of these counts may indicate an underlying medical condition and further testing may be required for diagnosis and treatment.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Folic Acid Deficiency is a condition characterized by insufficient levels of folic acid (Vitamin B9) in the body. Folic acid plays an essential role in the synthesis of DNA and RNA, the production of red blood cells, and the prevention of neural tube defects during fetal development.

A deficiency in folic acid can lead to a variety of health issues, including:
- Megaloblastic anemia: A type of anemia characterized by large, structurally abnormal, immature red blood cells (megaloblasts) that are unable to function properly. This results in fatigue, weakness, shortness of breath, and a pale appearance.
- Neural tube defects: In pregnant women, folic acid deficiency can increase the risk of neural tube defects, such as spina bifida and anencephaly, in the developing fetus.
- Developmental delays and neurological disorders: In infants and children, folic acid deficiency during pregnancy can lead to developmental delays, learning difficulties, and neurological disorders.
- Increased risk of cardiovascular disease: Folate plays a role in maintaining healthy homocysteine levels. Deficiency can result in elevated homocysteine levels, which is an independent risk factor for cardiovascular disease.

Folic acid deficiency can be caused by various factors, including poor dietary intake, malabsorption syndromes (such as celiac disease or Crohn's disease), pregnancy, alcoholism, certain medications (like methotrexate and phenytoin), and genetic disorders affecting folate metabolism. To prevent or treat folic acid deficiency, dietary supplementation with folic acid is often recommended, especially for pregnant women and individuals at risk of deficiency.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Vitamin B12, also known as cobalamin, is a water-soluble vitamin that plays a crucial role in the synthesis of DNA, formation of red blood cells, and maintenance of the nervous system. It is involved in the metabolism of every cell in the body, particularly affecting DNA regulation and neurological function.

Vitamin B12 is unique among vitamins because it contains a metal ion, cobalt, from which its name is derived. This vitamin can be synthesized only by certain types of bacteria and is not produced by plants or animals. The major sources of vitamin B12 in the human diet include animal-derived foods such as meat, fish, poultry, eggs, and dairy products, as well as fortified plant-based milk alternatives and breakfast cereals.

Deficiency in vitamin B12 can lead to various health issues, including megaloblastic anemia, fatigue, neurological symptoms such as numbness and tingling in the extremities, memory loss, and depression. Since vitamin B12 is not readily available from plant-based sources, vegetarians and vegans are at a higher risk of deficiency and may require supplementation or fortified foods to meet their daily requirements.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

Splenomegaly is a medical term that refers to an enlargement or expansion of the spleen beyond its normal size. The spleen is a vital organ located in the upper left quadrant of the abdomen, behind the stomach and below the diaphragm. It plays a crucial role in filtering the blood, fighting infections, and storing red and white blood cells and platelets.

Splenomegaly can occur due to various underlying medical conditions, including infections, liver diseases, blood disorders, cancer, and inflammatory diseases. The enlarged spleen may put pressure on surrounding organs, causing discomfort or pain in the abdomen, and it may also lead to a decrease in red and white blood cells and platelets, increasing the risk of anemia, infections, and bleeding.

The diagnosis of splenomegaly typically involves a physical examination, medical history, and imaging tests such as ultrasound, CT scan, or MRI. Treatment depends on the underlying cause and may include medications, surgery, or other interventions to manage the underlying condition.

Erythroblasts are immature red blood cells that are produced in the bone marrow. They are also known as normoblasts and are a stage in the development of red blood cells, or erythrocytes. Erythroblasts are larger than mature red blood cells and have a nucleus, which is lost during the maturation process. These cells are responsible for producing hemoglobin, the protein that carries oxygen in the blood. Abnormal increases or decreases in the number of erythroblasts can be indicative of certain medical conditions, such as anemia or leukemia.

Osmotic fragility is a term used in medicine, specifically in the field of hematology. It refers to the susceptibility or tendency of red blood cells (RBCs) to undergo lysis (rupture or breaking open) when exposed to hypotonic solutions (solutions with lower osmotic pressure than the RBCs). This test is often used to diagnose and monitor hereditary spherocytosis, a genetic disorder that affects the structure and stability of red blood cells.

In this condition, the RBC membrane proteins are defective, leading to abnormally shaped and fragile cells. When these abnormal RBCs come into contact with hypotonic solutions, they rupture more easily than normal RBCs due to their decreased osmotic resistance. The degree of osmotic fragility can be measured through a laboratory test called the "osmotic fragility test," which evaluates the stability and structural integrity of RBCs in response to varying osmotic pressures.

In summary, osmotic fragility is a medical term that describes the increased susceptibility of red blood cells to lysis when exposed to hypotonic solutions, often associated with hereditary spherocytosis or other conditions affecting RBC membrane stability.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

Antilymphocyte serum (ALS) is a type of immune serum that contains antibodies against human lymphocytes. It is produced by immunizing animals, such as horses or rabbits, with human lymphocytes to stimulate an immune response and the production of anti-lymphocyte antibodies. The resulting serum is then collected and can be used as a therapeutic agent to suppress the activity of the immune system in certain medical conditions.

ALS is primarily used in the treatment of transplant rejection, particularly in organ transplantation, where it helps to prevent the recipient's immune system from attacking and rejecting the transplanted organ. It can also be used in the management of autoimmune diseases, such as rheumatoid arthritis and lupus, to suppress the overactive immune response that contributes to these conditions.

It is important to note that the use of ALS carries a risk of side effects, including allergic reactions, fever, and decreased white blood cell counts. Close monitoring and appropriate management of these potential adverse events are essential during treatment with ALS.

Parasitemia is a medical term that refers to the presence of parasites, particularly malaria-causing Plasmodium species, in the bloodstream. It is the condition where red blood cells are infected by these parasites, which can lead to various symptoms such as fever, chills, anemia, and organ damage in severe cases. The level of parasitemia is often used to assess the severity of malaria infection and to guide treatment decisions.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Ferrous compounds are inorganic substances that contain iron (Fe) in its +2 oxidation state. The term "ferrous" is derived from the Latin word "ferrum," which means iron. Ferrous compounds are often used in medicine, particularly in the treatment of iron-deficiency anemia due to their ability to provide bioavailable iron to the body.

Examples of ferrous compounds include ferrous sulfate, ferrous gluconate, and ferrous fumarate. These compounds are commonly found in dietary supplements and multivitamins. Ferrous sulfate is one of the most commonly used forms of iron supplementation, as it has a high iron content and is relatively inexpensive.

It's important to note that ferrous compounds can be toxic in large doses, so they should be taken under the guidance of a healthcare professional. Overdose can lead to symptoms such as nausea, vomiting, diarrhea, abdominal pain, and potentially fatal consequences if left untreated.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Iron overload is a condition characterized by an excessive accumulation of iron in the body's tissues and organs, particularly in the liver, heart, and pancreas. This occurs when the body absorbs more iron than it can use or eliminate, leading to iron levels that are higher than normal.

Iron overload can result from various factors, including hereditary hemochromatosis, a genetic disorder that affects how the body absorbs iron from food; frequent blood transfusions, which can cause iron buildup in people with certain chronic diseases such as sickle cell anemia or thalassemia; and excessive consumption of iron supplements or iron-rich foods.

Symptoms of iron overload may include fatigue, joint pain, abdominal discomfort, irregular heartbeat, and liver dysfunction. If left untreated, it can lead to serious complications such as cirrhosis, liver failure, diabetes, heart problems, and even certain types of cancer. Treatment typically involves regular phlebotomy (removal of blood) to reduce iron levels in the body, along with dietary modifications and monitoring by a healthcare professional.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Mitomycin is an antineoplastic antibiotic derived from Streptomyces caespitosus. It is primarily used in cancer chemotherapy, particularly in the treatment of various carcinomas including gastrointestinal tract malignancies and breast cancer. Mitomycin works by forming cross-links in DNA, thereby inhibiting its replication and transcription, which ultimately leads to cell death.

In addition to its systemic use, mitomycin is also used topically in ophthalmology for the treatment of certain eye conditions such as glaucoma and various ocular surface disorders. The topical application of mitomycin can help reduce scarring and fibrosis by inhibiting the proliferation of fibroblasts.

It's important to note that mitomycin has a narrow therapeutic index, meaning there is only a small range between an effective dose and a toxic one. Therefore, its use should be closely monitored to minimize side effects, which can include myelosuppression, mucositis, alopecia, and potential secondary malignancies.

Heinz bodies are small, irregularly shaped inclusions found in the red blood cells (RBCs). They are aggregates of denatured hemoglobin and are typically seen in RBCs that have been exposed to oxidative stress. This can occur due to various factors such as exposure to certain chemicals, drugs, or diseases.

The presence of Heinz bodies can lead to the premature destruction of RBCs, a condition known as hemolysis. This can result in anemia and related symptoms such as fatigue, weakness, and shortness of breath. It's important to note that while Heinz bodies are often associated with certain diseases, they can also be present in otherwise healthy individuals who have been exposed to oxidative stress.

It's worth mentioning that the term "Heinz bodies" comes from the name of the scientist Robert Heinz, who first described them in 1890.

Hookworm infections are parasitic diseases caused by the ingestion or penetration of hookworm larvae (immature worms) into the human body. The two main species that infect humans are Necator americanus and Ancylostoma duodenale.

The infection typically occurs through skin contact with contaminated soil, often when walking barefoot on dirty ground. The larvae then penetrate the skin, enter the bloodstream, and travel to the lungs where they mature further. They are coughed up and swallowed, eventually reaching the small intestine, where they attach to the intestinal wall and feed on blood.

Hookworm infections can cause a range of symptoms, including abdominal pain, diarrhea, anemia, weight loss, and fatigue. In severe cases, chronic hookworm infections can lead to serious complications such as protein malnutrition and heart failure. Treatment typically involves the use of anti-parasitic medications, such as albendazole or mebendazole, which kill the adult worms and allow the body to expel them. Preventive measures include improving sanitation and hygiene practices, wearing shoes in areas with contaminated soil, and regular deworming of at-risk populations.

Transferrin receptors are membrane-bound proteins found on the surface of many cell types, including red and white blood cells, as well as various tissues such as the liver, brain, and placenta. These receptors play a crucial role in iron homeostasis by regulating the uptake of transferrin, an iron-binding protein, into the cells.

Transferrin binds to two ferric ions (Fe3+) in the bloodstream, forming a complex known as holo-transferrin. This complex then interacts with the transferrin receptors on the cell surface, leading to endocytosis of the transferrin-receptor complex into the cell. Once inside the cell, the acidic environment within the endosome causes the release of iron ions from the transferrin molecule, which can then be transported into the cytoplasm for use in various metabolic processes.

After releasing the iron, the apo-transferrin (iron-free transferrin) is recycled back to the cell surface and released back into the bloodstream, where it can bind to more ferric ions and repeat the cycle. This process helps maintain appropriate iron levels within the body and ensures that cells have access to the iron they need for essential functions such as DNA synthesis, energy production, and oxygen transport.

In summary, transferrin receptors are membrane-bound proteins responsible for recognizing and facilitating the uptake of transferrin-bound iron into cells, playing a critical role in maintaining iron homeostasis within the body.

Hemoglobinopathies are a group of genetic disorders characterized by structural or functional abnormalities of the hemoglobin molecule in red blood cells. Hemoglobin is a complex protein that plays a crucial role in carrying oxygen throughout the body. The two most common types of hemoglobinopathies are sickle cell disease and thalassemia.

In sickle cell disease, a single mutation in the beta-globin gene results in the production of an abnormal form of hemoglobin called hemoglobin S (HbS). When deoxygenated, HbS molecules tend to aggregate and form long polymers, causing the red blood cells to become sickle-shaped, rigid, and fragile. These abnormally shaped cells can block small blood vessels, leading to tissue damage, chronic pain, organ dysfunction, and other serious complications.

