The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Amino acids that are not synthesized by the human body in amounts sufficient to carry out physiological functions. They are obtained from dietary foodstuffs.
Cellular proteins and protein complexes that transport amino acids across biological membranes.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
Amino acids containing an aromatic side chain.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
Amino acids which have a branched carbon chain.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
'Sulfur-containing amino acids' are a category of amino acids, the building blocks of proteins, that include methionine and cysteine, which contain sulfur atoms as part of their side chains, playing crucial roles in protein structure, enzyme function, and antioxidant defense.
The rate dynamics in chemical or physical systems.
Proteins prepared by recombinant DNA technology.
An essential branched-chain amino acid important for hemoglobin formation.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The sum of the weight of all the atoms in a molecule.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Proteins found in any species of bacterium.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
Established cell cultures that have the potential to propagate indefinitely.
The relationships of groups of organisms as reflected by their genetic makeup.
A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The functional hereditary units of BACTERIA.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Amino acid transporter systems capable of transporting basic amino acids (AMINO ACIDS, BASIC).
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
Amino acids with side chains that are positively charged at physiological pH.
An essential amino acid. It is often added to animal feed.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Transport proteins that carry specific substances in the blood or across cell membranes.
A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE).
Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
Diamino acids are a type of modified amino acids containing two amino groups, which can be found in various biological molecules and play important roles in various cellular processes, such as nitrogen fixation and protein synthesis.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
Endogenous amino acids released by neurons as excitatory neurotransmitters. Glutamic acid is the most common excitatory neurotransmitter in the brain. Aspartic acid has been regarded as an excitatory transmitter for many years, but the extent of its role as a transmitter is unclear.
A sulfur-containing essential L-amino acid that is important in many body functions.
An essential amino acid that is physiologically active in the L-form.
One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Deletion of sequences of nucleic acids from the genetic material of an individual.
A multistage process that includes the determination of a sequence (protein, carbohydrate, etc.), its fragmentation and analysis, and the interpretation of the resulting sequence information.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons.
An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A sodium-dependent neutral amino acid transporter that accounts for most of the sodium-dependent neutral amino acid uptake by mammalian cells. The preferred substrates for this transporter system include ALANINE; SERINE; and GLUTAMINE.
Amino acids with uncharged R groups or side chains.
A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.
Proteins found in any species of virus.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
Cell surface proteins that bind amino acids and trigger changes which influence the behavior of cells. Glutamate receptors are the most common receptors for fast excitatory synaptic transmission in the vertebrate central nervous system, and GAMMA-AMINOBUTYRIC ACID and glycine receptors are the most common receptors for fast inhibition.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Sites on an antigen that interact with specific antibodies.
Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The process of cleaving a chemical compound by the addition of a molecule of water.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification, such as cleavage, to produce the active functional protein or peptide hormone.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side.
Amino acid sequences found in transported proteins that selectively guide the distribution of the proteins to specific cellular compartments.
A class of amino acids characterized by a closed ring structure.
A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS.
Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins.
A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.
A sequential pattern of amino acids occurring more than once in the same protein sequence.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases.
A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS.
Proteins found in any species of fungus.
Biochemical identification of mutational changes in a nucleotide sequence.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Proteins obtained from ESCHERICHIA COLI.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
Any method used for determining the location of and relative distances between genes on a chromosome.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A CD98 antigen light chain that when heterodimerized with CD98 antigen heavy chain (ANTIGENS, CD98 HEAVY CHAIN) forms a protein that mediates sodium-independent L-type amino acid transport.
The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat.
Genotypic differences observed among individuals in a population.
Peptides composed of between two and twelve amino acids.
The functional hereditary units of FUNGI.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin.
A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine.
Amino acids with side chains that are negatively charged at physiological pH.
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.
The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species.
The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON).
A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
The functional hereditary units of VIRUSES.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
An essential amino acid that is required for the production of HISTAMINE.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
A high-affinity, low capacity system y+ amino acid transporter found ubiquitously. It has specificity for the transport of ARGININE; LYSINE; and ORNITHINE. It may also act as an ecotropic leukemia retroviral receptor.
Enzymes that catalyze either the racemization or epimerization of chiral centers within amino acids or derivatives. EC 5.1.1.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
Antibodies produced by a single clone of cells.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.
Peptides composed of two amino acid units.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Elements of limited time intervals, contributing to particular results or situations.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.

Pathogenesis of cancrum oris (noma): confounding interactions of malnutrition with infection. (1/363)

This study showed that impoverished Nigerian children at risk for cancrum oris (noma) had significantly reduced plasma concentrations of zinc (< 10.8 micromol/L), retinol (< 1.05 micromol/L), ascorbate (< 11 micromol/L), and the essential amino acids, with prominently increased plasma and saliva levels of free cortisol, compared with their healthy counterparts. The nutrient deficiencies, in concert with previously reported widespread viral infections (measles, herpesviruses) in the children, would impair oral mucosal immunity. We postulate, subject to additional studies, that evolution of the oral mucosal ulcers including acute necrotizing gingivitis to noma is triggered by a consortium of microorganisms of which Fusobacterium necrophorum is a key component. Fusobacterium necrophorum elaborates several dermonecrotic toxic metabolites and is acquired by the impoverished children via fecal contamination resulting from shared residential facilities with animals and very poor environmental sanitation.  (+info)

Total parenteral nutrition in the management of acute renal failure. (2/363)

Malnutrition is frequently present in patients with acute renal failure and may affect morbidity and mortality in this condition. When adequate nourishment cannot be given through the gastrointestinal tract, total parental nutrition with amino acids and hypertonic glucose may have beneficial results. Total parenteral nutrition has been reported to stabilize or reduce serum urea nitrogen, potassium and phosphorus levels, improve wound healing, enhance survival from acute renal failure, and possibly increase the rate of recovery of renal function. The optimal composition of the total parenteral nutrition infusate is unknown. Preliminary results of a double-blind study are reported in which one man received hypertonic glucose alone, two received glucose with essential amino acids (21 g/day), and three received glucose with essential (21 g/day) and nonessential (21 g/day) amino acids. All infusates were isocaloric. No differences were observed in serum urea nitrogen levels, serum urea nitrogen/creatinine ratios or urea appearance rates. Nitrogen balance was negative in all patients. The ratio of essential amino acids/nonessential amino acids were higher and the tyrosine/phenylalanine ratios were lower in plasma in the two patients receiving glucose with essential amino acids. No patient survived the hospitalization. In view of the markedly negative nitrogen balance frequently observed in these and earlier studies, the use of a different composition or quantity of amino acids, a higher energy intake, and anabolic hormones deserve further investigation.  (+info)

Criteria for choosing amino acid therapy in acute renal failure. (3/363)

Metabolic studies were performed on 19 patients with acute renal failure. Therapy included intravenous hyperalimentation using 15 to 20 g of essential amino acids or 20 to 40 g of essential plus nonessential amino acids and hypertonic glucose (37 to 50%). The effect of this parenteral feeding appears to be primarily pharmacological. Hypertonic glucose promotes the hyperinsulinemia important to be membrane function, the operation of the sodium pump, and cell metabolism. Administration of high biological value crystalline amino acdis potentiates the effect of insulin by inhibiting protein breakdown and promoting protein synthesis, particularly in muscle. This reduces tissue catabolism and urea formation, and promotes potassium, magnesium, and phosphate homeostasis. The branched-chain ketogenic amino acids valine, leucine, and isoleucine may be of particular importance. When indicated, administration of renal failure hyperalimentation and peritoneal or hemodialysis can be expected to complement each other and accelerate recovery. This intravenous fluid therapy, in turn, must be coordinated with proper hemodynamics, usually requiring a colloidal solution to maintain intravascular volume, and cardiotrophic agents such as digitalis and dopamine. Early use of renal failure can be expected to demonstrate the most striking response in terms of survival, early recovery from acute renal failure, and the preservation of physiological homeostasis.  (+info)

Postexercise net protein synthesis in human muscle from orally administered amino acids. (4/363)

We examined the response of net muscle protein synthesis to ingestion of amino acids after a bout of resistance exercise. A primed, constant infusion of L-[ring-2H5]phenylalanine was used to measure net muscle protein balance in three male and three female volunteers on three occasions. Subjects consumed in random order 1 liter of 1) a mixed amino acid (40 g) solution (MAA), 2) an essential amino acid (40 g) solution (EAA), and 3) a placebo solution (PLA). Arterial amino acid concentrations increased approximately 150-640% above baseline during ingestion of MAA and EAA. Net muscle protein balance was significantly increased from negative during PLA ingestion (-50 +/- 23 nmol. min-1. 100 ml leg volume-1) to positive during MAA ingestion (17 +/- 13 nmol. min-1. 100 ml leg volume-1) and EAA (29 +/- 14 nmol. min-1. 100 ml leg volume-1; P < 0.05). Because net balance was similar for MAA and EAA, it does not appear necessary to include nonessential amino acids in a formulation designed to elicit an anabolic response from muscle after exercise. We concluded that ingestion of oral essential amino acids results in a change from net muscle protein degradation to net muscle protein synthesis after heavy resistance exercise in humans similar to that seen when the amino acids were infused.  (+info)

Effects of dorsomedial hypothalamic nuclei lesions on intake of an imbalanced amino acid diet. (5/363)

Within 3 h of ingesting an imbalanced amino acid diet (Imb), rats show attenuated intake, which can be ameliorated by prior administration of the serotonin receptor antagonist tropisetron (Trop). Earlier work in which the dorsomedial hypothalamic nucleus (DMN) was electrolytically lesioned (DMNL) determined that this structure plays a role in the early detection of and subsequent adaptation to Imb. However, that study did not address whether cell bodies in the DMN, fibers of passage, or both were involved in the DMNL response to Imb. In the present investigation in experiment 1, rats were given electrolytic DMNL or a sham operation (Sham). The rats were injected with saline (Sal) or Trop just before introduction of Imb. By 3 h Sal-DMNL rats consumed more Imb than did the Sal-Sham rats; intake was normal by 12 h. Trop enhanced Imb intake, with Trop and DMNL being additive. By day 4 the DMNL rats were eating and gaining weight less than were Sham rats. In experiment 2, DMN cell bodies were destroyed by ibotenic acid (Ibo). Sal-injected Ibo-lesioned and Sham rats showed similar food intake depression on Imb; Trop similarly increased Imb intake in both groups. By day 4 both Ibo-L rats were eating and gaining weight less than were Sham rats. In experiment 3, groups of rats were given knife cuts posterior, lateral, ventral, dorsal, or anterior to the DMN. During the first 3 h of consuming Imb, all cuts except posterior enhanced the intake of Imb. Over the next 24 h the anterior cut group continued to eat more Imb than did the Sham rats. In experiment 4 DMNL rats were given novel diets; the DMNL rats did not display a neophilic response. The data suggest that fiber tracts that pass through the DMN may be involved in the early detection of Imb. DMN cell bodies, or fibers of passage, are not involved in the Trop effect. Finally, DMN cell bodies are necessary for proper long-term adaptation to Imb.  (+info)

Temporal and differential effects of amino acids on bovine embryo development in culture. (6/363)

The aim of the study was to determine the amino acid requirements of the in vitro-produced bovine embryo as it develops from the zygote to the blastocyst, using a two-step culture system. When added to synthetic oviduct fluid (SOF) for the first 72-h culture, Eagle's nonessential amino acids and glutamine (NeGln) significantly increased development to the 8- to 16-cell stage (Day 4 postinsemination [pi]) and subsequent blastocyst development (Day 7 pi). Glutamine alone during the first 72-h culture did not stimulate development to the 8- to 16-cell stage (p > 0.05); however, the removal of glutamine from NeGln reduced the stimulatory effects of the nonessential amino acids. Replacing glutamine with betaine (an organic osmolyte) in NeGln did not stimulate development to the 8- to 16-cell stage compared to culture in SOF, but it did improve subsequent blastocyst development, indicating an osmolytic function of glutamine during the first 72-h culture. The addition of Eagle's essential amino acids and glutamine to SOF, or to medium already containing nonessential amino acids and glutamine for the first 72-h culture, did not affect cleavage to the 8- to 16-cell stage or subsequent blastocyst development (p > 0.05). Beyond Day 4 pi, culture with 20aa (nonessential and essential amino acids and glutamine) increased blastocyst development, total cell number, and the number of cells in both the trophectoderm and inner cell mass, compared to culture with other groups of amino acids (p < 0.05). Substituting betaine for glutamine in 20aa reduced blastocyst formation, indicating a non-osmolytic function of glutamine during the second 72-h culture. Further, there was a significant negative correlation between the concentration of essential amino acids (quarter, half, or single strength) and embryo development during both the first 72-h and second 72-h culture (p < 0.01), indicating that the concentration of essential amino acids was too high during culture of the bovine embryo. This study identified the temporal and differential effects of amino acids during development of the bovine embryo from the zygote to the blastocyst.  (+info)

Essential amino acids affect interstitial dopamine metabolites in the anterior piriform cortex of rats. (7/363)

The anterior piriform cortex (APC) is essential for the anorectic reactions to an amino acid-imbalanced diet, and it also responds to repletion of the limiting amino acid. In the present study, we examine the dynamic changes of the interstitial dopamine metabolites in the APC following feeding of either an amino acid-corrected or -imbalanced diet. Microdialysates, collected from the APC, were analyzed using HPLC with electrochemical detection. The concentrations were 19.7 +/- 4.8 microg/L for 3, 4-dyhydroxyphenylacetic acid and 25.1 +/- 4.4 microg/L for homovanillic acid, respectively, in the baseline dialysates. After diet treatments, no significant changes occurred in 3, 4-dyhydroxyphenylacetic acid in the corrected (n = 7) or imbalanced (n = 9) groups vs. the basal group (n = 7). However, after feeding the threonine-corrected diet, the concentration of homovanillic acid was significantly less (P < 0.01) than after the basal and imbalanced diets. The homovanillic acid level in the corrected group was already significantly lower than in the basal group by 20 min (P < 0.05), and reached its lowest level at 70 min (P < 0.05). The concentrations of homovanillic acid in the corrected group remained at this low level until the end of the experiment. The present results introduce the idea that the dopaminergic system is involved in the feeding responses to essential amino acid repletion.  (+info)

A tracer investigation of obligatory oxidative amino acid losses in healthy, young adults. (8/363)

BACKGROUND: Estimation of the minimum requirement for indispensable amino acids (IAAs) has been attempted by assuming that obligatory oxidative losses (OOLs) of IAAs can be approximated from nitrogen losses and that the efficiency of utilization of IAAs at requirement intakes is approximately 70%. OBJECTIVE: We wished to determine the rates of OOLs in healthy adults, using L-[1-(13)C]leucine and L-[1-(13)C, methyl-(2)H(3)]methio-nine as tracers, after adjustment to a protein-free diet and how these rates compare with those when either sulfur amino acids (SAAs: methionine and cyst(e)ine) or leucine were removed from an otherwise adequate diet. DESIGN: Eleven subjects were randomly assigned to a 5-d protein-free diet or a 5-d diet providing adequate nitrogen and amino acids except for the SAAs or leucine. A 24-h constant intravenous infusion of [(15)N, (15)N]urea and L-[1-(13)C]leucine (Leu group; n = 5) or L-[1-(13)C, methyl-(2)H(3)]methionine (Met group; n = 6 ) began at 1800 on day 5 and rates of amino acid oxidation were determined. RESULTS: Mean (+/-SD) oxidation rates (mg kg(-)(1) d(-)(1)) of methionine and leucine were 6.4 +/- 1.4 and 24.7 +/- 3.6, respectively, with the protein-free diet; rates were significantly lower (3.9 +/- 2.2 and 7. 2 +/- 3.4, respectively) after the SAA- and leucine-free diets. Urea production was significantly lower (P < 0.01) with the protein-free than with the SAA- or leucine-free diet. CONCLUSIONS: Isotopically determined OOLs for methionine and leucine are consistent with losses predicted from nitrogen excretion, and consistent with our previous measurements of cysteine oxidation as an index of total SAA losses. The data further support our earlier conclusions regarding methionine sparing by cysteine and tentative recommended SAA requirements in adults.  (+info)

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Essential amino acids are a group of 9 out of the 20 standard amino acids that cannot be synthesized by the human body and must be obtained through diet. They include: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. These amino acids are essential for various biological processes such as protein synthesis, growth, and repair of body tissues. A deficiency in any of these essential amino acids can lead to impaired physical development and compromised immune function. Foods that provide all nine essential amino acids are considered complete proteins and include animal-derived products like meat, poultry, fish, eggs, and dairy, as well as soy and quinoa.

