Amino Acids
Actinomycetales
Renal Aminoacidurias
Sequence Homology, Amino Acid
RNA, Ribosomal, 16S
Amino Acid Sequence
DNA, Ribosomal
Amino Acid Substitution
Cloning, Molecular
Molecular Sequence Data
Vitamin K 2
Sequence Analysis, DNA
Genes, rRNA
Fatty Acids
Amino Acids, Essential
Soil Microbiology
Bacterial Typing Techniques
Amino Acid Transport Systems
Propionibacteriaceae
Sequence Alignment
Actinobacteria
Species Specificity
Amino Acid Motifs
Sequence Homology, Nucleic Acid
Base Sequence
Escherichia coli
Mutation
Binding Sites
Cellulomonas
Bacillaceae
Mutagenesis, Site-Directed
DNA, Complementary
Amination
Peptide Fragments
Korea
Nucleic Acid Hybridization
Protein Conformation
Models, Molecular
Rhizosphere
Structure-Activity Relationship
Phenotype
Protein Structure, Tertiary
Meteoroids
Substrate Specificity
DNA
Peptides
Quinones
Protein Binding
Micrococcaceae
Restriction Mapping
Cell Wall
Geologic Sediments
Alanine
Recombinant Fusion Proteins
RNA, Bacterial
Proteins
Electrophoresis, Polyacrylamide Gel
RNA, Messenger
Amino Acid Transport Systems, Basic
Protein Structure, Secondary
Plasmids
Conserved Sequence
Isoleucine
Bacillus
Chromatography, High Pressure Liquid
DNA Primers
Carrier Proteins
Codon
Temperature
Cyanogen Bromide
Trypsin
Glycine
Phospholipids
Cattle
Biological Transport
Glutamine
Open Reading Frames
Genes
Hydrogen-Ion Concentration
Valine
Protein Biosynthesis
Excitatory Amino Acids
Cluster Analysis
Aspartic Acid
Gene Library
Saccharomyces cerevisiae
Sequence Analysis
Polymerase Chain Reaction
Nitrogen
Proline
Phenylalanine
Point Mutation
Mutagenesis
Amino Acid Transport System A
Spores, Bacterial
Tryptophan
Transfection
Transcription, Genetic
Membrane Proteins
Blotting, Northern
Macromolecular Substances
Evolution, Molecular
Sequence Analysis, Protein
Gene Expression
Plant Proteins
Environmental Microbiology
Threonine
Receptors, Amino Acid
Rabbits
Dietary Proteins
Chromatography, Gel
Liver
Swine
COS Cells
Chymotrypsin
Protein Sorting Signals
Endopeptidases
Chromatography, Ion Exchange
Serine
Repetitive Sequences, Amino Acid
DNA-Binding Proteins
Cell Membrane
Water Microbiology
Protein Processing, Post-Translational
Aminoisobutyric Acids
Chickens
Genetic Complementation Test
Cricetinae
Multigene Family
Catalysis
Peptide Mapping
Amino Acyl-tRNA Synthetases
Glutamic Acid
Blotting, Southern
Genotype
Mass Spectrometry
Carbon Isotopes
Chromosome Mapping
Circular Dichroism
Large Neutral Amino Acid-Transporter 1
Enzyme Stability
Tyrosine
Cells, Cultured
Transcription Factors
Oligonucleotide Probes
Cystine
Republic of Korea
Serine Endopeptidases
Exons
Oligodeoxyribonucleotides
Sequence Homology
Genetic Code
Asparagine
Carbohydrates
Magnetic Resonance Spectroscopy
Culture Media
Caseins
Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. (1/227)
Sucrose and ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidine carboxylic acid) are very unusual osmoprotectants for Sinorhizobium meliloti because these compounds, unlike other bacterial osmoprotectants, do not accumulate as cytosolic osmolytes in salt-stressed S. meliloti cells. Here, we show that, in fact, sucrose and ectoine belong to a new family of nonaccumulated sinorhizobial osmoprotectants which also comprises the following six disaccharides: trehalose, maltose, cellobiose, gentiobiose, turanose, and palatinose. Also, several of these disaccharides were very effective exogenous osmoprotectants for strains of Rhizobium leguminosarum biovars phaseoli and trifolii. Sucrose and trehalose are synthesized as endogenous osmolytes in various bacteria, but the other five disaccharides had never been implicated before in osmoregulation in any organism. All of the disaccharides that acted as powerful osmoprotectants in S. meliloti and R. leguminosarum also acted as very effective competitors of [14C]sucrose uptake in salt-stressed cultures of these bacteria. Conversely, disaccharides that were not osmoprotective for S. meliloti and R. leguminosarum did not inhibit sucrose uptake in these bacteria. Hence, disaccharide osmoprotectants apparently shared the same uptake routes in these bacteria. Natural-abundance 13C nuclear magnetic resonance spectroscopy and quantification of cytosolic solutes demonstrated that the novel disaccharide osmoprotectants were not accumulated to osmotically significant levels in salt-stressed S. meliloti cells; rather, these compounds, like sucrose and ectoine, were catabolized during early exponential growth, and contributed indirectly to enhance the cytosolic levels of two endogenously synthesized osmolytes, glutamate and the dipeptide N-acetylglutaminylglutamine amide. The ecological implication of the use of these disaccharides as osmoprotectants is discussed. (+info)Role of Ngamma-acetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. (2/227)
Strain CHR63 is a salt-sensitive mutant of the moderately halophilic wild-type strain Halomonas elongata DSM 3043 that is affected in the ectoine synthase gene (ectC). This strain accumulates large amounts of Ngamma-acetyldiaminobutyrate (NADA), the precursor of ectoine (D. Canovas, C. Vargas, F. Iglesias-Guerra, L. N. Csonka, D. Rhodes, A. Ventosa, and J. J. Nieto, J. Biol. Chem. 272:25794-25801, 1997). Hydroxyectoine, ectoine, and glucosylglycerate were also identified by nuclear magnetic resonance (NMR) as cytoplasmic organic solutes in this mutant. Accumulation of NADA, hydroxyectoine, and ectoine was osmoregulated, whereas the levels of glucosylglycerate decreased at higher salinities. The effect of the growth stage on the accumulation of solutes was also investigated. NADA was purified from strain CHR63 and was shown to protect the thermolabile enzyme rabbit muscle lactate dehydrogenase against thermal inactivation. The stabilizing effect of NADA was greater than the stabilizing effect of ectoine or potassium diaminobutyrate. A (1)H NMR analysis of the solutes accumulated by the wild-type strain and mutants CHR62 (ectA::Tn1732) and CHR63 (ectC::Tn1732) indicated that H. elongata can synthesize hydroxyectoine by two different pathways-directly from ectoine or via an alternative pathway that converts NADA into hydroxyectoine without the involvement of ectoine. (+info)A cycle of deprotonation and reprotonation energizing amino-acid transport? (3/227)