Thalassemias are a heterogeneous group of disorders caused by mutations in the genes that regulate the production of alpha- or beta-globin chains. These mutations result in reduced or absent synthesis of one or more globin chains, leading to an imbalance in hemoglobin composition and structure. This imbalance can cause premature destruction of red blood cells (hemolysis), resulting in anemia, jaundice, splenomegaly, and other symptoms.

Hemoglobinopathies are typically inherited in an autosomal recessive manner, meaning that affected individuals have two copies of the abnormal gene – one from each parent. Carriers of a single abnormal gene usually do not show any signs or symptoms of the disorder but can pass the abnormal gene on to their offspring.

Early diagnosis and appropriate management of hemoglobinopathies are essential for improving quality of life, reducing complications, and increasing survival rates. Treatment options may include blood transfusions, iron chelation therapy, antibiotics, pain management, and, in some cases, bone marrow transplantation or gene therapy.

Thrombocytopenia is a medical condition characterized by an abnormally low platelet count (thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting, helping to stop bleeding when a blood vessel is damaged. A healthy adult typically has a platelet count between 150,000 and 450,000 platelets per microliter of blood. Thrombocytopenia is usually diagnosed when the platelet count falls below 150,000 platelets/µL.

Thrombocytopenia can be classified into three main categories based on its underlying cause:

1. Immune thrombocytopenia (ITP): An autoimmune disorder where the immune system mistakenly attacks and destroys its own platelets, leading to a decreased platelet count. ITP can be further divided into primary or secondary forms, depending on whether it occurs alone or as a result of another medical condition or medication.
2. Decreased production: Thrombocytopenia can occur when there is insufficient production of platelets in the bone marrow due to various causes, such as viral infections, chemotherapy, radiation therapy, leukemia, aplastic anemia, or vitamin B12 or folate deficiency.
3. Increased destruction or consumption: Thrombocytopenia can also result from increased platelet destruction or consumption due to conditions like disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura (TTP), hemolytic uremic syndrome (HUS), or severe bacterial infections.

Symptoms of thrombocytopenia may include easy bruising, prolonged bleeding from cuts, spontaneous nosebleeds, bleeding gums, blood in urine or stools, and skin rashes like petechiae (small red or purple spots) or purpura (larger patches). The severity of symptoms can vary depending on the degree of thrombocytopenia and the presence of any underlying conditions. Treatment for thrombocytopenia depends on the cause and may include medications, transfusions, or addressing the underlying condition.

Hemoglobin S (HbS) is a genetic variant of hemoglobin, which is the oxygen-carrying protein in red blood cells. This abnormal form of hemogllobin results from a mutation in the beta-globin gene, leading to the substitution of valine for glutamic acid at position six of the beta-globin chain.

In individuals with sickle cell disease (a group of inherited red blood cell disorders), both copies of their beta-globin genes carry this mutation, causing the majority of their hemoglobin to be HbS. When deoxygenated, HbS molecules have a tendency to polymerize and form long, rigid rods within the red blood cells, distorting their shape into a characteristic sickle or crescent form.

These sickled red blood cells are less flexible and more prone to rupture (hemolysis), leading to chronic anemia, vaso-occlusive crises, and other disease complications. Sickle cell disease primarily affects people of African, Mediterranean, Middle Eastern, and Indian ancestry, but it can also be found in other populations worldwide.

Malaria, Falciparum is defined as a severe and often fatal form of malaria caused by the parasite Plasmodium falciparum. It is transmitted to humans through the bites of infected Anopheles mosquitoes. This type of malaria is characterized by high fever, chills, headache, muscle and joint pain, and vomiting. If left untreated, it can cause severe anemia, kidney failure, seizures, coma, and even death. It is a major public health problem in many tropical and subtropical regions of the world, particularly in Africa.

The Intrinsic Factor is a glycoprotein secreted by the parietal cells in the stomach lining. It plays an essential role in the absorption of vitamin B12 (cobalamin) in the small intestine. After binding with vitamin B12, the intrinsic factor-vitamin B12 complex moves through the digestive tract and gets absorbed in the ileum region of the small intestine. Deficiency in Intrinsic Factor can lead to Vitamin B12 deficiency disorders like pernicious anemia.

Alpha-thalassemia is a genetic disorder that affects the production of hemoglobin, a protein in red blood cells that carries oxygen throughout the body. It is caused by deletions or mutations in the genes that produce the alpha-globin chains of hemoglobin.

There are several types of alpha-thalassemia, ranging from mild to severe. The most severe form, called hydrops fetalis, occurs when all four alpha-globin genes are deleted or mutated. This can cause stillbirth or death shortly after birth due to heart failure and severe anemia.

Less severe forms of alpha-thalassemia can cause mild to moderate anemia, which may be asymptomatic or associated with symptoms such as fatigue, weakness, and jaundice. These forms of the disorder are more common in people from Mediterranean, Southeast Asian, and African backgrounds.

Treatment for alpha-thalassemia depends on the severity of the condition and may include blood transfusions, iron chelation therapy, or occasionally stem cell transplantation.

Hereditary Spherocytosis is a genetic disorder that affects the red blood cells (RBCs) causing them to take on a spherical shape instead of their normal biconcave disc shape. This occurs due to mutations in the genes responsible for the proteins that maintain the structure and flexibility of RBCs, such as ankyrin, band 3, spectrin, and protein 4.2.

The abnormally shaped RBCs are fragile and prone to hemolysis (premature destruction), which can lead to anemia, jaundice, and gallstones. Symptoms can vary from mild to severe and may include fatigue, weakness, shortness of breath, and a yellowing of the skin and eyes (jaundice). Diagnosis is typically made through a combination of family history, physical examination, complete blood count (CBC), and specialized tests such as osmotic fragility test, eosin-5'-maleimide binding test, or direct antiglobulin test. Treatment may include monitoring, supplementation with folic acid, and in severe cases, splenectomy (surgical removal of the spleen) to reduce RBC destruction.

Rh isoimmunization is a condition that occurs when an Rh-negative individual (usually a woman) develops an immune response to the Rh-positive blood of another individual (usually a fetus during pregnancy or a transfused blood). The Rh-negative person's immune system recognizes the Rh-positive blood as foreign and produces antibodies against it. This sensitization can lead to hemolytic disease of the newborn if the mother becomes pregnant with another Rh-positive fetus, as the maternal antibodies can cross the placenta and attack the fetal red blood cells, potentially causing anemia, jaundice, or more severe complications.

The first exposure to Rh-positive blood typically does not cause a significant reaction because the mother's immune system has not yet produced enough antibodies. However, subsequent exposures can lead to increasingly severe reactions due to the presence of pre-existing antibodies. Preventive measures such as administering Rh immunoglobulin (RhIg) to Rh-negative women during pregnancy and after delivery help prevent sensitization and reduce the risk of hemolytic disease of the newborn.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Antimicrobial cationic peptides (ACPs) are a group of small, naturally occurring peptides that possess broad-spectrum antimicrobial activity against various microorganisms, including bacteria, fungi, viruses, and parasites. They are called "cationic" because they contain positively charged amino acid residues (such as lysine and arginine), which allow them to interact with and disrupt the negatively charged membranes of microbial cells.

ACPs are produced by a wide range of organisms, including humans, animals, and plants, as part of their innate immune response to infection. They play an important role in protecting the host from invading pathogens by directly killing them or inhibiting their growth.

The antimicrobial activity of ACPs is thought to be mediated by their ability to disrupt the membranes of microbial cells, leading to leakage of cellular contents and death. Some ACPs may also have intracellular targets, such as DNA or protein synthesis, that contribute to their antimicrobial activity.

ACPs are being studied for their potential use as therapeutic agents to treat infectious diseases, particularly those caused by drug-resistant bacteria. However, their clinical application is still in the early stages of development due to concerns about their potential toxicity to host cells and the emergence of resistance mechanisms in microbial pathogens.

Hemolysis is the destruction or breakdown of red blood cells, resulting in the release of hemoglobin into the surrounding fluid (plasma). This process can occur due to various reasons such as chemical agents, infections, autoimmune disorders, mechanical trauma, or genetic abnormalities. Hemolysis may lead to anemia and jaundice, among other complications. It is essential to monitor hemolysis levels in patients undergoing medical treatments that might cause this condition.

I'm sorry for any confusion, but "Tanzania" is not a medical term. It is the name of a country located in East Africa. If you have any questions about medical terms or conditions, I would be happy to help clarify those for you.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Erythroid precursor cells, also known as erythroblasts or normoblasts, are early stage cells in the process of producing mature red blood cells (erythrocytes) in the bone marrow. These cells are derived from hematopoietic stem cells and undergo a series of maturation stages, including proerythroblast, basophilic erythroblast, polychromatophilic erythroblast, and orthochromatic erythroblast, before becoming reticulocytes and then mature red blood cells. During this maturation process, the cells lose their nuclei and become enucleated, taking on the biconcave shape and flexible membrane that allows them to move through small blood vessels and deliver oxygen to tissues throughout the body.

Parasitic pregnancy complications refer to a rare condition where a parasitic twin takes over the development of the dominant twin's reproductive system and becomes pregnant. This condition is also known as fetus in fetu or vanishing twin syndrome with a parasitic twin. The parasitic twin may have some organs developed, but it is not fully formed and relies on the dominant twin for survival. The pregnancy can pose risks to the dominant twin, such as abnormal growth patterns, organ damage, and complications during childbirth. This condition is usually detected during prenatal ultrasound examinations.

Antisickling agents are medications or substances that help prevent or reduce the sickling of red blood cells in individuals with sickle cell disease. Sickling is a pathological process where the normally disc-shaped red blood cells become crescent-shaped due to abnormal hemoglobin (HbS). This change in shape can lead to blockages in small blood vessels, causing tissue damage and various complications such as pain crises, acute chest syndrome, and stroke.

Antisickling agents work by either inhibiting the polymerization of HbS or improving the oxygen-carrying capacity of red blood cells. The most commonly used antisickling agent is hydroxyurea, which increases the production of fetal hemoglobin (HbF) in red blood cells. HbF has a higher affinity for oxygen than HbS and can prevent the polymerization of HbS, thereby reducing sickling. Other antisickling agents include:

1. L-glutamine: An amino acid that helps maintain the structural integrity of red blood cells and reduces oxidative stress.
2. Arginate: A salt of arginine, an amino acid that helps improve nitric oxide production and vasodilation, reducing sickling.
3. Senicapoc: A drug that inhibits the formation of HbS polymers by blocking the interaction between HbS molecules.
4. Voxelotor (Oxbryta): A medication that binds to HbS and stabilizes it in its oxygenated state, reducing sickling.

These antisickling agents can help alleviate symptoms, decrease the frequency of pain crises, and improve the quality of life for individuals with sickle cell disease. However, they should be used under the supervision of a healthcare professional, as each has its benefits, risks, and potential side effects.

Parvovirus B19, Human is a single-stranded DNA virus that primarily infects humans. It belongs to the Parvoviridae family and Erbovirus genus. This virus is the causative agent of erythema infectiosum, also known as fifth disease, a mild, self-limiting illness characterized by a facial rash and occasionally joint pain or inflammation.

Parvovirus B19 has a strong tropism for erythroid progenitor cells in the bone marrow, where it replicates and causes temporary suppression of red blood cell production (aplastic crisis) in individuals with underlying hemolytic disorders such as sickle cell disease or spherocytosis.

Additionally, Parvovirus B19 can cause more severe complications in immunocompromised individuals, pregnant women, and fetuses. Infection during pregnancy may lead to hydrops fetalis, anemia, or even fetal death, particularly in the first and second trimesters. Transmission of the virus occurs primarily through respiratory droplets and occasionally via blood transfusions or vertical transmission from mother to fetus.

Folic acid is the synthetic form of folate, a type of B vitamin (B9). It is widely used in dietary supplements and fortified foods because it is more stable and has a longer shelf life than folate. Folate is essential for normal cell growth and metabolism, and it plays a critical role in the formation of DNA and RNA, the body's genetic material. Folic acid is also crucial during early pregnancy to prevent birth defects of the brain and spine called neural tube defects.

