Western immunoblot analysis of the antigens of Haemobartonella felis with sera from experimentally infected cats.
(1/33)
Cats were experimentally infected with a Florida isolate of Haemobartonella felis in order to collect organisms and evaluate the immune response to H. felis. Cryopreserved organisms were thawed and injected intravenously into nonsplenectomized and splenectomized cats. Splenectomized animals were given 10 mg of methylprednisolone per ml at the time of inoculation. Blood films were evaluated daily for 1 week prior to infection and for up to 60 days postinfection (p. i.). Blood for H. felis purification was repeatedly collected from splenectomized animals at periods of peak parasitemias. Organisms were purified from infected blood by differential centrifugation, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes for immunoblot analysis. Serum was collected from nonsplenectomized animals prior to and for up to 60 days p.i. and was used on immunoblots to identify antigens. The combination of splenectomy and corticosteroid treatment resulted in marked, cyclic parasitemias without concurrent severe anemia, providing an opportunity to harvest organisms in a manner that was not lethal to the animals. Several antigens (150, 52, 47, 45, and 14 kDa) were identified. An antigen with a molecular mass of approximately 14 kDa appeared to be one of the most immunodominant and was consistently recognized by immune sera collected at various times during the course of infection. These data suggest that one or more of these antigens might be useful for the serologic diagnosis of H. felis infections in cats. (
+info)
Development and evaluation of a polymerase chain reaction assay using the 16S rRNA gene for detection of Eperythrozoon suis infection.
(2/33)
The 16S ribosomal RNA (rRNA) gene of Eperythrozoon suis was amplified using gene-specific primers developed from GenBank sequence accession U88565. The gene was subsequently cloned and sequenced. Based on these sequence data, 3 sets of E. suis-specific primers were designed. These primers selectively amplified 1394, 690, and 839 base-pair (bp) fragments of the 16S rRNA gene from DNA of E. suis extracted from the blood of an experimentally infected pig during a parasitemic episode. No polymerase chain reaction (PCR) products were amplified from purified DNA of Haemobartonella felis, Mycoplasma genitalium, or Bartonella bacilliformis using 2 of these primer sets. When the primer set amplifying the 690-bp fragment was used, faint bands were observed with H. felis as the target DNA. No PCR products were amplified from DNA that had been extracted from the blood of a noninfected pig or using PCR reagents without target DNA. The detection limits for E. suis by competitive quantitative PCR were estimated to range from 57 and 800 organisms/assay. This is the first report of the utility of PCR-facilitated diagnosis and quantitation of E. suis based on the 16S rRNA gene. The PCR method developed will be useful in monitoring the progression and significance of E. suis in the disease process in the pig. (
+info)
Specific in situ hybridization of Haemobartonella felis with a DNA probe and tyramide signal amplification.
(3/33)
Haemobartonella felis is an epierythrocytic bacterium suspected to be the causative agent of feline infectious anemia. Previous studies with a polymerase chain reaction assay have identified a mycoplasmal 16S rRNA gene sequence that coincides with clinical disease and the presence of organisms in the blood. Tissues from a cat experimentally infected with H. felis were used for in situ hybridization studies to physically link this 16S rRNA gene to the organisms on the red cells. A biotin-labeled probe was used in conjunction with tyramide signal amplification to visualize the hybridization signal. This study clearly demonstrates a specific hybridization signal on the red cells in the tissues of the H. felis-infected cat. This in situ hybridization study is the final step in fulfilling the molecular guidelines for disease causation and proves that H. felis, a mycoplasmal organism, is the causative agent of feline infectious anemia. (
+info)
Proposal to transfer some members of the genera Haemobartonella and Eperythrozoon to the genus Mycoplasma with descriptions of 'Candidatus Mycoplasma haemofelis', 'Candidatus Mycoplasma haemomuris', 'Candidatus Mycoplasma haemosuis' and 'Candidatus Mycoplasma wenyonii'.
(4/33)
Cell-wall-less uncultivated parasitic bacteria that attach to the surface of host erythrocytes currently are classified in the order Rickettsiales, family Anaplasmataceae, in the genera Haemobartonella and Eperythrozoon. Recently 16S rRNA gene sequences have been determined for four of these species: Haemobartonella felis and Haemobartonella muris and Eperythrozoon suis and Eperythrozoon wenyonii. Phylogenetic analysis of these sequence data shows that these haemotrophic bacteria are closely related to species in the genus Mycoplasma (class Mollicutes). These haemotrophic bacteria form a new phylogenetic cluster within the so-called pneumoniae group of Mycoplasma and share properties with one another as well as with other members of the pneumoniae group. These studies clearly indicate that the classification of these taxa should be changed to reflect their phylogenetic affiliation and the following is proposed: (i) that Haemobartonella felis and Haemobartonella muris should be transferred to the genus Mycoplasma as 'Candidatus Mycoplasma haemofelis' and 'Candidatus Mycoplasma haemomuris' and (ii) that Eperythrozoon suis and Eperythrozoon wenyonii should be transferred to the genus Mycoplasma as 'Candidatus Mycoplasma haemosuis' and 'Candidatus Mycoplasma wenyonii'. The former Haemobartonella and Eperythrozoon species described here represent a new group of parasitic mycoplasmas that possess a pathogenic capacity previously unrecognized among the mollicutes. These haemotrophic mycoplasmas have been given the trivial name haemoplasmas. These results call into question the affiliation of the remaining officially named species of Haemobartonella and Eperythrozoon which should be considered species of uncertain affiliation pending the resolution of their phylogenetic status. (
+info)
Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African ticks.