Amino acid transport systems refer to the various membrane transport proteins that are responsible for the active or passive translocation of amino acids across cell membranes in the body. These transport systems play a crucial role in maintaining amino acid homeostasis within cells and regulating their availability for protein synthesis, neurotransmission, and other physiological processes.

There are several distinct amino acid transport systems, each with its own specificity for particular types of amino acids or related molecules. These systems can be classified based on their energy requirements, substrate specificity, and membrane localization. Some of the major amino acid transport systems include:

1. System A - This is a sodium-dependent transport system that primarily transports small, neutral amino acids such as alanine, serine, and proline. It has several subtypes (ASC, A, and AN) with different substrate affinities and kinetic properties.
2. System L - This is a sodium-independent transport system that transports large, neutral amino acids such as leucine, isoleucine, valine, phenylalanine, and tryptophan. It has several subtypes (L1, L2, and y+L) with different substrate specificities and transport mechanisms.
3. System B0 - This is a sodium-dependent transport system that transports both neutral and basic amino acids such as arginine, lysine, and ornithine. It has several subtypes (B0,+, B0-, and b0,+) with different substrate affinities and kinetic properties.
4. System y+ - This is a sodium-independent transport system that transports primarily basic amino acids such as arginine, lysine, and ornithine. It has several subtypes (y+L, y+, b0,+) with different substrate specificities and transport mechanisms.
5. System X-AG - This is a sodium-independent antiporter system that exchanges glutamate and aspartate for neutral amino acids such as cystine, serine, and threonine. It plays an essential role in maintaining redox homeostasis by regulating the intracellular levels of cysteine, a precursor of glutathione.

These transport systems are critical for maintaining cellular homeostasis and regulating various physiological processes such as protein synthesis, neurotransmission, and immune function. Dysregulation of these transport systems has been implicated in several diseases, including cancer, neurological disorders, and cardiovascular disease. Therefore, understanding the molecular mechanisms underlying these transport systems is essential for developing novel therapeutic strategies to treat these conditions.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Aromatic amino acids are a specific type of amino acids that contain an aromatic ring in their side chain. The three aromatic amino acids are phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). These amino acids play important roles in various biological processes, including protein structure and function, neurotransmission, and enzyme catalysis.

The aromatic ring in these amino acids is composed of a planar six-membered carbon ring that contains alternating double bonds. This structure gives the side chains unique chemical properties, such as their ability to absorb ultraviolet light and participate in stacking interactions with other aromatic residues. These interactions can contribute to the stability and function of proteins and other biological molecules.

It's worth noting that while most amino acids are classified as either "hydrophobic" or "hydrophilic," depending on their chemical properties, aromatic amino acids exhibit characteristics of both groups. They can form hydrogen bonds with polar residues and also engage in hydrophobic interactions with nonpolar residues, making them versatile building blocks for protein structure and function.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Branched-chain amino acids (BCAAs) are a group of three essential amino acids: leucine, isoleucine, and valine. They are called "branched-chain" because of their chemical structure, which has a side chain that branches off from the main part of the molecule.

BCAAs are essential because they cannot be produced by the human body and must be obtained through diet or supplementation. They are crucial for muscle growth and repair, and play a role in energy production during exercise. BCAAs are also important for maintaining proper immune function and can help to reduce muscle soreness and fatigue after exercise.

Foods that are good sources of BCAAs include meat, poultry, fish, eggs, dairy products, and legumes. BCAAs are also available as dietary supplements, which are often used by athletes and bodybuilders to enhance muscle growth and recovery. However, it is important to note that excessive intake of BCAAs may have adverse effects on liver function and insulin sensitivity, so it is recommended to consult with a healthcare provider before starting any new supplement regimen.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Sulfur-containing amino acids are a type of amino acid that contain sulfur atoms in their side chains. There are three sulfur-containing amino acids that are considered essential for human health: methionine, cysteine, and homocysteine.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It contains a sulfur atom in its side chain and plays important roles in various biological processes, including methylation reactions, protein synthesis, and detoxification.

Cysteine is a semi-essential amino acid, which means that it can be synthesized by the human body under normal conditions but may become essential during periods of growth or illness. It contains a sulfhydryl group (-SH) in its side chain, which allows it to form disulfide bonds with other cysteine residues and contribute to the stability and structure of proteins.

Homocysteine is a non-proteinogenic amino acid that is derived from methionine metabolism. It contains a sulfur atom in its side chain and has been linked to various health problems, including cardiovascular disease, when present at elevated levels in the blood.

Other sulfur-containing amino acids include taurine, which is not incorporated into proteins but plays important roles in bile acid conjugation, antioxidant defense, and neuromodulation, and cystathionine, which is an intermediate in methionine metabolism.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Amino acid transport systems are specialized cellular mechanisms responsible for the active transport of amino acids across cell membranes. These systems are essential for maintaining proper amino acid homeostasis within cells and organisms. They consist of several types of transporters that can be categorized based on their energy source, electrochemical gradient, substrate specificity, and functional characteristics.

The term 'basic' in this context typically refers to the fundamental understanding of these transport systems, including their structure, function, regulation, and physiological roles. Amino acid transport systems play a crucial role in various biological processes, such as protein synthesis, neurotransmission, cell signaling, and energy metabolism.

There are two primary types of amino acid transport systems:

1. **Na+-dependent transporters:** These transporters utilize the sodium gradient across the cell membrane to drive the uptake of amino acids. They can be further divided into subtypes based on their substrate specificity and functional properties, such as system A, system ASC, system B0, system B, system L, and system y+.
2. **Na+-independent transporters:** These transporters do not rely on the sodium gradient for amino acid transport. Instead, they use other energy sources like proton gradients or direct coupling to membrane potential. Examples of Na+-independent transporters include system L, system y+, and system x-AG.

Understanding the basic aspects of amino acid transport systems is essential for elucidating their roles in health and disease. Dysregulation of these systems has been implicated in various pathological conditions, such as neurological disorders, cancer, and metabolic diseases.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

Isoleucine is an essential branched-chain amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H13NO2. Isoleucine is crucial for muscle protein synthesis, hemoglobin formation, and energy regulation during exercise or fasting. It is found in various foods such as meat, fish, eggs, dairy products, legumes, and nuts. Deficiency of isoleucine may lead to various health issues like muscle wasting, fatigue, and mental confusion.

Amino acids are the basic units of proteins. There are 20 standard amino acids that make up proteins, and some of these can be further modified to form additional types of amino acids. Amino acids have a carboxyl group (-COOH) and an amino group (-NH2) attached to a central carbon atom, known as the alpha carbon. This basic structure is referred to as an "alpha-amino acid." The fourth bond on the alpha carbon is free, allowing for the formation of peptide bonds between amino acids.

Of the 20 standard amino acids, eleven are considered "basic" because they have a side chain with a pH greater than 7 (i.e., they are positively charged at neutral pH). These basic amino acids include:

1. Lysine (K) - has a long, flexible side chain ending in an amino group (-NH2), which is positively charged at neutral pH.
2. Arginine (R) - contains a guanidinium group (-NHC(=NH)NH2), which is strongly basic and always positively charged.
3. Histidine (H) - has an imidazole ring in its side chain, which can be protonated or deprotonated depending on the pH; at neutral pH, it is usually positively charged.
4. Asparagine (N) - a polar amino acid with an uncharged side chain containing an amide group (-CONH2).
5. Glutamine (Q) - similar to asparagine but has a longer side chain and contains a second amide group (-CONH2).
6. Tryptophan (W) - a large, hydrophobic amino acid with an indole ring in its side chain.
7. Phenylalanine (F) - a hydrophobic amino acid with a benzyl side chain.
8. Tyrosine (Y) - contains a phenol group (-OH) in its side chain, which can be ionized depending on the pH.
9. Methionine (M) - has a sulfur-containing thioether side chain and is hydrophobic.
10. Cysteine (C) - contains a thiol (-SH) group in its side chain, which can form disulfide bonds with other cysteines.
11. Arginine (R) - has a guanidinium group (-NHC(=NH)NH2) in its side chain, which is strongly basic and always positively charged.
12. Lysine (K) - contains an amino group (-NH2) in its side chain, which can be protonated or deprotonated depending on the pH; at neutral pH, it is usually positively charged.
13. Proline (P) - a unique amino acid with a cyclic side chain that forms a ring with the backbone nitrogen atom.
14. Serine (S) - contains a hydroxyl (-OH) group in its side chain, which can be ionized depending on the pH.
15. Threonine (T) - has two side chains: one is a methyl group (-CH3), and the other is a hydroxyl (-OH) group, which can be ionized depending on the pH.
16. Asparagine (N) - contains an amide group (-CONH2) in its side chain.
17. Glutamine (Q) - contains an amide group (-CONH2) in its side chain.
18. Aspartic acid (D) - contains a carboxylate (-COO-) group in its side chain, which can be ionized depending on the pH.
19. Glutamic acid (E) - contains a carboxylate (-COO-) group in its side chain, which can be ionized depending on the pH.
20. Glycine (G) - has the simplest side chain, consisting of only a hydrogen atom.
21. Alanine (A) - has a methyl (-CH3) group as its side chain.
22. Valine (V) - contains an isopropyl (-CH(CH3)2) group as its side chain.
23. Leucine (L) - contains a sec-butyl (-CH2CH(CH3)2) group as its side chain.
24. Isoleucine (I) - contains a tert-butyl (-C(CH3)3) group as its side chain.
25. Phenylalanine (F) - contains a phenyl (-C6H5) group as its side chain.
26. Tryptophan (W) - contains an indole ring as its side chain.
27. Methionine (M) - contains a sulfur atom and a methyl (-CH3) group as its side chain.
28. Cysteine (C) - contains a sulfur atom and a thiol (-SH) group as its side chain.
29. Proline (P) - has a cyclic side chain, which is a pyrrolidine ring.
30. Histidine (H) - contains an imidazole ring in its side chain.
31. Lysine (K) - contains a terminal amino group (-NH2) as its side chain.
32. Arginine (R) - contains a guanidinium group (-NHC(=NH)NH2) as its side chain.
33. Serine (S) - contains a hydroxyl (-OH) group in its side chain.
34. Threonine (T) - contains a hydroxyl (-OH) group and a methyl (-CH3) group in its side chain.
35. Tyrosine (Y) - contains a phenol ring and a hydroxyl (-OH) group in its side chain.
36. Asparagine (N) - contains an amide group (-CONH2) in its side chain.
37. Glutamine (Q) - contains an amide group (-COCH2NH2) in its side chain.
38. Aspartic acid (D) - contains a carboxyl (-COOH) group in its side chain.
39. Glutamic acid (E) - contains a carboxyl (-COOH) group and a methylene (-CH2-) group in its side chain.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

A codon is a sequence of three adjacent nucleotides in DNA or RNA that specifies the insertion of a particular amino acid during protein synthesis, or signals the beginning or end of translation. In DNA, these triplets are read during transcription to produce a complementary mRNA molecule, which is then translated into a polypeptide chain during translation. There are 64 possible codons in the standard genetic code, with 61 encoding for specific amino acids and three serving as stop codons that signal the termination of protein synthesis.

Cyanogen bromide is a solid compound with the chemical formula (CN)Br. It is a highly reactive and toxic substance that is used in research and industrial settings for various purposes, such as the production of certain types of resins and gels. Cyanogen bromide is an alkyl halide, which means it contains a bromine atom bonded to a carbon atom that is also bonded to a cyano group (a nitrogen atom bonded to a carbon atom with a triple bond).

Cyanogen bromide is classified as a class B poison, which means it can cause harm or death if swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects, such as damage to the nervous system and kidneys. Therefore, it is important to handle cyanogen bromide with care and to use appropriate safety precautions when working with it.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Diamino acids are a type of modified amino acids that contain two amino groups (-NH2) in their side chain. In regular amino acids, the side chain is composed of a specific arrangement of carbon, hydrogen, oxygen, and sometimes sulfur atoms. However, in diamino acids, one or both of the hydrogen atoms attached to the central carbon atom (alpha carbon) are replaced by amino groups.

There are two types of diamino acids: symmetric and asymmetric. Symmetric diamino acids have identical side chains on both sides of the alpha carbon atom, while asymmetric diamino acids have different side chains on each side.

Diamino acids play a crucial role in various biological processes, such as protein synthesis, cell signaling, and neurotransmission. They can be found naturally in some proteins or can be synthesized artificially for use in research and medical applications.

It is important to note that diamino acids are not one of the twenty standard amino acids that make up proteins. Instead, they are considered non-proteinogenic amino acids, which means they are not typically encoded by DNA and are not directly involved in protein synthesis. However, some modified forms of diamino acids can be found in certain proteins as a result of post-translational modifications.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

An open reading frame (ORF) is a continuous stretch of DNA or RNA sequence that has the potential to be translated into a protein. It begins with a start codon (usually "ATG" in DNA, which corresponds to "AUG" in RNA) and ends with a stop codon ("TAA", "TAG", or "TGA" in DNA; "UAA", "UAG", or "UGA" in RNA). The sequence between these two points is called a coding sequence (CDS), which, when transcribed into mRNA and translated into amino acids, forms a polypeptide chain.

In eukaryotic cells, ORFs can be located in either protein-coding genes or non-coding regions of the genome. In prokaryotic cells, multiple ORFs may be present on a single strand of DNA, often organized into operons that are transcribed together as a single mRNA molecule.

It's important to note that not all ORFs necessarily represent functional proteins; some may be pseudogenes or result from errors in genome annotation. Therefore, additional experimental evidence is typically required to confirm the expression and functionality of a given ORF.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

Valine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet. It is a hydrophobic amino acid, with a branched side chain, and is necessary for the growth, repair, and maintenance of tissues in the body. Valine is also important for muscle metabolism, and is often used by athletes as a supplement to enhance physical performance. Like other essential amino acids, valine must be obtained through foods such as meat, fish, dairy products, and legumes.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

Excitatory amino acids (EAAs) are a type of neurotransmitter, which are chemical messengers that transmit signals in the brain and nervous system. The most important excitatory amino acids in the central nervous system are glutamate and aspartate. These neurotransmitters play crucial roles in various physiological functions such as learning, memory, and synaptic plasticity. However, excessive or prolonged activation of EAA receptors can lead to neuronal damage or death, which is thought to contribute to several neurological disorders, including stroke, epilepsy, and neurodegenerative diseases.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

Arginine is an α-amino acid that is classified as a semi-essential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. The adult human body can normally synthesize sufficient amounts of arginine to meet its needs, but there are certain circumstances, such as periods of rapid growth or injury, where the dietary intake of arginine may become necessary.