Medical Definition: "Folic acid is the synthetic form of folate (vitamin B9), a water-soluble vitamin involved in DNA synthesis, repair, and methylation. It is used in dietary supplementation and food fortification due to its stability and longer shelf life compared to folate. Folic acid is critical for normal cell growth, development, and red blood cell production."

Pica is a medical condition where an individual has an appetite for substances that are not typically considered food, and are not nutritionally beneficial. These substances can include things like dirt, clay, paper, hair, paint chips, or even feces. The behavior must be persistent and continue for a month or longer to be considered pica.

Pica can occur in children, pregnant women, and people with intellectual disabilities, but it can also affect typically developing adults. It's important to note that while some cultures may include non-food items in their diet, this does not necessarily mean they have pica.

The causes of pica are not fully understood, but it can be associated with nutritional deficiencies, mental health disorders, or developmental disabilities. It can lead to serious health complications, such as poisoning, intestinal blockages, and infections, so it's important to seek medical help if you or someone you know is experiencing symptoms of pica.

Nutritional status is a concept that refers to the condition of an individual in relation to their nutrient intake, absorption, metabolism, and excretion. It encompasses various aspects such as body weight, muscle mass, fat distribution, presence of any deficiencies or excesses of specific nutrients, and overall health status.

A comprehensive assessment of nutritional status typically includes a review of dietary intake, anthropometric measurements (such as height, weight, waist circumference, blood pressure), laboratory tests (such as serum albumin, total protein, cholesterol levels, vitamin and mineral levels), and clinical evaluation for signs of malnutrition or overnutrition.

Malnutrition can result from inadequate intake or absorption of nutrients, increased nutrient requirements due to illness or injury, or excessive loss of nutrients due to medical conditions. On the other hand, overnutrition can lead to obesity and related health problems such as diabetes, cardiovascular disease, and certain types of cancer.

Therefore, maintaining a good nutritional status is essential for overall health and well-being, and it is an important consideration in the prevention, diagnosis, and treatment of various medical conditions.

Abnormal hemoglobins refer to variants of the oxygen-carrying protein found in red blood cells, which differ from the normal adult hemoglobin (HbA) in terms of their structure and function. These variations can result from genetic mutations that affect the composition of the globin chains in the hemoglobin molecule. Some abnormal hemoglobins are clinically insignificant, while others can lead to various medical conditions such as hemolytic anemia, thalassemia, or sickle cell disease. Examples of abnormal hemoglobins include HbS (associated with sickle cell anemia), HbC, HbE, and HbF (fetal hemoglobin). These variants can be detected through specialized laboratory tests, such as hemoglobin electrophoresis or high-performance liquid chromatography (HPLC).

Parvoviridae infections refer to diseases caused by viruses belonging to the Parvoviridae family. These viruses are known to infect a wide range of hosts, including humans, animals, and insects. The most well-known member of this family is the human parvovirus B19, which is responsible for a variety of clinical manifestations such as:

1. Erythema infectiosum (Fifth disease): A common childhood exanthem characterized by a "slapped cheek" rash and a lace-like rash on the extremities.
2. Transient aplastic crisis: A sudden and temporary halt in red blood cell production, which can lead to severe anemia in individuals with underlying hematologic disorders.
3. Hydrops fetalis: Intrauterine death due to severe anemia caused by parvovirus B19 infection in pregnant women, leading to heart failure and widespread fluid accumulation in the fetus.

Parvoviruses are small, non-enveloped viruses with a single-stranded DNA genome. They primarily infect and replicate within actively dividing cells, making them particularly harmful to rapidly proliferating tissues such as bone marrow and fetal tissues. In addition to parvovirus B19, other Parvoviridae family members can cause significant diseases in animals, including cats, dogs, and livestock.

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder of the blood characterized by the destruction of red blood cells (hemolysis), which can cause symptoms such as fatigue, dark colored urine (especially in the morning), chest pain, shortness of breath, and an increased risk of blood clots. The hemoglobin from the lysed red blood cells appears in the urine, hence the term "hemoglobinuria."

The paroxysmal nature of the disorder refers to the sudden and recurring episodes of hemolysis that can occur at any time, although they may be more frequent at night. The condition is caused by mutations in a gene called PIG-A, which leads to the production of defective red blood cell membranes that are sensitive to destruction by complement, a component of the immune system.

PNH is a serious and potentially life-threatening condition that can lead to complications such as kidney damage, pulmonary hypertension, and thrombosis. Treatment typically involves supportive care, such as blood transfusions, and medications to manage symptoms and prevent complications. In some cases, stem cell transplantation may be considered as a curative treatment option.

Malnutrition is a condition that results from eating a diet in which one or more nutrients are either not enough or are too much such that the body's function is not maintained. It can also refer to a deficiency or excess of vitamins, minerals, protein, energy, and/or water. This condition can have negative effects on physical and mental health. Malnutrition includes undernutrition (wasting, stunting, underweight), overnutrition (overweight, obesity) and micronutrient deficiencies or excesses.

It's important to note that malnutrition is different from malabsorption, which is the inability to absorb nutrients from food. Malabsorption can also lead to malnutrition if it results in a lack of necessary nutrients for the body's function.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

A splenectomy is a surgical procedure in which the spleen is removed from the body. The spleen is an organ located in the upper left quadrant of the abdomen, near the stomach and behind the ribs. It plays several important roles in the body, including fighting certain types of infections, removing old or damaged red blood cells from the circulation, and storing platelets and white blood cells.

There are several reasons why a splenectomy may be necessary, including:

* Trauma to the spleen that cannot be repaired
* Certain types of cancer, such as Hodgkin's lymphoma or non-Hodgkin's lymphoma
* Sickle cell disease, which can cause the spleen to enlarge and become damaged
* A ruptured spleen, which can be life-threatening if not treated promptly
* Certain blood disorders, such as idiopathic thrombocytopenic purpura (ITP) or hemolytic anemia

A splenectomy is typically performed under general anesthesia and may be done using open surgery or laparoscopically. After the spleen is removed, the incision(s) are closed with sutures or staples. Recovery time varies depending on the individual and the type of surgery performed, but most people are able to return to their normal activities within a few weeks.

It's important to note that following a splenectomy, individuals may be at increased risk for certain types of infections, so it's recommended that they receive vaccinations to help protect against these infections. They should also seek medical attention promptly if they develop fever, chills, or other signs of infection.

Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is a genetic disorder that affects the normal functioning of an enzyme called G6PD. This enzyme is found in red blood cells and plays a crucial role in protecting them from damage.

In people with G6PD deficiency, the enzyme's activity is reduced or absent, making their red blood cells more susceptible to damage and destruction, particularly when they are exposed to certain triggers such as certain medications, infections, or foods. This can lead to a condition called hemolysis, where the red blood cells break down prematurely, leading to anemia, jaundice, and in severe cases, kidney failure.

G6PD deficiency is typically inherited from one's parents in an X-linked recessive pattern, meaning that males are more likely to be affected than females. While there is no cure for G6PD deficiency, avoiding triggers and managing symptoms can help prevent complications.

Hematologic diseases, also known as hematological disorders, refer to a group of conditions that affect the production, function, or destruction of blood cells or blood-related components, such as plasma. These diseases can affect erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes), as well as clotting factors and hemoglobin.

Hematologic diseases can be broadly categorized into three main types:

1. Anemia: A condition characterized by a decrease in the total red blood cell count, hemoglobin, or hematocrit, leading to insufficient oxygen transport to tissues and organs. Examples include iron deficiency anemia, sickle cell anemia, and aplastic anemia.
2. Leukemia and other disorders of white blood cells: These conditions involve the abnormal production or function of leukocytes, which can lead to impaired immunity and increased susceptibility to infections. Examples include leukemias (acute lymphoblastic leukemia, chronic myeloid leukemia), lymphomas, and myelodysplastic syndromes.
3. Platelet and clotting disorders: These diseases affect the production or function of platelets and clotting factors, leading to abnormal bleeding or clotting tendencies. Examples include hemophilia, von Willebrand disease, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Hematologic diseases can have various causes, including genetic defects, infections, autoimmune processes, environmental factors, or malignancies. Proper diagnosis and management of these conditions often require the expertise of hematologists, who specialize in diagnosing and treating disorders related to blood and its components.

Transferrin is a glycoprotein that plays a crucial role in the transport and homeostasis of iron in the body. It's produced mainly in the liver and has the ability to bind two ferric (Fe3+) ions in its N-lobe and C-lobe, thus creating transferrin saturation.

This protein is essential for delivering iron to cells while preventing the harmful effects of free iron, which can catalyze the formation of reactive oxygen species through Fenton reactions. Transferrin interacts with specific transferrin receptors on the surface of cells, particularly in erythroid precursors and brain endothelial cells, to facilitate iron uptake via receptor-mediated endocytosis.

In addition to its role in iron transport, transferrin also has antimicrobial properties due to its ability to sequester free iron, making it less available for bacterial growth and survival. Transferrin levels can be used as a clinical marker of iron status, with decreased levels indicating iron deficiency anemia and increased levels potentially signaling inflammation or liver disease.

Reticulocytosis is a medical term that refers to an increased number of reticulocytes in the peripheral blood. Reticulocytes are immature red blood cells produced in the bone marrow and released into the bloodstream. They still have remnants of RNA, which gives them a reticular or "net-like" appearance under a microscope when stained with certain dyes.

Reticulocytosis is typically seen in conditions associated with increased red blood cell production, such as:

1. Hemolysis: This is a condition where there is excessive destruction of red blood cells, leading to anemia. The body responds by increasing the production of reticulocytes to replace the lost red blood cells.
2. Blood loss: When there is significant blood loss, the body tries to compensate for the decrease in red blood cells by boosting the production of reticulocytes.
3. Recovery from bone marrow suppression: In cases where the bone marrow has been suppressed due to illness, medication, or chemotherapy, and then recovers, an increase in reticulocytosis may be observed as the bone marrow resumes normal red blood cell production.
4. Megaloblastic anemias: Conditions like vitamin B12 or folate deficiency can lead to megaloblastic anemia, where the red blood cells are larger and immature. Reticulocytosis may be present as the bone marrow tries to correct the anemia.
5. Congenital disorders: Certain inherited conditions, such as hereditary spherocytosis or thalassemias, can cause chronic hemolysis and lead to reticulocytosis.

It is essential to evaluate the underlying cause of reticulocytosis for appropriate diagnosis and treatment.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

I'm sorry for any confusion, but "Kenya" is not a medical term. It is the name of a country located in East Africa, known for its diverse wildlife and geography, including savannas, lakelands, the dramatic Great Rift Valley, and mountain highlands. It is also where you can find the Maasai Mara Reserve, known for its annual wildebeest migrations, and vast Nairobi National Park. The capital city of Kenya is Nairobi. If you have any questions about medical terms or concepts, I would be happy to help with those!

Bone marrow diseases, also known as hematologic disorders, are conditions that affect the production and function of blood cells in the bone marrow. The bone marrow is the spongy tissue inside bones where all blood cells are produced. There are various types of bone marrow diseases, including:

1. Leukemia: A cancer of the blood-forming tissues, including the bone marrow. Leukemia causes the body to produce large numbers of abnormal white blood cells, which can crowd out healthy blood cells and impair their function.
2. Lymphoma: A cancer that starts in the lymphatic system, which is part of the immune system. Lymphoma can affect the bone marrow and cause an overproduction of abnormal white blood cells.
3. Multiple myeloma: A cancer of the plasma cells, a type of white blood cell found in the bone marrow. Multiple myeloma causes an overproduction of abnormal plasma cells, which can lead to bone pain, fractures, and other complications.
4. Aplastic anemia: A condition in which the bone marrow does not produce enough new blood cells. This can lead to symptoms such as fatigue, weakness, and an increased risk of infection.
5. Myelodysplastic syndromes (MDS): A group of disorders in which the bone marrow does not produce enough healthy blood cells. MDS can lead to anemia, infections, and bleeding.
6. Myeloproliferative neoplasms (MPNs): A group of disorders in which the bone marrow produces too many abnormal white or red blood cells, or platelets. MPNs can lead to symptoms such as fatigue, itching, and an increased risk of blood clots.

