A group of enzymes including those oxidizing primary monoamines, diamines, and histamine. They are copper proteins, and, as their action depends on a carbonyl group, they are sensitive to inhibition by semicarbazide.
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
Semicarbazides are organic compounds containing a functional group with the structure NH2-NH-CO-NH2, which are commonly used as reagents in chemical reactions to form semicarbazones, and can also be found in some pharmaceuticals and industrial chemicals.
A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Enzymes catalyzing the dehydrogenation of secondary amines, introducing a C=N double bond as the primary reaction. In some cases this is later hydrolyzed.
A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific.
An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4.
A flavoprotein enzyme that catalyzes the univalent reduction of OXYGEN using NADPH as an electron donor to create SUPEROXIDE ANION. The enzyme is dependent on a variety of CYTOCHROMES. Defects in the production of superoxide ions by enzymes such as NADPH oxidase result in GRANULOMATOUS DISEASE, CHRONIC.
Diazo derivatives of aniline, used as a reagent for sugars, ketones, and aldehydes. (Dorland, 28th ed)
An enzyme oxidizing peptidyl-lysyl-peptide in the presence of water & molecular oxygen to yield peptidyl-allysyl-peptide plus ammonia & hydrogen peroxide. EC 1.4.3.13.
Toluenes in which one hydrogen of the methyl group is substituted by an amino group. Permitted are any substituents on the benzene ring or the amino group.
A genus of asporogenous bacteria isolated from soil that displays a distinctive rod-coccus growth cycle.
A sulfate salt of copper. It is a potent emetic and is used as an antidote for poisoning by phosphorus. It also can be used to prevent the growth of algae.
'Ethylamines' are organic compounds containing an ethyl group (two carbon atoms) bonded to an amino group (-NH2), which can vary in their complexity and properties, playing a role in various biological processes or utilized in the synthesis of numerous pharmaceuticals and chemicals.
A pyrrolo-quinoline having two adjacent keto-groups at the 4 and 5 positions and three acidic carboxyl groups. It is a coenzyme of some DEHYDROGENASES.
A group of naturally occurring amines derived by enzymatic decarboxylation of the natural amino acids. Many have powerful physiological effects (e.g., histamine, serotonin, epinephrine, tyramine). Those derived from aromatic amino acids, and also their synthetic analogs (e.g., amphetamine), are of use in pharmacology.
A plant genus of the FABACEAE family known for the seeds used as food.
An aspect of monoamine oxidase, EC 1.4.3.4. Catalyzes the oxidation of benzylamine to form benzaldehyde, ammonia and hydrogen peroxide.
A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414)
An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Yeast-like ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES isolated from exuded tree sap.
'Methylamines' are organic compounds consisting of a methyl group (CH3) linked to an amino group (-NH2), with the general formula of CH3-NH-R, where R can be a hydrogen atom or any organic group, and they exist as colorless gases or liquids at room temperature.
Reagent used as an intermediate in the manufacture of beta-alanine and pantothenic acid.
An indirect sympathomimetic. Tyramine does not directly activate adrenergic receptors, but it can serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine may be a neurotransmitter in some invertebrate nervous systems.
A propylamine formed from the cyclization of the side chain of amphetamine. This monoamine oxidase inhibitor is effective in the treatment of major depression, dysthymic disorder, and atypical depression. It also is useful in panic and phobic disorders. (From AMA Drug Evaluations Annual, 1994, p311)
A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed)
The removal of an amino group (NH2) from a chemical compound.
Organic chemicals which have two amino groups in an aliphatic chain.
An aldehyde oxidoreductase expressed predominantly in the LIVER; LUNGS; and KIDNEY. It catalyzes the oxidation of a variety of organic aldehydes and N-heterocyclic compounds to CARBOXYLIC ACIDS, and also oxidizes quinoline and pyridine derivatives. The enzyme utilizes molybdenum cofactor and FAD as cofactors.
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
The rate dynamics in chemical or physical systems.
An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
Ceruloplasmin is a blue copper-containing protein primarily synthesized in the liver, functioning as a ferroxidase enzyme involved in iron homeostasis and contributing to copper transportation in the body.
Enzymes catalyzing the dehydrogenation of or oxidation of compounds containing primary amines.
Possesses an unusual and selective cytotoxicity for VASCULAR SMOOTH MUSCLE cells in dogs and rats. Useful for experiments dealing with arterial injury, myocardial fibrosis or cardiac decompensation.
Hydrazines are organic compounds containing the functional group R-NH-NH2, where R represents an organic group, and are used in pharmaceuticals, agrochemicals, and rocket fuels, but can be highly toxic and carcinogenic with potential for environmental damage.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed)
The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family.