Although lowering the pK2 of neutral amino acids only weakens their concentrative uptake by Ehrlich cells, the same change greatly enhances uptake of diamino acids. This effect does not arise merely from putting the distal amino group in its uncharged form, but depends on an enhanced deprotonation of the alpha-amino group. Parallel effects are seen for the transport system for basic amino acids, for which the assignment of pK values within the membrane is less ambiguous. To explain the paradoxical advantages of having the alpha-amino group protonated yet readily deprotonated, we propose that a proton withdrawn from that group is pumped over an intramembrane interval to energize amino-acid transport. (+info)The contribution of a conformationally mobile, active site loop to the reaction catalyzed by glutamate semialdehyde aminomutase. (4/227)
The behavior of glutamate semialdehyde aminomutase, the enzyme that produces 4-aminolevulinate for tetrapyrrole synthesis in plants and bacteria, is markedly affected by the extent to which the central intermediate in the reaction, 4,5-diaminovalerate, is allowed to dissociate. The kinetic properties of the wild-type enzyme are compared with those of a mutant form in which a flexible loop, that reversibly plugs the entrance to the active site, has been deleted by site-directed mutagenesis. The deletion has three effects. The dissociation constant for diaminovalerate is increased approximately 100-fold. The catalytic efficiency of the enzyme, measured as k(cat)/K(m) in the presence of saturating concentrations of diaminovalerate, is lowered 30-fold to 2.1 mM(-1) s(-1). During the course of the reaction, which begins with the enzyme in its pyridoxamine form, the mutant enzyme undergoes absorbance changes not seen with the wild-type enzyme under the same conditions. These are proposed to be due to abortive complex formation between the pyridoxal form of the enzyme (formed by dissociation of diaminovalerate) and glutamate semialdehyde itself. (+info)Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. (5/227)
Dengue virus type 2 NS3, a multifunctional protein, has a serine protease domain (NS3pro) that requires the conserved hydrophilic domain of NS2B for protease activity in cleavage of the polyprotein precursor at sites following two basic amino acids. In this study, we report the expression of the NS2B-NS3pro precursor in Escherichia coli as a fusion protein with a histidine tag at the N terminus. The precursor was purified from insoluble inclusion bodies by Ni(2+) affinity and gel filtration chromatography under denaturing conditions. The denatured precursor was refolded to yield a purified active protease complex. Biochemical analysis of the protease revealed that its activity toward either a natural substrate, NS4B-NS5 precursor, or the fluorogenic peptide substrates containing two basic residues at P1 and P2, was dependent on the presence of the NS2B domain. The peptide with a highly conserved Gly residue at P3 position was 3-fold more active as a substrate than a Gln residue at this position. The cleavage of a chromogenic substrate with a single Arg residue at P1 was NS2B-independent. These results suggest that heterodimerization of the NS3pro domain with NS2B generates additional specific interactions with the P2 and P3 residues of the substrates. (+info)Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. (6/227)
1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) functions as a compatible osmolyte in the moderate halophile Halomonas elongata OUT30018. Ectoine is biosynthesized by three successive enzyme reactions from aspartic beta-semialdehyde. The genes encoding the enzymes involved in the biosynthesis, ectA, ectB, and ectC, encoding L-2,4-diaminobutyric acid acetyltransferase, L-2, 4-diaminobutyric acid transaminase, and L-ectoine synthase, respectively, have been previously cloned. To investigate the function of ectoine as a compatible solute in plant cells, the three genes were individually placed under the control of the cauliflower mosaic virus 35S promoter and introduced together into cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The transgenic BY2 cells accumulated a small quantity of ectoine (14-79 nmol g(-1) fresh weight) and showed increased tolerance to hyperosmotic shock (900 mOsm). Furthermore, the transgenic BY2 cells exhibited a normal growth pattern even under hyperosmotic conditions (up to 530 mOsm), in which the growth of the untransformed BY2 (wild type) cells was obviously delayed. These results suggest that genetically engineered synthesis of ectoine results in the increased hyperosmotic tolerance of cultured tobacco BY2 cells despite the low level of accumulation of the solute. (+info)SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. (7/227)
Src-homology 3 (SH3) domains recognize PXXP core motif preceded or followed by positively charged residue(s). Whether SH3 domains recognize motifs other than proline-based sequences is unclear. In this study, we report SH3 domain binding to a novel proline-independent motif in immune cell adaptor SKAP55, which is comprised of two N-terminal lysine and arginine residues followed by two tyrosines (i.e. RKxxYxxY). Domains capable of binding to class I proline motifs bound to the motif, while the class II domains failed to bind. Peptide precipitation, alanine scanning and in vivo co-expression studies demonstrated a requirement for the arginine, lysine and tandem tyrosines of the motif. Two-dimensional NMR analysis of the peptide bound FYN-SH3 domain showed overlap with the binding site of a proline-rich peptide on the charged surface of the SH3 domain, while resonance signals for other residues (W119, W120, Y137) were not perturbed by the RKGDYASY based peptide. Expression of the RKGDYASY peptide potently inhibited TcRzeta/CD3-mediated NF-AT transcription in T cells. Our findings extend the repertoire of SH3 domain binding motifs to include a tyrosine-based motif and demonstrate a regulatory role for this motif in receptor signaling. (+info)Apolipoprotein E;-low density lipoprotein receptor interaction. Influences of basic residue and amphipathic alpha-helix organization in the ligand. (8/227)