Treatment for bone marrow diseases depends on the specific condition and its severity. Treatment options may include chemotherapy, radiation therapy, stem cell transplantation, or targeted therapies that target specific genetic mutations.

Hematologic tests, also known as hematology tests, are a group of diagnostic exams that evaluate the health and function of different components of blood, such as red and white blood cells, platelets, and clotting factors. These tests can detect various disorders, including anemia, infection, bleeding problems, and several types of cancer. Common hematologic tests include complete blood count (CBC), coagulation studies, peripheral smear examination, and erythrocyte sedimentation rate (ESR). The specific test or combination of tests ordered will depend on the patient's symptoms, medical history, and physical examination findings.

Sickle cell trait is a genetic condition where an individual inherits one abnormal gene for hemoglobin S (HbS) from one parent and one normal gene for hemoglobin A (HbA) from the other parent. Hemoglobin is a protein in red blood cells that carries oxygen throughout the body.

People with sickle cell trait do not have sickle cell disease, but they can pass the abnormal HbS gene on to their children. In certain situations, such as high altitude, low oxygen levels, or intense physical exertion, individuals with sickle cell trait may experience symptoms similar to those of sickle cell disease, such as fatigue, pain, and shortness of breath. However, these symptoms are typically milder and less frequent than in people with sickle cell disease.

It is important for individuals who know they have sickle cell trait to inform their healthcare providers, especially if they become pregnant or plan to engage in activities that may cause low oxygen levels, such as scuba diving or high-altitude climbing.

"Salmo salar" is the scientific name for the Atlantic salmon, which is a species of ray-finned fish belonging to the family Salmonidae. This anadromous fish is born in freshwater, migrates to the sea as a juvenile, then returns to freshwater to reproduce. The Atlantic salmon is highly valued for its nutritional content and is a popular choice for food worldwide. It's also an important species for recreational fishing and aquaculture.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Intrauterine blood transfusion (IUT) is a medical procedure in which blood is transfused into the fetal circulation through the umbilical vein while the fetus is still in the uterus. This procedure is typically performed to treat severe anemia in the fetus, most commonly caused by hemolytic disease of the newborn due to Rh incompatibility or ABO incompatibility between the mother and fetus.

During the procedure, ultrasound guidance is used to insert a thin needle through the mother's abdomen and uterus and into the umbilical vein of the fetus. The blood is then transfused slowly, allowing the fetal body to adjust to the increased volume. The procedure may need to be repeated every 2-4 weeks until the baby is mature enough for delivery.

IUT is a highly specialized procedure that requires significant expertise and experience in maternal-fetal medicine and interventional radiology. It carries risks such as preterm labor, infection, fetal bradycardia (abnormally slow heart rate), and fetal loss, but it can be life-saving for the fetus when performed appropriately.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

5-Aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, a metabolic pathway that produces heme, a porphyrin ring with an iron atom at its center. Heme is a crucial component of hemoglobin, cytochromes, and other important molecules in the body.

ALAS exists in two forms: ALAS1 and ALAS2. ALAS1 is expressed in all tissues, while ALAS2 is primarily expressed in erythroid cells (precursors to red blood cells). The reaction catalyzed by ALAS involves the condensation of glycine and succinyl-CoA to form 5-aminolevulinate.

Deficiencies or mutations in the ALAS2 gene can lead to a rare genetic disorder called X-linked sideroblastic anemia, which is characterized by abnormal red blood cell maturation and iron overload in mitochondria.

A dietary supplement is a product that contains nutrients, such as vitamins, minerals, amino acids, herbs or other botanicals, and is intended to be taken by mouth, to supplement the diet. Dietary supplements can include a wide range of products, such as vitamin and mineral supplements, herbal supplements, and sports nutrition products.

Dietary supplements are not intended to treat, diagnose, cure, or alleviate the effects of diseases. They are intended to be used as a way to add extra nutrients to the diet or to support specific health functions. It is important to note that dietary supplements are not subject to the same rigorous testing and regulations as drugs, so it is important to choose products carefully and consult with a healthcare provider if you have any questions or concerns about using them.

Thrombocytosis is a medical condition characterized by an abnormally high platelet count (also known as thrombocytes) in the blood. Platelets are small cell fragments that play a crucial role in blood clotting. A normal platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. Thrombocytosis is typically defined as a platelet count exceeding 450,000-500,000 platelets/µL.

Thrombocytosis can be classified into two types: reactive (or secondary) thrombocytosis and primary (or essential) thrombocytosis. Reactive thrombocytosis is more common and occurs as a response to an underlying condition, such as infection, inflammation, surgery, or certain types of cancer. Primary thrombocytosis, on the other hand, is caused by intrinsic abnormalities in the bone marrow cells responsible for platelet production (megakaryocytes), and it is often associated with myeloproliferative neoplasms like essential thrombocythemia.

While mild thrombocytosis may not cause any symptoms, higher platelet counts can increase the risk of blood clots (thrombosis) and bleeding disorders due to excessive platelet aggregation. Symptoms of thrombocytosis may include headaches, dizziness, visual disturbances, or chest pain if a blood clot forms in the brain or heart. Bleeding symptoms can manifest as easy bruising, nosebleeds, or gastrointestinal bleeding.

Treatment for thrombocytosis depends on the underlying cause and the severity of the condition. In cases of reactive thrombocytosis, treating the underlying disorder often resolves the high platelet count. For primary thrombocytosis, medications like aspirin or cytoreductive therapy (such as hydroxyurea) may be used to reduce the risk of blood clots and control platelet production. Regular monitoring of platelet counts is essential for managing this condition and preventing potential complications.

Oxymetholone is an anabolic steroid medication, which is used to treat various medical conditions such as anemia due to lack of red blood cells and wasting syndrome in people with HIV infection. It works by increasing the production of erythropoietin, a hormone that stimulates the production of red blood cells. Oxymetholone also helps to improve muscle mass and appetite.

It is important to note that oxymetholone is a controlled substance and has potential for serious side effects, including liver toxicity, masculinization in women, and cardiovascular risks. Therefore, it should only be used under the close supervision of a healthcare provider and for legitimate medical purposes.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Hemoglobin E (HbE) is a structural variant of hemoglobin, which is the oxygen-carrying protein in red blood cells. This variant results from a specific mutation in the beta-globin gene, leading to the substitution of glutamic acid with lysine at position 26 of the beta-globin chain.

HbE is most commonly found in people from Southeast Asia, particularly in populations from Thailand, Cambodia, and Laos. It can also be found in other parts of the world, such as India, Bangladesh, and Pakistan. HbE is usually asymptomatic when it occurs in its heterozygous form (one normal beta-globin gene and one HbE gene). However, when it occurs in the homozygous form (two HbE genes), or in combination with other hemoglobinopathies like thalassemia, it can lead to a range of clinical manifestations, including mild to severe microcytic anemia, splenomegaly, and jaundice.

Individuals with HbE may have increased susceptibility to certain infections and may experience complications during pregnancy or surgery due to impaired oxygen-carrying capacity. Regular monitoring of hemoglobin levels, iron status, and potential complications is essential for managing individuals with Hemoglobin E effectively.

Pure red cell aplasia (PRCA) is a rare hematologic disorder characterized by selective absence or severe reduction in the production of mature red blood cells (erythropoiesis) in the bone marrow, while the production of other blood cell lines such as white blood cells and platelets remains normal or near normal. This condition leads to anemia, which can be severe and require transfusions.

In PRCA, there is a specific absence or reduction of erythroblasts (immature red blood cells) in the bone marrow. The cause of this disorder can be congenital or acquired. Acquired forms are more common and can be idiopathic or associated with various conditions such as viral infections, immunological disorders, drugs, malignancies, or autoimmune diseases.

In pure red cell aplasia, the immune system often produces antibodies against erythroid progenitor cells, leading to their destruction and impaired red blood cell production. This results in anemia, which can be severe and require regular transfusions to maintain adequate hemoglobin levels.

The diagnosis of PRCA is confirmed through bone marrow aspiration and biopsy, which reveal a marked decrease or absence of erythroid precursors. Additional tests, such as immunological studies and viral serologies, may be performed to identify potential causes or associated conditions. Treatment options depend on the underlying cause and can include corticosteroids, immunosuppressive therapy, intravenous immunoglobulins, and occasionally, targeted therapies or stem cell transplantation.

Glucaric acid, also known as saccharic acid, is not a medication or a medical treatment. It is an organic compound that occurs naturally in various fruits and vegetables, such as oranges, apples, and corn. Glucaric acid is a type of dicarboxylic acid, which means it contains two carboxyl groups.

In the human body, glucaric acid is produced as a byproduct of glucose metabolism and can be found in small amounts in urine. It is also produced synthetically for industrial uses, such as in the production of cleaning products, textiles, and plastics.

There has been some research on the potential health benefits of glucaric acid, including its role in detoxification and cancer prevention. However, more studies are needed to confirm these effects and establish recommended intake levels or dosages. Therefore, it is not currently considered a medical treatment for any specific condition.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Erythroblastosis, fetal is a medical condition that occurs in the fetus or newborn when there is an incompatibility between the fetal and maternal blood types, specifically related to the Rh factor or ABO blood group system. This incompatibility leads to the destruction of the fetal red blood cells by the mother's immune system, resulting in the release of bilirubin, which can cause jaundice, anemia, and other complications.

In cases where the mother is Rh negative and the fetus is Rh positive, the mother may develop antibodies against the Rh factor during pregnancy or after delivery, leading to hemolysis (breakdown) of the fetal red blood cells in subsequent pregnancies if preventive measures are not taken. This is known as hemolytic disease of the newborn (HDN).

Similarly, incompatibility between the ABO blood groups can also lead to HDN, although it is generally less severe than Rh incompatibility. In this case, the mother's immune system produces antibodies against the fetal red blood cells, leading to their destruction and subsequent complications.

Fetal erythroblastosis is a serious condition that can lead to significant morbidity and mortality if left untreated. Treatment options include intrauterine transfusions, phototherapy, and exchange transfusions in severe cases. Preventive measures such as Rh immune globulin (RhIG) injections can help prevent the development of antibodies in Rh-negative mothers, reducing the risk of HDN in subsequent pregnancies.

Protoporphyrins are organic compounds that are the immediate precursors to heme in the porphyrin synthesis pathway. They are composed of a porphyrin ring, which is a large, complex ring made up of four pyrrole rings joined together, with an acetate and a propionate side chain at each pyrrole. Protoporphyrins are commonly found in nature and are important components of many biological systems, including hemoglobin, the protein in red blood cells that carries oxygen throughout the body.

There are several different types of protoporphyrins, including protoporphyrin IX, which is the most common form found in humans and other animals. Protoporphyrins can be measured in the blood or other tissues as a way to diagnose or monitor certain medical conditions, such as lead poisoning or porphyrias, which are rare genetic disorders that affect the production of heme. Elevated levels of protoporphyrins in the blood or tissues can indicate the presence of these conditions and may require further evaluation and treatment.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

I must clarify that "Iron Isotopes" is not a medical term, but rather a scientific concept from the field of physics and chemistry. However, I can certainly provide a general explanation of isotopes and then focus on iron isotopes specifically.

An isotope is a variant of a chemical element that has the same number of protons (and thus the same atomic number) but a different number of neutrons within its nucleus. This results in variations of the atomic mass of isotopes of the same element. Some isotopes are stable, while others are unstable and will decay over time into other elements or isotopes, a process called radioactive decay.