(5/33)
Rickettsia africae, a recently identified pathogen, was detected for the first time in Amblyomma ticks from Niger, Mali, Burundi, and Sudan, and "R. mongolotimonae" was identified for the first time in Africa. Rickettsiae of unknown pathogenicity and two new ehrlichiae of the Ehrlichia canis group were identified in ticks from Mali and Niger. (
+info)
Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila.
(6/33)
The genera Anaplasma, Ehrlichia, Cowdria, Neorickettsia and Wolbachia encompass a group of obligate intracellular bacteria that reside in vacuoles of eukaryotic cells and were previously placed in taxa based upon morphological, ecological, epidemiological and clinical characteristics. Recent genetic analyses of 16S rRNA genes, groESL and surface protein genes have indicated that the existing taxa designations are flawed. All 16S rRNA gene and groESL sequences deposited in GenBank prior to 2000 and selected sequences deposited thereafter were aligned and phylogenetic trees and bootstrap values were calculated using the neighbour-joining method and compared with trees generated with maximum-probability, maximum-likelihood, majority-rule consensus and parsimony methods. Supported by bootstrap probabilities of at least 54%, 16S rRNA gene comparisons consistently clustered to yield four distinct clades characterized roughly as Anaplasma (including the Ehrlichia phagocytophila group, Ehrlichia platys and Ehrlichia bovis) with a minimum of 96.1% similarity, Ehrlichia (including Cowdria ruminantium) with a minimum of 97.7% similarity, Wolbachia with a minimum of 95.6% similarity and Neorickettsia (including Ehrlichia sennetsu and Ehrlichia risticii) with a minimum of 94.9% similarity. Maximum similarity between clades ranged from 87.1 to 94.9%. Insufficient differences existed among E. phagocytophila, Ehrlichia equi and the human granulocytic ehrlichiosis (HGE) agent to support separate species designations, and this group was at least 98.2% similar to any Anaplasma species. These 16S rRNA gene analyses are strongly supported by similar groESL clades, as well as biological and antigenic characteristics. It is proposed that all members of the tribes Ehrlichieae and Wolbachieae be transferred to the family Anaplasmataceae and that the tribe structure of the family Rickettsiaceae be eliminated. The genus Anaplasma should be emended to include Anaplasma (Ehrlichia) phagocytophila comb. nov. (which also encompasses the former E. equi and the HGE agent), Anaplasma (Ehrlichia) bovis comb. nov. and Anaplasma (Ehrlichia) platys comb. nov., the genus Ehrlichia should be emended to include Ehrlichia (Cowdria) ruminantium comb. nov. and the genus Neorickettsia should be emended to include Neorickettsia (Ehrlichia) risticii comb. nov. and Neorickettsia (Ehrlichia) sennetsu comb. nov. (
+info)
Infection exclusion of the rickettsial pathogen anaplasma marginale in the tick vector Dermacentor variabilis.
(7/33)
Anaplasma marginale is a tick-borne, rickettsial cattle pathogen that is endemic in several areas of the United States. Recent studies (J. de la Fuente, J. C. Garcia-Garcia, E. F. Blouin, J. T. Saliki, and K. M. Kocan, Clin. Diagn. Lab. Immunol. 9:658-668, 2002) demonstrated that infection of cultured tick cells and bovine erythrocytes with one genotype of A. marginale excluded infection with other genotypes, a phenomenon referred to as infection exclusion. The present study was undertaken to confirm the phenomenon of infection exclusion of A. marginale genotypes in a tick vector, Dermacentor variabilis. Only one genotype of A. marginale (Virginia isolate) was detected by PCR in ticks that fed first on a calf infected with a Virginia isolate and second on a calf infected with an Oklahoma isolate. These studies demonstrate that infection exclusion of A. marginale genotypes also occurs in naturally infected ticks, as well as in cattle and cultured tick cells, and results in establishment of only one genotype per tick. (
+info)
Molecular characterization of Aegyptianella pullorum (Rickettsiales, Anaplasmataceae).
(8/33)
We sequenced the 16S rRNA and groEL genes of Aegyptianella pullorum, a small bacterium that infects and replicates only in avian red blood cells. A specific PCR test was developed to analyze A. pullorum DNA. Phylogenic analysis revealed A. pullorum is most closely related to Anaplasma spp. (
+info)