Amino Acids
Sequence Homology, Amino Acid
Amino Acid Sequence
Amino Acid Substitution
Cloning, Molecular
Polymerase Chain Reaction
Amino Acids, Essential
Base Sequence
Molecular Sequence Data
Amino Acid Transport Systems
Sequence Alignment
Mutation
Escherichia coli
Binding Sites
Amino Acid Motifs
Protein Conformation
Peptide Fragments
DNA, Complementary
Models, Molecular
Sequence Homology, Nucleic Acid
Mutagenesis, Site-Directed
Protein Binding
Protein Structure, Tertiary
DNA
Peptides
Substrate Specificity
RNA, Messenger
Electrophoresis, Polyacrylamide Gel
Structure-Activity Relationship
Restriction Mapping
Immunoglobulin Light Chains
Sequence Analysis, DNA
Recombinant Fusion Proteins
DNA Primers
Proteins
Protein Structure, Secondary
Alanine
Immunoglobulin Heavy Chains
Chromatography, High Pressure Liquid
Cattle
Species Specificity
Conserved Sequence
Carrier Proteins
Isoleucine
Amino Acid Transport Systems, Basic
Cyanogen Bromide
Trypsin
Macromolecular Substances
Plasmids
Codon
Genes
Reverse Transcriptase Polymerase Chain Reaction
Biological Transport
Protein Biosynthesis
Glycine
Gene Library
Glutamine
Point Mutation
Transfection
Valine
Saccharomyces cerevisiae
Transcription, Genetic
Gene Expression
Membrane Proteins
Open Reading Frames
Aspartic Acid
Sequence Analysis
Mutagenesis
Proline
Phenylalanine
Rabbits
Myosin Heavy Chains
Excitatory Amino Acids
Blotting, Northern
Nitrogen
Tryptophan
Chromatography, Gel
Chickens
Amino Acid Transport System A
Swine
Liver
Plant Proteins
Chymotrypsin
Evolution, Molecular
Chromatography, Ion Exchange
Cells, Cultured
Sequence Analysis, Protein
Cell Membrane
Myosin Light Chains
Magnetic Resonance Spectroscopy
Protein Processing, Post-Translational
Temperature
Catalysis
Threonine
Endopeptidases
COS Cells
Cricetinae
DNA-Binding Proteins
Protein Sorting Signals
Mass Spectrometry
Peptide Mapping
Multigene Family
Serine
Molecular Structure
Carbohydrates
Hydrogen-Ion Concentration
Circular Dichroism
Chemistry
Receptors, Amino Acid
Oligonucleotide Probes
Genetic Complementation Test
Dietary Proteins
Chemical Phenomena
Crystallography, X-Ray
Repetitive Sequences, Amino Acid
Phenotype
Exons
Chromosome Mapping
Glutamic Acid
Glycoproteins
Carbon Isotopes
Phosphorylation
Asparagine
Glycosylation
Oligodeoxyribonucleotides
Aminoisobutyric Acids
Amino Acyl-tRNA Synthetases
Transcription Factors
Enzyme Stability
Tyrosine
Oxidation-Reduction
Serine Endopeptidases
RNA
Blotting, Southern
Stereoisomerism
Tissue Distribution
Gene Expression Regulation
Chromatography, Affinity
Nucleic Acid Hybridization
Isoenzymes
Genetic Code
Large Neutral Amino Acid-Transporter 1
Dimerization
Cystine
Catalytic Domain
Binding, Competitive
Models, Chemical
Sequence Homology
Culture Media
Disulfides
Cercopithecus aethiops
Mutation, Missense
Alleles
HeLa Cells
Solubility
DNA Restriction Enzymes
CHO Cells
Saccharomyces cerevisiae Proteins
Myosins
Protein Engineering
Plants
Signal Transduction
Models, Biological
Consensus Sequence
Cytoplasm
Chromatography
A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. (1/531)
The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the alpha-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. (+info)Criteria for choosing amino acid therapy in acute renal failure. (2/531)
Metabolic studies were performed on 19 patients with acute renal failure. Therapy included intravenous hyperalimentation using 15 to 20 g of essential amino acids or 20 to 40 g of essential plus nonessential amino acids and hypertonic glucose (37 to 50%). The effect of this parenteral feeding appears to be primarily pharmacological. Hypertonic glucose promotes the hyperinsulinemia important to be membrane function, the operation of the sodium pump, and cell metabolism. Administration of high biological value crystalline amino acdis potentiates the effect of insulin by inhibiting protein breakdown and promoting protein synthesis, particularly in muscle. This reduces tissue catabolism and urea formation, and promotes potassium, magnesium, and phosphate homeostasis. The branched-chain ketogenic amino acids valine, leucine, and isoleucine may be of particular importance. When indicated, administration of renal failure hyperalimentation and peritoneal or hemodialysis can be expected to complement each other and accelerate recovery. This intravenous fluid therapy, in turn, must be coordinated with proper hemodynamics, usually requiring a colloidal solution to maintain intravascular volume, and cardiotrophic agents such as digitalis and dopamine. Early use of renal failure can be expected to demonstrate the most striking response in terms of survival, early recovery from acute renal failure, and the preservation of physiological homeostasis. (+info)Effects of dietary mixtures of amino acids on fetal growth and maternal and fetal amino acid pools in experimental maternal phenylketonuria. (3/531)
BACKGROUND: Branched-chain amino acids have been reported to improve fetal brain development in a rat model in which maternal phenylketonuria (PKU) is induced by the inclusion of an inhibitor of phenylalanine hydroxylase, DL-p-chlorophenylalanine, and L-phenylalanine in the diet. OBJECTIVE: We studied whether a dietary mixture of several large neutral amino acids (LNAAs) would improve fetal brain growth and normalize the fetal brain amino acid profile in a rat model of maternal PKU induced by DL-alpha-methylphenylalanine (AMPhe). DESIGN: Long-Evans rats were fed a basal diet or a similar diet containing 0.5% AMPhe + 3.0% L-phenylalanine (AMPhe + Phe diet) from day 11 until day 20 of gestation in experiments to test various mixtures of LNAAs. Maternal weight gains and food intakes to day 20, fetal body and brain weights at day 20, and fetal brain and fetal and maternal plasma amino acid concentrations at day 20 were measured. RESULTS: Concentrations of phenylalanine and tyrosine in fetal brain and in maternal and fetal plasma were higher and fetal brain weights were lower in rats fed the AMPhe + Phe diet than in rats fed the basal diet. However, fetal brain growth was higher and concentrations of phenylalanine and tyrosine in fetal brain and in maternal and fetal plasma were lower in rats fed the AMPhe + Phe diet plus LNAAs than in rats fed the diet containing AMPhe + Phe alone. CONCLUSION: LNAA supplementation of the diet improved fetal amino acid profiles and alleviated most, but not all, of the depression in fetal brain growth observed in this model of maternal PKU. (+info)In vitro transcriptional studies of the bkd operon of Pseudomonas putida: L-branched-chain amino acids and D-leucine are the inducers. (4/531)
BkdR is the transcriptional activator of the bkd operon, which encodes the four proteins of the branched-chain keto acid dehydrogenase multienzyme complex of Pseudomonas putida. In this study, hydroxyl radical footprinting revealed that BkdR bound to only one face of DNA over the same region identified in DNase I protection assays. Deletions of even a few bases in the 5' region of the BkdR-binding site greatly reduced transcription, confirming that the entire protected region is necessary for transcription. In vitro transcription of the bkd operon was obtained by using a vector containing the bkdR-bkdA1 intergenic region plus the putative rho-independent terminator of the bkd operon. Substrate DNA, BkdR, and any of the L-branched-chain amino acids or D-leucine was required for transcription. Branched-chain keto acids, D-valine, and D-isoleucine did not promote transcription. Therefore, the L-branched-chain amino acids and D-leucine are the inducers of the bkd operon. The concentration of L-valine required for half-maximal transcription was 2.8 mM, which is similar to that needed to cause half-maximal proteolysis due to a conformational change in BkdR. A model for transcriptional activation of the bkd operon by BkdR during enzyme induction which incorporates these results is presented. (+info)Serum hepatocyte growth factor as an index of extensive catabolism of patients awaiting liver transplantation. (5/531)
BACKGROUND: Whole body catabolism as the result of intrahepatic metabolic derangement is common in liver transplant candidates. However, individual nutritional assessment parameters lack sensitivity and specificity in determining energy status of these patients. Recently, serum hepatocyte growth factor (HGF) has been shown to reflect the recovery of hepatic energy metabolism after liver transplantation. AIMS: The relation between preoperative levels of serum HGF and metabolic variables was investigated to clarify the clinical value of measuring HGF in evaluations of the catabolism. PATIENTS/METHODS: Blood samples were obtained from 30 liver transplant recipients, and biopsy specimens were taken from each recipient's rectus muscle and the explanted liver. Preoperative serum concentration of HGF was determined. Whole body energy metabolism was assessed by measuring glycogen contents of biopsy specimens and plasma or serum levels of glucose, insulin, total ketone bodies, total carnitine, and amino acids. RESULTS: Serum HGF concentration was elevated in 22 of 30 patients and correlated with the Child-Pugh score. It showed a negative association with muscle glycogen content, and a positive correlation with serum levels of glucose, total carnitine, and total ketone bodies. Patients with elevated serum HGF concentrations had higher preoperative plasma levels of aromatic amino acids and branched chain amino acids, associated with lower branched chain to aromatic amino acid ratios. CONCLUSIONS: The elevated serum concentration of HGF in liver transplant candidates reflected inhibition of peripheral glucose storage, enhanced lipid oxidation, and increased peripheral release of branched chain amino acids, and thus extensive energy catabolism. (+info)Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. (6/531)
The disposal of a mixed meal was examined in 11 male subjects by multiple (splanchnic and femoral) catheterization combined with double-isotope technique (intravenous [2-3H]glucose plus oral U-[14C]starch). Glucose kinetics and organ substrate balance were measured basally and for 5 h after eating pizza (600 kcal) containing carbohydrates 75 g as starch, proteins 37 g, and lipids 17 g. The portal appearance of ingested carbohydrate was maximal (1.0 mmol/min) between 30 and 60 min after the meal and gradually declined thereafter, but was still incomplete at 300 min (0.46+/-0.08 mmol/min). The total amount of glucose absorbed by the gut over the 5 h of the study was 247+/-26 mmol (45+/-6 g), corresponding to 60+/-6% of the ingested starch. Net splanchnic glucose balance (-6.7+/-0.5 micromol x kg(-1) x min(-1), basal) rose by 250-300% between 30 and 60 min and then returned to baseline. Hepatic glucose production (HGP) was suppressed slightly and only tardily in response to meal ingestion (approximately 30% between 120 and 300 min). Splanchnic glucose uptake (3.7+/-0.6 micromol x kg(-1) x min(-1), basal) peaked to 9.8+/-2.0 micromol x kg(-1) x min(-1) (P<0.001) at 120 min and then returned slowly to baseline. Leg glucose uptake (34+/-5 micromol x leg(-1) x min(-1), basal) rose to 151+/-29 micromol x leg(-1) x min(-1) at 30 min (P<0.001) and remained above baseline until the end of the study, despite no increase in leg blood flow. The total amount of glucose taken up by the splanchnic area and total muscle mass was 161+/-16 mmol (29+/-3 g) and 128 mmol (23 g), respectively, which represent 39 and 30% of the ingested starch. Arterial blood lactate increased by 30% after meal ingestion. Net splanchnic lactate balance switched from a basal net uptake (3.2+/-0.6 micromol kg(-1) x min(-1) to a net output between 60 and 120 min and tended to zero thereafter. Leg lactate release (25+/-11 micromol x leg(-1) x min(-1), basal) drastically decreased postprandially. Arterial concentration of both branched-chain amino acids (BCAA) and non-branched-chain amino acids (N-BCAA) increased significantly after meal ingestion (P<0.001). The splanchnic area switched from a basal net amino acid uptake (31+/-16 and 92+/-48 micromol/min for BCAA and N-BCAA, respectively) to a net amino acid release postprandially. The net splanchnic amino acid release over 5 h was 11.3+/-4.2 mmol for BCAA and 37.8+/-9.7 mmol for N-BCAA. Basally, the net leg balance of BCAA was neutral (-3+/-5 micromol x leg(-1) x min(-1)), whereas that of N-BCAA indicated a net release (54+/-14 micromol x leg(-1) x min(-1)). After meal ingestion, there was a net leg uptake of BCAA (20+/-6 micromol x leg(-1) x min(-1)), whereas leg release of N-BCAA decreased by 50%. It is concluded that in human subjects, 1) the absorption of a natural mixed meal is still incomplete at 5 h after ingestion; 2) HGP is only marginally and tardily inhibited; 3) splanchnic and peripheral tissues contribute to the disposal of meal carbohydrate to approximately the same extent; 4) the splanchnic area transfers >30% of the ingested proteins to the systemic circulation; and 5) after meal ingestion, skeletal muscle takes up BCAA to replenish muscle protein stores. (+info)Branched-chain amino acid therapy for spinocerebellar degeneration: a pilot clinical crossover trial. (7/531)
OBJECT: The potential effects of branched-chain amino acids (BCAAs) on spinocerebellar degeneration (SCD) were explored in eleven patients. METHODS: The patients received 200 ml of BCAA-rich solution, 2 mg of thyrotropin-releasing hormone (TRH; protirelin), or a placebo daily for 7 days each in a random order. An SCD score was used to quantify the severity of symptoms. PATIENTS: Eleven patients with SCD (7 male, 4 female; mean age 60+/-11; mean disease duration 5.5 years) participated in this study. RESULTS: The mean SCD score of the eleven patients improved significantly by the BCAA treatment compared with the baseline. The conditions of five of the eleven patients (45%) were clearly improved by the BCAA treatment. All of the responders manifested predominantly cerebellar symptoms, but no prominent parkinsonian symptoms. Two patients with marked rigidity and akinesia did not respond to the treatment. CONCLUSION: We concluded that BCAAs do have a beneficial effect on functional improvement in patients with SCD, and that further large scale studies are needed. (+info)Contribution of branched-chain amino acids to uteroplacental ammonia production in sheep. (8/531)
The uteroplacental tissues are a principal site of ammonia production for the conceptus. The goal of this study was to examine the effect of the composition of maternal amino acid (AA) infusate on uteroplacental ammonia production. Seven pregnant ewes (126 +/- 1. 4 days gestation) were infused through the maternal femoral vein (duration 3.5 h, rate 240 ml per hour) with three solutions of AAs. The first infusate was comparable to commercial parenteral nutrition preparations, the second infusate contained the same solution without branched-chain AAs (BCAAs), and the third infusate contained only BCAAs. Blood samples were simultaneously collected from the maternal artery, uterine vein, fetal artery, and umbilical vein to determine plasma AA concentrations and whole blood ammonia concentrations, before (control) and 2 h after (experimental) the start of infusion. Uterine and umbilical blood flows were measured using the ethanol steady-state diffusion method. Results showed that fetal arterial and venous ammonia concentrations increased significantly after infusions with all AAs or only BCAAs, but not without BCAAs. Uteroplacental ammonia production increased in response to each of the three infusates. However, this increase was much greater when the BCAAs were present in infusates. We conclude that there is a significant contribution of BCAAs to the uteroplacental ammonia production. Maternal AA infusions containing BCAAs can result in increased fetal blood ammonia concentrations. (+info)Heavy chain disease is also known as:
* Heavy chain defect
* Immunoglobulin (IgG) heavy chain disease
* Kappa chain disease
* Lambda chain disease
The main causes of heavy chain disease include:
* Genetic mutations in the IGH genes that code for the heavy chains of immunoglobulins
* Autoantibodies against the heavy chains of immunoglobulins
* Infections such as HIV, which can lead to the overproduction of certain types of immunoglobulins
The symptoms of heavy chain disease can vary depending on the type of heavy chain that is affected and the severity of the disease. Some common symptoms include:
* Fatigue
* Weight loss
* Fever
* Night sweats
* Swollen lymph nodes
* Enlarged spleen
Heavy chain disease can be diagnosed through a variety of tests, including:
* Blood tests to measure the levels of different types of immunoglobulins in the blood
* Genetic testing to identify genetic mutations in the IGH genes
* Immunophenotyping to study the expression of heavy chains on the surface of B cells
There is no cure for heavy chain disease, but treatment options are available to manage the symptoms and prevent complications. Some common treatments include:
* Corticosteroids to reduce inflammation and suppress the immune system
* Immunoglobulin therapy to replace deficient or abnormal immunoglobulins
* Chemotherapy to reduce the production of abnormal immunoglobulins
The prognosis for heavy chain disease varies depending on the type and severity of the disease. In general, the prognosis is good for patients with light chain disease who receive prompt and appropriate treatment. However, the prognosis is poorer for patients with heavy chain disease, particularly those with a high level of immunoglobulin M (IgM) production.