Iron (Fe) has four naturally occurring stable isotopes: Fe-54, Fe-56, Fe-57, and Fe-58. These iron isotopes have different numbers of neutrons in their nuclei, resulting in slightly different atomic masses. The most abundant iron isotope is Fe-56, which contains 26 protons and 30 neutrons in its nucleus.

In the context of human health, iron is an essential nutrient that plays a crucial role in various biological processes, such as oxygen transport and energy production. However, the concept of iron isotopes does not have a direct medical relevance, but it can be useful in scientific research related to fields like geochemistry, environmental science, or nuclear physics.

A "Drug Administration Schedule" refers to the plan for when and how a medication should be given to a patient. It includes details such as the dose, frequency (how often it should be taken), route (how it should be administered, such as orally, intravenously, etc.), and duration (how long it should be taken) of the medication. This schedule is often created and prescribed by healthcare professionals, such as doctors or pharmacists, to ensure that the medication is taken safely and effectively. It may also include instructions for missed doses or changes in the dosage.

"Fortified food" is a term used in the context of nutrition and dietary guidelines. It refers to a food product that has had nutrients added to it during manufacturing to enhance its nutritional value. These added nutrients can include vitamins, minerals, proteins, or other beneficial components. The goal of fortifying foods is often to address specific nutrient deficiencies in populations or to improve the overall nutritional quality of a food product. Examples of fortified foods include certain breakfast cereals that have added vitamins and minerals, as well as plant-based milk alternatives that are fortified with calcium and vitamin D to mimic the nutritional profile of cow's milk. It is important to note that while fortified foods can be a valuable source of essential nutrients, they should not replace whole, unprocessed foods in a balanced diet.

A bone marrow examination is a medical procedure in which a sample of bone marrow, the spongy tissue inside bones where blood cells are produced, is removed and examined. This test is used to diagnose or monitor various conditions affecting blood cell production, such as infections, leukemia, anemia, and other disorders of the bone marrow.

The sample is typically taken from the hipbone (iliac crest) or breastbone (sternum) using a special needle. The procedure may be done under local anesthesia or with sedation to minimize discomfort. Once the sample is obtained, it is examined under a microscope for the presence of abnormal cells, changes in cell size and shape, and other characteristics that can help diagnose specific conditions. Various stains, cultures, and other tests may also be performed on the sample to provide additional information.

Bone marrow examination is an important diagnostic tool in hematology and oncology, as it allows for a detailed assessment of blood cell production and can help guide treatment decisions for patients with various blood disorders.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

I'm sorry for any confusion, but "Ghana" is not a medical term. It is the name of a country located in West Africa, known officially as the Republic of Ghana. If you have any questions about medical terms or conditions, I would be happy to help with those!