Polyamines are organic compounds with more than one amino group, involved in various biological processes such as cell growth, differentiation, and apoptosis, and found to be increased in certain diseases including cancer.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
D-Amino-Acid Oxidase is an enzyme that catalyzes the oxidative deamination of D-amino acids to their corresponding α-keto acids, ammonia, and hydrogen peroxide, playing a crucial role in the metabolism of non-proteinogenic D-amino acids.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Butylamines are a class of organic compounds where a butyl group is attached to an amine functional group, with the general structure (C4H9)NHR or (C4H9)NR'R", commonly used as stimulants, entactogens, and psychedelics.
An enzyme that converts ascorbic acid to dehydroascorbic acid. EC 1.10.3.3.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A class of enzymes that catalyze oxidation-reduction reactions of amino acids.
A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light.
Kynuramine is a biologically active compound that results from the metabolism of tryptophan by the enzyme kynurenine monooxygenase, and it plays a role in the regulation of neurotransmission and immune responses.
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Compounds containing polymethylene bis-trimethylammonium cations. Members of this group frequently act as ganglionic blockers and neuromuscular depolarizing agents.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
An enzyme that oxidizes galactose in the presence of molecular oxygen to D-galacto-hexodialdose. It is a copper protein. EC 1.1.3.9.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine.
Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane.
Organic compounds containing a carbonyl group in the form -CHO.
A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An enzyme that catalyzes the conversion of urate and unidentified products. It is a copper protein. The initial products decompose to form allantoin. EC 1.7.3.3.
A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
The protein components of enzyme complexes (HOLOENZYMES). An apoenzyme is the holoenzyme minus any cofactors (ENZYME COFACTORS) or prosthetic groups required for the enzymatic function.
A rare autosomal recessive disease characterized by the deposition of copper in the BRAIN; LIVER; CORNEA; and other organs. It is caused by defects in the ATP7B gene encoding copper-transporting ATPase 2 (EC 3.6.3.4), also known as the Wilson disease protein. The overload of copper inevitably leads to progressive liver and neurological dysfunction such as LIVER CIRRHOSIS; TREMOR; ATAXIA and intellectual deterioration. Hepatic dysfunction may precede neurologic dysfunction by several years.
Formic acid esters are organic compounds formed by the condensation of formic acid with alcohols, featuring an alkyl or aryl group bound to the carbonyl oxygen of the formic acid molecule.
A plant genus in the family FABACEAE known for LATHYRISM poisoning.
An inherited disorder of copper metabolism transmitted as an X-linked trait and characterized by the infantile onset of HYPOTHERMIA, feeding difficulties, hypotonia, SEIZURES, bony deformities, pili torti (twisted hair), and severely impaired intellectual development. Defective copper transport across plasma and endoplasmic reticulum membranes results in copper being unavailable for the synthesis of several copper containing enzymes, including PROTEIN-LYSINE 6-OXIDASE; CERULOPLASMIN; and SUPEROXIDE DISMUTASE. Pathologic changes include defects in arterial elastin, neuronal loss, and gliosis. (From Menkes, Textbook of Child Neurology, 5th ed, p125)
A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
A variable annual leguminous vine (Pisum sativum) that is cultivated for its rounded smooth or wrinkled edible protein-rich seeds, the seed of the pea, and the immature pods with their included seeds. (From Webster's New Collegiate Dictionary, 1973)
An enzyme that catalyzes the first and rate-determining steps of peroxisomal beta-oxidation of fatty acids. It acts on COENZYME A derivatives of fatty acids with chain lengths from 8 to 18, using FLAVIN-ADENINE DINUCLEOTIDE as a cofactor.
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
An imperfect fungus causing smut or black mold of several fruits, vegetables, etc.
Enzymes that catalyse the removal of methyl groups from LYSINE or ARGININE residues found on HISTONES. Many histone demethylases generally function through an oxidoreductive mechanism.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
INDOLES which have two keto groups forming QUINONES like structures of the indole aromatic ring.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1.
An enzyme that catalyzes the oxidation of cholesterol in the presence of molecular oxygen to 4-cholesten-3-one and hydrogen peroxide. The enzyme is not specific for cholesterol, but will also oxidize other 3-hydroxysteroids. EC 1.1.3.6.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
An enzyme that catalyzes the oxidative deamination of L-amino acids to KETO ACIDS with the generation of AMMONIA and HYDROGEN PEROXIDE. L-amino acid oxidase is widely distributed in and is thought to contribute to the toxicity of SNAKE VENOMS.
Pyruvate oxidase is an enzyme complex located within the mitochondrial matrix that catalyzes the oxidative decarboxylation of pyruvate into acetyl-CoA, thereby linking glycolysis to the citric acid cycle and playing a crucial role in cellular energy production.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides.