The causes of heavy chain disease are not well understood, but it is believed to be related to genetic mutations in the IGH genes. There is no known prevention for heavy chain disease, and it is usually diagnosed in adults between the ages of 30 and 60.
Overall, heavy chain disease is a rare and complex disorder that can have a significant impact on quality of life. While there is no cure, early diagnosis and appropriate treatment can improve outcomes for patients with this condition.
There are several types of inborn errors of amino acid metabolism, including:
1. Phenylketonuria (PKU): This is the most common inborn error of amino acid metabolism and is caused by a deficiency of the enzyme phenylalanine hydroxylase. This enzyme is needed to break down the amino acid phenylalanine, which is found in many protein-containing foods. If phenylalanine is not properly broken down, it can build up in the blood and brain and cause serious health problems.
2. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
3. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
4. Arginase deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid arginine. Arginine is important for the body's production of nitric oxide, a compound that helps to relax blood vessels and improve blood flow.
5. Citrullinemia: This is a rare genetic disorder that affects the breakdown of the amino acid citrulline. Citrulline is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
6. Tyrosinemia: This is a rare genetic disorder that affects the breakdown of the amino acid tyrosine. Tyrosine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
7. Maple syrup urine disease (MSUD): This is a rare genetic disorder that affects the breakdown of the amino acids leucine, isoleucine, and valine. These amino acids are important for growth and development, but if they are not properly broken down, they can build up in the blood and cause serious health problems.
8. PKU (phenylketonuria): This is a rare genetic disorder that affects the breakdown of the amino acid phenylalanine. Phenylalanine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
9. Methionine adenosyltransferase (MAT) deficiency: This is a rare genetic disorder that affects the breakdown of the amino acid methionine. Methionine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
10. Homocystinuria: This is a rare genetic disorder that affects the breakdown of the amino acid homocysteine. Homocysteine is important for the body's production of proteins and other compounds, but if it is not properly broken down, it can build up in the blood and cause serious health problems.
It is important to note that these disorders are rare and affect a small percentage of the population. However, they can be serious and potentially life-threatening, so it is important to be aware of them and seek medical attention if symptoms persist or worsen over time.
Some common effects of chromosomal deletions include:
1. Genetic disorders: Chromosomal deletions can lead to a variety of genetic disorders, such as Down syndrome, which is caused by a deletion of a portion of chromosome 21. Other examples include Prader-Willi syndrome (deletion of chromosome 15), and Williams syndrome (deletion of chromosome 7).
2. Birth defects: Chromosomal deletions can increase the risk of birth defects, such as heart defects, cleft palate, and limb abnormalities.
3. Developmental delays: Children with chromosomal deletions may experience developmental delays, learning disabilities, and intellectual disability.
4. Increased cancer risk: Some chromosomal deletions can increase the risk of developing certain types of cancer, such as chronic myelogenous leukemia (CML) and breast cancer.
5. Reproductive problems: Chromosomal deletions can lead to reproductive problems, such as infertility or recurrent miscarriage.
Chromosomal deletions can be diagnosed through a variety of techniques, including karyotyping (examination of the chromosomes), fluorescence in situ hybridization (FISH), and microarray analysis. Treatment options for chromosomal deletions depend on the specific effects of the deletion and may include medication, surgery, or other forms of therapy.
Body weight is an important health indicator, as it can affect an individual's risk for certain medical conditions, such as obesity, diabetes, and cardiovascular disease. Maintaining a healthy body weight is essential for overall health and well-being, and there are many ways to do so, including a balanced diet, regular exercise, and other lifestyle changes.
There are several ways to measure body weight, including:
1. Scale: This is the most common method of measuring body weight, and it involves standing on a scale that displays the individual's weight in kg or lb.
2. Body fat calipers: These are used to measure body fat percentage by pinching the skin at specific points on the body.
3. Skinfold measurements: This method involves measuring the thickness of the skin folds at specific points on the body to estimate body fat percentage.
4. Bioelectrical impedance analysis (BIA): This is a non-invasive method that uses electrical impulses to measure body fat percentage.
5. Dual-energy X-ray absorptiometry (DXA): This is a more accurate method of measuring body composition, including bone density and body fat percentage.
It's important to note that body weight can fluctuate throughout the day due to factors such as water retention, so it's best to measure body weight at the same time each day for the most accurate results. Additionally, it's important to use a reliable scale or measuring tool to ensure accurate measurements.
Cystinuria is caused by mutations in the SLC7A9 gene, which codes for a protein involved in the transport of cystine across the brush border membrane of renal tubular cells. The disorder is inherited in an autosomal recessive pattern, meaning that affected individuals must inherit two copies of the mutated gene (one from each parent) to develop symptoms.
There is no cure for cystinuria, but various treatments can help manage its symptoms. These may include medications to reduce the acidity of the urine and prevent infection, as well as surgical procedures to remove stones or repair damaged kidneys. In some cases, a kidney transplant may be necessary.
It's important for individuals with cystinuria to drink plenty of water and maintain good hydration to help flush out the urinary tract and prevent stone formation. They should also avoid certain foods that may increase the risk of stone formation, such as oxalate-rich foods like spinach and rhubarb.
Overall, while there is no cure for cystinuria, with proper management and care, individuals with this disorder can lead relatively normal lives and minimize the complications associated with it.
1) They share similarities with humans: Many animal species share similar biological and physiological characteristics with humans, making them useful for studying human diseases. For example, mice and rats are often used to study diseases such as diabetes, heart disease, and cancer because they have similar metabolic and cardiovascular systems to humans.
2) They can be genetically manipulated: Animal disease models can be genetically engineered to develop specific diseases or to model human genetic disorders. This allows researchers to study the progression of the disease and test potential treatments in a controlled environment.
3) They can be used to test drugs and therapies: Before new drugs or therapies are tested in humans, they are often first tested in animal models of disease. This allows researchers to assess the safety and efficacy of the treatment before moving on to human clinical trials.
4) They can provide insights into disease mechanisms: Studying disease models in animals can provide valuable insights into the underlying mechanisms of a particular disease. This information can then be used to develop new treatments or improve existing ones.
5) Reduces the need for human testing: Using animal disease models reduces the need for human testing, which can be time-consuming, expensive, and ethically challenging. However, it is important to note that animal models are not perfect substitutes for human subjects, and results obtained from animal studies may not always translate to humans.
6) They can be used to study infectious diseases: Animal disease models can be used to study infectious diseases such as HIV, TB, and malaria. These models allow researchers to understand how the disease is transmitted, how it progresses, and how it responds to treatment.
7) They can be used to study complex diseases: Animal disease models can be used to study complex diseases such as cancer, diabetes, and heart disease. These models allow researchers to understand the underlying mechanisms of the disease and test potential treatments.
8) They are cost-effective: Animal disease models are often less expensive than human clinical trials, making them a cost-effective way to conduct research.
9) They can be used to study drug delivery: Animal disease models can be used to study drug delivery and pharmacokinetics, which is important for developing new drugs and drug delivery systems.
10) They can be used to study aging: Animal disease models can be used to study the aging process and age-related diseases such as Alzheimer's and Parkinson's. This allows researchers to understand how aging contributes to disease and develop potential treatments.
Hartnup disease is a rare genetic disorder that affects the body's ability to absorb vitamin B12 (cobalamin) and other nutrients. It is caused by a mutation in the HCN1 gene, which codes for a protein involved in the transport of cobalamin into the cells.
Symptoms of Hartnup Disease:
The symptoms of Hartnup disease can vary in severity and may include:
* Fatigue
* Weakness
* Pale skin
* Shortness of breath
* Dizziness
* Headaches
* Numbness or tingling in the hands and feet
* Seizures
* Poor appetite
* Diarrhea
Complications of Hartnup Disease:
If left untreated, Hartnup disease can lead to complications such as:
* Anemia (low red blood cell count)
* Nerve damage
* Skin problems
* Eye problems
* Hearing loss
* Increased risk of infections
Treatment of Hartnup Disease:
The treatment of Hartnup disease typically involves a combination of dietary changes and supplements. Patients with the condition may need to follow a strict diet that includes foods high in vitamin B12, such as meat, fish, and dairy products. They may also need to take supplements to ensure they are getting enough of this important nutrient. In some cases, medication may be prescribed to help manage symptoms.
Prognosis of Hartnup Disease:
The prognosis for Hartnup disease is generally good if the condition is diagnosed and treated early. With proper management, most patients with Hartnup disease can lead active and healthy lives. However, if left untreated, the condition can have serious complications that can be difficult to reverse.
Inheritance Pattern of Hartnup Disease:
Hartnup disease is an autosomal recessive disorder, which means that a person must inherit two copies of the mutated HCN1 gene (one from each parent) in order to develop the condition. If a person inherits only one copy of the mutated gene, they will be a carrier of the condition but are unlikely to develop symptoms themselves. Carriers of Hartnup disease can pass the mutated gene on to their children, who have a 25% chance of inheriting two copies of the gene and developing the condition.
Prevention of Hartnup Disease:
There is no known prevention for Hartnup disease. However, if a person knows they are a carrier of the condition, they can work with their healthcare provider to ensure they are getting enough vitamin B12 and monitoring their diet to prevent any complications.