... must be differentiated from pure red cell aplasia. In aplastic anemia, the patient has pancytopenia (i.e., also ... Acton, Ashton (22 July 2013). Aplastic Anemia. ScholarlyEditions. p. 36. ISBN 978-1-4816-5068-7. Aplastic anaemia (AA) is a ... ISBN 0-679-42917-4. "Aplastic anaemia". Leukaemia Foundation. "December Is National Aplastic Anemia Awareness Month" (PDF). ... but in aplastic anemia, these cells are mostly gone and are replaced by fat. First-line treatment for aplastic anemia consists ...
... such as aplastic anemia and complete bone marrow failure, are not especially age-dependent. Aplastic Anemia is often an adverse ... "Aplastic Anemia , NHLBI, NIH". Nhlbi.nih.gov. 18 January 2019. Retrieved 19 February 2022. "Bone Marrow in Aging: Changes? Yes ...
114-117 cited 744 times according to Google Scholar The epidemiology of aplastic anemia in Thailand[1] Aplastic Anemia and Bone ... Aplastic Anemia. N Engl J Med. 2018 Oct 25;379(17):1643-1656[5] Mustjoki S, Young NS. Somatic Mutations in "Benign" Disease. N ... Aplastic Anemia. N Engl J Med. 2018 Oct 25;379(17):1643-1656. Mustjoki S, Young NS. Somatic Mutations in "Benign" Disease. N ... Aplastic Anemia, Acquired and Inherited. Philadelphia: Saunders, 1994. Young, Neal S., ed. Viruses As Agents of Haematological ...
aplastic anemia. myelodysplastic syndrome. Hemoglobin, the oxygen-carrying molecule in a red blood cell, contains iron. The ... aplastic anemia, or myelodysplastic syndrome, among others. It is diagnosed with a blood transferrin test and a liver biopsy. ...
Aplastic anemia happens when bone marrow doesn't produce enough new blood cells throughout the body. Aplastic anemia is an ... and aplastic anemia. Fanconi anemia is an inherited blood disorder due to abnormal breakages in DNA genes. It is linked to ... While acquired aplastic anemia with an unknown cause is rare, it is commonly permanent and life-threatening as half of those ... The most common cause of acquired bone marrow failure is aplastic anemia. Working with chemicals such as benzene could be a ...
Abnormalities in white blood cell formation, including aplastic anemia, are rare, yet are the cause of the majority of deaths ... Meyerson MA, Cohen PR (1994). "Dapsone-induced aplastic anemia in a woman with bullous systemic lupus erythematosus". Mayo Clin ... Foucauld J, Uphouse W, Berenberg J (1985). "Dapsone and aplastic anemia". Ann. Intern. Med. 102 (1): 139. doi:10.7326/0003-4819 ... Dapsone had been reported in a few cases to effectively treat acne, but the risk of hemolytic anemia kept it from being widely ...
Inherited Aplastic Anemia Syndromes". In John P. Greer; Daniel A. Arber; Bertil Glader; Alan F. List; Robert T. Means Jr.; ... Anemia (low red blood cell counts) and thrombocytopenia (low platelet counts) may also occur. Bone marrow is typically ... However, unusual and combinations of tissues and organs are also affected in Diamond-Blackfan anemia, X-linked dyskeratosis ...
Expertscape ranks its programs in aplastic anemia and multiple myeloma as best in the world. It has been also ranked overall ... "Expertscape: Aplastic Anemia, December 2013". expertscape.com. December 2013. Retrieved 2015-08-17. "Expertscape: Multiple ...
Other side effects may include: agranulocytosis, aplastic anemia, decreased white blood cell count, and a low platelet count. ... ISBN 978-1-4557-3976-9.{{cite book}}: CS1 maint: location missing publisher (link) Hamblin TJ (August 2005). "Aplastic anaemia ... "Risk of aplastic anemia in patients using antiepileptic drugs". Epilepsia. 47 (7): 1232-1236. doi:10.1111/j.1528-1167.2006. ... Phenytoin acts by inhibiting this enzyme, thereby causing folate deficiency, and thus megaloblastic anemia. ...
... anemia, leukopenia, pancytopenia, or even rarely agranulocytosis) may occur. Aplastic anemia has also been seen. Bone marrow ...
It has also been used in the treatment of aplastic anemia. It is less commonly used than the similar anti-thymocyte globulin ( ... The German Aplastic Anemia Study Group". The New England Journal of Medicine. 324 (19): 1297-304. doi:10.1056/ ... 2000). "Commentary on and reprint of Speck B, Gluckman E, Haak HL, van Rood JJ, Treatment of aplastic anaemia by antilymphocyte ... "Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. ...
Duval's oldest son, Brent, developed aplastic anemia. The family sought treatment at Rainbow Babies & Children's Hospital in ...
... aplastic anemia. Freya Madeline Stark, 100, British-Italian travel writer and explorer. Albert Sukop, 80, German footballer ( ... complications from sickle cell anemia. Ernst Reitermaier, 74, Austrian football player and manager. Shianghao Wang, 77, Chinese ...
In 1996 she is diagnosed with aplastic anemia. A mysterious young man comes to town hoping to help. Laura is forced to reveal ...
In 2015, Chor was diagnosed with aplastic anemia. He died on 21 July 2016 at the Singapore General Hospital. 1990 Meritorius ...
Curie later died of aplastic anemia, not cancer. Eben Byers, a famous American socialite, died of multiple cancers in 1932 ...
She was diagnosed with aplastic anemia in 2014. She had spoken about the problems with health care funding and raised over $ ...
Donny Schmit, 29, American motorcycle racer, aplastic anemia. Don Simpson, 52, American film producer (Top Gun, Beverly Hills ...
In 2017, the NIH made Eltrombopag a standard of care in aplastic anemia. It has been shown to produce a trilineage ... April 2017). "Eltrombopag Added to Standard Immunosuppression for Aplastic Anemia". The New England Journal of Medicine. 376 ( ... March 2014). "Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on ... and severe aplastic anemia. Eltrombopag is sold under the brand name Revolade outside the US and is marketed by Novartis. It is ...
He died in May 2003 from aplastic anemia. Bill Godbout Cromemco Computer Chronicles Whole Earth Software Catalog. Quantum Press ...
Before then, RCC cases were classified as childhood aplastic anemia. RCC is the most common form of MDS in children and ... "Classification of childhood aplastic anemia and myelodysplastic syndrome". Hematology. 2011: 84-9. doi:10.1182/asheducation- ...
Johnny Costa, 74, American jazz pianist, aplastic anemia, anemia. Bernardo Grinspun, 70, Argentinian politician. Roger Lapébie ...
Pancytopenia, aplastic anemia, reversible agranulocytosis, low blood platelets, neutropenia. Chloroquine has not been shown to ...
Bluhm R, Branch R, Johnston P, Stein R (1990). "Aplastic anemia associated with canthaxanthin ingested for 'tanning' purposes ... These include hepatitis, urticaria, aplastic anemia, and a retinopathy characterized by yellow deposits and subsequent visual ...
In October 1986, Max was diagnosed with aplastic anemia. Max was only given a few weeks to live with this serious blood ...
The following year, Abigail is diagnosed with aplastic anemia. Jennifer teams up with Austin Reed to find the environmental ...
August 2007). "Mutations in the SBDS gene in acquired aplastic anemia". Blood. 110 (4): 1141-6. doi:10.1182/blood-2007-03- ... "Mutation of SBDS and SH2D1A is not associated with aplastic anemia in Japanese children". Haematologica. 92 (11): 1573. doi: ...
The anaemia is fully reversible once the drug is stopped and does not predict future development of aplastic anaemia. Studies ... It is not known whether monitoring the blood counts of patients can prevent the development of aplastic anaemia, but patients ... Isolated case reports of aplastic anaemia following use of chloramphenicol eyedrops exist, but the risk is estimated to be of ... The most serious side effect of chloramphenicol treatment is aplastic anaemia ('AA'). This effect is rare but sometimes fatal. ...
George Morrow, 69, American computer scientist and pioneer, aplastic anemia. Slick Coffman, 92, American baseball player ( ...
When David was nine, his brother Brent developed aplastic anemia. The family sought treatment at Rainbow Babies & Children's ...
Aplastic anemia must be differentiated from pure red cell aplasia. In aplastic anemia, the patient has pancytopenia (i.e., also ... Acton, Ashton (22 July 2013). Aplastic Anemia. ScholarlyEditions. p. 36. ISBN 978-1-4816-5068-7. Aplastic anaemia (AA) is a ... ISBN 0-679-42917-4. "Aplastic anaemia". Leukaemia Foundation. "December Is National Aplastic Anemia Awareness Month" (PDF). ... but in aplastic anemia, these cells are mostly gone and are replaced by fat. First-line treatment for aplastic anemia consists ...
Aplastic anemia is a condition in which the bone marrow does not make enough blood cells. Bone marrow is the soft, tissue in ... Aplastic anemia is a condition in which the bone marrow does not make enough blood cells. Bone marrow is the soft, tissue in ... Aplastic anemia is a condition in which the bone marrow does not make enough blood cells. Bone marrow is the soft, tissue in ... Aplastic anemia results from damage to the blood stem cells. Stem cells are immature cells in the bone marrow that give rise to ...
Aplastic anemia is a syndrome of bone marrow failure characterized by peripheral pancytopenia and marrow hypoplasia. Although ... Incidence of aplastic anemia in Bangkok. The Aplastic Anemia Study Group. Blood. 1991 May 15. 77(10):2166-8. [QxMD MEDLINE Link ... Very rarely, aplastic anemia has been reported following vaccination. Case reports describe aplastic anemia-de novo or relapse- ... 28] In a study of 330 patients with aplastic anemia (235 acquired, 85 Fanconi anemia, and 10 Diamond-Blackfan anemia) who ...
Complete recovery after iron chelation in aplastic anemia. ...even one capsule of chloromycetin could cause…leukaemia…I ... remember a child dying of aplastic anaemia after a general practitioner had prescribed chloromycetin for a cold…For a cold - a ...
Learn about aplastic anemia and MDS, including how common the conditions are, who is more likely to develop the conditions, and ... Who is more likely to develop aplastic anemia or MDS?. Aplastic anemia. Aplastic anemia can affect people of any age, but its ... What are the complications of aplastic anemia and MDS?. What are aplastic anemia and myelodysplastic syndromes (MDS)?. Aplastic ... How common are aplastic anemia and MDS?. Aplastic anemia is rare. About 2 out of every 1 million people in the United States ...
What Are Common Causes of Congenital Aplastic Anemia?. Discussion Aplastic anemia are disorders where there is inadequate ... Implants in patients with anemia?. Have any of you installed implants in patients with well controlled, aplastic anemia or ... Aplastic anemia or dyskeratosis congenita? Unclear diagnosis forces a difficult decision. Having a child diagnosed with a life- ... Aplastic Anemia Yields to Promacta (CME/CE). (MedPage Today) -- Response rates rise for first time in 3 decades with oral agent ...
The Aplastic Anemia and MDS International Foundation. (800) 747-2820 , (301) 279-7202. 4330 East West Highway, Suite 230. ...
The Aplastic Anemia and MDS International Foundation. (800) 747-2820 , (301) 279-7202. 4330 East West Highway, Suite 230. ...
Severe aplastic anemia is a disease in which the bone marrow does not make enough blood cells for the body.These blood cells ... Severe aplastic anemia (SAA). Severe aplastic anemia (SAA) is a disease in which the bone marrow does not make enough blood ... What is severe aplastic anemia (SAA)?. SAA is a bone marrow disease. The bone marrow is the soft, spongy tissue inside bones. ... Aplastic anemia can range from mild to severe. Transplant is used for severe cases. ...
... N Engl J Med. 2005 Apr 7;352(14):1413-24. ... The results of coexpression of wild-type TERT and TERT with aplastic anemia-associated mutations in a telomerase-deficient cell ... Methods: We screened blood or marrow cells from 124 patients with apparently acquired aplastic anemia and 282 control subjects ... We investigated whether mutations in genes for other components of telomerase also occur in aplastic anemia. ...
This policy covers how The Painted Turtle, a California nonprofit corporation (the "Camp"), treats personal information that the Camp collects and receives, including information related to your use of the Camps Web site and personal information collected from our Web site. Personal information is information about you that is personally identifiable like your name, address, e-mail address, personal background, or phone number. ...
Aplastic Anemia: Nancys Story In 1960, six-year-old Nancy Lowry was not expected to live. Read her amazing, historic story. ... When Nancy was four, she developed a seizure disorder and, subsequently, aplastic anemia (from the seizure medications). Nancy ...
Single Technology. Please note that this topic is being considered and will not necessarily be selected for review by CADTH.. Topics under consideration are those that have been identified for a possible CADTH review (e.g., Health Technology Assessment, Therapeutic Review).. Medical device topics under consideration include devices; diagnostic tests; or medical, surgical, or dental procedures.. Both device and drug topics will undergo review and prioritization (see device Topic Identification and Prioritization Process or Therapeutic Review Framework and Process) before determining whether CADTH will initiate a review.. View our current topics under consideration. Please note that these topics are being considered and will not necessarily be selected for a CADTH review.. ...
People affected by aplastic anaemia share their stories in their own words. ... Types of aplastic anaemia. Aplastic anaemia can acquired or inherited. It can be moderate, severe or very severe. ... Investing in support for aplastic anaemia patients Were investing in our team, to make sure every aplastic anaemia patient is ... Help Ronan raise money for fighting aplastic anaemia- Ronans Charity Dip. A friend of mines brother has Aplastic Anaemia, ...
Aplastic Anemia - Learn about the causes, symptoms, diagnosis & treatment from the Merck Manuals - Medical Consumer Version. ... Symptoms of Aplastic Anemia Symptoms of aplastic anemia usually develop slowly over weeks to months. ... The bone marrow failure leads to too few red blood cells (anemia-see also Overview of Anemia Overview of Anemia Anemia is a ... When the cause of aplastic anemia cannot be diagnosed (called idiopathic aplastic anemia), the cause is likely an autoimmune ...
Predicting response to immunosuppressive therapy and survival in severe aplastic anaemia. Br J Haematol. 2009; 144(2):206-16. ... Aplastic anemia (AA) is a hematopoietic stem cell disorder characterized by pancytopenia and hypocellular bone marrow. The ... Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006; 108(8 ... Locasciulli A, Oneto R, Bacigalupo A, Socie G, Korthof E, Bekassy A. Outcome of patients with acquired aplastic anemia given ...
aplastic anaemia paroxysmal nocturnal haemoglobinuria anti-thymocyte globulin haemopoietic stem cell transplantation ... of the more frail and elderly patient and the relationship between paroxysmal nocturnal haemoglobinuria and aplastic anaemia at ... bone marrow findings and alternative diagnoses to consider which may be confused with aplastic anaemia. ... at the diagnostic stage of considering and testing for inherited bone marrow failure syndromes such as Fanconis anaemia and ...
Aplastic anemia is a syndrome of bone marrow failure characterized by peripheral pancytopenia and marrow hypoplasia. Although ... Incidence of aplastic anemia in Bangkok. The Aplastic Anemia Study Group. Blood. 1991 May 15. 77(10):2166-8. [QxMD MEDLINE Link ... Very rarely, aplastic anemia has been reported following vaccination. Case reports describe aplastic anemia-de novo or relapse- ... 28] In a study of 330 patients with aplastic anemia (235 acquired, 85 Fanconi anemia, and 10 Diamond-Blackfan anemia) who ...