Conserved lysines and arginines within amino acids 140-150 of apolipoprotein (apo) E are crucial for the interaction between apoE and the low density lipoprotein receptor (LDLR). To explore the roles of amphipathic alpha-helix and basic residue organization in the binding process, we performed site-directed mutagenesis on the 22-kDa fragment of apoE (amino acids 1-191). Exchange of lysine and arginine at positions 143, 146, and 147 demonstrated that a positive charge rather than a specific basic residue is required at these positions. Consistent with this finding, substitution of neutral amino acids for the lysines at positions 143 and 146 reduced the binding affinity to about 30% of the wild-type value. This reduction corresponds to a decrease in free energy of binding of approximately 600 cal/mol, consistent with the elimination of a hydrogen-bonded ion pair (salt bridge) between a lysine on apoE and an acidic residue on the LDLR. Binding activity was similarly reduced when K143 and K146 were both mutated to arginine (K143R + K146R), indicating that more than the side-chain positive charge can be important.Exchanging lysines and leucines indicated that the amphipathic alpha-helical structure of amino acids 140-150 is critical for normal binding to the low density lipoprotein receptor. (+info)The hallmark symptom of RA is an inability to reabsorb these amino acids, leading to their excessive excretion in the urine. This can cause a range of health problems, including:
1. Cystinuria: excessive excretion of cystine in the urine, which can form stones and damage the kidneys.
2. Glutaric aciduria type 1 (GA1): excessive excretion of glutaric acid and other branched-chain amino acids in the urine, which can lead to developmental delays, intellectual disability, and seizures.
3. Aminoaciduria: excessive excretion of various amino acids in the urine, including alanine, glycine, and proline.
4. Kidney damage: chronic exposure to high levels of certain amino acids in the urine can cause damage to the kidneys, leading to chronic kidney disease and potentially end-stage renal disease (ESRD).
5. Other complications: RA can also lead to other health problems, such as electrolyte imbalances, bone disease, and metabolic acidosis.
RA is diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment typically involves a combination of dietary restrictions, medications, and kidney transplantation in severe cases.
There are several types of inborn errors of amino acid metabolism, including:
1. Phenylketonuria (PKU): This is the most common inborn error of amino acid metabolism and is caused by a deficiency of the enzyme phenylalanine hydroxylase. This enzyme is needed to break down the amino acid phenylalanine, which is found in many protein-containing foods. If phenylalanine is not properly broken down, it can build up in the blood and brain and cause serious health problems.
2. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
3. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
4. Arginase deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid arginine. Arginine is important for the body's production of nitric oxide, a compound that helps to relax blood vessels and improve blood flow.
5. Citrullinemia: This is a rare genetic disorder that affects the breakdown of the amino acid citrulline. Citrulline is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
6. Tyrosinemia: This is a rare genetic disorder that affects the breakdown of the amino acid tyrosine. Tyrosine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
7. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
8. PKU (phenylketonuria): This is a rare genetic disorder that affects the breakdown of the amino acid phenylalanine. Phenylalanine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
9. Methionine adenosyltransferase (MAT) deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
10. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid homocysteine. Homocysteine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
It is important to note that these disorders are rare and affect a small percentage of the population. However, they can be serious and potentially life-threatening, so it is important to be aware of them and seek medical attention if symptoms persist or worsen over time.
Some common effects of chromosomal deletions include:
1. Genetic disorders: Chromosomal deletions can lead to a variety of genetic disorders, such as Down syndrome, which is caused by a deletion of a portion of chromosome 21. Other examples include Prader-Willi syndrome (deletion of chromosome 15), and Williams syndrome (deletion of chromosome 7).
2. Birth defects: Chromosomal deletions can increase the risk of birth defects, such as heart defects, cleft palate, and limb abnormalities.
3. Developmental delays: Children with chromosomal deletions may experience developmental delays, learning disabilities, and intellectual disability.
4. Increased cancer risk: Some chromosomal deletions can increase the risk of developing certain types of cancer, such as chronic myelogenous leukemia (CML) and breast cancer.
5. Reproductive problems: Chromosomal deletions can lead to reproductive problems, such as infertility or recurrent miscarriage.
Chromosomal deletions can be diagnosed through a variety of techniques, including karyotyping (examination of the chromosomes), fluorescence in situ hybridization (FISH), and microarray analysis. Treatment options for chromosomal deletions depend on the specific effects of the deletion and may include medication, surgery, or other forms of therapy.
Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.
There are several ways to measure body weight, including:
1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.
It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.
Hartnup disease is a rare genetic disorder that affects the body's ability to absorb vitamin B12 (cobalamin) and other nutrients. It is caused by a mutation in the HCN1 gene, which codes for a protein involved in the transport of cobalamin into the cells.
Symptoms of Hartnup Disease:
The symptoms of Hartnup disease can vary in severity and may include:
* Fatigue
* Weakness
* Pale skin
* Shortness of breath
* Dizziness
* Headaches
* Numbness or tingling in the hands and feet
* Seizures
* Poor appetite
* Diarrhea
Complications of Hartnup Disease:
If left untreated, Hartnup disease can lead to complications such as:
* Anemia (low red blood cell count)
* Nerve damage
* Skin problems
* Eye problems
* Hearing loss
* Increased risk of infections
Treatment of Hartnup Disease:
The treatment of Hartnup disease typically involves a combination of dietary changes and supplements. Patients with the condition may need to follow a strict diet that includes foods high in vitamin B12, such as meat, fish, and dairy products. They may also need to take supplements to ensure they are getting enough of this important nutrient. In some cases, medication may be prescribed to help manage symptoms.
Prognosis of Hartnup Disease:
The prognosis for Hartnup disease is generally good if the condition is diagnosed and treated early. With proper management, most patients with Hartnup disease can lead active and healthy lives. However, if left untreated, the condition can have serious complications that can be difficult to reverse.
Inheritance Pattern of Hartnup Disease:
Hartnup disease is an autosomal recessive disorder, which means that a person must inherit two copies of the mutated HCN1 gene (one from each parent) in order to develop the condition. If a person inherits only one copy of the mutated gene, they will be a carrier of the condition but are unlikely to develop symptoms themselves. Carriers of Hartnup disease can pass the mutated gene on to their children, who have a 25% chance of inheriting two copies of the gene and developing the condition.
Prevention of Hartnup Disease:
There is no known prevention for Hartnup disease. However, if a person knows they are a carrier of the condition, they can work with their healthcare provider to ensure they are getting enough vitamin B12 and monitoring their diet to prevent any complications.
In conclusion, Hartnup disease is a rare genetic disorder that affects the absorption of vitamin B12 in the small intestine. It can cause a range of symptoms, including diarrhea, abdominal pain, and fatigue. Treatment typically involves a combination of dietary changes and supplements, and early diagnosis and management can lead to a good prognosis. However, if left untreated, the condition can have serious complications. If you suspect you or someone you know may be experiencing symptoms of Hartnup disease, it is important to speak with a healthcare provider for proper diagnosis and treatment.
Cystinuria is caused by mutations in the SLC7A9 gene, which codes for a protein involved in the transport of cystine across the brush border membrane of renal tubular cells. The disorder is inherited in an autosomal recessive pattern, meaning that affected individuals must inherit two copies of the mutated gene (one from each parent) to develop symptoms.
There is no cure for cystinuria, but various treatments can help manage its symptoms. These may include medications to reduce the acidity of the urine and prevent infection, as well as surgical procedures to remove stones or repair damaged kidneys. In some cases, a kidney transplant may be necessary.
It's important for individuals with cystinuria to drink plenty of water and maintain good hydration to help flush out the urinary tract and prevent stone formation. They should also avoid certain foods that may increase the risk of stone formation, such as oxalate-rich foods like spinach and rhubarb.
Overall, while there is no cure for cystinuria, with proper management and care, individuals with this disorder can lead relatively normal lives and minimize the complications associated with it.
Starvation is a condition where an individual's body does not receive enough nutrients to maintain proper bodily functions and growth. It can be caused by a lack of access to food, poverty, poor nutrition, or other factors that prevent the intake of sufficient calories and essential nutrients. Starvation can lead to severe health consequences, including weight loss, weakness, fatigue, and even death.
Types of Starvation:
There are several types of starvation, each with different causes and effects. These include:
1. Acute starvation: This occurs when an individual suddenly stops eating or has a limited access to food for a short period of time.
2. Chronic starvation: This occurs when an individual consistently does not consume enough calories and nutrients over a longer period of time, leading to gradual weight loss and other health problems.
3. Malnutrition starvation: This occurs when an individual's diet is deficient in essential nutrients, leading to malnutrition and other health problems.
4. Marasmus: This is a severe form of starvation that occurs in children, characterized by extreme weight loss, weakness, and wasting of muscles and organs.
5. Kwashiorkor: This is a form of malnutrition caused by a diet lacking in protein, leading to edema, diarrhea, and other health problems.
Effects of Starvation on the Body:
Starvation can have severe effects on the body, including:
1. Weight loss: Starvation causes weight loss, which can lead to a decrease in muscle mass and a loss of essential nutrients.
2. Fatigue: Starvation can cause fatigue, weakness, and a lack of energy, making it difficult to perform daily activities.
3. Weakened immune system: Starvation can weaken the immune system, making an individual more susceptible to illnesses and infections.
4. Nutrient deficiencies: Starvation can lead to a deficiency of essential nutrients, including vitamins and minerals, which can cause a range of health problems.
5. Increased risk of disease: Starvation can increase the risk of diseases such as tuberculosis, pellagra, and other infections.
6. Mental health issues: Starvation can lead to mental health issues such as depression, anxiety, and irritability.
7. Reproductive problems: Starvation can cause reproductive problems, including infertility and miscarriage.
8. Hair loss: Starvation can cause hair loss, which can be a sign of malnutrition.
9. Skin problems: Starvation can cause skin problems, such as dryness, irritation, and infections.
10. Increased risk of death: Starvation can lead to increased risk of death, especially in children and the elderly.
It is important to note that these effects can be reversed with proper nutrition and care. If you or someone you know is experiencing starvation, it is essential to seek medical attention immediately.