In conclusion, Hartnup disease is a rare genetic disorder that affects the absorption of vitamin B12 in the small intestine. It can cause a range of symptoms, including diarrhea, abdominal pain, and fatigue. Treatment typically involves a combination of dietary changes and supplements, and early diagnosis and management can lead to a good prognosis. However, if left untreated, the condition can have serious complications. If you suspect you or someone you know may be experiencing symptoms of Hartnup disease, it is important to speak with a healthcare provider for proper diagnosis and treatment.
Plasmacytoma is a type of plasma cell dyscrasia, which is a group of diseases that affect the production and function of plasma cells. Plasma cells are a type of white blood cell that produces antibodies to fight infections. In plasmacytoma, the abnormal plasma cells grow and multiply out of control, leading to a tumor.
There are several subtypes of plasmacytoma, including:
* solitary plasmacytoma: A single tumor that occurs in one location.
* multiple myeloma: A type of cancer that affects the bones and is characterized by an overgrowth of malignant plasma cells in the bone marrow.
* extramedullary plasmacytoma: A tumor that occurs outside of the bone marrow, such as in soft tissue or organs.
Plasmacytoma is usually diagnosed through a combination of physical examination, imaging tests such as X-rays or CT scans, and biopsy. Treatment typically involves chemotherapy and/or radiation therapy to destroy the abnormal cells. In some cases, surgery may be necessary to remove the tumor.
Plasmacytoma is a relatively rare cancer, but it can be aggressive and potentially life-threatening if left untreated. It is important for patients with symptoms of plasmacytoma to seek medical attention as soon as possible to receive an accurate diagnosis and appropriate treatment.
There are two main types of hemolysis:
1. Intravascular hemolysis: This type occurs within the blood vessels and is caused by factors such as mechanical injury, oxidative stress, and certain infections.
2. Extravascular hemolysis: This type occurs outside the blood vessels and is caused by factors such as bone marrow disorders, splenic rupture, and certain medications.
Hemolytic anemia is a condition that occurs when there is excessive hemolysis of RBCs, leading to a decrease in the number of healthy red blood cells in the body. This can cause symptoms such as fatigue, weakness, pale skin, and shortness of breath.
Some common causes of hemolysis include:
1. Genetic disorders such as sickle cell anemia and thalassemia.
2. Autoimmune disorders such as autoimmune hemolytic anemia (AIHA).
3. Infections such as malaria, babesiosis, and toxoplasmosis.
4. Medications such as antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), and blood thinners.
5. Bone marrow disorders such as aplastic anemia and myelofibrosis.
6. Splenic rupture or surgical removal of the spleen.
7. Mechanical injury to the blood vessels.
Diagnosis of hemolysis is based on a combination of physical examination, medical history, and laboratory tests such as complete blood count (CBC), blood smear examination, and direct Coombs test. Treatment depends on the underlying cause and may include supportive care, blood transfusions, and medications to suppress the immune system or prevent infection.
Starvation is a condition where an individual's body does not receive enough nutrients to maintain proper bodily functions and growth. It can be caused by a lack of access to food, poverty, poor nutrition, or other factors that prevent the intake of sufficient calories and essential nutrients. Starvation can lead to severe health consequences, including weight loss, weakness, fatigue, and even death.
Types of Starvation:
There are several types of starvation, each with different causes and effects. These include:
1. Acute starvation: This occurs when an individual suddenly stops eating or has a limited access to food for a short period of time.
2. Chronic starvation: This occurs when an individual consistently does not consume enough calories and nutrients over a longer period of time, leading to gradual weight loss and other health problems.
3. Malnutrition starvation: This occurs when an individual's diet is deficient in essential nutrients, leading to malnutrition and other health problems.
4. Marasmus: This is a severe form of starvation that occurs in children, characterized by extreme weight loss, weakness, and wasting of muscles and organs.
5. Kwashiorkor: This is a form of malnutrition caused by a diet lacking in protein, leading to edema, diarrhea, and other health problems.
Effects of Starvation on the Body:
Starvation can have severe effects on the body, including:
1. Weight loss: Starvation causes weight loss, which can lead to a decrease in muscle mass and a loss of essential nutrients.
2. Fatigue: Starvation can cause fatigue, weakness, and a lack of energy, making it difficult to perform daily activities.
3. Weakened immune system: Starvation can weaken the immune system, making an individual more susceptible to illnesses and infections.
4. Nutrient deficiencies: Starvation can lead to a deficiency of essential nutrients, including vitamins and minerals, which can cause a range of health problems.
5. Increased risk of disease: Starvation can increase the risk of diseases such as tuberculosis, pellagra, and other infections.
6. Mental health issues: Starvation can lead to mental health issues such as depression, anxiety, and irritability.
7. Reproductive problems: Starvation can cause reproductive problems, including infertility and miscarriage.
8. Hair loss: Starvation can cause hair loss, which can be a sign of malnutrition.
9. Skin problems: Starvation can cause skin problems, such as dryness, irritation, and infections.
10. Increased risk of death: Starvation can lead to increased risk of death, especially in children and the elderly.
It is important to note that these effects can be reversed with proper nutrition and care. If you or someone you know is experiencing starvation, it is essential to seek medical attention immediately.
There are several types of amyloidosis, each with different causes and symptoms. The most common types include:
1. Primary amyloidosis: This type is caused by the production of abnormal proteins in the bone marrow. It mainly affects older adults and can lead to symptoms such as fatigue, weight loss, and numbness or tingling in the hands and feet.
2. Secondary amyloidosis: This type is caused by other conditions, such as rheumatoid arthritis, tuberculosis, or inflammatory bowel disease. It can also be caused by long-term use of certain medications, such as antibiotics or chemotherapy.
3. Familial amyloid polyneuropathy: This type is inherited and affects the nerves in the body, leading to symptoms such as muscle weakness, numbness, and pain.
4. Localized amyloidosis: This type affects a specific area of the body, such as the tongue or the skin.
The symptoms of amyloidosis can vary depending on the organs affected and the severity of the condition. Some common symptoms include:
1. Fatigue
2. Weakness
3. Pain
4. Numbness or tingling in the hands and feet
5. Swelling in the legs, ankles, and feet
6. Difficulty with speech or swallowing
7. Seizures
8. Heart problems
9. Kidney failure
10. Liver failure
The diagnosis of amyloidosis is based on a combination of physical examination, medical history, laboratory tests, and imaging studies. Laboratory tests may include blood tests to measure the levels of certain proteins in the body, as well as biopsies to examine tissue samples under a microscope. Imaging studies, such as X-rays, CT scans, and MRI scans, may be used to evaluate the organs affected by the condition.
There is no cure for amyloidosis, but treatment can help manage the symptoms and slow the progression of the disease. Treatment options may include:
1. Medications to control symptoms such as pain, swelling, and heart problems
2. Chemotherapy to reduce the production of abnormal proteins
3. Autologous stem cell transplantation to replace damaged cells with healthy ones
4. Dialysis to remove excess fluids and waste products from the body
5. Nutritional support to ensure adequate nutrition and hydration
6. Physical therapy to maintain muscle strength and mobility
7. Supportive care to manage pain, improve quality of life, and reduce stress on the family.
In conclusion, amyloidosis is a complex and rare group of diseases that can affect multiple organs and systems in the body. Early diagnosis and treatment are essential to managing the symptoms and slowing the progression of the disease. It is important for patients with suspected amyloidosis to seek medical attention from a specialist, such as a hematologist or nephrologist, for proper evaluation and treatment.
There are several types of PKU, including classic PKU, mild PKU, and hyperphenylalaninemia (HPA). Classic PKU is the most severe form of the disorder and is characterized by a complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for the breakdown of Phe. Mild PKU is characterized by a partial deficiency of PAH, while HPA is caused by a variety of other genetic defects that affect the breakdown of Phe.
Symptoms of PKU can vary depending on the severity of the disorder, but may include developmental delays, intellectual disability, seizures, and behavioral problems. If left untreated, PKU can lead to serious health complications such as brain damage, seizures, and even death.
The primary treatment for PKU is a strict diet that limits the intake of Phe. This typically involves avoiding foods that are high in Phe, such as meat, fish, eggs, and dairy products, and consuming specialized medical foods that are low in Phe. In some cases, medication may also be prescribed to help manage symptoms.
PKU is an autosomal recessive disorder, which means that it is inherited in an unusual way. Both parents must carry the genetic mutation that causes PKU, and each child has a 25% chance of inheriting the disorder. PKU can be diagnosed through newborn screening, which is typically performed soon after birth. Early diagnosis and treatment can help prevent or minimize the symptoms of PKU and improve quality of life for individuals with the disorder.
Explanation: Neoplastic cell transformation is a complex process that involves multiple steps and can occur as a result of genetic mutations, environmental factors, or a combination of both. The process typically begins with a series of subtle changes in the DNA of individual cells, which can lead to the loss of normal cellular functions and the acquisition of abnormal growth and reproduction patterns.
Over time, these transformed cells can accumulate further mutations that allow them to survive and proliferate despite adverse conditions. As the transformed cells continue to divide and grow, they can eventually form a tumor, which is a mass of abnormal cells that can invade and damage surrounding tissues.
In some cases, cancer cells can also break away from the primary tumor and travel through the bloodstream or lymphatic system to other parts of the body, where they can establish new tumors. This process, known as metastasis, is a major cause of death in many types of cancer.
It's worth noting that not all transformed cells will become cancerous. Some forms of cellular transformation, such as those that occur during embryonic development or tissue regeneration, are normal and necessary for the proper functioning of the body. However, when these transformations occur in adult tissues, they can be a sign of cancer.
See also: Cancer, Tumor
Word count: 190
1. Bone fractures: The most common symptom of OI is an increased risk of fractures, which can occur with minimal trauma or even without any apparent cause.
2. Dental problems: People with OI may have poorly formed teeth, tooth decay, and gum disease.
3. Short stature: Many individuals with OI are short in stature, due to the effects of chronic fractures and pain on growth and development.
4. Muscle weakness: Some people with OI may experience muscle weakness, particularly in the limbs.
5. Joint problems: OI can cause issues with joint mobility and stability, leading to arthritis and other degenerative conditions.
6. Scoliosis: Curvature of the spine is common in people with OI, which can lead to back pain and respiratory problems.
7. Blue sclerae: A distinctive feature of OI is the presence of blue-colored sclerae (the white part of the eye).
8. Other symptoms: Some people with OI may experience hearing loss, vision problems, and delayed development.
There are several types of OI, each caused by a mutation in a specific gene. The most common forms of OI are type I, type II, and type III. Type I is the mildest form and type III is the most severe. There is no cure for OI, but treatment focuses on managing symptoms and preventing complications. This may include:
1. Bracing and orthotics: To support weakened bones and improve posture.
2. Physical therapy: To maintain muscle strength and flexibility.
3. Pain management: To reduce the risk of chronic pain and improve quality of life.
4. Dental care: Regular dental check-ups and appropriate treatment to prevent tooth decay and gum disease.
5. Respiratory care: To manage breathing problems and prevent respiratory infections.
6. Monitoring for hearing loss: Regular hearing tests to detect any hearing loss and provide appropriate intervention.
7. Early intervention: To help children with OI develop skills and abilities to their full potential.
8. Genetic counseling: For families with a history of OI, to understand the risks and implications for future pregnancies.
It's important for people with OI to work closely with their healthcare provider to manage their condition and prevent complications. With proper care and support, many people with OI can lead active and fulfilling lives.
Also known as: aminoacyl-tRNA synthetase deficiency, aminoacyl-tRNA synthetase/tRNA synthetase deficiency, and amino acid transporter defects.
https://www.medicinenet.com › Medical Dictionary › G
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
Genetic Translocation | Definition & Facts | Britannica
https://www.britannica.com › science › Genetic-tr...
Genetic translocation, also called chromosomal translocation, a type of chromosomal aberration in which a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material. Genetic translocations are often found in cancer cells and may play a role in the development and progression of cancer.
Translocation, Genetic | health Encyclopedia - UPMC
https://www.upmc.com › health-library › gene...
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
Genetic Translocation | Genetics Home Reference - NIH
https://ghr.nlm.nih.gov › condition › ge...
A genetic translocation is a change in the number or arrangement of the chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome. This can result in a gain or loss of genetic material, which can have significant effects on the individual.
In conclusion, Genetic Translocation is an abnormality in the number or arrangement of chromosomes in a cell. It occurs when a portion of one chromosome breaks off and attaches to another chromosome, resulting in a gain or loss of genetic material that can have significant effects on the individual.
1. Activation of oncogenes: Some viruses contain genes that code for proteins that can activate existing oncogenes in the host cell, leading to uncontrolled cell growth.
2. Inactivation of tumor suppressor genes: Other viruses may contain genes that inhibit the expression of tumor suppressor genes, allowing cells to grow and divide uncontrollably.
3. Insertional mutagenesis: Some viruses can insert their own DNA into the host cell's genome, leading to disruptions in normal cellular function and potentially causing cancer.
4. Epigenetic changes: Viral infection can also cause epigenetic changes, such as DNA methylation or histone modification, that can lead to the silencing of tumor suppressor genes and the activation of oncogenes.