Copper is a chemical element with the symbol Cu (from Latin: *cuprum*) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. Copper is found as a free element in nature, and it is also a constituent of many minerals such as chalcopyrite and bornite.

In the human body, copper is an essential trace element that plays a role in various physiological processes, including iron metabolism, energy production, antioxidant defense, and connective tissue synthesis. Copper is found in a variety of foods, such as shellfish, nuts, seeds, whole grains, and organ meats. The recommended daily intake of copper for adults is 900 micrograms (mcg) per day.

Copper deficiency can lead to anemia, neutropenia, impaired immune function, and abnormal bone development. Copper toxicity, on the other hand, can cause nausea, vomiting, abdominal pain, diarrhea, and in severe cases, liver damage and neurological symptoms. Therefore, it is important to maintain a balanced copper intake through diet and supplements if necessary.

Semicarbazides are organic compounds that contain the functional group -NH-CO-NH-NH2. They are derivatives of hydrazine and carbamic acid, with the general structure (CH3)NHCSNH2. Semicarbazides are widely used in the synthesis of various chemical compounds, including heterocyclic compounds, pharmaceuticals, and agrochemicals.

In a medical context, semicarbazides themselves do not have any therapeutic use. However, they can be used in the preparation of certain drugs or drug intermediates. For example, semicarbazones, which are derivatives of semicarbazides, can be used to synthesize some antituberculosis drugs.

It is worth noting that semicarbazides and their derivatives have been found to have mutagenic and carcinogenic properties in some studies. Therefore, they should be handled with care in laboratory settings, and exposure should be minimized to reduce potential health risks.

Amines are organic compounds that contain a basic nitrogen atom with a lone pair of electrons. They are derived from ammonia (NH3) by replacing one or more hydrogen atoms with alkyl or aryl groups. The nomenclature of amines follows the substitutive type, where the parent compound is named as an aliphatic or aromatic hydrocarbon, and the functional group "amine" is designated as a suffix or prefix.

Amines are classified into three types based on the number of carbon atoms attached to the nitrogen atom:

1. Primary (1°) amines: One alkyl or aryl group is attached to the nitrogen atom.
2. Secondary (2°) amines: Two alkyl or aryl groups are attached to the nitrogen atom.
3. Tertiary (3°) amines: Three alkyl or aryl groups are attached to the nitrogen atom.

Quaternary ammonium salts have four organic groups attached to the nitrogen atom and a positive charge, with anions balancing the charge.

Amines have a wide range of applications in the chemical industry, including pharmaceuticals, dyes, polymers, and solvents. They also play a significant role in biological systems as neurotransmitters, hormones, and cell membrane components.

Oxidoreductases acting on CH-NH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts on CH-NH group donors, where the CH-NH group is a chemical functional group consisting of a carbon atom (C) bonded to a nitrogen atom (N) via a single covalent bond.

These enzymes play a crucial role in various biological processes by transferring electrons from the CH-NH group donor to an acceptor molecule, which results in the oxidation of the donor and reduction of the acceptor. This process can lead to the formation or breakdown of chemical bonds, and plays a key role in metabolic pathways such as amino acid degradation and nitrogen fixation.