The chemical formula for arginine is C6H14N4O2. It has a molecular weight of 174.20 g/mol and a pKa value of 12.48. Arginine is a basic amino acid, which means that it contains a side chain with a positive charge at physiological pH levels. The side chain of arginine is composed of a guanidino group, which is a functional group consisting of a nitrogen atom bonded to three methyl groups.

In the body, arginine plays several important roles. It is a precursor for the synthesis of nitric oxide, a molecule that helps regulate blood flow and immune function. Arginine is also involved in the detoxification of ammonia, a waste product produced by the breakdown of proteins. Additionally, arginine can be converted into other amino acids, such as ornithine and citrulline, which are involved in various metabolic processes.

Foods that are good sources of arginine include meat, poultry, fish, dairy products, nuts, seeds, and legumes. Arginine supplements are available and may be used for a variety of purposes, such as improving exercise performance, enhancing wound healing, and boosting immune function. However, it is important to consult with a healthcare provider before taking arginine supplements, as they can interact with certain medications and have potential side effects.

Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CO2H. It is one of the twenty standard amino acids, and it is a polar, negatively charged, and hydrophilic amino acid. In proteins, aspartic acid usually occurs in its ionized form, aspartate, which has a single negative charge.

Aspartic acid plays important roles in various biological processes, including metabolism, neurotransmitter synthesis, and energy production. It is also a key component of many enzymes and proteins, where it often contributes to the formation of ionic bonds and helps stabilize protein structure.

In addition to its role as a building block of proteins, aspartic acid is also used in the synthesis of other important biological molecules, such as nucleotides, which are the building blocks of DNA and RNA. It is also a component of the dipeptide aspartame, an artificial sweetener that is widely used in food and beverages.

Like other amino acids, aspartic acid is essential for human health, but it cannot be synthesized by the body and must be obtained through the diet. Foods that are rich in aspartic acid include meat, poultry, fish, dairy products, eggs, legumes, and some fruits and vegetables.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

Sequence analysis in the context of molecular biology and genetics refers to the systematic examination and interpretation of DNA or protein sequences to understand their features, structures, functions, and evolutionary relationships. It involves using various computational methods and bioinformatics tools to compare, align, and analyze sequences to identify patterns, conserved regions, motifs, or mutations that can provide insights into molecular mechanisms, disease associations, or taxonomic classifications.

In a medical context, sequence analysis can be applied to diagnose genetic disorders, predict disease susceptibility, inform treatment decisions, and guide research in personalized medicine. For example, analyzing the sequence of a gene associated with a particular inherited condition can help identify the specific mutation responsible for the disorder, providing valuable information for genetic counseling and family planning. Similarly, comparing the sequences of pathogens from different patients can reveal drug resistance patterns or transmission dynamics, informing infection control strategies and therapeutic interventions.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Proline is an organic compound that is classified as a non-essential amino acid, meaning it can be produced by the human body and does not need to be obtained through the diet. It is encoded in the genetic code as the codon CCU, CCC, CCA, or CCG. Proline is a cyclic amino acid, containing an unusual secondary amine group, which forms a ring structure with its carboxyl group.

In proteins, proline acts as a structural helix breaker, disrupting the alpha-helix structure and leading to the formation of turns and bends in the protein chain. This property is important for the proper folding and function of many proteins. Proline also plays a role in the stability of collagen, a major structural protein found in connective tissues such as tendons, ligaments, and skin.

In addition to its role in protein structure, proline has been implicated in various cellular processes, including signal transduction, apoptosis, and oxidative stress response. It is also a precursor for the synthesis of other biologically important compounds such as hydroxyproline, which is found in collagen and elastin, and glutamate, an excitatory neurotransmitter in the brain.

Phenylalanine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet or supplementation. It's one of the building blocks of proteins and is necessary for the production of various molecules in the body, such as neurotransmitters (chemical messengers in the brain).

Phenylalanine has two forms: L-phenylalanine and D-phenylalanine. L-phenylalanine is the form found in proteins and is used by the body for protein synthesis, while D-phenylalanine has limited use in humans and is not involved in protein synthesis.

Individuals with a rare genetic disorder called phenylketonuria (PKU) must follow a low-phenylalanine diet or take special medical foods because they are unable to metabolize phenylalanine properly, leading to its buildup in the body and potential neurological damage.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

Amino acid transport system A, also known as system ASC or alanine-serine-cysteine transporter, is a type of amino acid transporter found in the membranes of cells. It is responsible for the uptake of small neutral amino acids, such as alanine, serine, and cysteine, into the cell. This transport system plays an important role in maintaining amino acid homeostasis within the body and is particularly important in tissues with high rates of protein turnover, such as the intestines and kidneys. It is also expressed in the brain, where it is involved in the regulation of neurotransmitter synthesis. Defects in this transport system have been implicated in various diseases, including neurological disorders and cancer.

Neutral amino acids are a type of amino acids that are characterized by the presence of a neutral side chain in their chemical structure. In other words, the side chain of these amino acids does not contain any ionizable groups, such as carboxyl or amino groups, which can give rise to positive or negative charges.

There are nine neutral amino acids in total, and they include:

1. Alanine (Ala) - has a methyl group (-CH3) as its side chain
2. Glycine (Gly) - has a hydrogen atom (-H) as its side chain
3. Valine (Val) - has an isopropyl group (-CH(CH3)2) as its side chain
4. Leucine (Leu) - has a branched alkyl group (-CH2CH(CH3)2) as its side chain
5. Isoleucine (Ile) - has a sec-butyl group (-CH(CH3)(CH2CH3)) as its side chain
6. Proline (Pro) - has a cyclic structure containing a secondary amino group (-NH-) as its side chain
7. Phenylalanine (Phe) - has an aromatic ring with a methyl group (-CH3) attached to it as its side chain
8. Tryptophan (Trp) - has an indole ring as its side chain
9. Methionine (Met) - has a sulfur-containing alkyl group (-CH2CH2SH) as its side chain

Neutral amino acids play important roles in various biological processes, such as protein synthesis, metabolism, and signaling pathways. They are also essential components of many dietary proteins and are required for the growth, development, and maintenance of tissues and organs in the body.

Cysteine is a semi-essential amino acid, which means that it can be produced by the human body under normal circumstances, but may need to be obtained from external sources in certain conditions such as illness or stress. Its chemical formula is HO2CCH(NH2)CH2SH, and it contains a sulfhydryl group (-SH), which allows it to act as a powerful antioxidant and participate in various cellular processes.

Cysteine plays important roles in protein structure and function, detoxification, and the synthesis of other molecules such as glutathione, taurine, and coenzyme A. It is also involved in wound healing, immune response, and the maintenance of healthy skin, hair, and nails.

Cysteine can be found in a variety of foods, including meat, poultry, fish, dairy products, eggs, legumes, nuts, seeds, and some grains. It is also available as a dietary supplement and can be used in the treatment of various medical conditions such as liver disease, bronchitis, and heavy metal toxicity. However, excessive intake of cysteine may have adverse effects on health, including gastrointestinal disturbances, nausea, vomiting, and headaches.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Protein sequence analysis is the systematic examination and interpretation of the amino acid sequence of a protein to understand its structure, function, evolutionary relationships, and other biological properties. It involves various computational methods and tools to analyze the primary structure of proteins, which is the linear arrangement of amino acids along the polypeptide chain.

Protein sequence analysis can provide insights into several aspects, such as:

1. Identification of functional domains, motifs, or sites within a protein that may be responsible for its specific biochemical activities.
2. Comparison of homologous sequences from different organisms to infer evolutionary relationships and determine the degree of similarity or divergence among them.
3. Prediction of secondary and tertiary structures based on patterns of amino acid composition, hydrophobicity, and charge distribution.
4. Detection of post-translational modifications that may influence protein function, localization, or stability.
5. Identification of protease cleavage sites, signal peptides, or other sequence features that play a role in protein processing and targeting.

Some common techniques used in protein sequence analysis include:

1. Multiple Sequence Alignment (MSA): A method to align multiple protein sequences to identify conserved regions, gaps, and variations.
2. BLAST (Basic Local Alignment Search Tool): A widely-used tool for comparing a query protein sequence against a database of known sequences to find similarities and infer function or evolutionary relationships.
3. Hidden Markov Models (HMMs): Statistical models used to describe the probability distribution of amino acid sequences in protein families, allowing for more sensitive detection of remote homologs.
4. Protein structure prediction: Methods that use various computational approaches to predict the three-dimensional structure of a protein based on its amino acid sequence.
5. Phylogenetic analysis: The construction and interpretation of evolutionary trees (phylogenies) based on aligned protein sequences, which can provide insights into the historical relationships among organisms or proteins.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Threonine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is HO2CCH(NH2)CH(OH)CH3. Threonine plays a crucial role in various biological processes, including protein synthesis, immune function, and fat metabolism. It is particularly important for maintaining the structural integrity of proteins, as it is often found in their hydroxyl-containing regions. Foods rich in threonine include animal proteins such as meat, dairy products, and eggs, as well as plant-based sources like lentils and soybeans.

Amino acid receptors are a type of cell surface receptor that bind to specific amino acids or peptides and trigger intracellular signaling pathways. These receptors play important roles in various physiological processes, including neurotransmission, hormone signaling, and regulation of metabolism.

There are several types of amino acid receptors, including:

1. G protein-coupled receptors (GPCRs): These receptors are activated by amino acids such as γ-aminobutyric acid (GABA), glycine, and glutamate, and play important roles in neurotransmission and neuromodulation.
2. Ionotropic receptors: These receptors are ligand-gated ion channels that are activated by amino acids such as glutamate and glycine. They play critical roles in synaptic transmission and neural excitability.
3. Enzyme-linked receptors: These receptors activate intracellular signaling pathways through the activation of enzymes, such as receptor tyrosine kinases (RTKs). Some amino acid receptors, such as the insulin-like growth factor 1 receptor (IGF-1R), are RTKs that play important roles in cell growth, differentiation, and metabolism.
4. Intracellular receptors: These receptors are located within the cell and bind to amino acids or peptides that have been transported into the cell. For example, the peroxisome proliferator-activated receptors (PPARs) are intracellular receptors that bind to fatty acids and play important roles in lipid metabolism and inflammation.

Overall, amino acid receptors are critical components of cell signaling pathways and play important roles in various physiological processes. Dysregulation of these receptors has been implicated in a variety of diseases, including neurological disorders, cancer, and metabolic disorders.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Dietary proteins are sources of protein that come from the foods we eat. Protein is an essential nutrient for the human body, required for various bodily functions such as growth, repair, and immune function. Dietary proteins are broken down into amino acids during digestion, which are then absorbed and used to synthesize new proteins in the body.

Dietary proteins can be classified as complete or incomplete based on their essential amino acid content. Complete proteins contain all nine essential amino acids that cannot be produced by the human body and must be obtained through the diet. Examples of complete protein sources include meat, poultry, fish, eggs, dairy products, soy, and quinoa.

Incomplete proteins lack one or more essential amino acids and are typically found in plant-based foods such as grains, legumes, nuts, and seeds. However, by combining different incomplete protein sources, it is possible to obtain all the essential amino acids needed for a complete protein diet. This concept is known as complementary proteins.

It's important to note that while dietary proteins are essential for good health, excessive protein intake can have negative effects on the body, such as increased stress on the kidneys and bones. Therefore, it's recommended to consume protein in moderation as part of a balanced and varied diet.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Protein precursors, also known as proproteins or prohormones, are inactive forms of proteins that undergo post-translational modification to become active. These modifications typically include cleavage of the precursor protein by specific enzymes, resulting in the release of the active protein. This process allows for the regulation and control of protein activity within the body. Protein precursors can be found in various biological processes, including the endocrine system where they serve as inactive hormones that can be converted into their active forms when needed.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Chymotrypsin is a proteolytic enzyme, specifically a serine protease, that is produced in the pancreas and secreted into the small intestine as an inactive precursor called chymotrypsinogen. Once activated, chymotrypsin helps to digest proteins in food by breaking down specific peptide bonds in protein molecules. Its activity is based on the recognition of large hydrophobic side chains in amino acids like phenylalanine, tryptophan, and tyrosine. Chymotrypsin plays a crucial role in maintaining normal digestion and absorption processes in the human body.

Protein sorting signals, also known as sorting motifs or sorting determinants, are specific sequences or domains within a protein that determine its intracellular trafficking and localization. These signals can be found in the amino acid sequence of a protein and are recognized by various sorting machinery such as receptors, coat proteins, and transport vesicles. They play a crucial role in directing newly synthesized proteins to their correct destinations within the cell, including the endoplasmic reticulum (ER), Golgi apparatus, lysosomes, plasma membrane, or extracellular space.

There are several types of protein sorting signals, such as:

1. Signal peptides: These are short sequences of amino acids found at the N-terminus of a protein that direct it to the ER for translocation across the membrane and subsequent processing in the secretory pathway.
2. Transmembrane domains: Hydrophobic regions within a protein that span the lipid bilayer, often serving as anchors to tether proteins to specific organelle membranes or the plasma membrane.
3. Glycosylphosphatidylinositol (GPI) anchors: These are post-translational modifications added to the C-terminus of a protein, allowing it to be attached to the outer leaflet of the plasma membrane.
4. Endoplasmic reticulum retrieval signals: KDEL or KKXX-like sequences found at the C-terminus of proteins that direct their retrieval from the Golgi apparatus back to the ER.
5. Lysosomal targeting signals: Sequences within a protein, such as mannose 6-phosphate (M6P) residues or tyrosine-based motifs, that facilitate its recognition and transport to lysosomes.
6. Nuclear localization signals (NLS): Short sequences of basic amino acids that direct a protein to the nuclear pore complex for import into the nucleus.
7. Nuclear export signals (NES): Sequences rich in leucine residues that facilitate the export of proteins from the nucleus to the cytoplasm.

These various targeting and localization signals help ensure that proteins are delivered to their proper destinations within the cell, allowing for the coordinated regulation of cellular processes and functions.

Cyclic amino acids are a type of modified amino acid where the side chain of the amino acid forms a ring structure. This is different from the typical structure of amino acids, which have a linear side chain. The formation of the ring can occur within the same amino acid molecule or between two amino acid molecules.

Cyclic amino acids play important roles in various biological processes. For example, some cyclic amino acids are involved in the structure and function of proteins, while others serve as signaling molecules or neurotransmitters. Some common examples of cyclic amino acids include proline, hydroxyproline, and sarcosine.

It is worth noting that not all modified amino acids with ring structures are considered cyclic amino acids. For example, some amino acids may have a sulfur atom in their side chain that forms a disulfide bond with another cysteine residue, but this is not considered a cyclic structure because the ring is formed between two separate molecules rather than within a single molecule.

Endopeptidases are a type of enzyme that breaks down proteins by cleaving peptide bonds inside the polypeptide chain. They are also known as proteinases or endoproteinases. These enzymes work within the interior of the protein molecule, cutting it at specific points along its length, as opposed to exopeptidases, which remove individual amino acids from the ends of the protein chain.

Endopeptidases play a crucial role in various biological processes, such as digestion, blood coagulation, and programmed cell death (apoptosis). They are classified based on their catalytic mechanism and the structure of their active site. Some examples of endopeptidase families include serine proteases, cysteine proteases, aspartic proteases, and metalloproteases.

It is important to note that while endopeptidases are essential for normal physiological functions, they can also contribute to disease processes when their activity is unregulated or misdirected. For instance, excessive endopeptidase activity has been implicated in the pathogenesis of neurodegenerative disorders, cancer, and inflammatory conditions.