Viral cell transformation is a key factor in the development of many types of cancer, including cervical cancer caused by human papillomavirus (HPV), and liver cancer caused by hepatitis B virus (HBV). In addition, some viruses are specifically known to cause cancer, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and Merkel cell polyomavirus (MCV).
Early detection and treatment of viral infections can help prevent the development of cancer. Vaccines are also available for some viruses that are known to cause cancer, such as HPV and hepatitis B. Additionally, antiviral therapy can be used to treat existing infections and may help reduce the risk of cancer development.
There are several factors that can contribute to protein deficiency, including:
1. Poor diet: A diet that is lacking in protein-rich foods, such as meat, poultry, fish, eggs, dairy products, legumes, and nuts, can lead to protein deficiency.
2. Vegetarian or vegan diet: People who follow a vegetarian or vegan diet may be at risk of protein deficiency if they do not consume enough protein-rich plant-based foods.
3. Malabsorption: Certain medical conditions, such as celiac disease, can lead to malabsorption of proteins and other nutrients.
4. Pregnancy and breastfeeding: Women who are pregnant or breastfeeding have a higher protein requirement to support the growth and development of their baby.
5. Chronic diseases: Certain chronic diseases, such as kidney disease, can lead to protein deficiency.
Protein deficiency can cause a range of symptoms, including:
1. Fatigue and weakness
2. Muscle wasting and loss of muscle mass
3. Poor wound healing
4. Hair loss
5. Difficulty concentrating and making decisions
6. Mood changes, such as irritability and depression
7. Increased risk of infections
If protein deficiency is not treated, it can lead to a range of complications, including:
1. Stunted growth in children
2. Weakened immune system
3. Poor wound healing
4. Increased risk of infections
5. Nutrient deficiencies
6. Reproductive problems
7. Cardiovascular disease
Treatment for protein deficiency typically involves increasing the intake of protein-rich foods or supplements. The goal is to provide enough protein to support growth and development, as well as overall health and well-being. In some cases, medication may be prescribed to help manage symptoms or address underlying conditions.
In addition to dietary changes, other treatments for protein deficiency may include:
1. Nutritional supplements: Protein supplements can be taken to increase protein intake.
2. Vitamin and mineral supplements: If the protein deficiency is due to a lack of certain vitamins or minerals, supplements may be prescribed.
3. Hormone replacement therapy: In cases where protein deficiency is caused by hormonal imbalances, hormone replacement therapy may be recommended.
4. Medications: Certain medications, such as antidepressants or anti-anxiety drugs, may be prescribed to help manage symptoms of protein deficiency.
5. Addressing underlying conditions: If the protein deficiency is due to an underlying condition, such as kidney disease, treatment will focus on managing that condition.
Preventing protein deficiency is important for maintaining overall health and well-being. Here are some tips for preventing protein deficiency:
1. Eat a balanced diet: Include a variety of protein-rich foods in your diet, such as lean meats, fish, eggs, dairy products, legumes, and nuts.
2. Consult with a healthcare professional: If you are vegetarian or vegan, or if you have certain medical conditions, consult with a healthcare professional to ensure you are getting enough protein.
3. Consider supplements: If you are unable to get enough protein through your diet alone, consider taking protein supplements.
4. Monitor your symptoms: Pay attention to any symptoms of protein deficiency and seek medical attention if they persist or worsen over time.
Overall, preventing protein deficiency is important for maintaining overall health and well-being. If you suspect you or someone you know may have a protein deficiency, it is important to seek medical attention as soon as possible. With proper diagnosis and treatment, protein deficiency can be effectively managed and symptoms can improve.
There are several risk factors for developing HCC, including:
* Cirrhosis, which can be caused by heavy alcohol consumption, viral hepatitis (such as hepatitis B and C), or fatty liver disease
* Family history of liver disease
* Chronic obstructive pulmonary disease (COPD)
* Diabetes
* Obesity
HCC can be challenging to diagnose, as the symptoms are non-specific and can be similar to those of other conditions. However, some common symptoms of HCC include:
* Yellowing of the skin and eyes (jaundice)
* Fatigue
* Loss of appetite
* Abdominal pain or discomfort
* Weight loss
If HCC is suspected, a doctor may perform several tests to confirm the diagnosis, including:
* Imaging tests, such as ultrasound, CT scan, or MRI, to look for tumors in the liver
* Blood tests to check for liver function and detect certain substances that are produced by the liver
* Biopsy, which involves removing a small sample of tissue from the liver to examine under a microscope
Once HCC is diagnosed, treatment options will depend on several factors, including the stage and location of the cancer, the patient's overall health, and their personal preferences. Treatment options may include:
* Surgery to remove the tumor or parts of the liver
* Ablation, which involves destroying the cancer cells using heat or cold
* Chemoembolization, which involves injecting chemotherapy drugs into the hepatic artery to reach the cancer cells
* Targeted therapy, which uses drugs or other substances to target specific molecules that are involved in the growth and spread of the cancer
Overall, the prognosis for HCC is poor, with a 5-year survival rate of approximately 20%. However, early detection and treatment can improve outcomes. It is important for individuals at high risk for HCC to be monitored regularly by a healthcare provider, and to seek medical attention if they experience any symptoms.
There are several different types of weight gain, including:
1. Clinical obesity: This is defined as a BMI of 30 or higher, and is typically associated with a range of serious health problems, such as heart disease, type 2 diabetes, and certain types of cancer.
2. Central obesity: This refers to excess fat around the waistline, which can increase the risk of health problems such as heart disease and type 2 diabetes.
3. Muscle gain: This occurs when an individual gains weight due to an increase in muscle mass, rather than fat. This type of weight gain is generally considered healthy and can improve overall fitness and athletic performance.
4. Fat gain: This occurs when an individual gains weight due to an increase in body fat, rather than muscle or bone density. Fat gain can increase the risk of health problems such as heart disease and type 2 diabetes.
Weight gain can be measured using a variety of methods, including:
1. Body mass index (BMI): This is a widely used measure of weight gain that compares an individual's weight to their height. A BMI of 18.5-24.9 is considered normal, while a BMI of 25-29.9 is considered overweight, and a BMI of 30 or higher is considered obese.
2. Waist circumference: This measures the distance around an individual's waistline and can be used to assess central obesity.
3. Skinfold measurements: These involve measuring the thickness of fat at specific points on the body, such as the abdomen or thighs.
4. Dual-energy X-ray absorptiometry (DXA): This is a non-invasive test that uses X-rays to measure bone density and body composition.
5. Bioelectrical impedance analysis (BIA): This is a non-invasive test that uses electrical impulses to measure body fat percentage and other physiological parameters.
Causes of weight gain:
1. Poor diet: Consuming high amounts of processed foods, sugar, and saturated fats can lead to weight gain.
2. Lack of physical activity: Engaging in regular exercise can help burn calories and maintain a healthy weight.
3. Genetics: An individual's genetic makeup can affect their metabolism and body composition, making them more prone to weight gain.
4. Hormonal imbalances: Imbalances in hormones such as insulin, thyroid, and cortisol can contribute to weight gain.
5. Medications: Certain medications, such as steroids and antidepressants, can cause weight gain as a side effect.
6. Sleep deprivation: Lack of sleep can disrupt hormones that regulate appetite and metabolism, leading to weight gain.
7. Stress: Chronic stress can lead to emotional eating and weight gain.
8. Age: Metabolism slows down with age, making it more difficult to maintain a healthy weight.
9. Medical conditions: Certain medical conditions such as hypothyroidism, Cushing's syndrome, and polycystic ovary syndrome (PCOS) can also contribute to weight gain.
Treatment options for obesity:
1. Lifestyle modifications: A combination of diet, exercise, and stress management techniques can help individuals achieve and maintain a healthy weight.
2. Medications: Prescription medications such as orlistat, phentermine-topiramate, and liraglutide can aid in weight loss.
3. Bariatric surgery: Surgical procedures such as gastric bypass surgery and sleeve gastrectomy can be effective for severe obesity.
4. Behavioral therapy: Cognitive-behavioral therapy (CBT) and other forms of counseling can help individuals develop healthy eating habits and improve their physical activity levels.
5. Meal replacement plans: Meal replacement plans such as Medifast can provide individuals with a structured diet that is high in protein, fiber, and vitamins, and low in calories and sugar.
6. Weight loss supplements: Supplements such as green tea extract, garcinia cambogia, and forskolin can help boost weight loss efforts.
7. Portion control: Using smaller plates and measuring cups can help individuals regulate their portion sizes and maintain a healthy weight.
8. Mindful eating: Paying attention to hunger and fullness cues, eating slowly, and savoring food can help individuals develop healthy eating habits.
9. Physical activity: Engaging in regular physical activity such as walking, running, swimming, or cycling can help individuals burn calories and maintain a healthy weight.
It's important to note that there is no one-size-fits-all approach to treating obesity, and the most effective treatment plan will depend on the individual's specific needs and circumstances. Consulting with a healthcare professional such as a registered dietitian or a physician can help individuals develop a personalized treatment plan that is safe and effective.
Multiple myeloma is the second most common type of hematologic cancer after non-Hodgkin's lymphoma, accounting for approximately 1% of all cancer deaths worldwide. It is more common in older adults, with most patients being diagnosed over the age of 65.
The exact cause of multiple myeloma is not known, but it is believed to be linked to genetic mutations that occur in the plasma cells. There are several risk factors that have been associated with an increased risk of developing multiple myeloma, including:
1. Family history: Having a family history of multiple myeloma or other plasma cell disorders increases the risk of developing the disease.
2. Age: The risk of developing multiple myeloma increases with age, with most patients being diagnosed over the age of 65.
3. Race: African Americans are at higher risk of developing multiple myeloma than other races.
4. Obesity: Being overweight or obese may increase the risk of developing multiple myeloma.
5. Exposure to certain chemicals: Exposure to certain chemicals such as pesticides, solvents, and heavy metals has been linked to an increased risk of developing multiple myeloma.
The symptoms of multiple myeloma can vary depending on the severity of the disease and the organs affected. Common symptoms include:
1. Bone pain: Pain in the bones, particularly in the spine, ribs, or long bones, is a common symptom of multiple myeloma.
2. Fatigue: Feeling tired or weak is another common symptom of the disease.
3. Infections: Patients with multiple myeloma may be more susceptible to infections due to the impaired functioning of their immune system.
4. Bone fractures: Weakened bones can lead to an increased risk of fractures, particularly in the spine, hips, or ribs.
5. Kidney problems: Multiple myeloma can cause damage to the kidneys, leading to problems such as kidney failure or proteinuria (excess protein in the urine).
6. Anemia: A low red blood cell count can cause anemia, which can lead to fatigue, weakness, and shortness of breath.
7. Increased calcium levels: High levels of calcium in the blood can cause symptoms such as nausea, vomiting, constipation, and confusion.
8. Neurological problems: Multiple myeloma can cause neurological problems such as headaches, numbness or tingling in the arms and legs, and difficulty with coordination and balance.
The diagnosis of multiple myeloma typically involves a combination of physical examination, medical history, and laboratory tests. These may include:
1. Complete blood count (CBC): A CBC can help identify abnormalities in the numbers and characteristics of different types of blood cells, including red blood cells, white blood cells, and platelets.
2. Serum protein electrophoresis (SPEP): This test measures the levels of different proteins in the blood, including immunoglobulins (antibodies) and abnormal proteins produced by myeloma cells.
3. Urine protein electrophoresis (UPEP): This test measures the levels of different proteins in the urine.
4. Immunofixation: This test is used to identify the type of antibody produced by myeloma cells and to rule out other conditions that may cause similar symptoms.
5. Bone marrow biopsy: A bone marrow biopsy involves removing a sample of tissue from the bone marrow for examination under a microscope. This can help confirm the diagnosis of multiple myeloma and determine the extent of the disease.
6. Imaging tests: Imaging tests such as X-rays, CT scans, or MRI scans may be used to assess the extent of bone damage or other complications of multiple myeloma.
7. Genetic testing: Genetic testing may be used to identify specific genetic abnormalities that are associated with multiple myeloma and to monitor the response of the disease to treatment.
It's important to note that not all patients with MGUS or smoldering myeloma will develop multiple myeloma, and some patients with multiple myeloma may not have any symptoms at all. However, if you are experiencing any of the symptoms listed above or have a family history of multiple myeloma, it's important to talk to your doctor about your risk and any tests that may be appropriate for you.
Explanation: Genetic predisposition to disease is influenced by multiple factors, including the presence of inherited genetic mutations or variations, environmental factors, and lifestyle choices. The likelihood of developing a particular disease can be increased by inherited genetic mutations that affect the functioning of specific genes or biological pathways. For example, inherited mutations in the BRCA1 and BRCA2 genes increase the risk of developing breast and ovarian cancer.
The expression of genetic predisposition to disease can vary widely, and not all individuals with a genetic predisposition will develop the disease. Additionally, many factors can influence the likelihood of developing a particular disease, such as environmental exposures, lifestyle choices, and other health conditions.