There are several types of PKU, including classic PKU, mild PKU, and hyperphenylalaninemia (HPA). Classic PKU is the most severe form of the disorder and is characterized by a complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for the breakdown of Phe. Mild PKU is characterized by a partial deficiency of PAH, while HPA is caused by a variety of other genetic defects that affect the breakdown of Phe.
Symptoms of PKU can vary depending on the severity of the disorder, but may include developmental delays, intellectual disability, seizures, and behavioral problems. If left untreated, PKU can lead to serious health complications such as brain damage, seizures, and even death.
The primary treatment for PKU is a strict diet that limits the intake of Phe. This typically involves avoiding foods that are high in Phe, such as meat, fish, eggs, and dairy products, and consuming specialized medical foods that are low in Phe. In some cases, medication may also be prescribed to help manage symptoms.
PKU is an autosomal recessive disorder, which means that it is inherited in an unusual way. Both parents must carry the genetic mutation that causes PKU, and each child has a 25% chance of inheriting the disorder. PKU can be diagnosed through newborn screening, which is typically performed soon after birth. Early diagnosis and treatment can help prevent or minimize the symptoms of PKU and improve quality of life for individuals with the disorder.
There are two main types of hemolysis:
1. Intravascular hemolysis: This type occurs within the blood vessels and is caused by factors such as mechanical injury, oxidative stress, and certain infections.
2. Extravascular hemolysis: This type occurs outside the blood vessels and is caused by factors such as bone marrow disorders, splenic rupture, and certain medications.
Hemolytic anemia is a condition that occurs when there is excessive hemolysis of RBCs, leading to a decrease in the number of healthy red blood cells in the body. This can cause symptoms such as fatigue, weakness, pale skin, and shortness of breath.
Some common causes of hemolysis include:
1. Genetic disorders such as sickle cell anemia and thalassemia.
2. Autoimmune disorders such as autoimmune hemolytic anemia (AIHA).
3. Infections such as malaria, babesiosis, and toxoplasmosis.
4. Medications such as antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and blood thinners.
5. Bone marrow disorders such as aplastic anemia and myelofibrosis.
6. Splenic rupture or surgical removal of the spleen.
7. Mechanical injury to the blood vessels.
Diagnosis of hemolysis is based on a combination of physical examination, medical history, and laboratory tests such as complete blood count (CBC), blood smear examination, and direct Coombs test. Treatment depends on the underlying cause and may include supportive care, blood transfusions, and medications to suppress the immune system or prevent infection.
Also known as: aminoacyl-tRNA synthetase deficiency, aminoacyl-tRNA synthetase/tRNA synthetase deficiency, and amino acid transporter defects.
There are several factors that can contribute to protein deficiency, including:
1. Poor diet: A diet that is lacking in protein-rich foods, such as meat, poultry, fish, eggs, dairy products, legumes, and nuts, can lead to protein deficiency.
2. Vegetarian or vegan diet: People who follow a vegetarian or vegan diet may be at risk of protein deficiency if they do not consume enough protein-rich plant-based foods.
3. Malabsorption: Certain medical conditions, such as celiac disease, can lead to malabsorption of proteins and other nutrients.
4. Pregnancy and breastfeeding: Women who are pregnant or breastfeeding have a higher protein requirement to support the growth and development of their baby.
5. Chronic diseases: Certain chronic diseases, such as kidney disease, can lead to protein deficiency.
Protein deficiency can cause a range of symptoms, including:
1. Fatigue and weakness
2. Muscle wasting and loss of muscle mass
3. Poor wound healing
4. Hair loss
5. Difficulty concentrating and making decisions
6. Mood changes, such as irritability and depression
7. Increased risk of infections
If protein deficiency is not treated, it can lead to a range of complications, including:
1. Stunted growth in children
2. Weakened immune system
3. Poor wound healing
4. Increased risk of infections
5. Nutrient deficiencies
6. Reproductive problems
7. Cardiovascular disease
Treatment for protein deficiency typically involves increasing the intake of protein-rich foods or supplements. The goal is to provide enough protein to support growth and development, as well as overall health and well-being. In some cases, medication may be prescribed to help manage symptoms or address underlying conditions.
In addition to dietary changes, other treatments for protein deficiency may include:
1. Nutritional supplements: Protein supplements can be taken to increase protein intake.
2. Vitamin and mineral supplements: If the protein deficiency is due to a lack of certain vitamins or minerals, supplements may be prescribed.
3. Hormone replacement therapy: In cases where protein deficiency is caused by hormonal imbalances, hormone replacement therapy may be recommended.
4. Medications: Certain medications, such as antidepressants or anti-anxiety drugs, may be prescribed to help manage symptoms of protein deficiency.
5. Addressing underlying conditions: If the protein deficiency is due to an underlying condition, such as kidney disease, treatment will focus on managing that condition.
Preventing protein deficiency is important for maintaining overall health and well-being. Here are some tips for preventing protein deficiency:
1. Eat a balanced diet: Include a variety of protein-rich foods in your diet, such as lean meats, fish, eggs, dairy products, legumes, and nuts.
2. Consult with a healthcare professional: If you are vegetarian or vegan, or if you have certain medical conditions, consult with a healthcare professional to ensure you are getting enough protein.
3. Consider supplements: If you are unable to get enough protein through your diet alone, consider taking protein supplements.