Aplastic anemia is a condition that occurs when the body does not produce enough blood cells. ... aplastic anemia can occur at any age. It can occur suddenly or slowly, and get worse over time. Treatment for aplastic anemia ... doctors have difficulty identifying the cause of aplastic anemia. This condition is known as idiopathic aplastic anemia. ... In aplastic anemia, the bone marrow is classified as aplastic (which means it doesnt contain) or hypoplastic (which contains ...
Blood Disorder Anemia Blood Loss Aplastic Anemia Symptom NASET ... Blood Disorder Anemia Blood Loss Aplastic Anemia Symptom NASET ... Blood Disorder Anemia Blood Loss Aplastic Anemia Symptom NASET. Anemia Caused by Blood Loss. Blood loss can also cause anemia ... Aplastic anemia. Aplastic anemia occurs when the bone marrow is unable to produce sufficient numbers of blood cells. More often ... Anemia is a shortage of red blood cells in your blood. In sickle cell anemia, this shortage of red blood cells occurs because ...
The standards of care for aplastic anemia are allogeneic hematopoietic stem cell transplantation (HSCT) or immunosuppression ... Home/News/APLASTIC ANEMIA , Eltrombopag May Increase Complete Response Rate Among Pediatric Patients. News APLASTIC ANEMIA , ... Some pediatric patients with newly diagnosed acquired aplastic anemia may be more likely to have a complete response with ... The standards of care for aplastic anemia are allogeneic hematopoietic stem cell transplantation (HSCT) or immunosuppression ...
aplastic anemia and myelodysplasia association of canada donate today. *Home *. *aplastic anemia and myelodysplasia association ...
Aplastic anemia Archives - Ferrer Poirot Feller Daniel , Drug Injury Lawyers ... Search Results: Aplastic anemia. Tylenol Tylenol (acetaminophen) was once touted as one of the safest pain relievers to take ...
News stories and articles referencing severe aplastic anaemia (SAA) on European Pharmaceutical Review ... Therapy designation to Promacta for use in combination with standard immunosuppressive therapy for severe aplastic anaemia... ...
Your risk of aplastic anemia is higher if you: Have been exposed to toxins Have taken certain medicines or had radiation or ... People of all ages can develop aplastic anemia. However, its most common in adolescents, young adults, and the elderly. Men ... Aplastic anemia is a rare but serious blood disorder. ... Aplastic Anemia*What Causes Aplastic Anemia?. *Who is at Risk ... Aplastic anemia is a rare but serious blood disorder. People of all ages can develop aplastic anemia. However, its most common ...
... key factors driving the aplastic anemia market revenue growth is the rise in the frequency of blood disorders ... Aplastic Anemia Market Size, Share, Trends, Disease Type Outlook (Acquired Aplastic anemia, Inherited Aplastic Anemia), Disease ... of the global aplastic anemia market over the forecast period? The global aplastic anemia market revenue is expected to ... this could hinder revenue growth of the aplastic anemia market. The long-term treatment of aplastic anemia restraints the ...
Approximately 28%-33% of pediatric patients, who present with non-A-E fulminant liver hepatitis also develop aplastic anemia ... clinical presentation and treatment of acute liver failure and acquired aplastic anemia in children. They are both rare, but ... Approximately 28%-33% of pediatric patients, who present with non-A-E fulminant liver hepatitis also develop aplastic anemia ... The review presents etiopathogenesis, clinical presentation and treatment of acute liver failure and acquired aplastic anemia ...
Severe aplastic anemia (SAA) is a subset of AA defined by a more severe phenotype. Although the immunological nature of SAA ... Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral ... iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. ... iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell ...
Short-limbed dwarfism with bowing, combined immune deficiency, and late onset aplastic anaemia caused by novel mutations in the ... Short-limbed dwarfism with bowing, combined immune deficiency, and late onset aplastic anaemia caused by novel mutations in the ...
Aplastic anemia is a rare bone marrow failure (BMF) syndrome which has fatal consequences for patients if left undiagnosed. ... It highlights key clinical and family history elements for patients with aplastic anemia, as well as testing necessary in ...
  • These are the factors that are contributing to driving revenue growth of the global aplastic anemia treatment market. (reportsanddata.com)
  • The FDA has granted Breakthrough Therapy designation to Promacta for use in combination with standard immunosuppressive therapy for severe aplastic anaemia. (europeanpharmaceuticalreview.com)
  • Predicting response to immunosuppressive therapy and survival in severe aplastic anaemia. (springermedizin.at)
  • European Group for Blood and Marrow Transplantation Severe Aplastic Anaemia Working Party. (springermedizin.at)
  • McCormack PL. Eltrombopag: a review of its use in patients with severe aplastic anaemia. (medscape.com)
  • Who is more likely to develop aplastic anemia or MDS? (nih.gov)
  • People of all ages can develop aplastic anemia. (hoacny.com)
  • Approximately 28%-33% of pediatric patients, who present with non-A-E fulminant liver hepatitis also develop aplastic anemia either before or shortly after liver transplantation. (medscimonit.com)
  • In this case, the disorder is called idiopathic aplastic anemia. (medlineplus.gov)
  • This condition is known as idiopathic aplastic anemia. (hostandcare.com)
  • Is the early cyclosporine a level predictive of the outcome of immunosuppressive therapy in severe aplastic anemia? (springermedizin.at)
  • Effectiveness of immunosuppressive therapy in older patients with aplastic anemia. (springermedizin.at)
  • Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppressive therapy--The European Group for Blood and Marrow Transplantation experience. (medscape.com)
  • PROMACTA is a prescription medicine used to treat people with severe aplastic anemia (SAA) in combination with standard immunosuppressive therapy as the first treatment for adults and children 2 years of age and older. (promacta.com)
  • Decision analysis of allogeneic bone marrow transplantation versus immunosuppressive therapy for young adult patients with aplastic anemia. (bvsalud.org)
  • Aplastic anemia causes a deficiency of all blood cell types: red blood cells, white blood cells, and platelets. (wikipedia.org)
  • Aplastic anemia is a disorder in which the cells of the bone marrow that develop into mature blood cells are damaged, leading to low numbers of red blood cells, white blood cells, and/or platelets. (merckmanuals.com)
  • Aplastic anemia is a rare but serious blood disorder characterized by the bone marrow's inability to produce sufficient new blood cells, including red blood cells, white blood cells, and platelets. (yalemedicine.org)
  • Typically, anemia refers to low red blood cell counts, but aplastic anemia patients have lower counts of all three blood cell types: red blood cells, white blood cells, and platelets, termed pancytopenia. (webdicine.com)
  • In aplastic anemia, the patient has pancytopenia (i.e., also leukopenia and thrombocytopenia) resulting in a decrease of all formed elements. (wikipedia.org)
  • Aplastic anemia is a syndrome of bone marrow failure characterized by peripheral pancytopenia and marrow hypoplasia (see the image below). (medscape.com)
  • Aplastic anemia (AA) is a hematopoietic stem cell disorder characterized by pancytopenia and hypocellular bone marrow. (haematologica.org)
  • Aplastic Anemia (AA) is a bone marrow failure (BMF) disorder, resulting in bone marrow hypocellularity and peripheral pancytopenia. (duke.edu)
  • Acquired aplastic anemia (AA) is a rare heterogeneous disease characterized by pancytopenia and hypoplastic bone marrow. (pedemmorsels.com)
  • [ 6 ] The Pediatric Haemato-Oncology Italian Association has issued guidelines on diagnosis and management of acquired aplastic anemia in childhood. (medscape.com)
  • Zurück zum Zitat Marsh J, Ball S, Cavenagh J. Guidelines for the diagnosis and management of aplastic anaemia. (springermedizin.at)
  • Guidelines for the diagnosis and management of adult aplastic anaemia. (medscape.com)
  • Diagnosis and management of acquired aplastic anemia in childhood. (medscape.com)
  • The global aplastic anemia market size is expected to register a steady revenue CAGR during the forecast period. (reportsanddata.com)
  • An increase in the prevalence of blood disorders is anticipated to drive the global aplastic anemia market. (verifiedmarketresearch.com)
  • Mild cases of aplastic anemia that do not have symptoms may not require treatment. (medlineplus.gov)
  • According to NORD, in Europe and Israel, there are two new cases of aplastic anemia per million persons each year. (reportsanddata.com)
  • Although some sources claim that between 500 and 1,000 new cases of aplastic anemia are discovered every year, the precise incidence rates for the U.S. remain unknown. (reportsanddata.com)
  • A bone marrow transplant, also referred to as a stem cell transplant, is typically required in those with severe aplastic anemia or cases of aplastic anemia that do not respond to other forms of treatment. (internal-medicine-centers.com)
  • The doctor can suspect the presence of aplastic anemia if the three types of blood cells have very low numbers. (hostandcare.com)
  • Exposure to ionizing radiation from radioactive materials or radiation-producing devices is also associated with the development of aplastic anemia. (wikipedia.org)
  • Other viruses that have been linked to the development of aplastic anemia include hepatitis, Epstein-Barr, cytomegalovirus, and HIV. (wikipedia.org)
  • Viral infections that affect the bone marrow can also play a role in the development of aplastic anemia in some people. (hostandcare.com)
  • However, with COVID-19, the supply chain of raw material required to manufacture drugs to treat aplastic anemia has been disrupted in many countries. (alliedmarketresearch.com)
  • There are several tests which can assist in diagnosing aplastic anemia and determining its severity and/or cause. (internal-medicine-centers.com)
  • In aplastic anemia, the bone marrow is classified as aplastic (which means it doesn't contain) or hypoplastic (which contains only a few cells). (hostandcare.com)
  • Hypoplastic or aplastic anemias are total or partial inhibition of hemopoietic processes. (poznayka.org)
  • Aplastic and hypoplastic anemias can occur at destruction of the bone marrow by cancer metastases. (poznayka.org)
  • When damage to the bone marrow occurs, it is unable to produce new stem cells-a condition referred to as aplastic anemia or bone marrow aplasia. (internal-medicine-centers.com)
  • The survey was requested on behalf of approximately 500 workers because of a possible relationship between a fatal case of aplastic anemia and exposure to DGME. (cdc.gov)
  • First-line treatment for aplastic anemia consists of immunosuppressive drugs-typically either anti-lymphocyte globulin or anti-thymocyte globulin-combined with corticosteroids, chemotherapy, and ciclosporin. (wikipedia.org)
  • Medical therapy of aplastic anemia often includes a short course of anti-thymocyte globulin (ATG) or anti-lymphocyte globulin (ALG) and several months of treatment with cyclosporin to modulate the immune system. (webdicine.com)
  • The clinical presentation of patients with aplastic anemia includes signs and symptoms related to the decrease in bone marrow production of hematopoietic cells. (medscape.com)
  • Symptoms of aplastic anemia usually develop slowly over weeks to months. (merckmanuals.com)
  • Blood tests are done in people who have symptoms of anemia. (merckmanuals.com)
  • Blood transfusions can be done to control bleeding and treat symptoms of anemia . (hostandcare.com)
  • For those with more severe aplastic anemia, medical treatment can prevent complications and alleviate symptoms. (internal-medicine-centers.com)
  • While not a cure for the condition, a blood transfusion is a safe way to help alleviate aplastic anemia symptoms due to low blood counts. (internal-medicine-centers.com)
  • Anemia can lead to symptoms including fatigue, shortness of breath, and lightheadedness. (medicalnewstoday.com)
  • In this article, we explain the types, symptoms, and causes of anemia, as well as the treatments available. (medicalnewstoday.com)
  • Some people with mild anemia may experience few or no symptoms. (medicalnewstoday.com)
  • There are many forms of anemia, and each type has telltale symptoms. (medicalnewstoday.com)
  • What are some of the common symptoms of severe aplastic anemia? (promacta.com)
  • The onset is insidious, and the initial clinical manifestation is frequently related to anemia or bleeding, although fever or infections may be noted at presentation. (medscape.com)
  • Aplastic anemia: pathogenesis, clinical manifestations, and diagnosis. (nih.gov)
  • Design and Methods Twenty patients with severe aplastic anemia treated with rabbit anti-thymocyte globulin were compared to 67 historical control cases with matched clinical characteristics treated with horse anti-thymocyte globulin. (haematologica.org)
  • The aplastic anemia market has experienced significant expansion as a result of expanding R&D activities and more clinical trials for treatment of aplastic anemia are being done. (reportsanddata.com)
  • Acute liver failure and acquired aplastic anaemia in children - life - threatening clinical entities of common etiopathogenesis? (medscimonit.com)
  • The review presents etiopathogenesis, clinical presentation and treatment of acute liver failure and acquired aplastic anemia in children. (medscimonit.com)
  • It highlights key clinical and family history elements for patients with aplastic anemia, as well as testing necessary in differential diagnosis to determine the etiology of the disease. (francefoundation.com)
  • We analyzed the clinical course and outcome in 50 patients (27 males, 23 females) suffering from aplastic anemia (AA), treated in our department between 1987 and 2007. (springermedizin.at)
  • A comparison clinical study of two aplastic anemia treatments found that ATGAM, currently the only licensed aplastic anemia drug in the United States, improved blood cell counts and survival significantly more than Thymoglobulin, a similar but reportedly more potent treatment. (nih.gov)
  • Clinical and laboratory observations suggest that acquired aplastic anemia is an autoimmune disease. (medscape.com)
  • When speaking about anemia we only emphasize the main syndrome (anemic) which determines clinical manifestations. (poznayka.org)
  • We constructed a Markov model to simulate the 10-year clinical course of patients aged 21-40 years with newly diagnosed severe aplastic anemia . (bvsalud.org)
  • Anemia may lead to fatigue, pale skin, severe bruising, and a fast heart rate. (wikipedia.org)
  • The anemia causes fatigue, weakness, and paleness. (merckmanuals.com)
  • Aplastic anemia can cause a person to experience excessive fatigue with a higher risk of infection and uncontrolled bleeding. (hostandcare.com)
  • The most common symptom of anemia is fatigue . (medicalnewstoday.com)
  • Mutations in TERC, the gene for the RNA component of telomerase, cause short telomeres in congenital aplastic anemia and in some cases of apparently acquired hematopoietic failure. (nih.gov)
  • The standards of care for aplastic anemia are allogeneic hematopoietic stem cell transplantation (HSCT) or immunosuppression with horse antithymocyte globulin and cyclosporine. (thalassaemia.org.cy)
  • Acquired aplastic anemia (AA) is caused by autoreactive T cell-mediated destruction of early hematopoietic cells. (jci.org)
  • The hematopoietic defect in aplastic anemia assessed by long-term marrow culture. (medscape.com)