Ion exchange chromatography is a type of chromatography technique used to separate and analyze charged molecules (ions) based on their ability to exchange bound ions in a solid resin or gel with ions of similar charge in the mobile phase. The stationary phase, often called an ion exchanger, contains fixed ated functional groups that can attract counter-ions of opposite charge from the sample mixture.

In this technique, the sample is loaded onto an ion exchange column containing the charged resin or gel. As the sample moves through the column, ions in the sample compete for binding sites on the stationary phase with ions already present in the column. The ions that bind most strongly to the stationary phase will elute (come off) slower than those that bind more weakly.

Ion exchange chromatography can be performed using either cation exchangers, which exchange positive ions (cations), or anion exchangers, which exchange negative ions (anions). The pH and ionic strength of the mobile phase can be adjusted to control the binding and elution of specific ions.

Ion exchange chromatography is widely used in various applications such as water treatment, protein purification, and chemical analysis.

Serine is an amino acid, which is a building block of proteins. More specifically, it is a non-essential amino acid, meaning that the body can produce it from other compounds, and it does not need to be obtained through diet. Serine plays important roles in the body, such as contributing to the formation of the protective covering of nerve fibers (myelin sheath), helping to synthesize another amino acid called tryptophan, and taking part in the metabolism of fatty acids. It is also involved in the production of muscle tissues, the immune system, and the forming of cell structures. Serine can be found in various foods such as soy, eggs, cheese, meat, peanuts, lentils, and many others.

Amino acid repetitive sequences refer to patterns of amino acids that are repeated in a polypeptide chain. These repetitions can vary in length and can be composed of a single type of amino acid or a combination of different types. In some cases, expansions of these repetitive sequences can lead to the production of abnormal proteins that are associated with certain genetic disorders. The expansion of trinucleotide repeats that code for particular amino acids is one example of this phenomenon. These expansions can result in protein misfolding and aggregation, leading to neurodegenerative diseases such as Huntington's disease and spinocerebellar ataxias.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Aminoisobutyric acids are a type of compounds that contain an amino group (-NH2) and an isobutyric acid group. Isobutyric acid is a type of short-chain fatty acid with the chemical formula (CH3)2CHCO2H. Aminoisobutyric acids can be found in some natural sources, such as certain types of bacteria, and they can also be synthesized in the laboratory for use in research and other applications.

There are several different isomers of aminoisobutyric acid, depending on the position of the amino group relative to the carbon chain. The most common isomer is 2-aminoisobutyric acid, also known as 2-methylalanine or 2-methylpropionic acid. This compound is a naturally occurring amino acid that is found in some proteins and is used in research to study protein structure and function.

Other isomers of aminoisobutyric acid include 3-aminoisobutyric acid, which is also known as tert-leucine or 2-methylbutyric acid, and 4-aminoisobutyric acid, which is also known as neopentylamine or 2,2-dimethylpropionic acid. These compounds are less common than 2-aminoisobutyric acid and have different chemical properties and uses.

In general, aminoisobutyric acids are used in research to study a variety of biological processes, including protein folding, enzyme function, and cell signaling. They can also be used as building blocks for the synthesis of other chemicals and materials.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Peptide mapping is a technique used in proteomics and analytical chemistry to analyze and identify the sequence and structure of peptides or proteins. This method involves breaking down a protein into smaller peptide fragments using enzymatic or chemical digestion, followed by separation and identification of these fragments through various analytical techniques such as liquid chromatography (LC) and mass spectrometry (MS).

The resulting peptide map serves as a "fingerprint" of the protein, providing information about its sequence, modifications, and structure. Peptide mapping can be used for a variety of applications, including protein identification, characterization of post-translational modifications, and monitoring of protein degradation or cleavage.

In summary, peptide mapping is a powerful tool in proteomics that enables the analysis and identification of proteins and their modifications at the peptide level.

Aminoacyl-tRNA synthetases (also known as aminoacyl-tRNA ligases) are a group of enzymes that play a crucial role in protein synthesis. They are responsible for attaching specific amino acids to their corresponding transfer RNAs (tRNAs), creating aminoacyl-tRNA complexes. These complexes are then used in the translation process to construct proteins according to the genetic code.

Each aminoacyl-tRNA synthetase is specific to a particular amino acid, and there are 20 different synthetases in total, one for each of the standard amino acids. The enzymes catalyze the reaction between an amino acid and ATP to form an aminoacyl-AMP intermediate, which then reacts with the appropriate tRNA to create the aminoacyl-tRNA complex. This two-step process ensures the fidelity of the translation process by preventing mismatching of amino acids with their corresponding tRNAs.

Defects in aminoacyl-tRNA synthetases can lead to various genetic disorders and diseases, such as Charcot-Marie-Tooth disease type 2D, distal spinal muscular atrophy, and leukoencephalopathy with brainstem and spinal cord involvement and lactate acidosis (LBSL).

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

'Escherichia coli (E. coli) proteins' refer to the various types of proteins that are produced and expressed by the bacterium Escherichia coli. These proteins play a critical role in the growth, development, and survival of the organism. They are involved in various cellular processes such as metabolism, DNA replication, transcription, translation, repair, and regulation.

E. coli is a gram-negative, facultative anaerobe that is commonly found in the intestines of warm-blooded organisms. It is widely used as a model organism in scientific research due to its well-studied genetics, rapid growth, and ability to be easily manipulated in the laboratory. As a result, many E. coli proteins have been identified, characterized, and studied in great detail.

Some examples of E. coli proteins include enzymes involved in carbohydrate metabolism such as lactase, sucrase, and maltose; proteins involved in DNA replication such as the polymerases, single-stranded binding proteins, and helicases; proteins involved in transcription such as RNA polymerase and sigma factors; proteins involved in translation such as ribosomal proteins, tRNAs, and aminoacyl-tRNA synthetases; and regulatory proteins such as global regulators, two-component systems, and transcription factors.

Understanding the structure, function, and regulation of E. coli proteins is essential for understanding the basic biology of this important organism, as well as for developing new strategies for combating bacterial infections and improving industrial processes involving bacteria.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Large Neutral Amino Acid-Transporter 1 (LAT1) is a type of transmembrane protein responsible for the transport of large neutral amino acids across the cell membrane. It is also known as SLC7A5, which is its official gene name according to the Human Genome Organization (HUGO). LAT1 forms a heterodimer with another protein called 4F2 heavy chain (4F2hc) or SLC3A2, and this complex is located on the plasma membrane.

LAT1 transports large neutral amino acids such as leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophan, and methionine, as well as several drugs and toxins. It has a high affinity for these amino acids and plays an essential role in their uptake into cells. LAT1 is widely expressed in various tissues, including the brain, placenta, skeletal muscle, heart, liver, kidney, and pancreas.

In the brain, LAT1 is responsible for the transport of large neutral amino acids across the blood-brain barrier (BBB), which is crucial for maintaining brain function. Dysregulation of LAT1 has been implicated in several diseases, including cancer, epilepsy, and neurodegenerative disorders.

Enzyme stability refers to the ability of an enzyme to maintain its structure and function under various environmental conditions, such as temperature, pH, and the presence of denaturants or inhibitors. A stable enzyme retains its activity and conformation over time and across a range of conditions, making it more suitable for industrial and therapeutic applications.

Enzymes can be stabilized through various methods, including chemical modification, immobilization, and protein engineering. Understanding the factors that affect enzyme stability is crucial for optimizing their use in biotechnology, medicine, and research.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

An oligonucleotide probe is a short, single-stranded DNA or RNA molecule that contains a specific sequence of nucleotides designed to hybridize with a complementary sequence in a target nucleic acid (DNA or RNA). These probes are typically 15-50 nucleotides long and are used in various molecular biology techniques, such as polymerase chain reaction (PCR), DNA sequencing, microarray analysis, and blotting methods.

Oligonucleotide probes can be labeled with various reporter molecules, like fluorescent dyes or radioactive isotopes, to enable the detection of hybridized targets. The high specificity of oligonucleotide probes allows for the precise identification and quantification of target nucleic acids in complex biological samples, making them valuable tools in diagnostic, research, and forensic applications.

Cystine is a naturally occurring amino acid in the body, which is formed from the oxidation of two cysteine molecules. It is a non-essential amino acid, meaning that it can be produced by the body and does not need to be obtained through diet. Cystine plays important roles in various biological processes, including protein structure and antioxidant defense. However, when cystine accumulates in large amounts, it can form crystals or stones, leading to conditions such as cystinuria, a genetic disorder characterized by the formation of cystine kidney stones.

Amino acids that contain a carboxyl group (-COOH) and a side chain with a net negative charge at physiological pH (7.4) are classified as acidic amino acids. There are two common acidic amino acids in proteins: aspartic acid (Asp or D) and glutamic acid (Glu or E).

Aspartic acid has a side chain with a single carboxyl group (-COOH), while glutamic acid contains an additional methylene (-CH2-) group, making its side chain more hydrophobic. When the carboxyl groups of these amino acids lose a proton (H+) in solution, they become negatively charged and form carboxylate ions (-COO-). This conversion is facilitated by the higher pH values, typically above 7.

Acidic amino acids play crucial roles in proteins, such as participating in enzyme catalysis, binding metal ions, and contributing to protein stability through ionic interactions. They also serve as important residues for post-translational modifications, which can significantly affect protein function.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Oligodeoxyribonucleotides (ODNs) are relatively short, synthetic single-stranded DNA molecules. They typically contain 15 to 30 nucleotides, but can range from 2 to several hundred nucleotides in length. ODNs are often used as tools in molecular biology research for various applications such as:

1. Nucleic acid detection and quantification (e.g., real-time PCR)
2. Gene regulation (antisense, RNA interference)
3. Gene editing (CRISPR-Cas systems)
4. Vaccine development
5. Diagnostic purposes

Due to their specificity and affinity towards complementary DNA or RNA sequences, ODNs can be designed to target a particular gene or sequence of interest. This makes them valuable tools in understanding gene function, regulation, and interaction with other molecules within the cell.

Sequence homology is a term used in molecular biology to describe the similarity between the nucleotide or amino acid sequences of two or more genes or proteins. It is a measure of the degree to which the sequences are related, indicating a common evolutionary origin.

In other words, sequence homology implies that the compared sequences have a significant number of identical or similar residues in the same order, suggesting that they share a common ancestor and have diverged over time through processes such as mutation, insertion, deletion, or rearrangement. The higher the degree of sequence homology, the more closely related the sequences are likely to be.

Sequence homology is often used to identify similarities between genes or proteins from different species, which can provide valuable insights into their functions, structures, and evolutionary relationships. It is commonly assessed using various bioinformatics tools and algorithms, such as BLAST (Basic Local Alignment Search Tool), Clustal Omega, and multiple sequence alignment (MSA) methods.

The genetic code is the set of rules that dictates how DNA and RNA sequences are translated into proteins. It consists of a 64-unit "alphabet" formed by all possible combinations of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) in DNA or uracil (U) in RNA. These triplets, also known as codons, specify the addition of specific amino acids during protein synthesis or signal the start or stop of translation. This code is universal across all known organisms, with only a few exceptions.

Asparagine is an organic compound that is classified as a naturally occurring amino acid. It contains an amino group, a carboxylic acid group, and a side chain consisting of a single carbon atom bonded to a nitrogen atom, making it a neutral amino acid. Asparagine is encoded by the genetic codon AAU or AAC in the DNA sequence.

In the human body, asparagine plays important roles in various biological processes, including serving as a building block for proteins and participating in the synthesis of other amino acids. It can also act as a neurotransmitter and is involved in the regulation of cellular metabolism. Asparagine can be found in many foods, particularly in high-protein sources such as meat, fish, eggs, and dairy products.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Caseins are a group of phosphoproteins found in the milk of mammals, including cows and humans. They are the major proteins in milk, making up about 80% of the total protein content. Caseins are characterized by their ability to form micelles, or tiny particles, in milk when it is mixed with calcium. This property allows caseins to help transport calcium and other minerals throughout the body.

Caseins are also known for their nutritional value, as they provide essential amino acids and are easily digestible. They are often used as ingredients in infant formula and other food products. Additionally, caseins have been studied for their potential health benefits, such as reducing the risk of cardiovascular disease and improving bone health. However, more research is needed to confirm these potential benefits.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

A consensus sequence in genetics refers to the most common nucleotide (DNA or RNA) or amino acid at each position in a multiple sequence alignment. It is derived by comparing and analyzing several sequences of the same gene or protein from different individuals or organisms. The consensus sequence provides a general pattern or motif that is shared among these sequences and can be useful in identifying functional regions, conserved domains, or evolutionary relationships. However, it's important to note that not every sequence will exactly match the consensus sequence, as variations can occur naturally due to mutations or genetic differences among individuals.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Glycosylation is the enzymatic process of adding a sugar group, or glycan, to a protein, lipid, or other organic molecule. This post-translational modification plays a crucial role in modulating various biological functions, such as protein stability, trafficking, and ligand binding. The structure and composition of the attached glycans can significantly influence the functional properties of the modified molecule, contributing to cell-cell recognition, signal transduction, and immune response regulation. Abnormal glycosylation patterns have been implicated in several disease states, including cancer, diabetes, and neurodegenerative disorders.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

RNA (Ribonucleic Acid) is a single-stranded, linear polymer of ribonucleotides. It is a nucleic acid present in the cells of all living organisms and some viruses. RNAs play crucial roles in various biological processes such as protein synthesis, gene regulation, and cellular signaling. There are several types of RNA including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). These RNAs differ in their structure, function, and location within the cell.

Histidine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H9N3O2. Histidine plays a crucial role in several physiological processes, including:

1. Protein synthesis: As an essential amino acid, histidine is required for the production of proteins, which are vital components of various tissues and organs in the body.

2. Hemoglobin synthesis: Histidine is a key component of hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. The imidazole side chain of histidine acts as a proton acceptor/donor, facilitating the release and uptake of oxygen by hemoglobin.

3. Acid-base balance: Histidine is involved in maintaining acid-base homeostasis through its role in the biosynthesis of histamine, which is a critical mediator of inflammatory responses and allergies. The decarboxylation of histidine results in the formation of histamine, which can increase vascular permeability and modulate immune responses.

4. Metal ion binding: Histidine has a high affinity for metal ions such as zinc, copper, and iron. This property allows histidine to participate in various enzymatic reactions and maintain the structural integrity of proteins.

5. Antioxidant defense: Histidine-containing dipeptides, like carnosine and anserine, have been shown to exhibit antioxidant properties by scavenging reactive oxygen species (ROS) and chelating metal ions. These compounds may contribute to the protection of proteins and DNA from oxidative damage.

Dietary sources of histidine include meat, poultry, fish, dairy products, and wheat germ. Histidine deficiency is rare but can lead to growth retardation, anemia, and impaired immune function.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

DNA restriction enzymes, also known as restriction endonucleases, are a type of enzyme that cut double-stranded DNA at specific recognition sites. These enzymes are produced by bacteria and archaea as a defense mechanism against foreign DNA, such as that found in bacteriophages (viruses that infect bacteria).

Restriction enzymes recognize specific sequences of nucleotides (the building blocks of DNA) and cleave the phosphodiester bonds between them. The recognition sites for these enzymes are usually palindromic, meaning that the sequence reads the same in both directions when facing the opposite strands of DNA.

Restriction enzymes are widely used in molecular biology research for various applications such as genetic engineering, genome mapping, and DNA fingerprinting. They allow scientists to cut DNA at specific sites, creating precise fragments that can be manipulated and analyzed. The use of restriction enzymes has been instrumental in the development of recombinant DNA technology and the Human Genome Project.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

Cationic Amino Acid Transporter 1 (Cat Transport 1 or CAT1) is a protein that plays a role in the transport of cationic amino acids across membranes. Cationic amino acids are positively charged amino acids, including arginine, lysine, and ornithine.