4. Monitor your symptoms: Pay attention to any symptoms of protein deficiency and seek medical attention if they persist or worsen over time.
Overall, preventing protein deficiency is important for maintaining overall health and well-being. If you suspect you or someone you know may have a protein deficiency, it is important to seek medical attention as soon as possible. With proper diagnosis and treatment, protein deficiency can be effectively managed and symptoms can improve.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.
Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.
In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.
It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.
See also: Cancer, Tumor
Word count: 190
There are several different types of weight gain, including:
1. Clinical obesity: This is defined as a BMI of 30 or higher, and is typically associated with a range of serious health problems, such as heart disease, type 2 diabetes, and certain types of cancer.
2. Central obesity: This refers to excess fat around the waistline, which can increase the risk of health problems such as heart disease and type 2 diabetes.
3. Muscle gain: This occurs when an individual gains weight due to an increase in muscle mass, rather than fat. This type of weight gain is generally considered healthy and can improve overall fitness and athletic performance.
4. Fat gain: This occurs when an individual gains weight due to an increase in body fat, rather than muscle or bone density. Fat gain can increase the risk of health problems such as heart disease and type 2 diabetes.
Weight gain can be measured using a variety of methods, including:
1. Body mass index (BMI): This is a widely used measure of weight gain that compares an individual's weight to their height. A BMI of 18.5-24.9 is considered normal, while a BMI of 25-29.9 is considered overweight, and a BMI of 30 or higher is considered obese.
2. Waist circumference: This measures the distance around an individual's waistline and can be used to assess central obesity.
3. Skinfold measurements: These involve measuring the thickness of fat at specific points on the body, such as the abdomen or thighs.
4. Dual-energy X-ray absorptiometry (DXA): This is a non-invasive test that uses X-rays to measure bone density and body composition.
5. Bioelectrical impedance analysis (BIA): This is a non-invasive test that uses electrical impulses to measure body fat percentage and other physiological parameters.
Causes of weight gain:
1. Poor diet: Consuming high amounts of processed foods, sugar, and saturated fats can lead to weight gain.
2. Lack of physical activity: Engaging in regular exercise can help burn calories and maintain a healthy weight.
3. Genetics: An individual's genetic makeup can affect their metabolism and body composition, making them more prone to weight gain.
4. Hormonal imbalances: Imbalances in hormones such as insulin, thyroid, and cortisol can contribute to weight gain.
5. Medications: Certain medications, such as steroids and antidepressants, can cause weight gain as a side effect.
6. Sleep deprivation: Lack of sleep can disrupt hormones that regulate appetite and metabolism, leading to weight gain.
7. Stress: Chronic stress can lead to emotional eating and weight gain.
8. Age: Metabolism slows down with age, making it more difficult to maintain a healthy weight.
9. Medical conditions: Certain medical conditions such as hypothyroidism, Cushing's syndrome, and polycystic ovary syndrome (PCOS) can also contribute to weight gain.
Treatment options for obesity:
1. Lifestyle modifications: A combination of diet, exercise, and stress management techniques can help individuals achieve and maintain a healthy weight.
2. Medications: Prescription medications such as orlistat, phentermine-topiramate, and liraglutide can aid in weight loss.
3. Bariatric surgery: Surgical procedures such as gastric bypass surgery and sleeve gastrectomy can be effective for severe obesity.
4. Behavioral therapy: Cognitive-behavioral therapy (CBT) and other forms of counseling can help individuals develop healthy eating habits and improve their physical activity levels.
5. Meal replacement plans: Meal replacement plans such as Medifast can provide individuals with a structured diet that is high in protein, fiber, and vitamins, and low in calories and sugar.
6. Weight loss supplements: Supplements such as green tea extract, garcinia cambogia, and forskolin can help boost weight loss efforts.
7. Portion control: Using smaller plates and measuring cups can help individuals regulate their portion sizes and maintain a healthy weight.
8. Mindful eating: Paying attention to hunger and fullness cues, eating slowly, and savoring food can help individuals develop healthy eating habits.
9. Physical activity: Engaging in regular physical activity such as walking, running, swimming, or cycling can help individuals burn calories and maintain a healthy weight.
It's important to note that there is no one-size-fits-all approach to treating obesity, and the most effective treatment plan will depend on the individual's specific needs and circumstances. Consulting with a healthcare professional such as a registered dietitian or a physician can help individuals develop a personalized treatment plan that is safe and effective.
1. Activation of oncogenes: Some viruses contain genes that code for proteins that can activate existing oncogenes in the host cell, leading to uncontrolled cell growth.
2. Inactivation of tumor suppressor genes: Other viruses may contain genes that inhibit the expression of tumor suppressor genes, allowing cells to grow and divide uncontrollably.
3. Insertional mutagenesis: Some viruses can insert their own DNA into the host cell's genome, leading to disruptions in normal cellular function and potentially causing cancer.
4. Epigenetic changes: Viral infection can also cause epigenetic changes, such as DNA methylation or histone modification, that can lead to the silencing of tumor suppressor genes and the activation of oncogenes.
Viral cell transformation is a key factor in the development of many types of cancer, including cervical cancer caused by human papillomavirus (HPV), and liver cancer caused by hepatitis B virus (HBV). In addition, some viruses are specifically known to cause cancer, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus (MCV).
Early detection and treatment of viral infections can help prevent the development of cancer. Vaccines are also available for some viruses that are known to cause cancer, such as HPV and hepatitis B. Additionally, antiviral therapy can be used to treat existing infections and may help reduce the risk of cancer development.