Inheritance patterns: Genetic predisposition to disease can be inherited in an autosomal dominant, autosomal recessive, or multifactorial pattern, depending on the specific disease and the genetic mutations involved. Autosomal dominant inheritance means that a single copy of the mutated gene is enough to cause the disease, while autosomal recessive inheritance requires two copies of the mutated gene. Multifactorial inheritance involves multiple genes and environmental factors contributing to the development of the disease.
Examples of diseases with a known genetic predisposition:
1. Huntington's disease: An autosomal dominant disorder caused by an expansion of a CAG repeat in the Huntingtin gene, leading to progressive neurodegeneration and cognitive decline.
2. Cystic fibrosis: An autosomal recessive disorder caused by mutations in the CFTR gene, leading to respiratory and digestive problems.
3. BRCA1/2-related breast and ovarian cancer: An inherited increased risk of developing breast and ovarian cancer due to mutations in the BRCA1 or BRCA2 genes.
4. Sickle cell anemia: An autosomal recessive disorder caused by a point mutation in the HBB gene, leading to defective hemoglobin production and red blood cell sickling.
5. Type 1 diabetes: An autoimmune disease caused by a combination of genetic and environmental factors, including multiple genes in the HLA complex.
Understanding the genetic basis of disease can help with early detection, prevention, and treatment. For example, genetic testing can identify individuals who are at risk for certain diseases, allowing for earlier intervention and preventive measures. Additionally, understanding the genetic basis of a disease can inform the development of targeted therapies and personalized medicine."
The signs and symptoms of CE can vary depending on the location of the tumor, but they may include:
* Lumps or swelling in the neck, underarm, or groin area
* Fever
* Fatigue
* Weight loss
* Night sweats
* Swollen lymph nodes
* Pain in the affected area
CE is caused by a genetic mutation that leads to uncontrolled cell growth and division. The exact cause of the mutation is not fully understood, but it is believed to be linked to exposure to certain viruses or chemicals.
Diagnosis of CE typically involves a combination of physical examination, imaging tests such as CT scans or PET scans, and biopsy to confirm the presence of cancer cells. Treatment options for CE depend on the stage and location of the tumor, but may include:
* Chemotherapy to kill cancer cells
* Radiation therapy to shrink the tumor
* Surgery to remove the tumor
* Immunotherapy to boost the immune system's ability to fight the cancer
Overall, CE is a rare and aggressive form of cancer that requires prompt diagnosis and treatment to improve outcomes.
The hallmark symptom of RA is an inability to reabsorb these amino acids, leading to their excessive excretion in the urine. This can cause a range of health problems, including:
1. Cystinuria: excessive excretion of cystine in the urine, which can form stones and damage the kidneys.
2. Glutaric aciduria type 1 (GA1): excessive excretion of glutaric acid and other branched-chain amino acids in the urine, which can lead to developmental delays, intellectual disability, and seizures.
3. Aminoaciduria: excessive excretion of various amino acids in the urine, including alanine, glycine, and proline.
4. Kidney damage: chronic exposure to high levels of certain amino acids in the urine can cause damage to the kidneys, leading to chronic kidney disease and potentially end-stage renal disease (ESRD).
5. Other complications: RA can also lead to other health problems, such as electrolyte imbalances, bone disease, and metabolic acidosis.
RA is diagnosed through a combination of clinical evaluation, laboratory tests, and genetic analysis. Treatment typically involves a combination of dietary restrictions, medications, and kidney transplantation in severe cases.
Types of experimental neoplasms include:
* Xenografts: tumors that are transplanted into animals from another species, often humans.
* Transgenic tumors: tumors that are created by introducing cancer-causing genes into an animal's genome.
* Chemically-induced tumors: tumors that are caused by exposure to certain chemicals or drugs.
The use of experimental neoplasms in research has led to significant advances in our understanding of cancer biology and the development of new treatments for the disease. However, the use of animals in cancer research is a controversial topic and alternatives to animal models are being developed and implemented.
Liver neoplasms, also known as liver tumors or hepatic tumors, are abnormal growths of tissue in the liver. These growths can be benign (non-cancerous) or malignant (cancerous). Malignant liver tumors can be primary, meaning they originate in the liver, or metastatic, meaning they spread to the liver from another part of the body.
There are several types of liver neoplasms, including:
1. Hepatocellular carcinoma (HCC): This is the most common type of primary liver cancer and arises from the main cells of the liver (hepatocytes). HCC is often associated with cirrhosis and can be caused by viral hepatitis or alcohol abuse.
2. Cholangiocarcinoma: This type of cancer arises from the cells lining the bile ducts within the liver (cholangiocytes). Cholangiocarcinoma is rare and often diagnosed at an advanced stage.
3. Hemangiosarcoma: This is a rare type of cancer that originates in the blood vessels of the liver. It is most commonly seen in dogs but can also occur in humans.
4. Fibromas: These are benign tumors that arise from the connective tissue of the liver (fibrocytes). Fibromas are usually small and do not spread to other parts of the body.
5. Adenomas: These are benign tumors that arise from the glandular cells of the liver (hepatocytes). Adenomas are usually small and do not spread to other parts of the body.
The symptoms of liver neoplasms vary depending on their size, location, and whether they are benign or malignant. Common symptoms include abdominal pain, fatigue, weight loss, and jaundice (yellowing of the skin and eyes). Diagnosis is typically made through a combination of imaging tests such as CT scans, MRI scans, and ultrasound, and a biopsy to confirm the presence of cancer cells.
Treatment options for liver neoplasms depend on the type, size, location, and stage of the tumor, as well as the patient's overall health. Surgery may be an option for some patients with small, localized tumors, while others may require chemotherapy or radiation therapy to shrink the tumor before surgery can be performed. In some cases, liver transplantation may be necessary.
Prognosis for liver neoplasms varies depending on the type and stage of the cancer. In general, early detection and treatment improve the prognosis, while advanced-stage disease is associated with a poorer prognosis.
Examples of inborn errors of metabolism include:
1. Phenylketonuria (PKU): A disorder that affects the body's ability to break down the amino acid phenylalanine, leading to a buildup of this substance in the blood and brain.
2. Hypothyroidism: A condition in which the thyroid gland does not produce enough thyroid hormones, leading to developmental delays, intellectual disability, and other health problems.
3. Maple syrup urine disease (MSUD): A disorder that affects the body's ability to break down certain amino acids, leading to a buildup of these substances in the blood and urine.
4. Glycogen storage diseases: A group of disorders that affect the body's ability to store and use glycogen, a form of carbohydrate energy.
5. Mucopolysaccharidoses (MPS): A group of disorders that affect the body's ability to produce and break down certain sugars, leading to a buildup of these substances in the body.
6. Citrullinemia: A disorder that affects the body's ability to break down the amino acid citrulline, leading to a buildup of this substance in the blood and urine.
7. Homocystinuria: A disorder that affects the body's ability to break down certain amino acids, leading to a buildup of these substances in the blood and urine.
8. Tyrosinemia: A disorder that affects the body's ability to break down the amino acid tyrosine, leading to a buildup of this substance in the blood and liver.
Inborn errors of metabolism can be diagnosed through a combination of physical examination, medical history, and laboratory tests such as blood and urine tests. Treatment for these disorders varies depending on the specific condition and may include dietary changes, medication, and other therapies. Early detection and treatment can help manage symptoms and prevent complications.
1. Parvovirus (Parvo): A highly contagious viral disease that affects dogs of all ages and breeds, causing symptoms such as vomiting, diarrhea, and severe dehydration.
2. Distemper: A serious viral disease that can affect dogs of all ages and breeds, causing symptoms such as fever, coughing, and seizures.
3. Rabies: A deadly viral disease that affects dogs and other animals, transmitted through the saliva of infected animals, and causing symptoms such as aggression, confusion, and paralysis.
4. Heartworms: A common condition caused by a parasitic worm that infects the heart and lungs of dogs, leading to symptoms such as coughing, fatigue, and difficulty breathing.
5. Ticks and fleas: These external parasites can cause skin irritation, infection, and disease in dogs, including Lyme disease and tick-borne encephalitis.
6. Canine hip dysplasia (CHD): A genetic condition that affects the hip joint of dogs, causing symptoms such as arthritis, pain, and mobility issues.
7. Osteosarcoma: A type of bone cancer that affects dogs, often diagnosed in older dogs and causing symptoms such as lameness, swelling, and pain.
8. Allergies: Dog allergies can cause skin irritation, ear infections, and other health issues, and may be triggered by environmental factors or specific ingredients in their diet.
9. Gastric dilatation-volvulus (GDV): A life-threatening condition that occurs when a dog's stomach twists and fills with gas, causing symptoms such as vomiting, pain, and difficulty breathing.
10. Cruciate ligament injuries: Common in active dogs, these injuries can cause joint instability, pain, and mobility issues.
It is important to monitor your dog's health regularly and seek veterinary care if you notice any changes or abnormalities in their behavior, appetite, or physical condition.
Treatment for uremia typically involves dialysis or kidney transplantation to remove excess urea from the blood and restore normal kidney function. In some cases, medications may be prescribed to help manage symptoms such as high blood pressure, anemia, or electrolyte imbalances.
The term "uremia" is derived from the Greek words "oura," meaning "urea," and "emia," meaning "in the blood." It was first used in the medical literature in the late 19th century to describe a condition caused by excess urea in the blood. Today, it remains an important diagnostic term in nephrology and is often used interchangeably with the term "uremic syndrome."
There are several types of lymphoma, including:
1. Hodgkin lymphoma: This is a type of lymphoma that originates in the white blood cells called Reed-Sternberg cells. It is characterized by the presence of giant cells with multiple nucleoli.
2. Non-Hodgkin lymphoma (NHL): This is a type of lymphoma that does not meet the criteria for Hodgkin lymphoma. There are many subtypes of NHL, each with its own unique characteristics and behaviors.
3. Cutaneous lymphoma: This type of lymphoma affects the skin and can take several forms, including cutaneous B-cell lymphoma and cutaneous T-cell lymphoma.
4. Primary central nervous system (CNS) lymphoma: This is a rare type of lymphoma that develops in the brain or spinal cord.
5. Post-transplantation lymphoproliferative disorder (PTLD): This is a type of lymphoma that develops in people who have undergone an organ transplant, often as a result of immunosuppressive therapy.
The symptoms of lymphoma can vary depending on the type and location of the cancer. Some common symptoms include:
* Swollen lymph nodes
* Fever
* Fatigue
* Weight loss
* Night sweats
* Itching
Lymphoma is diagnosed through a combination of physical examination, imaging tests (such as CT scans or PET scans), and biopsies. Treatment options for lymphoma depend on the type and stage of the cancer, and may include chemotherapy, radiation therapy, immunotherapy, or stem cell transplantation.
Overall, lymphoma is a complex and diverse group of cancers that can affect people of all ages and backgrounds. While it can be challenging to diagnose and treat, advances in medical technology and research have improved the outlook for many patients with lymphoma.
Some common poultry diseases include:
1. Avian influenza (bird flu): A highly contagious viral disease that affects birds and can be transmitted to humans.
2. Newcastle disease: A viral disease that causes respiratory and gastrointestinal symptoms in birds.
3. Infectious bronchitis: A viral disease that causes respiratory symptoms in birds.
4. Marek's disease: A viral disease that affects the nervous system of birds.
5. Coccidiosis: A parasitic disease caused by the Eimeria protozoa, which can cause diarrhea and weight loss in birds.
6. Chicken anemia virus: A viral disease that causes anemia and weakened immune systems in chickens.
7. Fowl pox: A viral disease that causes skin lesions and other symptoms in birds.
8. Avian encephalomyelitis (AE): A viral disease that affects the brain and spinal cord of birds, causing neurological symptoms such as paralysis and death.
9. Mycoplasmosis: A bacterial disease caused by the Mycoplasma bacteria, which can cause respiratory and other symptoms in birds.
10. Aspergillosis: A fungal disease that affects the respiratory system of birds, causing symptoms such as coughing and difficulty breathing.
Poultry diseases can have a significant impact on bird health and productivity, and can also be transmitted to humans in some cases. It is important for poultry farmers and owners to monitor their flocks closely and take steps to prevent the spread of disease, such as providing clean water and feed, maintaining good hygiene, and vaccinating birds against certain diseases.
A disease that affects pigs, including viral, bacterial, and parasitic infections, as well as genetic disorders and nutritional deficiencies. Some common swine diseases include:
1. Porcine Reproductive and Respiratory Syndrome (PRRS): A highly contagious viral disease that can cause reproductive failure, respiratory problems, and death.
2. Swine Influenza: A viral infection similar to human influenza, which can cause fever, coughing, and pneumonia in pigs.
3. Erysipelas: A bacterial infection that causes high fever, loss of appetite, and skin lesions in pigs.
4. Actinobacillosis: A bacterial infection that can cause pneumonia, arthritis, and abscesses in pigs.
5. Parasitic infections: Such as gastrointestinal parasites like roundworms and tapeworms, which can cause diarrhea, anemia, and weight loss in pigs.