CAT1 is primarily expressed in the intestines, kidneys, and placenta, where it facilitates the absorption and reabsorption of cationic amino acids from food and fluids. It is a member of the solute carrier family 7 (SLC7), which includes several other amino acid transporters.

Defects in CAT1 function can lead to impaired transport of cationic amino acids, which may have consequences for various physiological processes, including protein synthesis and immune function. However, mutations in the human CAT1 gene are rare and have not been associated with any known genetic disorders.

Amino acid isomerases are a class of enzymes that catalyze the conversion of one amino acid stereoisomer to another. These enzymes play a crucial role in the metabolism and biosynthesis of amino acids, which are the building blocks of proteins.

Amino acids can exist in two forms, called L- and D-stereoisomers, based on the spatial arrangement of their constituent atoms around a central carbon atom. While most naturally occurring amino acids are of the L-configuration, some D-amino acids are also found in certain proteins and peptides, particularly in bacteria and lower organisms.

Amino acid isomerases can convert one stereoisomer to another by breaking and reforming chemical bonds in a process that requires energy. This conversion can be important for the proper functioning of various biological processes, such as protein synthesis, neurotransmitter metabolism, and immune response.

Examples of amino acid isomerases include proline racemase, which catalyzes the interconversion of L-proline and D-proline, and serine hydroxymethyltransferase, which converts L-serine to D-serine. These enzymes are essential for maintaining the balance of amino acids in living organisms and have potential therapeutic applications in various diseases, including neurodegenerative disorders and cancer.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Protein engineering is a branch of molecular biology that involves the modification of proteins to achieve desired changes in their structure and function. This can be accomplished through various techniques, including site-directed mutagenesis, gene shuffling, directed evolution, and rational design. The goal of protein engineering may be to improve the stability, activity, specificity, or other properties of a protein for therapeutic, diagnostic, industrial, or research purposes. It is an interdisciplinary field that combines knowledge from genetics, biochemistry, structural biology, and computational modeling.

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Membrane transport proteins are specialized biological molecules, specifically integral membrane proteins, that facilitate the movement of various substances across the lipid bilayer of cell membranes. They are responsible for the selective and regulated transport of ions, sugars, amino acids, nucleotides, and other molecules into and out of cells, as well as within different cellular compartments. These proteins can be categorized into two main types: channels and carriers (or pumps). Channels provide a passive transport mechanism, allowing ions or small molecules to move down their electrochemical gradient, while carriers actively transport substances against their concentration gradient, requiring energy usually in the form of ATP. Membrane transport proteins play a crucial role in maintaining cell homeostasis, signaling processes, and many other physiological functions.

A dipeptide is a type of molecule that is formed by the condensation of two amino acids. In this process, the carboxyl group (-COOH) of one amino acid combines with the amino group (-NH2) of another amino acid, releasing a water molecule and forming a peptide bond.

The resulting molecule contains two amino acids joined together by a single peptide bond, which is a type of covalent bond that forms between the carboxyl group of one amino acid and the amino group of another. Dipeptides are relatively simple molecules compared to larger polypeptides or proteins, which can contain hundreds or even thousands of amino acids linked together by multiple peptide bonds.

Dipeptides have a variety of biological functions in the body, including serving as building blocks for larger proteins and playing important roles in various physiological processes. Some dipeptides also have potential therapeutic uses, such as in the treatment of hypertension or muscle wasting disorders.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Carboxypeptidases are a group of enzymes that catalyze the cleavage of peptide bonds at the carboxyl-terminal end of polypeptides or proteins. They specifically remove the last amino acid residue from the protein chain, provided that it has a free carboxyl group and is not blocked by another chemical group. Carboxypeptidases are classified into two main types based on their catalytic mechanism: serine carboxypeptidases and metallo-carboxypeptidases.

Serine carboxypeptidases, also known as chymotrypsin C or carboxypeptidase C, use a serine residue in their active site to catalyze the hydrolysis of peptide bonds. They are found in various organisms, including animals and bacteria.

Metallo-carboxypeptidases, on the other hand, require a metal ion (usually zinc) for their catalytic activity. They can be further divided into several subtypes based on their structure and substrate specificity. For example, carboxypeptidase A prefers to cleave hydrophobic amino acids from the carboxyl-terminal end of proteins, while carboxypeptidase B specifically removes basic residues (lysine or arginine).

Carboxypeptidases have important roles in various biological processes, such as protein maturation, digestion, and regulation of blood pressure. Dysregulation of these enzymes has been implicated in several diseases, including cancer, neurodegenerative disorders, and cardiovascular disease.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Biological evolution is the change in the genetic composition of populations of organisms over time, from one generation to the next. It is a process that results in descendants differing genetically from their ancestors. Biological evolution can be driven by several mechanisms, including natural selection, genetic drift, gene flow, and mutation. These processes can lead to changes in the frequency of alleles (variants of a gene) within populations, resulting in the development of new species and the extinction of others over long periods of time. Biological evolution provides a unifying explanation for the diversity of life on Earth and is supported by extensive evidence from many different fields of science, including genetics, paleontology, comparative anatomy, and biogeography.

Peptide hydrolases, also known as proteases or peptidases, are a group of enzymes that catalyze the hydrolysis of peptide bonds in proteins and peptides. They play a crucial role in various biological processes such as protein degradation, digestion, cell signaling, and regulation of various physiological functions. Based on their catalytic mechanism and the specificity for the peptide bond, they are classified into several types, including serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. These enzymes have important clinical applications in the diagnosis and treatment of various diseases, such as cancer, viral infections, and inflammatory disorders.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

Urea is not a medical condition but it is a medically relevant substance. Here's the definition:

Urea is a colorless, odorless solid that is the primary nitrogen-containing compound in the urine of mammals. It is a normal metabolic end product that is excreted by the kidneys and is also used as a fertilizer and in various industrial applications. Chemically, urea is a carbamide, consisting of two amino groups (NH2) joined by a carbon atom and having a hydrogen atom and a hydroxyl group (OH) attached to the carbon atom. Urea is produced in the liver as an end product of protein metabolism and is then eliminated from the body by the kidneys through urination. Abnormal levels of urea in the blood, known as uremia, can indicate impaired kidney function or other medical conditions.

Keto acids, also known as ketone bodies, are not exactly the same as "keto acids" in the context of amino acid metabolism.

In the context of metabolic processes, ketone bodies are molecules that are produced as byproducts when the body breaks down fat for energy instead of carbohydrates. When carbohydrate intake is low, the liver converts fatty acids into ketone bodies, which can be used as a source of energy by the brain and other organs. The three main types of ketone bodies are acetoacetate, beta-hydroxybutyrate, and acetone.

However, in the context of amino acid metabolism, "keto acids" refer to the carbon skeletons of certain amino acids that remain after their nitrogen-containing groups have been removed during the process of deamination. These keto acids can then be converted into glucose or used in other metabolic pathways. For example, the keto acid produced from the amino acid leucine is called beta-ketoisocaproate.

Therefore, it's important to clarify the context when discussing "keto acids" as they can refer to different things depending on the context.

Chromatography is a technique used in analytical chemistry for the separation, identification, and quantification of the components of a mixture. It is based on the differential distribution of the components of a mixture between a stationary phase and a mobile phase. The stationary phase can be a solid or liquid, while the mobile phase is a gas, liquid, or supercritical fluid that moves through the stationary phase carrying the sample components.

The interaction between the sample components and the stationary and mobile phases determines how quickly each component will move through the system. Components that interact more strongly with the stationary phase will move more slowly than those that interact more strongly with the mobile phase. This difference in migration rates allows for the separation of the components, which can then be detected and quantified.

There are many different types of chromatography, including paper chromatography, thin-layer chromatography (TLC), gas chromatography (GC), liquid chromatography (LC), and high-performance liquid chromatography (HPLC). Each type has its own strengths and weaknesses, and is best suited for specific applications.

In summary, chromatography is a powerful analytical technique used to separate, identify, and quantify the components of a mixture based on their differential distribution between a stationary phase and a mobile phase.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

Taurine is an organic compound that is widely distributed in animal tissues. It is a conditionally essential amino acid, meaning it can be synthesized by the human body under normal circumstances, but there may be increased requirements during certain periods such as infancy, infection, or illness. Taurine plays important roles in various physiological functions, including bile salt formation, membrane stabilization, neuromodulation, and antioxidation. It is particularly abundant in the brain, heart, retina, and skeletal muscles. In the human body, taurine is synthesized from the amino acids cysteine and methionine with the aid of vitamin B6.

Taurine can also be found in certain foods like meat, fish, and dairy products, as well as in energy drinks, where it is often added as a supplement for its potential performance-enhancing effects. However, there is ongoing debate about the safety and efficacy of taurine supplementation in healthy individuals.

Organ specificity, in the context of immunology and toxicology, refers to the phenomenon where a substance (such as a drug or toxin) or an immune response primarily affects certain organs or tissues in the body. This can occur due to various reasons such as:

1. The presence of specific targets (like antigens in the case of an immune response or receptors in the case of drugs) that are more abundant in these organs.
2. The unique properties of certain cells or tissues that make them more susceptible to damage.
3. The way a substance is metabolized or cleared from the body, which can concentrate it in specific organs.

For example, in autoimmune diseases, organ specificity describes immune responses that are directed against antigens found only in certain organs, such as the thyroid gland in Hashimoto's disease. Similarly, some toxins or drugs may have a particular affinity for liver cells, leading to liver damage or specific drug interactions.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Capsid proteins are the structural proteins that make up the capsid, which is the protective shell of a virus. The capsid encloses the viral genome and helps to protect it from degradation and detection by the host's immune system. Capsid proteins are typically arranged in a symmetrical pattern and can self-assemble into the capsid structure when exposed to the viral genome.

The specific arrangement and composition of capsid proteins vary between different types of viruses, and they play important roles in the virus's life cycle, including recognition and binding to host cells, entry into the cell, and release of the viral genome into the host cytoplasm. Capsid proteins can also serve as targets for antiviral therapies and vaccines.

'Bacillus' is a genus of rod-shaped, gram-positive bacteria that are commonly found in soil, water, and the gastrointestinal tracts of animals. Many species of Bacillus are capable of forming endospores, which are highly resistant to heat, radiation, and chemicals, allowing them to survive for long periods in harsh environments. The most well-known species of Bacillus is B. anthracis, which causes anthrax in animals and humans. Other species of Bacillus have industrial or agricultural importance, such as B. subtilis, which is used in the production of enzymes and antibiotics.

Parenteral nutrition solutions are medically formulated preparations that provide nutritional support through routes other than the gastrointestinal tract, usually via intravenous infusion. These solutions typically contain carbohydrates, proteins (or amino acids), lipids, electrolytes, vitamins, and trace elements to meet the essential nutritional requirements of patients who cannot receive adequate nutrition through enteral feeding.

The composition of parenteral nutrition solutions varies depending on individual patient needs, but they generally consist of dextrose monohydrate or cornstarch for carbohydrates, crystalline amino acids for proteins, and soybean oil, safflower oil, olive oil, or a combination thereof for lipids. Electrolytes like sodium, potassium, chloride, calcium, and magnesium are added to maintain fluid and electrolyte balance. Vitamins (fat-soluble and water-soluble) and trace elements (e.g., zinc, copper, manganese, chromium, and selenium) are also included in the solution to support various metabolic processes and overall health.

Parenteral nutrition solutions can be tailored to address specific patient conditions or requirements, such as diabetes, renal insufficiency, or hepatic dysfunction. Close monitoring of patients receiving parenteral nutrition is necessary to ensure appropriate nutrient delivery, prevent complications, and achieve optimal clinical outcomes.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Nutritional requirements refer to the necessary amount of nutrients, including macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals), that an individual requires to maintain good health, support normal growth and development, and promote optimal bodily functions. These requirements vary based on factors such as age, sex, body size, pregnancy status, and physical activity level. Meeting one's nutritional requirements typically involves consuming a balanced and varied diet, with additional consideration given to any specific dietary restrictions or medical conditions that may influence nutrient needs.

Transfer RNA (tRNA) is a type of RNA molecule that plays a crucial role in protein synthesis. It serves as the adaptor molecule that translates the genetic code present in messenger RNA (mRNA) into the corresponding amino acids, which are then linked together to form a polypeptide chain during protein synthesis.

Aminoacyl tRNA is a specific type of tRNA molecule that has been charged or activated with an amino acid. This process is called aminoacylation and is carried out by enzymes called aminoacyl-tRNA synthetases. Each synthetase specifically recognizes and attaches a particular amino acid to its corresponding tRNA, ensuring the fidelity of protein synthesis. Once an amino acid is attached to a tRNA, it forms an aminoacyl-tRNA complex, which can then participate in translation and contribute to the formation of a new protein.

Alternative splicing is a process in molecular biology that occurs during the post-transcriptional modification of pre-messenger RNA (pre-mRNA) molecules. It involves the removal of non-coding sequences, known as introns, and the joining together of coding sequences, or exons, to form a mature messenger RNA (mRNA) molecule that can be translated into a protein.

In alternative splicing, different combinations of exons are selected and joined together to create multiple distinct mRNA transcripts from a single pre-mRNA template. This process increases the diversity of proteins that can be produced from a limited number of genes, allowing for greater functional complexity in organisms.

Alternative splicing is regulated by various cis-acting elements and trans-acting factors that bind to specific sequences in the pre-mRNA molecule and influence which exons are included or excluded during splicing. Abnormal alternative splicing has been implicated in several human diseases, including cancer, neurological disorders, and cardiovascular disease.

Dicarboxylic amino acids are a type of amino acid that contain two carboxyl (–COOH) groups in their chemical structure. In the context of biochemistry and human physiology, the dicarboxylic amino acids include aspartic acid (Asp) and glutamic acid (Glu). These amino acids play important roles in various biological processes, such as neurotransmission, energy metabolism, and cell signaling.

Aspartic acid (Asp, D) is an alpha-amino acid with the chemical formula: HO2CCH(NH2)CH2CO2H. It is a genetically encoded amino acid, which means that it is coded for by DNA in the genetic code and is incorporated into proteins during translation. Aspartic acid has a role as a neurotransmitter in the brain, where it is involved in excitatory neurotransmission.

Glutamic acid (Glu, E) is another alpha-amino acid with the chemical formula: HO2CCH(NH2)CH2CH2CO2H. Like aspartic acid, glutamic acid is a genetically encoded amino acid and is an important component of proteins. Glutamic acid also functions as a neurotransmitter in the brain, where it is the primary mediator of excitatory neurotransmission. Additionally, glutamic acid can be converted into the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) through the action of the enzyme glutamate decarboxylase.