Examples of enzymes that fall within this class include:

* Amino oxidases, which catalyze the oxidative deamination of amino acids to produce alpha-keto acids, ammonia, and hydrogen peroxide.
* Transaminases, which transfer an amino group from one molecule to another, often in the process of amino acid biosynthesis or degradation.
* Amine oxidoreductases, which catalyze the oxidation of primary amines to aldehydes and secondary amines to ketones, with the concomitant reduction of molecular oxygen to hydrogen peroxide.

Dihydroxyphenylalanine is not a medical term per se, but it is a chemical compound that is often referred to in the context of biochemistry and neuroscience. It is also known as levodopa or L-DOPA for short.

L-DOPA is a precursor to dopamine, a neurotransmitter that plays a critical role in regulating movement, emotion, and cognition. In the brain, L-DOPA is converted into dopamine through the action of an enzyme called tyrosine hydroxylase.

L-DOPA is used medically to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia (slowness of movement). In Parkinson's disease, the dopamine-producing neurons in the brain gradually degenerate, leading to a deficiency of dopamine. By providing L-DOPA as a replacement therapy, doctors can help alleviate some of the symptoms of the disease.

It is important to note that L-DOPA has potential side effects and risks, including nausea, dizziness, and behavioral changes. Long-term use of L-DOPA can also lead to motor complications such as dyskinesias (involuntary movements) and fluctuations in response to the medication. Therefore, it is typically used in combination with other medications and under the close supervision of a healthcare provider.

Monoamine oxidase (MAO) is an enzyme found on the outer membrane of mitochondria in cells throughout the body, but primarily in the gastrointestinal tract, liver, and central nervous system. It plays a crucial role in the metabolism of neurotransmitters and dietary amines by catalyzing the oxidative deamination of monoamines. This enzyme exists in two forms: MAO-A and MAO-B, each with distinct substrate preferences and tissue distributions.

MAO-A preferentially metabolizes serotonin, norepinephrine, and dopamine, while MAO-B is mainly responsible for breaking down phenethylamines and benzylamines, as well as dopamine in some cases. Inhibition of these enzymes can lead to increased neurotransmitter levels in the synaptic cleft, which has implications for various psychiatric and neurological conditions, such as depression and Parkinson's disease. However, MAO inhibitors must be used with caution due to their potential to cause serious adverse effects, including hypertensive crises, when combined with certain foods or medications containing dietary amines or sympathomimetic agents.

NADPH oxidase is an enzyme complex that plays a crucial role in the production of reactive oxygen species (ROS) in various cell types. The primary function of NADPH oxidase is to catalyze the transfer of electrons from NADPH to molecular oxygen, resulting in the formation of superoxide radicals. This enzyme complex consists of several subunits, including two membrane-bound components (gp91phox and p22phox) and several cytosolic components (p47phox, p67phox, p40phox, and rac1 or rac2). Upon activation, these subunits assemble to form a functional enzyme complex that generates ROS, which serve as important signaling molecules in various cellular processes. However, excessive or uncontrolled production of ROS by NADPH oxidase has been implicated in the pathogenesis of several diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer.

Phenylhydrazines are organic compounds that contain a phenyl group (a benzene ring with a hydrogen atom substituted by a hydroxy group) and a hydrazine group (-NH-NH2). They are aromatic amines that have been used in various chemical reactions, including the formation of azos and hydrazones. In medicine, phenylhydrazines were once used as vasodilators to treat angina pectoris, but their use has largely been discontinued due to their toxicity and potential carcinogenicity.

Protein-Lysine 6-Oxidase (PLOX) is an enzyme that belongs to the family of copper-containing oxidases. It catalyzes the oxidative deamination of specific lysine residues in proteins, resulting in the formation of lysine-6-aldehydes, ammonia, and hydrogen peroxide. This enzyme plays a crucial role in various biological processes, including the regulation of protein function, modification of extracellular matrices, and the maintenance of copper homeostasis. Mutations in the gene encoding PLOX have been associated with certain diseases, such as Menkes disease, a rare X-linked recessive disorder characterized by copper deficiency and neurological symptoms.

Benzylamines are a class of organic compounds that consist of a benzene ring attached to an amine group. The amine group (-NH2) can be primary, secondary, or tertiary, depending on the number of hydrogen atoms bonded to the nitrogen atom. Benzylamines are used in the synthesis of various pharmaceuticals, agrochemicals, and other organic compounds. They have a variety of biological activities and can act as central nervous system depressants, local anesthetics, and muscle relaxants. However, some benzylamines can also be toxic or carcinogenic, so they must be handled with care.