6. Scrapie: A degenerative neurological disorder that affects pigs and other animals, causing confusion, aggression, and eventually death.
7. Nutritional deficiencies: Such as a lack of vitamin E or selenium, which can cause a range of health problems in pigs, including muscular dystrophy and anemia.
8. Genetic disorders: Such as achondroplasia, a condition that causes dwarfism and deformities in pigs.
9. Environmental diseases: Such as heat stress, which can cause a range of health problems in pigs, including respiratory distress and death.
It's important to note that many swine diseases have similar symptoms, making accurate diagnosis by a veterinarian essential for effective treatment and control.
Neoplasm refers to an abnormal growth of cells that can be benign (non-cancerous) or malignant (cancerous). Neoplasms can occur in any part of the body and can affect various organs and tissues. The term "neoplasm" is often used interchangeably with "tumor," but while all tumors are neoplasms, not all neoplasms are tumors.
Types of Neoplasms
There are many different types of neoplasms, including:
1. Carcinomas: These are malignant tumors that arise in the epithelial cells lining organs and glands. Examples include breast cancer, lung cancer, and colon cancer.
2. Sarcomas: These are malignant tumors that arise in connective tissue, such as bone, cartilage, and fat. Examples include osteosarcoma (bone cancer) and soft tissue sarcoma.
3. Lymphomas: These are cancers of the immune system, specifically affecting the lymph nodes and other lymphoid tissues. Examples include Hodgkin lymphoma and non-Hodgkin lymphoma.
4. Leukemias: These are cancers of the blood and bone marrow that affect the white blood cells. Examples include acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL).
5. Melanomas: These are malignant tumors that arise in the pigment-producing cells called melanocytes. Examples include skin melanoma and eye melanoma.
Causes and Risk Factors of Neoplasms
The exact causes of neoplasms are not fully understood, but there are several known risk factors that can increase the likelihood of developing a neoplasm. These include:
1. Genetic predisposition: Some people may be born with genetic mutations that increase their risk of developing certain types of neoplasms.
2. Environmental factors: Exposure to certain environmental toxins, such as radiation and certain chemicals, can increase the risk of developing a neoplasm.
3. Infection: Some neoplasms are caused by viruses or bacteria. For example, human papillomavirus (HPV) is a common cause of cervical cancer.
4. Lifestyle factors: Factors such as smoking, excessive alcohol consumption, and a poor diet can increase the risk of developing certain types of neoplasms.
5. Family history: A person's risk of developing a neoplasm may be higher if they have a family history of the condition.
Signs and Symptoms of Neoplasms
The signs and symptoms of neoplasms can vary depending on the type of cancer and where it is located in the body. Some common signs and symptoms include:
1. Unusual lumps or swelling
2. Pain
3. Fatigue
4. Weight loss
5. Change in bowel or bladder habits
6. Unexplained bleeding
7. Coughing up blood
8. Hoarseness or a persistent cough
9. Changes in appetite or digestion
10. Skin changes, such as a new mole or a change in the size or color of an existing mole.
Diagnosis and Treatment of Neoplasms
The diagnosis of a neoplasm usually involves a combination of physical examination, imaging tests (such as X-rays, CT scans, or MRI scans), and biopsy. A biopsy involves removing a small sample of tissue from the suspected tumor and examining it under a microscope for cancer cells.
The treatment of neoplasms depends on the type, size, location, and stage of the cancer, as well as the patient's overall health. Some common treatments include:
1. Surgery: Removing the tumor and surrounding tissue can be an effective way to treat many types of cancer.
2. Chemotherapy: Using drugs to kill cancer cells can be effective for some types of cancer, especially if the cancer has spread to other parts of the body.
3. Radiation therapy: Using high-energy radiation to kill cancer cells can be effective for some types of cancer, especially if the cancer is located in a specific area of the body.
4. Immunotherapy: Boosting the body's immune system to fight cancer can be an effective treatment for some types of cancer.
5. Targeted therapy: Using drugs or other substances to target specific molecules on cancer cells can be an effective treatment for some types of cancer.
Prevention of Neoplasms
While it is not always possible to prevent neoplasms, there are several steps that can reduce the risk of developing cancer. These include:
1. Avoiding exposure to known carcinogens (such as tobacco smoke and radiation)
2. Maintaining a healthy diet and lifestyle
3. Getting regular exercise
4. Not smoking or using tobacco products
5. Limiting alcohol consumption
6. Getting vaccinated against certain viruses that are associated with cancer (such as human papillomavirus, or HPV)
7. Participating in screening programs for early detection of cancer (such as mammograms for breast cancer and colonoscopies for colon cancer)
8. Avoiding excessive exposure to sunlight and using protective measures such as sunscreen and hats to prevent skin cancer.
It's important to note that not all cancers can be prevented, and some may be caused by factors that are not yet understood or cannot be controlled. However, by taking these steps, individuals can reduce their risk of developing cancer and improve their overall health and well-being.
Also known as Burkitt's Lymphoma.
The term "lathyrism" was first used in the medical field in the early 20th century to describe this condition. It is considered a rare disease and is mostly seen in countries where sweet peas are consumed as a food source. The condition is usually diagnosed through a combination of clinical evaluation, laboratory tests, and imaging studies.
Treatment for lathyrism typically involves supportive care to manage symptoms, such as physical therapy to improve muscle strength and mobility, and medication to relieve twitching and spasticity. In severe cases, surgery may be necessary to release contracted muscles or tendons.
Prevention of lathyrism is key to avoiding the condition altogether. This can be achieved by avoiding the consumption of sweet peas and products made from them, especially in areas where the plant is known to be toxic. Education and awareness about the risks of consuming sweet peas can also help prevent the condition.
Cattle diseases refer to any health issues that affect cattle, including bacterial, viral, and parasitic infections, as well as genetic disorders and environmental factors. These diseases can have a significant impact on the health and productivity of cattle, as well as the livelihoods of farmers and ranchers who rely on them for their livelihood.
Types of Cattle Diseases
There are many different types of cattle diseases, including:
1. Bacterial diseases, such as brucellosis, anthrax, and botulism.
2. Viral diseases, such as bovine viral diarrhea (BVD) and bluetongue.
3. Parasitic diseases, such as heartwater and gapeworm.
4. Genetic disorders, such as polledness and cleft palate.
5. Environmental factors, such as heat stress and nutritional deficiencies.
Symptoms of Cattle Diseases
The symptoms of cattle diseases can vary depending on the specific disease, but may include:
1. Fever and respiratory problems
2. Diarrhea and vomiting
3. Weight loss and depression
4. Swelling and pain in joints or limbs
5. Discharge from the eyes or nose
6. Coughing or difficulty breathing
7. Lameness or reluctance to move
8. Changes in behavior, such as aggression or lethargy
Diagnosis and Treatment of Cattle Diseases
Diagnosing cattle diseases can be challenging, as the symptoms may be similar for different conditions. However, veterinarians use a combination of physical examination, laboratory tests, and medical history to make a diagnosis. Treatment options vary depending on the specific disease and may include antibiotics, vaccines, anti-inflammatory drugs, and supportive care such as fluids and nutritional supplements.
Prevention of Cattle Diseases
Preventing cattle diseases is essential for maintaining the health and productivity of your herd. Some preventative measures include:
1. Proper nutrition and hydration
2. Regular vaccinations and parasite control
3. Sanitary living conditions and frequent cleaning
4. Monitoring for signs of illness and seeking prompt veterinary care if symptoms arise
5. Implementing biosecurity measures such as isolating sick animals and quarantining new animals before introduction to the herd.
It is important to work closely with a veterinarian to develop a comprehensive health plan for your cattle herd, as they can provide guidance on vaccination schedules, parasite control methods, and disease prevention strategies tailored to your specific needs.
Conclusion
Cattle diseases can have a significant impact on the productivity and profitability of your herd, as well as the overall health of your animals. It is essential to be aware of the common cattle diseases, their symptoms, diagnosis, treatment, and prevention methods to ensure the health and well-being of your herd.
By working closely with a veterinarian and implementing preventative measures such as proper nutrition and sanitary living conditions, you can help protect your cattle from disease and maintain a productive and profitable herd. Remember, prevention is key when it comes to managing cattle diseases.
HIV (human immunodeficiency virus) infection is a condition in which the body is infected with HIV, a type of retrovirus that attacks the body's immune system. HIV infection can lead to AIDS (acquired immunodeficiency syndrome), a condition in which the immune system is severely damaged and the body is unable to fight off infections and diseases.
There are several ways that HIV can be transmitted, including:
1. Sexual contact with an infected person
2. Sharing of needles or other drug paraphernalia with an infected person
3. Mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Blood transfusions ( although this is rare in developed countries due to screening processes)
5. Organ transplantation (again, rare)
The symptoms of HIV infection can be mild at first and may not appear until several years after infection. These symptoms can include:
1. Fever
2. Fatigue
3. Swollen glands in the neck, armpits, and groin
4. Rash
5. Muscle aches and joint pain
6. Night sweats
7. Diarrhea
8. Weight loss
If left untreated, HIV infection can progress to AIDS, which is a life-threatening condition that can cause a wide range of symptoms, including:
1. Opportunistic infections (such as pneumocystis pneumonia)
2. Cancer (such as Kaposi's sarcoma)
3. Wasting syndrome
4. Neurological problems (such as dementia and seizures)
HIV infection is diagnosed through a combination of blood tests and physical examination. Treatment typically involves antiretroviral therapy (ART), which is a combination of medications that work together to suppress the virus and slow the progression of the disease.
Prevention methods for HIV infection include:
1. Safe sex practices, such as using condoms and dental dams
2. Avoiding sharing needles or other drug-injecting equipment
3. Avoiding mother-to-child transmission during pregnancy, childbirth, or breastfeeding
4. Post-exposure prophylaxis (PEP), which is a short-term treatment that can prevent infection after potential exposure to the virus
5. Pre-exposure prophylaxis (PrEP), which is a daily medication that can prevent infection in people who are at high risk of being exposed to the virus.
It's important to note that HIV infection is manageable with proper treatment and care, and that people living with HIV can lead long and healthy lives. However, it's important to be aware of the risks and take steps to prevent transmission.
In birds, the virus can cause respiratory, gastrointestinal, and nervous system disorders. It is transmitted through contact with infected birds or contaminated feces or water. Wild birds and domestic poultry are susceptible to influenza infection. The H5N1 subtype of the virus has caused widespread outbreaks in poultry and wild birds, leading to significant economic losses and public health concerns.
Prevention methods include vaccination, biosecurity measures, and surveillance programs. Vaccines are available for chickens, turkeys, ducks, and other domesticated birds, but the effectiveness of these vaccines can be limited in protecting against certain subtypes of the virus. Biosecurity measures such as sanitation, isolation, and disinfection can help prevent the spread of the disease in poultry flocks. Surveillance programs monitor the presence of the virus in wild and domestic bird populations to detect outbreaks early and prevent the spread of the disease.
The impact of avian influenza on human health is generally minimal, but it can be severe in certain cases. Direct transmission of the virus from birds to humans is rare, but it can occur through close contact with infected birds or contaminated surfaces. Indirect transmission may occur through the handling of contaminated poultry products. People with weakened immune systems, such as young children, the elderly, and those with chronic diseases, are at a higher risk of developing severe symptoms from avian influenza.
Overall, avian influenza is an important disease in birds that can have significant economic and public health implications. Prevention and control measures are essential to minimize the impact of the disease on both bird populations and human health.
Examples of syndromes include:
1. Down syndrome: A genetic disorder caused by an extra copy of chromosome 21 that affects intellectual and physical development.
2. Turner syndrome: A genetic disorder caused by a missing or partially deleted X chromosome that affects physical growth and development in females.
3. Marfan syndrome: A genetic disorder affecting the body's connective tissue, causing tall stature, long limbs, and cardiovascular problems.
4. Alzheimer's disease: A neurodegenerative disorder characterized by memory loss, confusion, and changes in personality and behavior.
5. Parkinson's disease: A neurological disorder characterized by tremors, rigidity, and difficulty with movement.
6. Klinefelter syndrome: A genetic disorder caused by an extra X chromosome in males, leading to infertility and other physical characteristics.
7. Williams syndrome: A rare genetic disorder caused by a deletion of genetic material on chromosome 7, characterized by cardiovascular problems, developmental delays, and a distinctive facial appearance.
8. Fragile X syndrome: The most common form of inherited intellectual disability, caused by an expansion of a specific gene on the X chromosome.
9. Prader-Willi syndrome: A genetic disorder caused by a defect in the hypothalamus, leading to problems with appetite regulation and obesity.
10. Sjogren's syndrome: An autoimmune disorder that affects the glands that produce tears and saliva, causing dry eyes and mouth.
Syndromes can be diagnosed through a combination of physical examination, medical history, laboratory tests, and imaging studies. Treatment for a syndrome depends on the underlying cause and the specific symptoms and signs presented by the patient.
There are several types of melanoma, including:
1. Superficial spreading melanoma: This is the most common type of melanoma, accounting for about 70% of cases. It usually appears as a flat or slightly raised discolored patch on the skin.