Both aspartic acid and glutamic acid are considered to be non-essential amino acids, meaning that they can be synthesized by the human body and do not need to be obtained through the diet. However, it is important to note that a balanced and nutritious diet is necessary for maintaining optimal health and supporting the body's ability to synthesize these and other amino acids.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Thermolysin is not a medical term per se, but it is a bacterial enzyme that is often used in biochemistry and molecular biology research. Here's the scientific or biochemical definition:

Thermolysin is a zinc metalloprotease enzyme produced by the bacteria Geobacillus stearothermophilus. It has an optimum temperature for activity at around 65°C, and it can remain active in high temperatures, which makes it useful in various industrial applications. Thermolysin is known for its ability to cleave peptide bonds, particularly those involving hydrophobic residues, making it a valuable tool in protein research and engineering.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

A mutant protein is a protein that has undergone a genetic mutation, resulting in an altered amino acid sequence and potentially changed structure and function. These changes can occur due to various reasons such as errors during DNA replication, exposure to mutagenic substances, or inherited genetic disorders. The alterations in the protein's structure and function may have no significant effects, lead to benign phenotypic variations, or cause diseases, depending on the type and location of the mutation. Some well-known examples of diseases caused by mutant proteins include cystic fibrosis, sickle cell anemia, and certain types of cancer.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism ... The distinction between essential and non-essential amino acids is somewhat unclear, as some amino acids can be produced from ... The limiting amino acid is the essential amino acid which is furthest from meeting nutritional requirements. This concept is ... Amino acids that must be obtained from the diet are called essential amino acids. (*) Pyrrolysine, sometimes considered the " ...
Essential vs Non Essential Amino Acids: Whats the Difference? ... Essential amino acids, also known as indispensable amino acids ... So, whats the difference between essential and non-essential amino acids? Essential amino acids are those that the body cannot ... While essential amino acids are important for muscle growth and repair, non-essential amino acids play a role in immune ... There are two types of amino acids: essential and nonessential. Essential amino acids cannot be produced by the body and must ...
Benefits include lactic acid reduction and reducing muscle fatigue. ... All this makes AminoWise more than just a branched chain amino acid supplement-its an advanced, targeted workout essential to ... All this makes AminoWise more than just a branched chain amino acid supplement-its an advanced, targeted workout essential to ... Contains branched chain amino acids which have been shown to aid in preventing muscle catabolism from exercise. ...
Benefits include lactic acid reduction and reducing muscle fatigue. ... All this makes AminoWise more than just a branched chain amino acid supplement-its an advanced, targeted workout essential to ... All this makes AminoWise more than just a branched chain amino acid supplement-its an advanced, targeted workout essential to ... Contains branched chain amino acids which have been shown to aid in preventing muscle catabolism from exercise. ...
... naturally occurring L-form amino acids per tablet. ... Prolab Amino 2000 is an EAAs Essential Amino Acids & BCAAs ... Prolab Nutrition Amino 2000™ is a potent amino acid formula containing 2000 mg of pure, naturally occurring L-form amino acids ... Prolab Nutrition Amino 2000™ is a potent amino acid formula containing 2000 mg of pure, naturally occurring L-form amino acids ... Your system breaks down the protein into amino acids, which are then used to grow and repair muscle fibers, especially after a ...
Engineering Essential Amino Acid (EAA) biosynthesis in metazoan cells.. (A) Presence of amino acid biosynthesis pathways across ... For growth assays involving amino acid dropout formulations, medium was prepared from an amino acid-free Hams F-12 (Kaighns) ... This in particular relates to amino-acid sensing pathways (e.g., mTOR) that signal amino-acid availability to the proliferation ... This in particular relates to amino-acid sensing pathways (e.g., mTOR) that signal amino-acid availability to the proliferation ...
With the 3 BCAA Branched Chain Amino Acids) the body needs to support and maintain its muscular, skeletal, enzymatic and ... PerfectAmino Strawberry Drink Powder has all eight essential amino acids ( ... Q: What are essential amino acids?. A: Amino acids are the building blocks of protein, used to build cells, tissue, nerves, ... Q: What are essential amino acids?. A: Amino acids are the building blocks of protein, used to build cells, tissue, nerves, ...
The rest are non-essential amino acids that arent used or "extra" essential amino acids that couldnt be paired. This means ... The rest are non-essential amino acids that arent used or "extra" essential amino acids that couldnt be paired. This means ... "essential amino acids" on its own. It HAS to get them from outside sources. But, when it gets all of the essential amino acids ... It then takes from these the essential amino acids (amino acids your body cant produce on its own) and uses these to make new ...
... meaning it has all the essential amino acids (and non-essential) in the best possible profile for human digestion and ... Just started taking the Whey Protein supplement and would like to understand what essential amino acids are included in the ... Just started taking the Whey Protein supplement and would like to understand what essential amino acids are included in the ... Just started taking the Whey Protein supplement and would like to understand what essential amino acids are included in the ...
Branched-Chain Amino Acids, BCAAs, are great for anyone looking to support lean muscle & recovery! Feed your hungry muscles a ...
Next to the 8 essential amino acids, there are around 14 non-essential amino acids and a whole host of other metabolites ... But non-essential amino acids are produced only as the body needs them, and are not as omni-present in food as the essential ... The 8 Essential Amino Acids. Understanding the essentials and trying to optimize them in your diet should be basic knowledge ... What Are Amino Acids?. Well, amino acids in food make up protein. When protein is digested it is once again broken down into ...
STN is a family-owned business that was founded in 2015. We service customers in all 50 US States as well as overseas military personnel. We pride ourselves on our industry-leading customer service and it is our passion to provide customers with top-notch fitness supplements at affordable prices.. ...
... Amino acids and fatty acids. Amino acids are used for the synthesis of proteins and other ... Various cells take up these amino acids, which enter the cellular amino acid pools. The omission of an essential amino acid ... one derived from amino acids except lysine,,... Few individual amino acids be identified as an essential amino acids is ... amino acid metabolism of essential amino acids is. And amino acids that the body are constantly synthesized and degraded, ...
PhD Amino Support tablets contain 8 essential amino acids which helps to maintain a healthy immune system and reduce tiredness ... What are Amino Support Tablets?. There are two types of amino acids: essential and nonessential amino acids. Essential amino ... The PhD Amino Support tablets contain 8 essential amino acids, including the 3 BCAAs leucine, iso-leucine, and valine, which ... Who are Amino Support Tablets suitable for?. *Any athlete looking to supplement a high protein diet with these essential amino ...
Heres what you need to know about amino acids for weight loss: ... Most of what youve probably heard about amino acids comes from ... Of the nine essential amino acids we get from consumption, three are branched-chain amino acids (BCAAs). So, whats so special ... What Are Amino Acids? To understand the benefits amino acids can have on your body, you first must understand what amino acids ... some prefer to supplement amino acids. Amino Acids and Weight Loss Because amino acids can potentially boost performance when ...
Our Impact EAA Powder is our improved blend of essential amino acids, containing all 9. British manufactured for Worlds No. 1 ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Pink Grape ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Pink Grape ... Our blend is based on the same essential amino acid profile as our Impact Whey Protein, only it has a faster amino acid ...
... Nutrition ✓Free shipping from €100 ✓Same day shipping ✓Free Samples&Goodies. ... What are essential amino acids found in?. Essential amino acids are found in all kinds of foods that contain proteins. The ... How many essential amino acids are there?. As mentioned above, there are eight essential amino acids. Three of these are known ... Essential Amino Acids. There are eight different essential amino acids in total. These can only be derived from food or ...
... containing all 9 Essential Amino Acids. Available in 4 mouth-watering flavours. ... Buy Impact EAA for our new and improved blend of Essential Amino Acids, ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Tropical ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Tropical ...
... high quality Amino supplements you will find in NZ. Free shipping - Shop online now! ...
EAA Essential Amino Acids contains 7160 mg of essential amino acids per serving of which 3400 mg are BCAA with instant L- ... ESSENTIAL AMINO ACIDS - As their name show, essential amino acids are vital for the human body, because we are not able to ... To supplement other products with essential amino acids - by your endurance trainings mix it with IsoTonic or mix it with Iso ... Proteins, which building blocks are amino acids, play an unquestionable role in the processes of muscle building, because ...
Essential Amino Acids are found naturally in protein but cannot be synthesised by the body, so must be obtained in the diet. ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Tropical ... Ready-to-mix, essential amino acid powder. Unflavoured Food Supplement.. Ready-to-mix, essential amino acid powder. Tropical ... Our blend is based on the same essential amino acid profile as our Impact Whey Protein, only it has a faster amino acid ...
Amino Prime Blue Hawaiian Is A Supplement That Provides All 9 Essential Amino Acids. ... Essential Amino Acids Are Necessary For Human Health. ... ESSENTIAL AMINO ACIDS. The Essential Amino Acids are required ... The 9 essential amino acids can be used to create any of the other 11 dietary amino acids, and the essential amino acids must ... This colloquialism is especially true when you are eating essential amino acids. Amino acids literally form the proteins that ...
Amino Fuel. ESSENTIAL AMINO ACIDS. 390g , 30 Servings. Amino Fuel is the perfect blend delivering 11g of Aminos per serving, 9g ... Amino Acids are complex chemicals that are the building blocks of protein. An Essential Amino Acid cannot be synthesised or ... 9g of which are Essential Amino Acids (EAA) including 6g of Branched Chain Amino Acids (BCAAs) at a 2:1:1 ratio (3000mg L- ... Applied Nutrition AMINO FUEL 390G- Essential Amino Acids quantity. Add to basket. SKU: 634158793998 Category: Post Workout EAN ...
Choose from complete amino acid products, BCAAs, or single amino acids. Get the aminos you need to reach your goals! ... Muscle and Strength has a huge range of amino acid supplements at heavily discounted prices, and same day shipping! ... Rule 1 R1 Essential Amino 9, 30 Servings + Energy Users gave this product an average rating of 96 out of 100 (530) ... Rule 1 R1 Essential Amino 9, 30 Servings Users gave this product an average rating of 96 out of 100 (530) ...
Amino acids and proteins are the building blocks of life. ... Amino acids and proteins are the building blocks of life. ... Amino acids are molecules that combine to form proteins. ... Amino acids are molecules that combine to form proteins. ... CONDITIONALLY ESSENTIAL AMINO ACIDS. *Conditionally essential amino acids are usually not essential, except in times of illness ... NONESSENTIAL AMINO ACIDS. Nonessential means that our bodies can produce the amino acid, even if we do not get it from the food ...
Amino Acids and Lipids) for about a week and I just dont... ... Medical Essential Amino Acids: Do Our Bodies Produce Them? *. ... What are amino acids?. Amino acids are the building blocks of proteins. There are 20 different amino acids that the body needs ... Made only of amino acids. Make up structure of your body. Can be used for energy.. Amino Acids - made of the same elements as ... Suggested for: Basics for: Carbohydrates, Proteins, Amino Acids and Lipids Medical Question about the synthesis of fatty acids ...
Definition, Structure & Infographics of Amino Acids. Importance of Amino Acids. Foods.. ... What are Essential Amino Acids and Non-essential Amino Acids. ... What are Essential Amino Acids. Essential amino acids are amino ... Amino Acids. There are so many amino acids present in nature but gene codes only 20 amino acid. Essential amino acids are type ... What are Essential Amino Acids , Definition, Structure, Foods, Infographics , Amino Acids. Definition of Amino Acid. Amino acid ...
Simply all essential amino acids combined in a mega delicious, sugar-free instant drink. The most popular amino acid blend is ... All 8 amino acids synergistically coordinated with each other. *Extremely fast amino acid synthesis due to vitamin B6 ...
Revitalize both your body and your mind with the best essential amino acids in powder, with the best quality from Scenit. ... The perfect 9 Essential Amino Acids.. 9 essential amino acids. Formulated with the essential amino acids necessary for the ... EAA Master Amino from Scenit, is formulated with the essential amino acids necessary for the human body. These amino acids are ... Scenits EAA Master Amino is formulated with 9 essential amino acids in total, including the branched-chain amino acids known ...
Essential Amino Acids. The Building Blocks of Life Essential amino acids are the energy source and building blocks for cellular ... 7) Amino acids are most recognized in their role of muscle development and repair. Studies have shown amino acids… ... Your body needs Vitamin B12, or cobalamin, and folate, also called folic acid, to function normally. All of TriVitas Slow ... While acute inflammation is a normal and essential part of the immune response to injury or infection, chronic unresolved ...
  • Taurine, as well as various other BCAAS, is essential for synthesis of collagen and elastin. (discovermagazine.com)
  • At the bottom of the spectrum are branched-chain amino acids (BCAAs). (bodyhealth.com)
  • The PhD Amino Support tablets contain 8 essential amino acids, including the 3 BCAAs leucine, iso-leucine, and valine, which are often part of an athlete's training and nutritional plan. (phd.com)
  • Of the nine essential amino acids we get from consumption, three are branched-chain amino acids (BCAAs). (amino-vital.com)
  • Our blend is based on the same essential amino acid profile as our Impact Whey Protein, only it has a faster amino acid absorption rate*, and it's fortified with a 4:1:1 ratio of the BCAAs, leucine, isoleucine, and valine. (myprotein.co.in)
  • Three of these are known as branched-chain amino acids, or better known as BCAAs . (xxlnutrition.com)
  • Instamino™ are a specially designed form of amino acids which easily dissolve for a smooth, clean delivery of BCAAs. (spectralbody.com)
  • The BCAAs are unique types of amino acids with a branch-like structure that are especially abundant in muscle. (spectralbody.com)
  • Amino Fuel is the perfect blend delivering 11g of Aminos per serving, 9g of which are Essential Amino Acids (EAA) including 6g of Branched Chain Amino Acids (BCAAs) at a 2:1:1 ratio (3000mg L-Leucine, 1500mg L-Isoleucine, 1500mg L-Valine) with an additional 2g of L-Glutamine. (gymstation.co.uk)
  • 3 Kcal Amino Fuel is the perfect blend delivering 11g of Aminos per serving, 9g of which are Essential Amino Acids (EAA) including 6g of Branched Chain Amino Acids (BCAAs) at a 2:1:1 ratio (3000mg L-Leucine, 1500mg L-Isoleucine, 1500mg L-Valine) with an additional 2g of L-Glutamine. (gymstation.co.uk)
  • Scenit's EAA Master Amino is formulated with 9 essential amino acids in total, including the branched-chain amino acids known as BCAAs. (scenitnutrition.com)
  • This unique formula, packed with all nine essential amino acids (EAAs), including 6g of fermented BCAAs, is designed to fuel your muscles, enhance recovery, and support your overall health. (gallionsportsnutrition.com)
  • EAA Max provides a full essential amino acid profile including a full 5g dose of 2:1:1 BCAAs to support muscle growth, repair, and recovery! (primevallabs.com)
  • EAA Max provides a complete essential amino acid profile PLUS a full serving of 2:1:1 BCAAs for maximal muscle growth, repair, and recovery! (primevallabs.com)
  • Typical amino acid supplements only contain the three branched-chain amino acids (BCAAs) consisting of Leucine, Isoleucine, and Valine. (primevallabs.com)
  • ALL 9 EAAs PLUS BCAAs AMINO ACIDS POWDER: Contains all 3 BCAAs in the research-proven 4:1:1 ratio, plus all EAAs for maximum muscle protein synthesis. (healthsupplements.shopping)
  • Should You Be Taking Branched Chain Amino Acids (BCAAs)? (crossfitinvictus.com)
  • Among the essential amino acids, only 3 are considered to be BCAAs: leucine, isoleucine, and valine. (crossfitinvictus.com)
  • Unlike the other essential amino acids, BCAAs are oxidized in muscle tissue and not the liver [1]. (crossfitinvictus.com)