Arthrobacter is a genus of Gram-positive, catalase-positive, aerobic bacteria that are commonly found in soil and water. These bacteria are known for their ability to degrade various organic compounds, including hydrocarbons, and are often used in bioremediation applications. The cells of Arthrobacter species are typically rod-shaped and may appear slightly curved or irregular. They can form dormant structures called exospores that allow them to survive in harsh environments. Arthrobacter species are not considered human pathogens and do not cause disease in humans.

Copper sulfate is an inorganic compound with the chemical formula CuSOâ‚„. It is a common salt of copper and is often found as a blue crystalline powder. Copper sulfate is used in various applications, including as a fungicide, algicide, and in some industrial processes.

In medical terms, copper sulfate has been historically used as an emetic (a substance that causes vomiting) to treat poisoning. However, its use for this purpose is not common in modern medicine due to the availability of safer and more effective emetics. Copper sulfate can be harmful or fatal if swallowed, and it can cause burns and irritation to the skin and eyes. Therefore, it should be handled with care and kept out of reach of children and pets.

Ethylamines are organic compounds that contain a primary amino group (-NH2) attached to an ethyl group (-C2H5). In other words, they have the formula R-CH2-CH2-NH2, where R is a carbon-containing group. Ethylamines are derivatives of ammonia (NH3), in which one or more hydrogen atoms have been replaced by an ethyl group.

Ethylamines can be found in various natural and synthetic substances. They are used as building blocks in the synthesis of various pharmaceuticals, agrochemicals, and other industrial chemicals. Some ethylamines also have psychoactive properties and are used as recreational drugs or abused for their mind-altering effects.

It is important to note that some ethylamines can be toxic or harmful to human health, especially at high concentrations or with prolonged exposure. Therefore, they should be handled with care and used only under controlled conditions.

PQQ, or pyrroloquinoline quinone, is a redox cofactor that plays a role in the electron transfer chain and is involved in various redox reactions in the body. It can be found in some bacteria and plants, and there is evidence to suggest that it may also be present in human tissues. However, the exact role of PQQ as a cofactor in humans is not well understood and more research is needed to fully understand its functions and potential health benefits.

A cofactor is a non-protein chemical compound that is required for an enzyme to function. Cofactors can be inorganic ions, such as iron or magnesium, or organic molecules, like PQQ. They play a crucial role in catalyzing biochemical reactions and maintaining the structural integrity of proteins.

In summary, PQQ is a redox cofactor that may have a role in various redox reactions in the body, but its exact functions and significance in human health are still being studied.

Biogenic amines are organic compounds that are derived from the metabolic pathways of various biological organisms, including humans. They are formed by the decarboxylation of amino acids, which are the building blocks of proteins. Some examples of biogenic amines include histamine, serotonin, dopamine, and tyramine.

Histamine is a biogenic amine that plays an important role in the immune system's response to foreign invaders, such as allergens. It is also involved in regulating stomach acid production and sleep-wake cycles. Serotonin is another biogenic amine that acts as a neurotransmitter, transmitting signals between nerve cells in the brain. It is involved in regulating mood, appetite, and sleep.

Dopamine is a biogenic amine that functions as a neurotransmitter and is involved in reward and pleasure pathways in the brain. Tyramine is a biogenic amine that is found in certain foods, such as aged cheeses and fermented soy products. It can cause an increase in blood pressure when consumed in large quantities.

Biogenic amines can have various effects on the body, depending on their type and concentration. In general, they play important roles in many physiological processes, but high levels of certain biogenic amines can be harmful and may cause symptoms such as headache, nausea, and hypertension.

I'm sorry for any confusion, but "Lens Plant" is not a term commonly used in medicine. It seems that you might be referring to a type of plant that is known by that name in some contexts. The Len's Plant, also known as *Lenophyllum consanguineum*, is a species of flowering plant in the family Crassulaceae, which is native to Texas and Mexico. It is a small, low-growing succulent with fleshy leaves that forms mats or cushions.