The signs and symptoms of CE can vary depending on the location of the tumor, but they may include:
* Lumps or swelling in the neck, underarm, or groin area
* Fever
* Fatigue
* Weight loss
* Night sweats
* Swollen lymph nodes
* Pain in the affected area
CE is caused by a genetic mutation that leads to uncontrolled cell growth and division. The exact cause of the mutation is not fully understood, but it is believed to be linked to exposure to certain viruses or chemicals.
Diagnosis of CE typically involves a combination of physical examination, imaging tests such as CT scans or PET scans, and biopsy to confirm the presence of cancer cells. Treatment options for CE depend on the stage and location of the tumor, but may include:
* Chemotherapy to kill cancer cells
* Radiation therapy to shrink the tumor
* Surgery to remove the tumor
* Immunotherapy to boost the immune system's ability to fight the cancer
Overall, CE is a rare and aggressive form of cancer that requires prompt diagnosis and treatment to improve outcomes.
Treatment for uremia typically involves dialysis or kidney transplantation to remove excess urea from the blood and restore normal kidney function. In some cases, medications may be prescribed to help manage symptoms such as high blood pressure, anemia, or electrolyte imbalances.
The term "uremia" is derived from the Greek words "oura," meaning "urea," and "emia," meaning "in the blood." It was first used in the medical literature in the late 19th century to describe a condition caused by excess urea in the blood. Today, it remains an important diagnostic term in nephrology and is often used interchangeably with the term "uremic syndrome."
Diamino acid
Murchison meteorite
Strecker amino acid synthesis
4,4′-Diamino-2,2′-stilbenedisulfonic acid
List of software to detect low complexity regions in proteins
Ritonavir
N-Sulfinyl imine
Low complexity regions in proteins
Uwe Meierhenrich
Divicine
Lisdexamfetamine
DNA glycosylase
CM chondrite
Aminooxyacetic acid
Claisen rearrangement
Vicine
Acyl halide
Alpha-Ketovaleric acid
Willardiine
IARC group 3
Géza Zemplén
Isothiocyanate
2,5-diaminovalerate transaminase
Acridine
CD38
List of EC numbers (EC 4)
Iminoborane
TNT
Thomson's gazelle
Organic azide
Persistent carbene
Oseltamivir
Trifluoroperacetic acid
Photodynamic therapy
Hydrogen bond
Dyshidrosis
JMSE | Free Full-Text | No β-N-Methylamino-L-alanine (BMAA) Was Detected in Stranded Cetaceans from Galicia (North-West...
Characterization of Flagella Produced by Clinical Strains of Stenotrophomonas maltophilia - Volume 8, Number 9-September 2002 -...
DeCS
hazardous-waste-properties-ann-3-dir-2008-98 - ECHA
Pesquisa | Prevenção e Controle de Câncer
Syoss | Oleo Intense | Vopsea par Roscat burgundy 4-23 | Mega-image
Sapin Nöel, how to create your most beautiful tree….
Abstract reci3
Enzymes Biotechnology Handbook
PQR | L-lysyl-l-seryl-l-glutamic acid
US Patent Application for THERMOSETTING RESIN COMPOSITION Patent Application (Application #20170253693 issued September 7, 2017...
Farba na vlasy - lieskový orech č.10 Aroma Color cena, zľavy, porovnanie ❤️ Krasotika.sk
Investigations of an antibody ligase<...
GARNIER COLOR SENSATION plaukų dažai - 4.60 Intense Dark Red | Eurokos.lt
Please be patient as the PDF generation may take upto a minute. (2023)
HAIRFIX, Permanent Hair Color Cream Pink 120ml BUY 1 TAKE 1 | Watsons Philippines
Details for:
Occupational exposures of hairdressers and barbers and personal use of hair colourants; some hair dyes,...
1-Acetonaphthalene | World Chem Corporation -Dyes and Chemical suppliers
Poster Prize awarded at ICOMC 2018 - Thieme Chemistry - Georg Thieme Verlag KG
BLEACH LONDON Rose Toner
| Cult Beauty
Black 24 Acid Dyes Manufacturer, Supplier, Exporter
4,4'-Diaminobenzanilide | C13H13N3O | ChemSpider
Thieme E-Books & E-Journals - Synthesis / Issue
New CasNo list - 1 page 736 lookchem
2 Chloro Benzoic Acid ::2, 5 Di Chloro PPD, 2.5 Di Chloro Para Phenylene Di-Amine
product list 2
Synthesis, Characterization And Hybridization Studies Of An Alternate Nucleo-Epsilon/Gamma-Peptide: Complexes Formation With...