  • Another study published in the American Journal of Physiology found that BCAAs prevented muscle protein breakdown by sparing essential amino acids in muscle tissue [4]. (crossfitinvictus.com)
  • While the evolutionary forces driving these polyphyletic deletion events are not well understood, the consequence is that extant metazoans are unable to produce nine essential amino acids (EAAs). (elifesciences.org)
  • in order to do this it must have ALL of the essential amino acids (EAAs), and in the right ratio one to another - not just one of each. (bodyhealth.com)
  • Amino Prime is made of all 9 EAAs with added glutamine, taurine, and natural caffeine for total workout support. (spectralbody.com)
  • Essential amino acids, or EAAs, are essential for protein synthesis in the body and are important for muscle recovery after exercise. (scenitnutrition.com)
  • EAAs are called "essential" because the body cannot synthesize them on its own. (primevallabs.com)
  • 6. The liver is the major site of amino acid oxidation, but most tissues can oxidize the branched chain amino acids (i.e., leucine, isoleucine, valine). (slimwithlynne.com)
  • Because there is evidence that these three amino acids (isoleucine, leucine, and valine) are the most important when building muscle. (amino-vital.com)
  • The essential amino acids include the branched chain amino acids, leucine, isoleucine, and valine. (spectralbody.com)
  • Leucine is the best known, and well researched, of all the amino acids. (primevallabs.com)
  • It's easy to see why Leucine is widely regarded as the "king" of all amino acids when you put these benefits together. (primevallabs.com)
  • Isoleucine and leucine are important amino acids to help regulate muscle function. (aminomantra.co.nz)
  • Leucine and isoleucine , two branched-chain essential amino acids , strongly bind to and activate the E3 ubiquitin ligase Ubr1, targeting Plin2 for degradation. (bvsalud.org)
  • Nonessential amino acids are produced in the body. (wikipedia.org)
  • The pathways for the synthesis of nonessential amino acids come from basic metabolic pathways. (wikipedia.org)
  • Essential amino acids cannot be produced by the body and must come from food sources, while nonessential amino acids can be produced by the body. (discovermagazine.com)
  • What is the difference between essential and nonessential amino acids? (discovermagazine.com)
  • Disorders that affect the metabolism of amino acids include phenylketonuria, tyrosinemia, homocystinuria, non-ketotic … Essential and nonessential amino acids are degraded to products that can be metabolized for energy. (slimwithlynne.com)
  • While being classified as a nonessential amino acid, increased quantities of glutamine may support recovery. (spectralbody.com)
  • You do not need to eat essential and nonessential amino acids at every meal, but getting a balance of them over the whole day is important. (medlineplus.gov)
  • As regards nonessential amino acids, significantly lower levels for plasma cysteine, tyrosine, and serine and significantly higher levels for plasma glutamic acid were recorded in autistic children than controls. (tubitak.gov.tr)
  • Historically, amino acid requirements were determined by calculating the balance between dietary Nitrogen intake and nitrogen excreted in the liquid and solid wastes because proteins represent the largest nitrogen content in a body. (wikipedia.org)
  • Amino acids are organic compounds that combine to form proteins. (discovermagazine.com)
  • They are the essential building blocks of proteins and play a significant role in metabolism as intermediates. (discovermagazine.com)
  • Your body consumes amino acids from your food and is in a continuous state of turnover, which means that new proteins are constantly created while existing ones are destroyed. (discovermagazine.com)
  • As mentioned in the article, there are actually 21 amino acids needed to make all the proteins found in the human body. (discovermagazine.com)
  • For example, whey, pea and soy proteins are only 16%-18% essential amino acids in the correct ratio one to another that the human body can use to make new protein and collagen. (bodyhealth.com)
  • Amino acids are used for the synthesis of proteins and other nitrogen-containing compounds, or their carbon skeletons are oxidized for energy or the synthesis of glucose. (slimwithlynne.com)
  • An adult man breaks down approximately 300-500 g of proteins to amino acids per day, this event is called as proteolysis. (slimwithlynne.com)
  • During some "chronic stresses" cellular proteins are degraded to provide amino acids for functions that help alleviate the stress (see "Hypothelamic-Pituitary-Adrenal Axis" below). (slimwithlynne.com)
  • The essential amino acids are derived from proteins that are broken down into amino acids during the digestion process. (slimwithlynne.com)
  • cells and tissues have continuous access to individual amino acids for the synthesis of proteins and essential amino acid derivatives. (slimwithlynne.com)
  • Share Your Word File Amino acids are produced by digestion of dietary proteins in the intestines, absorbed through the intestinal epithelial cells, and enter the blood. (slimwithlynne.com)
  • Essential amino acids are found in all kinds of foods that contain proteins . (xxlnutrition.com)
  • Proteins, which building blocks are amino acids, play an unquestionable role in the processes of muscle building, because protein contributes to the growth and maintenance of muscle mass. (megapump.ie)
  • Amino acids literally form the proteins that make muscle and many other critical components to health and fitness. (spectralbody.com)
  • Amino acids and proteins are the building blocks of life. (medlineplus.gov)
  • When proteins are digested or broken down, amino acids are the result. (medlineplus.gov)
  • Amino acids, peptides, and proteins. (medlineplus.gov)
  • Although plant proteins form a large part of the human diet, most are deficient in 1 or more essential amino acids and are therefore regarded as incomplete proteins, as reported by the American Heart Association . (aminomantra.co.nz)
  • They're known as complete proteins because they consist of all the essential amino acids. (aminomantra.co.nz)
  • The same cannot be said for plant-based foods such as nuts, seeds, legumes, grains and veggies are considered incomplete proteins because they are missing one or more of the essential amino acids. (aminomantra.co.nz)
  • Amino acids are building blocks of proteins, as well as the intermediates in metabolism. (sigmaaldrich.com)
  • This feature of amino acids allows them to polymerize to form proteins as well as peptides, which generally have shorter amino acid chain length. (sigmaaldrich.com)
  • As the building blocks of proteins, amino acids are critical for inclusion in cell culture media. (sigmaaldrich.com)
  • Our polyamino acids have properties that mimic proteins, making them ideal for both drug delivery and the delivery of nucleic acids both in vitro and in vivo . (sigmaaldrich.com)
  • Beyond being the basis for muscle growth, amino acids are essential for synthesizing proteins, enzymes, hormones, neurotransmitters and just about every other body function you can name. (allstarhealth.com)
  • While there's nothing wrong with BCAA supplements, they simply do not provide the full spectrum of amino acids the body requires for protein synthesis. (primevallabs.com)
  • It is more than just an amino acid supplement. (youngliving.com)
  • D. Gary Young saw a need for an advanced amino supplement in our current product offering. (youngliving.com)
  • All this makes AminoWise more than just a branched chain amino acid supplement-it's an advanced, targeted workout essential to aid in recovery and hydration during and after your hardest workout. (youngliving.com)
  • So why the need for an amino acid supplement? (bodyhealth.com)
  • Perfect Amino is an amino acid supplement that is 99% utilized by the body to make protein. (bodyhealth.com)
  • These individuals often require higher protein levels, which is best accomplished with an essential amino acid supplement like Perfect Amino Powder. (bodyhealth.com)
  • Just started taking the Whey Protein supplement and would like to understand what essential amino acids are included in the formula. (dotfit.com)
  • Although acquiring the necessary amino acids through diet isn't necessarily tricky, some prefer to supplement amino acids. (amino-vital.com)
  • Additionally, other studies have shown that there could be an increase in fat burn when you supplement with amino acids. (amino-vital.com)
  • Unfortunately, there needs to be more testing to find out if amino acids can burn more fat and if it's a supplement that can promote significant fat loss. (amino-vital.com)
  • The long wait is over now as we've launched EAA Max -- the best tasting amino acid supplement on the market. (primevallabs.com)
  • EAA Max is your all day, every day amino acid supplement. (primevallabs.com)
  • As a dietary supplement, take 4 Amino Complete™ capsules 1 to 3 times daily, with or between meals, preferably with juice. (vitacart.com)
  • Non-essential amino acids (NEAA) are those that are typically made by the organism, but can be added to culture media - individually or in the form of an NEAA cocktail - as a supplement to stimulate cell growth and promote longevity. (sigmaaldrich.com)
  • Amino Complex is a perfect supplement for those looking to provide their muscles with extra amino acids during heavy weight training, endurance training, in between meals or while dieting. (allstarhealth.com)
  • Amino Complex can be used as a functional, pre- and post-workout nutrition supplement, supplying key amino acids to muscles during those crucial times. (allstarhealth.com)
  • Additionally, the amino acids arginine, cysteine, glutamine, glycine, proline and tyrosine are considered conditionally essential, which means that specific populations who do not synthesize it in adequate amounts, such as new born infants and people with diseased livers who are unable to synthesize cysteine, must obtain one or more of these conditionally essential amino acids from their diet. (wikipedia.org)
  • Cysteine (or sulfur-containing amino acids), tyrosine (or aromatic amino acids), and arginine are always required by infants and growing children. (wikipedia.org)
  • Next to the 8 essential aminos, I will try to discuss a number of them that have made the headlines recently: L-Glutamine, L-Arginine , L-Carnitine, L-Cysteine, and HMB. (bodybuilding.com)
  • In addition, there are two semi-essential amino acids, namely histidine and arginine . (xxlnutrition.com)
  • Supports production of nitric oxide* L-Arginine is a conditionally essential amino acid and is a precursor for the production of Nitric Oxide. (jnknutrition.com)
  • L-Arginine is an amino acid that your body requires for energy production. (herbsamerica.in)
  • While you can get the amino acid Arginine from certain foods like meat, poultry and dairy products, people who work out regularly often require more of this important nutrient. (herbsamerica.in)
  • BodyStrong Amino Complex is rich in glutamine, arginine, glycine and Branched-chain amino acids to facilitate better recovery and bigger muscle pumps. (allstarhealth.com)
  • Six other amino acids are considered conditionally essential in the human diet, meaning their synthesis can be limited under special pathophysiological conditions, such as prematurity in the infant or individuals in severe catabolic distress. (wikipedia.org)
  • Consequently, only a subset of the amino acids used in protein synthesis are essential nutrients. (wikipedia.org)
  • A transamination reaction takes place in the synthesis of most amino acids. (wikipedia.org)
  • Essential amino acids, also known as 'indispensable amino acids', are those that must come from a person's diet because the human body lacks the metabolic pathways required to synthesis these particular amino acids. (discovermagazine.com)
  • In addition to the 20 amino acids that are naturally occurring, selenocysteine is another acid that can be incorporated into protein chains during synthesis. (discovermagazine.com)
  • Although pyrrolysine is the 22nd amino acid, it doesn't participate in human protein synthesis. (discovermagazine.com)
  • The liver is the major site of amino acid metabolism in the body and the major site of urea synthesis. (slimwithlynne.com)
  • Our EAA powder product provides a good source of these amino acids to support protein synthesis and muscle recovery. (scenitnutrition.com)
  • These amino acids are important for protein synthesis and muscle recovery. (scenitnutrition.com)
  • These three amino acids, along with glutamine, also promote protein synthesis and prevent muscle breakdown. (allstarhealth.com)
  • Aromatic L-amino acid decarboxylase (AADC) is an essential enzyme in the synthesis of serotonin, dopamine, and certain trace amines and is present in a variety of organs including the brain and spinal cord. (lu.se)
  • Amino acid metabolism has extremely extensive effects in cancer cells, including, but not limited to, (1) establishing amino acid pools as building blocks, especially the production of non-essential amino acids … An overview of the metabolism of the sulfur amino acids is depicted in Fig. The outline of glycine metabolism is depicted in Fig. Oxidation via TCA cycle to produce energy (about 10-15% of body needs). (slimwithlynne.com)
  • Instead, the body looks at any protein or collagen as just a bunch of bundled up amino acids to be broken down into individual amino acids. (bodyhealth.com)
  • When you ingest a protein, the body will break it apart into individual amino acids, reorder them and then turn them into whatever it needs at the time. (allstarhealth.com)
  • Out of the twenty standard protein-producing amino acids… The principal fates of the essential amino acid methionine are incorporation into polypeptide chains, and use in the production of cysteine and α-ketobutyrate via the reaction pathway involving the … During fasting these carbons are converted to glucose in the liver and kidney, or to ketone bodies in the liver. (slimwithlynne.com)
  • Flavored with Lemon and Lime essential oils, and formulated with wolfberry powder, this refreshing post-workout blend is naturally sweetened and has no added sugar or artificial sweeteners. (youngliving.com)
  • SPECIAL Perfect Amino Powder - Strawberry (Single / 30srv. (bodyhealth.com)
  • Perfect AminoXP is now Perfect Amino Powder! (bodyhealth.com)
  • What is Perfect Amino Powder? (bodyhealth.com)
  • Perfect Amino Powder is the powdered version of our Flagship product Perfect Amino. (bodyhealth.com)
  • Why Perfect Amino Powder? (bodyhealth.com)
  • I have gone to great lengths to ensure that Perfect Amino Powder has been produced and tested in a manner that assures its quality, purity, and effectiveness. (bodyhealth.com)
  • Perfect Amino Powder is manufactured in a cGMP (current Good Manufacturing Practices) facility, and the end product has been laboratory tested for product consistency and purity. (bodyhealth.com)
  • Ready-to-mix, essential amino acid powder. (myprotein.co.in)
  • For this reason, essential amino acids are often used for training in powder form , as liquid or as tablets . (xxlnutrition.com)
  • Tyrosine is synthesized by the hydroxylation of phenylalanine, which is an essential amino acid. (wikipedia.org)
  • Phenylalanine is the forerunner for tyrosine, dopamine, epinephrine, and norepinephrine and other essential neurotransmitters. (aminomantra.co.nz)
  • Pyrrolysine (considered the 22nd amino acid), which is proteinogenic only in certain microorganisms, is not used by and therefore non-essential for most organisms, including humans. (wikipedia.org)
  • Pyrrolysine, sometimes considered the "22nd amino acid", is not used by the human body. (wikipedia.org)
  • Our improved formula delivers a superior blend of essential amino acids, and it's totally vegetarian and vegan-friendly. (myprotein.co.in)
  • Urea is the end product of protein metabolism (amino acid metabolism). (slimwithlynne.com)
  • The vitamin that is a coenzyme in amino acid and nucleic acid metabolism is. (slimwithlynne.com)
  • Protein metabolism is more appropriately learnt as metabolism of amino acids. (slimwithlynne.com)
  • Start studying BIOCHEMISTRY: Amino Acid Metabolism. (slimwithlynne.com)
  • Amino Support tablets can also support protein and glycogen metabolism. (phd.com)
  • Threonine is also essential for fat metabolism. (aminomantra.co.nz)
  • Amino acids are commonly used as supplements in cell culture media and in metabolism research. (sigmaaldrich.com)
  • This blend of essential amino acids, nootropics, and hydration boosters fuels your exercise, aids recovery, and promotes health. (gallionsportsnutrition.com)
  • Essential amino acids are those that the body cannot produce on its own and must be acquired through diet or supplements. (discovermagazine.com)
  • However, some studies indicate that amino acid supplements could support weight loss efforts. (amino-vital.com)
  • Here's an 8-week study from the U.S. National Library of Medicine that showed that the daily use of amino acid supplements led to decreased body fat percentage in men who practiced traditional strength training regularly. (amino-vital.com)
  • We all know that muscle tissue burns more calories than fat tissue, so this could be related to why amino acid supplements support weight loss. (amino-vital.com)
  • These amino acids are essential because our body cannot synthesize them on its own and we must obtain them through our diet or supplements. (scenitnutrition.com)
  • B12 is essential for energy and nervous system health, and supplements are essential to prevent serious deficiencies. (sweatband.com)
  • Essential Amino Acids (EAA's), on the other hand, contain the entire range of amino acids the body demands when it needs to build new tissue. (primevallabs.com)
  • There are two types of amino acids: essential and nonessential. (discovermagazine.com)