If you were asking about a medical condition related to the eye's lens, there are various conditions that can affect the lens of the eye, such as cataracts (clouding of the lens), presbyopia (age-related loss of near vision due to hardening of the lens), or astigmatism (irregular curvature of the lens). If you have any concerns about your eyes or vision, I would recommend consulting with an eye care professional.

Benzylamine oxidase is an enzyme that catalyzes the oxidation of benzylamine and related compounds to their corresponding nitroso or nitro derivatives. It is found in various organisms, including bacteria, fungi, and plants. The enzyme plays a role in the detoxification of aromatic amines and contributes to the degradation of certain xenobiotics. Benzylamine oxidase requires flavin adenine dinucleotide (FAD) as a cofactor for its activity.

Monoamine oxidase inhibitors (MAOIs) are a class of drugs that work by blocking the action of monoamine oxidase, an enzyme found in the brain and other organs of the body. This enzyme is responsible for breaking down certain neurotransmitters, such as serotonin, dopamine, and norepinephrine, which are chemicals that transmit signals in the brain.

By inhibiting the action of monoamine oxidase, MAOIs increase the levels of these neurotransmitters in the brain, which can help to alleviate symptoms of depression and other mood disorders. However, MAOIs also affect other chemicals in the body, including tyramine, a substance found in some foods and beverages, as well as certain medications. As a result, MAOIs can have serious side effects and interactions with other substances, making them a less commonly prescribed class of antidepressants than other types of drugs.

MAOIs are typically used as a last resort when other treatments for depression have failed, due to their potential for dangerous interactions and side effects. They require careful monitoring and dosage adjustment by a healthcare provider, and patients must follow strict dietary restrictions while taking them.

Xanthine oxidase is an enzyme that catalyzes the oxidation of xanthine to uric acid, which is the last step in purine metabolism. It's a type of molybdenum-containing oxidoreductase that generates reactive oxygen species (ROS) during its reaction mechanism.

The enzyme exists in two interconvertible forms: an oxidized state and a reduced state. The oxidized form, called xanthine oxidase, reduces molecular oxygen to superoxide and hydrogen peroxide, while the reduced form, called xanthine dehydrogenase, reduces NAD+ to NADH.

Xanthine oxidase is found in various tissues, including the liver, intestines, and milk. An overproduction of uric acid due to increased activity of xanthine oxidase can lead to hyperuricemia, which may result in gout or kidney stones. Some medications and natural compounds are known to inhibit xanthine oxidase, such as allopurinol and febuxostat, which are used to treat gout and prevent the formation of uric acid stones in the kidneys.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

"Pichia" is a genus of single-celled yeast organisms that are commonly found in various environments, including on plant and animal surfaces, in soil, and in food. Some species of Pichia are capable of causing human infection, particularly in individuals with weakened immune systems. These infections can include fungemia (bloodstream infections), pneumonia, and urinary tract infections.

Pichia species are important in a variety of industrial processes, including the production of alcoholic beverages, biofuels, and enzymes. They are also used as model organisms for research in genetics and cell biology.

It's worth noting that Pichia was previously classified under the genus "Candida," but it has since been reclassified due to genetic differences between the two groups.

Methylamines are organic compounds that contain a methyl group (CH3) and an amino group (-NH2). They have the general formula of CH3-NH-R, where R can be a hydrogen atom or any organic group. Methylamines are derivatives of ammonia (NH3), in which one or more hydrogen atoms have been replaced by methyl groups.

There are several types of methylamines, including:

1. Methylamine (CH3-NH2): This is the simplest methylamine and is a colorless gas at room temperature with a strong odor. It is highly flammable and reactive.
2. Dimethylamine (CH3)2-NH: This is a colorless liquid at room temperature with an unpleasant fishy odor. It is less reactive than methylamine but still highly flammable.
3. Trimethylamine (CH3)3-N: This is a colorless liquid at room temperature that has a strong, unpleasant odor often described as "fishy." It is less reactive than dimethylamine and is used in various industrial applications.

Methylamines are used in the production of various chemicals, including pesticides, dyes, and pharmaceuticals. They can also be found naturally in some foods and are produced by certain types of bacteria in the body. Exposure to high levels of methylamines can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects.