2. Nodular melanoma: This type of melanoma is more aggressive and accounts for about 15% of cases. It typically appears as a raised bump on the skin, often with a darker color.
3. Acral lentiginous melanoma: This type of melanoma affects the palms of the hands, soles of the feet, or nail beds and accounts for about 5% of cases.
4. Lentigo maligna melanoma: This type of melanoma usually affects the face and is more common in older adults.
The risk factors for developing melanoma include:
1. Ultraviolet (UV) radiation exposure from the sun or tanning beds
2. Fair skin, light hair, and light eyes
3. A history of sunburns
4. Weakened immune system
5. Family history of melanoma
The symptoms of melanoma can vary depending on the type and location of the cancer. Common symptoms include:
1. Changes in the size, shape, or color of a mole
2. A new mole or growth on the skin
3. A spot or sore that bleeds or crusts over
4. Itching or pain on the skin
5. Redness or swelling around a mole
If melanoma is suspected, a biopsy will be performed to confirm the diagnosis. Treatment options for melanoma depend on the stage and location of the cancer and may include surgery, chemotherapy, radiation therapy, or a combination of these. Early detection and treatment are key to successful outcomes in melanoma cases.
In conclusion, melanoma is a type of skin cancer that can be deadly if not detected early. It is important to practice sun safety, perform regular self-exams, and seek medical attention if any suspicious changes are noticed on the skin. By being aware of the risk factors, symptoms, and treatment options for melanoma, individuals can take steps to protect themselves from this potentially deadly disease.
Some common types of fish diseases include:
1. Bacterial infections: These are caused by bacteria such as Aeromonas, Pseudomonas, and Mycobacterium. Symptoms can include fin and tail rot, body slime, and ulcers.
2. Viral infections: These are caused by viruses such as viral hemorrhagic septicemia (VHS) and infectious hematopoietic necrosis (IHN). Symptoms can include lethargy, loss of appetite, and rapid death.
3. Protozoan infections: These are caused by protozoa such as Cryptocaryon and Ichthyophonus. Symptoms can include flashing, rapid breathing, and white spots on the body.
4. Fungal infections: These are caused by fungi such as Saprolegnia and Achlya. Symptoms can include fuzzy growths on the body and fins, and sluggish behavior.
5. Parasitic infections: These are caused by parasites such as Ichthyophonus and Cryptocaryon. Symptoms can include flashing, rapid breathing, and white spots on the body.
Diagnosis of fish diseases is typically made through a combination of physical examination, laboratory tests, and observation of the fish's behavior and environment. Treatment options vary depending on the type of disease and the severity of symptoms, and can include antibiotics, antifungals, and medicated baths. Prevention is key in managing fish diseases, and this includes maintaining good water quality, providing a balanced diet, and keeping the fish in a healthy environment.
Note: The information provided is a general overview of common fish diseases and their symptoms, and should not be considered as professional medical advice. If you suspect your fish has a disease, it is recommended that you consult with a veterinarian or a qualified aquarium expert for proper diagnosis and treatment.
Mitochondrial diseases can affect anyone, regardless of age or gender, and they can be caused by mutations in either the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). These mutations can be inherited from one's parents or acquired during embryonic development.
Some of the most common symptoms of mitochondrial diseases include:
1. Muscle weakness and wasting
2. Seizures
3. Cognitive impairment
4. Vision loss
5. Hearing loss
6. Heart problems
7. Neurological disorders
8. Gastrointestinal issues
9. Liver and kidney dysfunction
Some examples of mitochondrial diseases include:
1. MELAS syndrome (Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes)
2. Kearns-Sayre syndrome (a rare progressive disorder that affects the nervous system and other organs)
3. Chronic progressive external ophthalmoplegia (CPEO), which is characterized by weakness of the extraocular muscles and vision loss
4. Mitochondrial DNA depletion syndrome, which can cause a wide range of symptoms including seizures, developmental delays, and muscle weakness.
5. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)
6. Leigh syndrome, which is a rare genetic disorder that affects the brain and spinal cord.
7. LHON (Leber's Hereditary Optic Neuropathy), which is a rare form of vision loss that can lead to blindness in one or both eyes.
8. Mitochondrial DNA mutation, which can cause a wide range of symptoms including seizures, developmental delays, and muscle weakness.
9. Mitochondrial myopathy, encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)
10. Kearns-Sayre syndrome, which is a rare progressive disorder that affects the nervous system and other organs.
It's important to note that this is not an exhaustive list and there are many more mitochondrial diseases and disorders that can affect individuals. Additionally, while these diseases are rare, they can have a significant impact on the quality of life of those affected and their families.
There are different types of Breast Neoplasms such as:
1. Fibroadenomas: These are benign tumors that are made up of glandular and fibrous tissues. They are usually small and round, with a smooth surface, and can be moved easily under the skin.
2. Cysts: These are fluid-filled sacs that can develop in both breast tissue and milk ducts. They are usually benign and can disappear on their own or be drained surgically.
3. Ductal Carcinoma In Situ (DCIS): This is a precancerous condition where abnormal cells grow inside the milk ducts. If left untreated, it can progress to invasive breast cancer.
4. Invasive Ductal Carcinoma (IDC): This is the most common type of breast cancer and starts in the milk ducts but grows out of them and invades surrounding tissue.
5. Invasive Lobular Carcinoma (ILC): It originates in the milk-producing glands (lobules) and grows out of them, invading nearby tissue.
Breast Neoplasms can cause various symptoms such as a lump or thickening in the breast or underarm area, skin changes like redness or dimpling, change in size or shape of one or both breasts, discharge from the nipple, and changes in the texture or color of the skin.
Treatment options for Breast Neoplasms may include surgery such as lumpectomy, mastectomy, or breast-conserving surgery, radiation therapy which uses high-energy beams to kill cancer cells, chemotherapy using drugs to kill cancer cells, targeted therapy which uses drugs or other substances to identify and attack cancer cells while minimizing harm to normal cells, hormone therapy, immunotherapy, and clinical trials.
It is important to note that not all Breast Neoplasms are cancerous; some are benign (non-cancerous) tumors that do not spread or grow.
Neuroblastoma is caused by a genetic mutation that affects the development and growth of nerve cells. The cancerous cells are often sensitive to chemotherapy, but they can be difficult to remove surgically because they are deeply embedded in the nervous system.
There are several different types of neuroblastoma, including:
1. Infantile neuroblastoma: This type of neuroblastoma occurs in children under the age of one and is often more aggressive than other types of the cancer.
2. Juvenile neuroblastoma: This type of neuroblastoma occurs in children between the ages of one and five and tends to be less aggressive than infantile neuroblastoma.
3. Adult neuroblastoma: This type of neuroblastoma occurs in adults and is rare.
4. Metastatic neuroblastoma: This type of neuroblastoma has spread to other parts of the body, such as the bones or liver.
Symptoms of neuroblastoma can vary depending on the location and size of the tumor, but they may include:
* Abdominal pain
* Fever
* Loss of appetite
* Weight loss
* Fatigue
* Bone pain
* Swelling in the abdomen or neck
* Constipation
* Increased heart rate
Diagnosis of neuroblastoma typically involves a combination of imaging tests, such as CT scans and MRI scans, and biopsies to confirm the presence of cancerous cells. Treatment for neuroblastoma usually involves a combination of chemotherapy, surgery, and radiation therapy. The prognosis for neuroblastoma varies depending on the type of cancer, the age of the child, and the stage of the disease. In general, the younger the child and the more aggressive the treatment, the better the prognosis.
There are several types of colonic neoplasms, including:
1. Adenomas: These are benign growths that are usually precursors to colorectal cancer.
2. Carcinomas: These are malignant tumors that arise from the epithelial lining of the colon.
3. Sarcomas: These are rare malignant tumors that arise from the connective tissue of the colon.
4. Lymphomas: These are cancers of the immune system that can affect the colon.
Colonic neoplasms can cause a variety of symptoms, including bleeding, abdominal pain, and changes in bowel habits. They are often diagnosed through a combination of medical imaging tests (such as colonoscopy or CT scan) and biopsy. Treatment for colonic neoplasms depends on the type and stage of the tumor, and may include surgery, chemotherapy, and/or radiation therapy.
Overall, colonic neoplasms are a common condition that can have serious consequences if left untreated. It is important for individuals to be aware of their risk factors and to undergo regular screening for colon cancer to help detect and treat any abnormal growths or tumors in the colon.
Branched-chain amino acid
Branched-chain amino acid aminotransferase
Branched chain amino acid transaminase 1
Branched chain amino acid-cation symporter
Leucine transaminase
Depressant
Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase
Biopolymer
Low-protein diet
Organic acidemia
ACADSB
Adrenocortical hormone
FGF21
Weakness
Muscle weakness
ACAD8
Valine
Isoleucine
Enzyme inhibitor
Cachexia
Indole-3-acetic acid
Biotinidase deficiency
Pre-workout
Acetyl-CoA
Mammary gland
Acetolactate synthase
Maple syrup urine disease
Leucine
3-Methylbutanoic acid
Preterm birth
Metabolism
Truffle
Ubiquitin-like protein
Meldonium
Lyme disease
Triglidae
SCP2
BCAA
Microtubule
Oxalyl-CoA decarboxylase
GABAA receptor positive allosteric modulator
Dihydrolipoamide dehydrogenase
Brain
Liver support system
Alpha-Ketoisocaproic acid
Aminoacyl-tRNA
Parallel evolution
Acetolactic acid
Sodium-dependent neutral amino acid transporter B(0)AT2
Hypochlorous acid
Membrane lipid
Gregory Bateson
Glycogen phosphorylase
Peroxisome
Glutamate-glutamine cycle
Cholestasis
Ubiquitin
Branched-chain keto acid dehydrogenase kinase deficiency
Decreased branched-chain amino acids and elevated fatty acids during antecedent hypoglycemia in type 1 diabetes - PubMed
Emerging Role of Branched-Chain Amino Acids in Human Diseases - 2017 - NIDDK
GPRC5C Drives Branched-Chain Amino Acid Metabolism in Leukemogenesis - PubMed
Willner Chemists | Bluebonnet Bcaa Branch Chain Amino Acids vCap
Co-Ingestion of Branched-Chain Amino Acids and Carbohydrate Stimulates Myofibrillar Protein Synthesis Following Resistance...
Life Extension | Branched Chain Amino Acids | 01253 | Metabolism
Branched Chain Amino Acids Market - Download Free Sample
418-P: The Branched-Chain Amino Acids Valine and Leucine Predict All-Cause Mortality in Cardiovascular Disease Patients...
CamelBak Performance Hydration Thrive Recovery Branch Chain Amino Acid Supplement - www.dallasbikeworks.com
Branched-chain amino acid enriched supplements as therapy for liver disease<...
Grape polyphenols decrease circulating branched chain amino acids in overfed adults. | Front Nutr;9: 998044, 2022. | MEDLINE
BRANCHED-CHAIN AMINO ACIDS - STRONG Fitness Magazine ®
BCAA Branched Chain Amino Acids - Royalty Supplements
BCAAs - Branched Chain Amino Acids
- Nutrition Complex
NOW Foods BCAA (Branched Chain Amino Acids)
BCAA (Branched Chain Amino Acid Complex) 120cps
BCAA (Branched Chain Amino Acids) - San Marcos Family Medicine
GO:0015803: branched-chain amino acid transport details
Branched Chain Amino Acids Now Foods VS Amino GT GAT
Now Branched Chain Amino Acids - 120 Capsules - The Natural Vibe
Acid Amino | FINAL FANTASY XIV, The Lodestone
Alternative Dietary Treatments | NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development
Amino Acid Supplements and Side Effects | livestrong
支鏈胺基酸 Branched Chain Amino Acids (BCAAs) | FoodyFree Calisthenics Program
Branched Chain Amino Acids (BCAAs) drinks and powders from Well Fit Protein Shops
What Breaks a Fast: Supplement Edition | Mark's Daily Apple
What do the branched-chain amino acids (BCAAs) in Re-Lyte Muscle Recovery Capsules do?