  • In this article, we will discuss the differences between these two types of amino acids and how they impact your health. (discovermagazine.com)
  • To address the issue of tracing the source of amino acids, Dr. Thomas Larsen of "The Future Ocean" collaborated with researchers from California and Alaska to develop a method that from very small amount of samples can determine where animals obtain these essential nutrients. (sciencedaily.com)
  • Conditionally essential amino acids are usually not essential, except in times of illness and stress. (medlineplus.gov)
  • Amino acids and fatty acids. (slimwithlynne.com)
  • Formation of lipids-fatty acids and ketone bodies. (slimwithlynne.com)
  • In this work, Scenedesmus obliquus was used as a study model to analyze the effect of benzyl amino purine (BAP) and gibberellic acid (GA) coupled to nitrogen limitation on cell growth, biomass and fatty acids. (techscience.com)
  • The lipid profile analysis revealed an increase, particularly in C18:1 and C16:0 fatty acids. (techscience.com)
  • Having reported in 2003 on the nutrient content of the more-common tan-colored finger millet, we were interested in knowing the content of essential amino acids, fatty acids and minerals and trace elements of a dark, rust-colored finger millet called "black millet" that is also cultivated in the same mountainous savannah of Nigeria. (cdc.gov)
  • Nevertheless, black finger millet represents a good source of the essential amino acids (except lysine), the two essential fatty acids (linoleic acid and a-linolenic acid), and the minerals calcium, iron, magnesium, manganese , copper and zinc. (cdc.gov)
  • Lysine is one of the rarest amino acids to be found in plant-based food. (aminomantra.co.nz)
  • It was the caffeine combined with other essential ingredients that did the trick. (thomsonscientific.com)
  • Depending on who you talk to, there are around 20 to 22 standard amino acids. (bodybuilding.com)
  • There are 22 standard amino acids that are necessary for nearly every biological process in your body. (crossfitinvictus.com)
  • When protein is digested it is once again broken down into specific amino acids, that are then selectively put together for different uses. (bodybuilding.com)
  • It can be particularly useful for vegans who may be lacking in specific amino acids. (sweatband.com)
  • Alongside these important amino acids, the tablets also contain vitamin B6, which provides a variety of health benefits. (phd.com)
  • What are Amino Support Tablets? (phd.com)
  • Amino Support tablets have a variety of benefits: They can help to maintain a healthy nervous system and immune system, as well as help to reduce tiredness and fatigue. (phd.com)
  • Who are Amino Support Tablets suitable for? (phd.com)
  • Other Ingredients: Gelatin (capsule), Cellulose, Stearic Acid (vegetable source), Magnesium Stearate (vegetable source) and Silica. (vitacart.com)
  • Moreover, we can conjugate polyamino acids to active pharmaceutical ingredients (API) for your drug delivery use. (sigmaaldrich.com)
  • Methionine is the type of amino acid that's best taken in moderation and thanks to a plant-based diet, and it's incredibly easy to achieve. (aminomantra.co.nz)
  • Between these groups are alpha carbons, which are bonded to both the amino and carboxyl groups, as well as a carbon atom. (discovermagazine.com)
  • The amino and the carboxyl groups of amino acids react to form a covalent amide linkage, called a peptide bond. (sigmaaldrich.com)
  • Contains tryptophan, which stimulates the production of serotonin, a neurotransmitter that is essential in the regulation of sleep and mood, thus aiding in recovery. (prolab.com)
  • Tryptophan is essential to maintain nitrogen balance in the body. (aminomantra.co.nz)
  • Threonine is responsible for forming collagen and elastin, which are essential for the structural integrity of bones and skin. (aminomantra.co.nz)
  • The study also showed a reduction in the concentration of a certain type of amino acids after the operation and then a subsequent rise. (lu.se)
  • Excess nitrogen derived from the increased amino acid pool must be disposed of, first by transport to the liver, in large part as alanine, and then converted, in the liver, to urea for excretion. (slimwithlynne.com)
  • Finally, the autistic group demonstrated significantly lower levels of α-aminoadipic acid, carnosine, and β-alanine and significantly higher levels of hydroxyproline, phosphoserine, β-amino-isobutyric acid, and ammonia as compared to controls. (tubitak.gov.tr)
  • Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. (nature.com)
  • However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. (nature.com)
  • The plasma free amino acid concentrations and metabolic variables were measured, and the relationships between plasma free amino acid profiles, metabolic variables and the extent of body weight reduction were investigated. (nature.com)
  • The weight loss induced by the diet and exercise intervention normalized plasma free amino acid profiles. (nature.com)
  • These data suggest that among Japanese adults meeting the criteria for metabolic syndrome, baseline plasma free amino acid profiles may differ in ways that predict who will be more vs less beneficially responsive to a standard diet and exercise program. (nature.com)
  • Plasma free amino acid profiles may also be useful as markers for monitoring the risks of developing lifestyle-related diseases and measuring improvement in physiological states. (nature.com)
  • 1 Recently, plasma free amino acid profiling has been identified as a potential biomarker for early detection. (nature.com)
  • An issue that has been brought up in the case of phenylalanine, but holds true for all amino acids. (bodybuilding.com)
  • In nutrition, amino acids are divided into 'required' and 'non-required,' but what exactly does it imply? (discovermagazine.com)
  • Prolab Nutrition Amino 2000 ™ is a potent amino acid formula containing 2000 mg of pure, naturally occurring L-form amino acids per tablet, scientifically proportioned to meet your nutritional needs. (prolab.com)
  • As mentioned previously, amino acids help the body function properly and are essential to our overall health and nutrition. (amino-vital.com)
  • An unknown aspect of the turtles' nutrition was revealed in this study for the first time: microbes living inside the guts of the turtles synthesize essential amino acids that are passed on to their host. (sciencedaily.com)
  • Protein quality, defined as the quantity and balance of essential amino acids, is a major determinant of nutrition status especially in the early years of life. (who.int)
  • 3% body weight were markedly lower compared with the counterpart, although both groups showed similar proportional pattern of plasma amino acid profiles. (nature.com)
  • Assessment of plasma amino acid profile in autism using cation-exchang" by MONA MOHAMED ZAKI, HALA ABDEL-AL et al. (tubitak.gov.tr)
  • All participants were subjected to the assay of plasma amino acids (essential, nonessential, and nonstandard) using cation-exchange chromatography with postcolumn derivatization by ninhydrin. (tubitak.gov.tr)
  • The remaining 10 common amino acids - the Essential AMino Acids - must be taken in the diet. (slimwithlynne.com)
  • Glutamine is the most common amino acid found in your muscles, plus it is 19 percent nitrogen, making it the primary nitrogen transporter to your muscle cells. (allstarhealth.com)
  • Reduces lactic acid induced by exercise through complex blend of antioxidants and minerals. (youngliving.com)
  • Amino Acids are complex chemicals that are the building blocks of protein. (gymstation.co.uk)
  • Alpha EAA also features a focus and hydration complex, including the popular adaptogen Ashwagandha KSM-66 and effective nootropics like Alpha-GPC, VitaCholine, and Huperzine A. With added taurine and CocoPure for hydration and AstraGin for increased amino uptake, it's the perfect partner for your fitness journey. (gallionsportsnutrition.com)
  • The product image of NOW Foods - Amino Complete, Amino Acids Complex - 360 Capsules shown on this page may differ from actual size and flavor, or due to packaging update. (vitacart.com)
  • BodyStrong's Amino Complex contains 17 different amino acids from hydrolyzed protein. (allstarhealth.com)
  • BodyStrong's Amino Complex encourages positive nitrogen retention in between meals and during intense metabolic resistance training. (allstarhealth.com)
  • Amino Complex is also a great tool for those on strict diets. (allstarhealth.com)
  • BodyStrong's Amino Complex provides a full spectrum 1,500 mg array of essential and non-essential amino acids derived from hydrolyzed protein. (allstarhealth.com)
  • Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. (nih.gov)
  • It then takes from these the essential amino acids (amino acids your body can't produce on its own) and uses these to make new protein and collagen in the form humans need it in and then sends it where needed. (bodyhealth.com)
  • Six amino acids are non-essential (dispensable) in humans, meaning they can be synthesized in sufficient quantities in the body. (wikipedia.org)
  • When your body produces more amino acids than it breaks down, you're in a 'positive amino-acid balance,' also known as a muscular or anabolic condition. (discovermagazine.com)
  • The amino acids that are not essential for the human body (also known as "dispensable amino acids") can be synthesized by the body. (discovermagazine.com)
  • What are essential amino acids and why are they good for the human body? (discovermagazine.com)
  • There are 20 amino acids that the human body needs for proper growth and function, and of these, nine are considered essential. (discovermagazine.com)
  • Non-essential amino acids are not required by the body to function properly, as they can be produced by the body itself. (discovermagazine.com)
  • Non-essential amino acids can also be converted into glucose, which is used by the body for energy. (discovermagazine.com)
  • Now compare those numbers to Perfect Amino - a massive 99% is put to work by the body, with only 1% leaving as waste. (bodyhealth.com)
  • Not only that, but the body absorbs Perfect Amino within an average of 23 minutes! (bodyhealth.com)
  • This isn't true for one main reason: Your body can't store amino acids for later use. (bodyhealth.com)
  • Since aminos are the building blocks of protein, I'm sure you get plenty of all of them, but this article will show you the benefits of supplementing with extra free form amino acids, going in to deep detail of what too much or too little of several of them can do, what they do in the body and how much and when you should use them. (bodybuilding.com)
  • Essential amino acids cannot be synthesized by the body and must therefore be obtained from your diet. (phd.com)
  • To understand the benefits amino acids can have on your body, you first must understand what amino acids are specifically. (amino-vital.com)
  • Amino acids are small molecules that are the building blocks to larger protein molecules, and there are 20 amino acids that the human body needs to function correctly. (amino-vital.com)
  • Your body can't make essential amino acids itself, so they have to come from your diet - and this shake is a super-convenient way to do that, no matter what your dietary choices are. (myprotein.co.in)
  • This means that your body cannot create these, so that it is essential to get them from your diet. (xxlnutrition.com)
  • Your body cannot produce these amino acids itself, but research has shown that this does not have a negative effect on the nitrogen balance and thus your training result. (xxlnutrition.com)
  • ESSENTIAL AMINO ACIDS - As their name show, essential amino acids are vital for the human body, because we are not able to produce them or produce the necessary amount of them. (megapump.ie)
  • Amino Prime was engineered to keep your body ready to push the limit day in and day out. (spectralbody.com)
  • An Essential Amino Acid cannot be synthesised or created by the body and therefore must be supplied from the diet. (gymstation.co.uk)
  • Amino acids can also be used as a source of energy by the body. (medlineplus.gov)
  • Essential amino acids cannot be made by the body. (medlineplus.gov)
  • EAA Master Amino from Scenit, is formulated with the essential amino acids necessary for the human body. (scenitnutrition.com)
  • By including these complete essential amino acids in our product, we are ensuring that they are easily absorbed and utilized by the body. (scenitnutrition.com)
  • These nine amino acids cannot be produced by the body, while the other 11 can (in most cases). (aminomantra.co.nz)
  • Amino acids are responsible for various bodily functions like breaking down food, growth, and repairing body tissue, and more. (aminomantra.co.nz)
  • Understanding what you're putting into your body is essential. (thomsonscientific.com)
  • Xwerks Rise incorporates essential amino acids that your body can't produce on its own. (thomsonscientific.com)
  • Essential amino acids can't be manufactured by the human body so they must be obtained from food sources. (crossfitinvictus.com)
  • There are 20 basic amino acids that function in a variety of ways within human physiology. (discovermagazine.com)
  • Amino acids (AAs) are a group of organic molecules in which each is comprised of a basic amino group (-NH2), an acidic carboxyl group (-COOH), and an organic R group (or side chain) that is unique to each amino acid. (sigmaaldrich.com)
  • Amino Fuel can be consumed 24 hours a day or when extra amino intake is required, such as any form of exercise or activity. (gymstation.co.uk)
  • Major genomic deletions in independent eukaryotic lineages have led to repeated ancestral loss of biosynthesis pathways for nine of the twenty canonical amino acids. (elifesciences.org)
  • Whole genome sequencing across the tree of life has revealed the surprising observation that nine essential amino acid (EAA) biosynthesis pathways are missing from the metazoan lineage ( Payne and Loomis, 2006 ). (elifesciences.org)
  • They discovered that all life forms leave traces or 'fingerprints' in amino acids during biosynthesis. (sciencedaily.com)
  • Amino acids naturally occur in protein, which helps to build and repair new muscle 1 - super-important for all fitness goals. (myprotein.co.in)
  • Unnatural amino acids are non-proteinogenic amino acids that either occur naturally or are chemically synthesized. (sigmaaldrich.com)
  • With these fingerprints, which are based on naturally occurring isotope variations, it is possible for the first time to distinguish between algal, bacterial, fungal and plant origins of amino acids through tissue samples. (sciencedaily.com)
  • Of the approximately 500 amino acids that occur in nature, only 20 are important for humans. (xxlnutrition.com)
  • A complete spectrum of amino acids and optimum health can only be brought forth by gearing your protein intake to these 8 aminos. (bodybuilding.com)
  • This blend is the perfect addition to your gym routine to help you keep on top of your amino intake, try with Creatine Monohydrate to push your performance during training. (myprotein.co.in)
  • In addition, as a rule, if your protein intake is not sufficient, your intake of essential amino acids is certainly not! (xxlnutrition.com)
  • Consume before, during and post workout or anytime during the day when Amino intake is required. (gymstation.co.uk)
  • In this report, the authors devised synthetic genomic strategies to introduce essential amino-acid biosynthetic pathways into mammalian cells. (elifesciences.org)
  • Altogether, this work was found to be of substantial interest as it provides pioneering evidence that mammalian systems may be permissive to the restoration of essential amino acid biosynthetic pathways and is thus anticipated to have a broad impact in the fields of synthetic biology, biotechnology and beyond. (elifesciences.org)
  • The chart illustrates the Amino Acid Utilization (AAU™) that Perfect Amino offers, dramatically greater than dietary protein sources. (bodyhealth.com)
  • WheySmooth is made with whey concentrate and therefore a complete protein with the highest biological rating, meaning it has all the essential amino acids (and non-essential) in the best possible profile for human digestion and utilization. (dotfit.com)
  • We supply both research and cGMP polyamino acids with improved solubility, drug attachment stability, drug encapsulation, drug targeting, bypassing multidrug resistance (MDR) factors, minimal stimulation of the immune system, low toxicity, and biodegradability. (sigmaaldrich.com)
  • An essential amino acid, or indispensable amino acid, is an amino acid that cannot be synthesized from scratch by the organism fast enough to supply its demand, and must therefore come from the diet. (wikipedia.org)
  • Especially when you do strength training and want to build muscle mass or want to lose fat , these essential amino acids are literally indispensable! (xxlnutrition.com)
  • The carbon skeleton of the amino acids is first converted to keto acids (by transamination) which meet one or more of the following fates: 3. (slimwithlynne.com)
  • We further show that the amino acid -induced Ubr1 activity is necessary to prevent steatosis in mouse livers and cultured human hepatocytes , providing molecular insight into the anti- NAFLD effects of dietary protein / amino acids . (bvsalud.org)
  • Amino 2000 ™ is prepared to ensure the highest potency, freshness, and maximum nitrogen availability. (prolab.com)
  • Nitrogen must be removed before the carbon skeletons of amino acids are oxidized. (slimwithlynne.com)
  • Gene expression analysis showed an over-expression of acyl carrying protein ( ACP) , stearoyl-ACP desaturase (SAD) , fatty acid acyl-ACP thioesterase (FATA) , and diacylglycerol acyltransferase ( DGAT ) genes, which were mainly induced by nitrogen limitation. (techscience.com)