Products - Page 4 - PolyOrg, Inc
Ecto-ATPase - New dimension in therapeutic targeting of BCL-2 family
Nucleic acids2
- The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. (lookformedical.com)
- The transfer of proteins and nucleic acids from donor to acceptor cells via small membrane vesicles has been implicated with (patho)physiological consequences. (scirp.org)
Proteins2
- Twenty alpha-amino acids are the subunits which are polymerized to form proteins. (lookformedical.com)
- Cellular proteins and protein complexes that transport amino acids across biological membranes. (lookformedical.com)
Nucleotide2
- Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. (lookformedical.com)
- In DNA polymerase (Pol) beta, an enzyme mainly involved in DNA repair, the side chain of amino acid aspartate 276 prevents Pol beta from incorporating the oxidatively-induced damaged nucleotide 4,6-Diamino-5-formamidopyrimidine (Fapy-dGTP) into DNA. (nih.gov)
Protein2
- The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. (lookformedical.com)
- If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. (lookformedical.com)
Phenol1
- Although an amine compound, acid anhydride or phenol resin is used as a curing agent for the epoxy resin, when a carbodiimide compound is used in combination, the curing agent reacts with the compound and a free isocyanate derived from the carbodiimide is produced by a high-temperature treatment at the time of curing, thereby causing problems such as limitation to the work environment and the deterioration of another member. (justia.com)
Pyrimidines2
- 15. Synthesis, antifolate, and antitumor activities of classical and nonclassical 2-amino-4-oxo-5-substituted-pyrrolo[2,3-d]pyrimidines. (nih.gov)
- 17. Synthesis and biological evaluation of 2,4-diamino-6-(arylaminomethyl)pyrido[2,3-d]pyrimidines as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase and as antiopportunistic infection and antitumor agents. (nih.gov)
METHYL1
- In continuation of our efforts toward the design and synthesis of novel small molecules and heterocyclic peptidomimetics, we developed an orthogonal deprotection strategy of oxazolyl amino acids, prepared from serine methyl ester and amino acids such as aspartic and glutamic acids to prepare a variety of pharmacologically relevant oxazole-based small molecules. (thieme.de)
Compounds3
- Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. (lookformedical.com)
- Tab azilide 500 price india, azilides are a class of highly potent antibacterial agent (azide 100 mg, aziridines and azidoximes) which are a sub-class of amino-diazide compounds. (splendidmarket.com)
- Non-proteinogenic amino acids play a fundamental role in drug discovery and chemical biology, being key building blocks in natural compounds as well as in bioactive peptides and mimics. (thieme.de)
Synthesis2
Sulfuric1
- Contains sulfuric acid and may contain sodium hydroxide for pH adjustment. (nih.gov)
Salt1
- There were no biologically significant absolute or relative organ weight, clinical pathology, or histopathology findings in rats or mice administered 4,4'-diamino-2,2'-stilbenedisulfonic acid, disodium salt, in feed for 15 months. (nih.gov)
Activated ester1
- High catalytic selectivity is observed for the nucleophilic α-amino group of an α,β-diamino nucleophile and for the para substituent on the activated ester, traits that are consistent with hapten design. (elsevier.com)
Mice1
- Toxicology and carcinogenesis studies were conducted by administering the chemical (approximately 14% water, 6% sodium chloride, 4% impurities, and 76% 4,4'-diamino-2,2'-stilbenedisulfonic acid) in feed to groups of F344/N rats and B6C3F1 mice of each sex for 14 days, 13 weeks, and 2 years. (nih.gov)
Side chain1
- Amino acids containing an aromatic side chain. (lookformedical.com)
Keratin1
- ChromaSilk is enriched with pure Silk and Keratin Amino Acids to provide shine, silkiness and long-lasting color. (salonory.com)
Order1
- The order of amino acids as they occur in a polypeptide chain. (lookformedical.com)
Data1
- In view of the difficult methodological problems and the paucity of pertinent data, the remaining hair dyes (CI Acid Orange 3, HC Blue No. 2, HC Red No. 3, HC Yellow No. 4, 2-amino-4-nitrophenol, 2-amino-5-nitrophenol, and 1,4-diamino-2-nitrobenzene) could not be classified. (who.int)
BASE2
- The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. (lookformedical.com)
- 1.5E6 OH/cm3) Half-Life = 0.831 Hrs Ozone Reaction: No Ozone Reaction Estimation Fraction sorbed to airborne particulates (phi): 0.836 (Junge,Mackay) Note: the sorbed fraction may be resistant to atmospheric oxidation Soil Adsorption Coefficient (PCKOCWIN v1.66): Koc : 952.4 Log Koc: 2.979 Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67]: Rate constants can NOT be estimated for this structure! (chemspider.com)
Group2
- The former chemoselectivity is crucial for the condensation of fragments which are unprotected at the ε-amino group of lysine. (elsevier.com)
- Recently, a group of researchers led by Dr. Adel Nefzi from the Torrey Pines Institute for Molecular Studies (Florida, USA), published an interesting approach to novel oxazole-containing amino acids. (thieme.de)
Form1
- Further investigation of the monoclonal antibody 16G3 has revealed that it not only couples activated amino acids to form dipeptides with high turnover rates but also couples an activated amino acid with a dipeptide to form a tripeptide, as well as an activated dipeptide with another dipeptide to give a tetrapeptide. (elsevier.com)
Drug1
- Professor Nefzi said: "Unnatural amino acids are utilized as building blocks and molecular scaffolds in the construction of combinatorial libraries for drug-discovery research. (thieme.de)
Human2
- Amino acids that are not synthesized by the human body in amounts sufficient to carry out physiological functions. (lookformedical.com)
- strain X0973 is a Gram-positive, weakly acid-fast, aerobic actinomycete obtained from a human abscess with Gordonia araii NBRC 100433(T) as its closest phylogenetic neighbor. (cdc.gov)
Sequence1
- A 38-kDa protein band of interest was excised from the PVDF membrane and subjected to N-terminal amino acid sequence analysis at the Instituto de Química, Universidade de São Paulo. (medscape.com)
Groups2
- A diamino derivative of heptanedioic acid with amino groups at C-2 and C-6 and the general formula (COOH)CH(NH2)CH2CH2CH2CH(NH2)(COOH). (bvsalud.org)
- Furthermore, if the insoluble myosin is treated with a typical denaturing agent, such as heat or acid, all of the SH groups in the protein become available, although no change in solubility is observed. (nih.gov)
Solution1
- If the denatured protein is dissolved, by acid, alkali, or urea, the solution is found to be far more viscous than a solution of native protein of the same concentration. (nih.gov)