  • Aplastic Anemia" = tri-lineage peripheral blood cytopenia due to reduced or absent production of hematopoietic cells without cellular infiltration . (pedemmorsels.com)
  • Survival in severe aplastic anemia (SAA) has markedly improved in the past 2 decades because of advances in hematopoietic stem cell transplantation, immunosuppressive and biologic drugs, and supportive care. (pedemmorsels.com)
  • Any hypo- and aplastic anemia is accompanied by leukoand thrombocytopenia. (poznayka.org)
  • Aplastic anemia is present in up to 2% of patients with acute viral hepatitis. (wikipedia.org)
  • Implants in patients with anemia? (medworm.com)
  • Have any of you installed implants in patients with well controlled, aplastic anemia or hemolytic anemia? (medworm.com)
  • The strategy was tested in patients with genetic diseases associated with mutations in the gene that codes for telomerase, such as aplastic anemia and pulmonary fibrosis. (medworm.com)
  • Background A combination of horse anti-thymocyte globulin and cyclosporine produces responses in 60-70% of patients with severe aplastic anemia. (haematologica.org)
  • The guideline emphasises the importance at the diagnostic stage of considering and testing for inherited bone marrow failure syndromes such as Fanconis anaemia and dyskeratosis congenita, as it is increasingly recognised that patients may present in adulthood with few or no somatic features. (b-s-h.org.uk)
  • Some pediatric patients with newly diagnosed acquired aplastic anemia may be more likely to have a complete response with immunosuppressive treatment combined with eltrombopag (ELTR) compared with immunosuppression alone, according to research published in Blood Advances . (thalassaemia.org.cy)
  • For this randomized phase 2 study, researchers compared the safety and efficacy of immunosuppression plus ELTR vs immunosuppression alone among pediatric patients with newly diagnosed severe or very severe aplastic anemia. (thalassaemia.org.cy)
  • About one-third of patients on immunosuppressive medications do not benefit from treatment of a plastic anemia and stem cell transplantation became an option for treatment in some circumstances, this could hinder revenue growth of the aplastic anemia market. (reportsanddata.com)
  • The long-term treatment of aplastic anemia restraints the market as the patients cannot stick to the treatment regime for so long. (reportsanddata.com)
  • Colony-stimulating factor (CSF) was partially purified from urine of patients with aplastic anemia using DEAE-cellulose and concanavalin A-Sepharose. (eurekamag.com)
  • With increase in awareness patients can seek necessary treatments and therapies that can help their conditions with aplastic anemia get better. (alliedmarketresearch.com)
  • Novartis AG also received approval for Revolade, which is used for aplastic anemia treatment in adult patients. (alliedmarketresearch.com)
  • 10-33% of all patients develop the rare disease paroxysmal nocturnal hemoglobinuria (PNH, anemia with thrombopenia and/or thrombosis), which has been explained as an escape mechanism by the bone marrow against destruction by the immune system. (webdicine.com)
  • Liu H, Mihara K, Kimura A, Tanaka K, Kamada N. Induction of apoptosis in CD34+ cells by sera from patients with aplastic anemia. (medscape.com)
  • T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. (medscape.com)
  • BMT and IST produced similar QALY for young patients with severe aplastic anemia . (bvsalud.org)
  • Fundal height of the uterus marrow of patients with aplastic anaemia corresponded with the period of gestation. (who.int)
  • Recalibrate Podcast- Episode 4, Connor and Rachel, who's son Max was diagnosed with Aplastic Anaemia, speak to Dr James Somauroo about the challenges of managing their son's care and treatment amidst a pandemic. (theaat.org.uk)
  • is the usual treatment in aplastic anemia because it may cure the disease, especially in younger people who have a matched stem cell donor. (merckmanuals.com)
  • Conclusions Despite reports suggesting differences in biological activity of different anti-thymocyte globulin preparations, rabbit and horse anti-thymocyte globulin appear to have a similar efficacy for up-front treatment of severe aplastic anemia. (haematologica.org)
  • Pragmatic definitions are provided for treatment responses and outcomes and finally there are separate concise sections on management in pregnancy , of the more frail and elderly patient and the relationship between paroxysmal nocturnal haemoglobinuria and aplastic anaemia at diagnosis and more generally. (b-s-h.org.uk)
  • Treatment for aplastic anemia may include medication, blood transfusions, or a stem cell transplant, also known as a bone marrow transplant. (hostandcare.com)
  • Treatment for aplastic anemia includes observation for mild cases, blood transfusions, and treatment for moderate cases, or bone marrow transplantation which is considered severe. (hostandcare.com)
  • Severe aplastic anemia, in which the blood cell count is dangerously low, can be life-threatening and requires immediate hospital treatment. (hostandcare.com)
  • Blood transfusions are not a treatment that cures aplastic anemia. (hostandcare.com)
  • On the other side, it is anticipated that the high cost of aplastic anemia treatment will restrain market expansion. (reportsanddata.com)
  • Along with the medication therapy, other procedures are also available as a treatment option for aplastic anemia, which is impeding revenue growth of the aplastic anemia treatment market. (reportsanddata.com)
  • Zurück zum Zitat Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. (springermedizin.at)
  • Zurück zum Zitat Füreder W, Valent P. Treatment of refractory or relapsed acquired aplastic anemia: review of established and experimental approaches. (springermedizin.at)
  • Thus, the high cost of the treatment is likely to hamper the growth of the aplastic anemia treatment market. (verifiedmarketresearch.com)
  • Treatment of aplastic anemia often includes medications, blood transfusions, or stem cell transplants, also called bone marrow transplant. (alliedmarketresearch.com)
  • In addition, the market growth for aplastic anemia treatment is also declining as manufacturers of these drugs have slowed down their production, owing to the pandemic. (alliedmarketresearch.com)
  • This, in turn, is expected to have a significant impact on the aplastic anemia treatment market. (alliedmarketresearch.com)
  • Increase in prevalence of blood disorders across the globe is anticipated to positively influence the global aplastic anemia treatment market during the forecast period. (alliedmarketresearch.com)
  • With a rise in population and increase in disposable income in developed nations, consumers tend to have better purchasing power, owing to which they can invest in best treatment options for aplastic anemia. (alliedmarketresearch.com)
  • This, in turn, is expected to propel the aplastic anemia treatment market growth. (alliedmarketresearch.com)
  • High cost of treatment options for aplastic anemia hinders growth of the aplastic anemia treatment market in developing nations. (alliedmarketresearch.com)
  • In November 2018, the Food and Drug Administration (FDA) approved Promacta, which is the first-line treatment for aplastic anemia. (alliedmarketresearch.com)
  • To schedule a consultation with a healthcare practitioner in Hackensack who specializes in aplastic anemia treatment , call (201) 806-6099 or contact Medwell Orthopedics & Functional Medicine for Men & Women online . (internal-medicine-centers.com)
  • People with mild to moderate aplastic anemia may not require treatment as long as the condition is monitored continually and does not worsen. (internal-medicine-centers.com)
  • Miano M, Dufour C. The diagnosis and treatment of aplastic anemia: a review. (medscape.com)
  • Treatment of aplastic anemia with antilymphocyte globulin and methylprednisolone with or without cyclosporine. (medscape.com)
  • Severe Seronegative Hepatitis-associated Aplastic Anemia: Looking for the Best Treatment. (ucdenver.edu)
  • The diagnosis, evaluation, and treatment of aplastic anemia varies between institutions. (pedemmorsels.com)
  • You can read about ATG treatment for aplastic anemia here. (andersabrahamsson.org)
  • https://en.m.wikipedia.org/wiki/Aplastic_anemia Next week they will start with ATG treatment, and start to look after a donor of stem cells for a bone marrow transplant. (andersabrahamsson.org)
  • However, it was not until 1904 that Anatole Chauffard named this disorder aplastic anemia. (medscape.com)
  • When Nancy was four, she developed a seizure disorder and, subsequently, aplastic anemia (from the seizure medications). (bmtinfonet.org)
  • Aplastic anemia is a rare but serious blood disorder. (hoacny.com)
  • Acquired Aplastic Anemia is a rare, serious blood disorder, which is characterized by failure of the bone marrow and its inability to produce blood cells. (verifiedmarketresearch.com)
  • Acquired Aplastic Anemia and inherit aplastic anemia Acquired Aplastic Anemia is more common, and sometimes it's only temporary whereas, it is a rare disorder as compared to inherit aplastic anemia. (verifiedmarketresearch.com)
  • Aplastic Anaemia is a blood disorder in which the body's bone marrow does not make enough new blood cells. (kidscancercentre.com)
  • Although the anemia is often normocytic, mild macrocytosis can also be observed in association with stress erythropoiesis and elevated fetal hemoglobin levels. (medscape.com)
  • Aplastic anemia can range from mild to severe. (bethematch.org)
  • Autoimmune hemolytic anemia, the immune system mistakes red blood cells for foreign invaders and begins destroying them. (naset.org)
  • Common forms of inherited hemolytic anemia include sickle cell anemia, thalassemia, and glucose-6-phosphate dehydrogenase deficiency. (naset.org)
  • Learn more about hemolytic anemia. (medicalnewstoday.com)
  • Therefore, there are two groups of hemolytic anemias: erythrocyte and extra-erythrocyte. (poznayka.org)
  • Hemolytic anemias due to extravascular hemolysis are congenital, hereditary conditions. (poznayka.org)
  • Normal bone marrow has 30-70% blood stem cells, but in aplastic anemia, these cells are mostly gone and are replaced by fat. (wikipedia.org)
  • Aplastic anemia results from damage to the blood stem cells. (medlineplus.gov)
  • In aplastic anemia, many of your bone marrow's stem cells are injured or destroyed. (nih.gov)
  • Hematopoiesis support of mesenchymal stem cells in children with aplastic anemia]. (medscape.com)
  • Aplastic anemia, for example, occurs when few or no stem cells are present in the marrow. (medicalnewstoday.com)
  • The standard conditioning for Stem Cell Transplant in Aplastic Anaemia is Cyclophosphamide 50 mg/kg/day for 4 days and ATG . (streamliners.co.nz)
  • Aplastic anemia and related bone marrow failure states. (medlineplus.gov)
  • Paul Ehrlich introduced the concept of aplastic anemia in 1888 when he reported the case of a pregnant woman who died of bone marrow failure. (medscape.com)
  • Aplastic anemia and MDS are types of bone marrow failure. (nih.gov)
  • This bone marrow failure is called aplastic anemia. (merckmanuals.com)
  • AAMAC funds research into bone marrow failure diseases such as aplastic anemia, PNH and MDS. (aamac.ca)
  • The three conditions most commonly included in the differential diagnosis of aplastic anemia are inherited marrow-failure syndromes, paroxysmal nocturnal hemoglobinuria, and myelodysplastic syndrome (MDS). (medscape.com)
  • Hepatitis-associated aplastic anemia presenting as a familial bone marrow failure syndrome. (medscape.com)
  • We performed a phase II study of rabbit anti-thymocyte globulin and cyclosporine as first-line therapy for severe aplastic anemia. (haematologica.org)
  • Some medications, such as those used to treat rheumatoid arthritis or certain antibiotic treatments, can cause aplastic anemia. (hostandcare.com)
  • Moreover, population suffering from aplastic anemia is inclining toward treatments by targeted medications rather than transplantation s. (reportsanddata.com)
  • Aplastic anemia is a condition that occurs when the body does not produce enough blood cells. (hostandcare.com)
  • Anemia also occurs when the body isn't able to produce enough healthy red blood cells. (naset.org)
  • Aplastic anemia occurs when the body stops producing enough new blood cells. (alliedmarketresearch.com)
  • More often, aplastic anemia is caused by a virus infection or exposure to certain toxic chemicals, radiation, or medications, such as antibiotics, antiseizure medications, or cancer medications. (naset.org)
  • Immunosuppressants are often used when aplastic anemia is driven by an autoimmune disease to prevent the immune system from attacking the bone marrow. (internal-medicine-centers.com)
  • Treating immune-mediated aplastic anemia involves suppression of the immune system, an effect achieved by daily medicine intake, or, in more severe cases, a bone marrow transplant, a potential cure. (webdicine.com)
  • Nakao S. Immune mechanism of aplastic anemia. (medscape.com)
  • We investigated whether mutations in genes for other components of telomerase also occur in aplastic anemia. (nih.gov)
  • As a rare and serious condition, aplastic anemia can occur at any age. (hostandcare.com)
  • Aplastic anemia can happen slowly and worsen over time or occur suddenly. (alliedmarketresearch.com)
  • Chronic diseases of other organs can result in anemia. (naset.org)
  • If you experience signs of aplastic anemia , it is imperative to seek the guidance of a healthcare professional. (internal-medicine-centers.com)
  • This group of anemias is characterized by three signs: jaundice, splenomegaly, anemia. (poznayka.org)
  • Acquired aplastic anemia is a T-cell mediated autoimmune disease, in which regulatory T cells are decreased and T-bet, a transcription factor and key regulator of Th1 development and function, is upregulated in affected T-cells. (wikipedia.org)
  • Aplastic anemia: evidence for dysfunctional bone marrow progenitor cells and the corrective effect of granulocyte colony-stimulating factor in vitro. (medscape.com)
  • The results of coexpression of wild-type TERT and TERT with aplastic anemia-associated mutations in a telomerase-deficient cell line suggested that haploinsufficiency was the mechanism of telomere shortening due to TERT mutations. (nih.gov)
  • Centre from the West Bank of Jordan with ed in the literature and most of them had the diagnosis of aplastic anaemia at 25 unsuccessful pregnancies [ 4 , 5 ]. (who.int)
  • Gonzalez-Casas R, Garcia-Buey L, Jones EA, Gisbert JP, Moreno-Otero R. Systematic review: hepatitis-associated aplastic anaemia--a syndrome associated with abnormal immunological function. (medscape.com)
  • Dyskeratosis congenita and Schwachmai-Diamond Syndrome also cause aplastic anemia. (pedemmorsels.com)
  • The Acquired Aplastic Anemia market size growth is majorly attributed to the increasing prevalence of blood disorders, raising funding, healthcare insurance coverage, and awareness programs for blood disorders. (verifiedmarketresearch.com)
  • Aplastic anemia must be differentiated from pure red cell aplasia. (wikipedia.org)
  • The condition, per its name, involves both aplasia and anemia. (webdicine.com)
  • Aplastic anemia disease comes from the term aplasia , which means that there is a failure of formation or generation. (homenaturalcures.com)
  • Aplastic anemia is also sometimes associated with exposure to toxins such as benzene or with the use of certain drugs, including chloramphenicol, carbamazepine, felbamate, phenytoin, quinine, and phenylbutazone. (wikipedia.org)
  • When you suffer from aplastic anemia disease , then you should not be afraid to ask your doctor for any problem or symptom that you have. (homenaturalcures.com)