Physicians Warn These Supplements are "a Joke" - Eat This Not That
BCAAs10
- Life Extension Branched Chain Amino Acids supplement is comprised of three essential branched chain amino acids (BCAAs) - L-leucine, L-isoleucine, and L-valine. (drvitaminsolutions.com)
- The three branched chain amino acids (BCAAs) L-valine, L-leucine, and L-isoleucine are integral components of protein synthesis within liver cells and muscle cells. (drvitaminsolutions.com)
- Circulating branched-chain amino acids (BCAAs) are linked with mortality in population-based studies. (diabetesjournals.org)
- Altered amino acid metabolism is a hallmark of liver disease, characterized by low levels of circulating BCAAs and elevated levels of circulating aromatic amino acids, and methionine. (elsevier.com)
- BCAAs are made up of three amino acids: leucine, isoleucine, and valine. (royaltysupps.com)
- Supplement-makers claim that branched-chain amino acids (BCAAs) - which include leucine, isoleucine and valine - are energy-boosters, ODS notes. (livestrong.com)
- However, con- sumption of essential amino acids, particularly leucine and other branched- chain amino acids (BCAAs), along with resistance exercise has been shown to improve muscle synthesis.4, 5 Figure 1 provides an overview of contrast- ing lifestyles that impact healthy aging. (nih.gov)
- Branched Chain Amino Acids (BCAAs) will help reduce fatigue, accelerate your recovery, reduce muscle soreness and improve the use of fat for energy during exercise. (wellfitproteinshops.com)
- What do the branched-chain amino acids (BCAAs) in Re-Lyte Muscle Recovery Capsules do? (redmond.life)
- Branched-chain amino acids (BCAAs) are three essential amino acids (leucine, isoleucine, and valine) that support strength, speed, endurance, and muscle recovery. (redmond.life)
BCAA7
- The branched chain amino acids (BCAA) leucine, isoleucine and valine are essential nutrients, required for normal growth and protein balance. (nih.gov)
- Branched-chain amino acids (BCAA) and carbohydrate (CHO) are commonly recommended postexercise supplements. (humankinetics.com)
- Changes in plasma levels of many metabolic markers, including branched chain amino acids (BCAA), ketone bodies and glucose in both placebo as well as upon polyphenol intervention were identified in the Lyon study. (bvsalud.org)
- BCAA (branched-chain amino acids) supplements are by gym goers and fitness professional who engage in intense physical activity or workouts. (royaltysupps.com)
- Royalty BCAA has essential amino acids that the body cannot produce on its own, making it necessary to get them through the diet or supplements. (royaltysupps.com)
- BACKGROUND: Branched-chain amino acids (BCAA: leucine, isoleucine, and valine) are essential amino acids involved in biological functions of brain development and recently linked with autism. (nih.gov)
- 27. Branched-chain amino acids (BCAA) administration increases autophagy and the autophagic pathway in brain tissue of rats submitted to a Maple Syrup Urine Disease (MSUD) protocol. (nih.gov)
Leucine9
- Contains 3 essential amino acids, L-valine, L-leucine and isoleucine. (nutritioncompany.eu)
- The branched chain amino acids Leucine, Isoleucine and Valine are three of the eight essential amino acids that the human body must receive in food. (naturalvibe.ca)
- Amino acids are the 'building blocks' of protein, and there are three that are classified as branched chain based on their chemical structure: leucine, isoleucine and valine. (eatthis.com)
- Leucine and isoleucine are perhaps the more important amino acids in this mix, as they are important for stimulation of muscle protein synthesis and glucose uptake uptake by muscles. (eatthis.com)
- Maple syrup urine disease (MSUD), also known as branched-chain ketoaciduria, is an aminoacidopathy due to an enzyme defect in the catabolic pathway of the branched-chain amino acids leucine, isoleucine, and valine. (medscape.com)
- Maple syrup urine disease is caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase (BCKD) enzyme complex, which catalyses the decarboxylation of the alpha-keto acids of leucine, isoleucine, and valine to their respective branched-chain acyl-CoAs. (medscape.com)
- 7. Effects of branched-chain-enriched amino acids and insulin on forearm leucine kinetics. (nih.gov)
- The protein complex is essential for breaking down the amino acids leucine, isoleucine, and valine, which are present in many kinds of food, particularly protein-rich foods such as milk, meat, and eggs. (nih.gov)
- Americana Whey is a source of essential branched-chain amino acids (BCASS) leucine, isoleucine, and valine. (nih.gov)
Valine1
- Valinemia is an inherited disorder that increases levels of the amino acid valine in the blood. (nih.gov)
Metabolism7
- Individuals with ALS or disorders impairing the metabolism of branched chain amino acids should not use this product. (drvitaminsolutions.com)
- 9. Trauma metabolism and the heart: studies of heart and leg amino acid flux after cardiac surgery. (nih.gov)
- 12. Amino acid metabolism in patients with severe burns. (nih.gov)
- 23. Branched-Chain Amino Acids and Brain Metabolism. (nih.gov)
- 31. Branched-chain amino acids sustain pancreatic cancer growth by regulating lipid metabolism. (nih.gov)
- 37. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. (nih.gov)
- Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. (nih.gov)
Alpha-keto acid dehydrog2
- [ 7 ] The branched-chain alpha-keto acid dehydrogenase (BCKD) enzyme complex was purified and characterized in 1978. (medscape.com)
- Oyarzabal A, Martinez-Pardo M, Merinero B, Navarrete R, Desviat LR, Ugarte M, Rodriguez-Pombo P. A novel regulatory defect in the branched-chain alpha-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. (nih.gov)
Supplements9
- Charlton, M 2006, ' Branched-chain amino acid enriched supplements as therapy for liver disease ', Journal of Nutrition , vol. 136, no. 1, pp. 295S-298S. (elsevier.com)
- The composition of GAT Amino GT contains the 1 energy supplements, 1 electrolytes, 1 hydration supplements, 2 vitamins, 1 minerals. (vsprotein.com)
- But does that mean amino acid supplements are good for your health? (livestrong.com)
- Who Needs Amino Acid Supplements? (livestrong.com)
- Amino acid supplements are sold with the promise of doing many things," says Connie Diekman, MEd, RD , a St. Louis, Missouri-based food and nutrition consultant, former president of the American Dietetic Association and former director of university nutrition at Washington University in St. Louis. (livestrong.com)
- But if amino acid supplements are on your radar, Diekman strongly advises first consulting with a registered dietitian or certified specialist in sports dietetics (CSSD). (livestrong.com)
- It won't hurt you to take branched chain amino acid supplements, it just may be expensive and unnecessary and I suggest making sure you are eating enough protein throughout the day. (eatthis.com)
- International surveys found that two-thirds of 3,887 adult and adolescent elite track and field athletes participating in world-championship competitions took one or more dietary supplements containing such ingredients as vitamins, minerals, creatine, caffeine, and amino acids [ 4 ]. (nih.gov)
- A survey of 106,698 U.S. military personnel in 2007-2008 found that 22.8% of the men and 5.3% of the women reported using bodybuilding supplements, such as creatine and amino acids, and 40.5% of the men and 35.5% of the women reported using energy supplements that might contain caffeine and/or energy-enhancing herbs [ 8 ]. (nih.gov)
Supplement1
- What's important to note is that a diet that is already adequate in protein provides enough of these amino acids, and so taking a branched chain amino acid supplement likely will not improve your performance or muscle growth if you simply eat enough protein throughout the day. (eatthis.com)
BCAA's2
- BCAA's are a source of amino acids involved in muscle protein synthesis. (smfmwellness.net)
- NOW® Branched Chain Amino Acids (BCAA's) are 3 essential amino acids which are abundant in muscles. (naturalvibe.ca)
Protein5
- Our 2:1:1 combination of branched-chain amino acids is intended to support muscle growth, protein synthesis, and recovery. (royaltysupps.com)
- You can meet your amino acid needs through diet if you consume plenty of healthy, high-protein foods. (livestrong.com)
- And amino acids are the building blocks of protein. (livestrong.com)
- 10. Response of muscle protein and glutamine kinetics to branched-chain-enriched amino acids in intensive care patients after radical cancer surgery. (nih.gov)
- Maple syrup urine disease is an inherited disorder in which the body is unable to process certain protein building blocks (amino acids) properly. (nih.gov)
MSUD1
- 21. Plasma amino acid and urine organic acid profiles of Filipino patients with maple syrup urine disease (MSUD) and correlation with their neurologic features. (nih.gov)
Metabolic1
- 29. [Metabolic disorders of amino acids due to enzyme mutation--branched-chain amino acids]. (nih.gov)
Fatty acids2
- It also contains omega 6 and 9 fatty acids which are inflammatory. (eatthis.com)
- It's best to take omega 3 fatty acids - known as fish oils - for the anti-inflammatory and pro-cognition benefits of taking epa and dha. (eatthis.com)
Autophagy1
- There's evidence that glycine-the most prominent amino acid in collagen-can inhibit autophagy, but it was a convoluted animal study where inhibiting autophagy with large doses of glycine after brain injury actually improved outcomes. (marksdailyapple.com)
Essential3
- Athletes have an increased need for essential amino acids. (nutritioncompany.eu)
- Methionine is another essential amino acid. (livestrong.com)
- Cells growth via carrying essential amino acids. (nih.gov)
Maple syrup u5
- [ 4 ] In 1960, Dancis et al demonstrated that the enzymatic defect in maple syrup urine disease was at the level of the decarboxylation of the branched-chain amino acids. (medscape.com)
- [ 5 ] Snyderman et al initiated the first successful dietary treatment of maple syrup urine disease by restricting oral intake of branched-chain amino acids. (medscape.com)
- 22. Maple syrup urine disease: clinical, EEG, and plasma amino acid correlations with a theoretical mechanism of acute neurotoxicity. (nih.gov)
- 28. Brain Branched-Chain Amino Acids in Maple Syrup Urine Disease: Implications for Neurological Disorders. (nih.gov)
- 30. Evaluation of branched-chain amino acid intake in children with maple syrup urine disease and methylmalonic aciduria. (nih.gov)
Insulin resistance2
- 20. Preoperative oral supplementation with carbohydrate and branched-chain amino acid-enriched nutrient improves insulin resistance in patients undergoing a hepatectomy: a randomized clinical trial using an artificial pancreas. (nih.gov)
- 35. The Relationship between Branched-Chain Amino Acid Related Metabolomic Signature and Insulin Resistance: A Systematic Review. (nih.gov)
Transporter1
- The directed movement of branched-chain amino acids into, out of or within a cell, or between cells, by means of some agent such as a transporter or pore. (ntu.edu.sg)
Uptake3
- 1. Effects of insulin on myocardial uptake of branched chain amino acids soon after cardiac operations. (nih.gov)
- 3. Effect of hyperinsulinemia on myocardial amino acid uptake in patients with coronary artery disease. (nih.gov)
- 5. Myocardial uptake of amino acids and other substrates in relation to myocardial oxygen consumption four hours after cardiac operations. (nih.gov)
Liver2
- These amino acids cannot be synthesized in the liver. (naturalvibe.ca)
- 26. Branched-chain amino acids: Abundance of their transporters and metabolizing enzymes in adipose tissue, skeletal muscle, and liver of dairy cows at high or normal body condition. (nih.gov)
Gelatin2
- Amino acids ( Milk ), Capsule wall (Gelatin (Bovine)), Anti-caking agent (Fatty acid). (nutritioncompany.eu)
- Gelatin (capsule) and Stearic Acid (vegetable source). (naturalvibe.ca)
Disorders1
- Although ICD-9-CM codes are fairly specific, in certain cases, the same ICD-9-CM code might apply to several disorders in the same group (e.g. amino acid disorders). (nih.gov)
Glutamine1
- THRIVE contains the critical branch chain amino acids and glutamine to support the repair and building of elan muscle while helping to reduce post-workout soreness. (dallasbikeworks.com)
Strength1
- Meghan Pendleton, RD at www.meghanpendleton.com says, "Branched Chain Amino Acids are marketed to help you improve muscle growth and strength. (eatthis.com)
Regulation1
- 11. Regulation of myocardial amino acid balance in the conscious dog. (nih.gov)
Adults1
- Grape polyphenols decrease circulating branched chain amino acids in overfed adults. (bvsalud.org)
Foods5
- Possible alternatives are Amino Gram Forte Plus (Douglas) and Amino Complete (NOW Foods) . (nutritioncompany.eu)
- The serving of Now Foods Branched Chain Amino Acids contains 2900 mg amino acids as against 8000 mg in one GAT Amino GT serving. (vsprotein.com)
- For a serving of Now Foods Branched Chain Amino Acids you will pay $ 0.48 , and a for a serving of GAT Amino GT you will have to pay $ 1.21. (vsprotein.com)
- Now Foods Branched Chain Amino Acids has no taste, the manufacturer produces it unflavored. (vsprotein.com)
- Now Foods makes available 2 different sizes of Branched Chain Amino Acids. (vsprotein.com)
Combination1
- The amino acid combination for athletes. (nutritioncompany.eu)
Nutrition1
- University of Lyon, CarMeN Laboratory and Centre de Recherche en Nutrition Humaine Rhône-Alpes (CRNH-RA), INSERM, INRAE, Claude Bernard University Lyon 1, Pierre-Bénite, France. (bvsalud.org)
Plasma2
- Maternal and cord plasma branched-chain amino acids and child risk of attention-deficit hyperactivity disorder: a prospective birth cohort study. (nih.gov)
- 36. Maternal Obesity/Diabetes, Plasma Branched-Chain Amino Acids, and Autism Spectrum Disorder Risk in Urban Low-Income Children: Evidence of Sex Difference. (nih.gov)
Body2
- And as the U.S. National Library of Medicine explains, amino acids are used to perform many body functions. (livestrong.com)
- As a result, these amino acids and their byproducts build up in the body. (nih.gov)
Effects1
- 6. Effects of branched-chain amino acids on placental amino acid transfer and insulin and glucagon release in the ovine fetus. (nih.gov)
Brands1
- The ratio of these amino acids can vary between brands. (royaltysupps.com)