Aminopropionitrile is a chemical compound with the formula NPN(H2)CH2CH2CN. It is an irritant that can cause damage to the eyes, skin, and respiratory system. It is used in the manufacture of certain plastics and resins, and has also been studied for its potential effects on the human body. Some research suggests that aminopropionitrile may interfere with the normal functioning of collagen, a protein that helps to provide structure and support to tissues and organs in the body. This has led to interest in the use of aminopropionitrile as a potential treatment for certain conditions related to collagen, such as scleroderma. However, more research is needed to determine the safety and effectiveness of this use.

Tyramine is not a medical condition but a naturally occurring compound called a biogenic amine, which is formed from the amino acid tyrosine during the fermentation or decay of certain foods. Medically, tyramine is significant because it can interact with certain medications, particularly monoamine oxidase inhibitors (MAOIs), used to treat depression and other conditions.

The interaction between tyramine and MAOIs can lead to a hypertensive crisis, a rapid and severe increase in blood pressure, which can be life-threatening if not treated promptly. Therefore, individuals taking MAOIs are often advised to follow a low-tyramine diet, avoiding foods high in tyramine, such as aged cheeses, cured meats, fermented foods, and some types of beer and wine.

Tranylcypromine is a type of antidepressant known as a non-selective, irreversible monoamine oxidase inhibitor (MAOI). It works by blocking the action of monoamine oxidase, an enzyme that breaks down certain neurotransmitters (chemical messengers) in the brain such as serotonin, dopamine, and noradrenaline. This leads to an increase in the levels of these neurotransmitters in the brain, which can help improve mood and alleviate symptoms of depression.

Tranylcypromine is used primarily for the treatment of major depressive disorder that has not responded to other antidepressants. It is also used off-label for the treatment of anxiety disorders, panic attacks, and obsessive-compulsive disorder.

It's important to note that MAOIs like tranylcypromine have several dietary and medication restrictions due to their potential to cause serious or life-threatening reactions when combined with certain foods or medications. Therefore, careful monitoring by a healthcare professional is necessary while taking this medication.

Phenethylamines are a class of organic compounds that share a common structural feature, which is a phenethyl group (a phenyl ring bonded to an ethylamine chain). In the context of pharmacology and neuroscience, "phenethylamines" often refers to a specific group of psychoactive drugs, including stimulants like amphetamine and mescaline, a classic psychedelic. These compounds exert their effects by modulating the activity of neurotransmitters in the brain, such as dopamine, norepinephrine, and serotonin. It is important to note that many phenethylamines have potential for abuse and are controlled substances.

Deamination is a biochemical process that refers to the removal of an amino group (-NH2) from a molecule, especially from an amino acid. This process typically results in the formation of a new functional group and the release of ammonia (NH3). Deamination plays a crucial role in the metabolism of amino acids, as it helps to convert them into forms that can be excreted or used for energy production. In some cases, deamination can also lead to the formation of toxic byproducts, which must be efficiently eliminated from the body to prevent harm.

'Diamines' are organic compounds containing two amino groups (-NH2) in their molecular structure. The term 'diamine' itself does not have a specific medical definition, but it is used in the context of chemistry and biochemistry.

Diamines can be classified based on the number of carbon atoms between the two amino groups. For example, ethylenediamine and propylenediamine are diamines with one and two methylene (-CH2-) groups, respectively.

In medicine, certain diamines may have biological significance. For instance, putrescine and cadaverine are polyamines that are produced during the decomposition of animal tissues and can be found in necrotic or infected tissues. These compounds have been implicated in various pathological processes, including inflammation, oxidative stress, and cancer progression.

It is important to note that while some diamines may have medical relevance, the term 'diamines' itself does not have a specific medical definition.

Aldehyde oxidase is an enzyme found in the liver and other organs that helps to metabolize (break down) various substances, including drugs, alcohol, and environmental toxins. It does this by catalyzing the oxidation of aldehydes, which are organic compounds containing a functional group consisting of a carbon atom bonded to a hydrogen atom and a double bond to an oxygen atom. Aldehyde oxidase is a member of the molybdenum-containing oxidoreductase family, which also includes xanthine oxidase and sulfite oxidase. These enzymes all contain a molybdenum cofactor that plays a critical role in their catalytic activity.

Aldehyde oxidase is an important enzyme in the metabolism of many drugs, as it can convert them into more water-soluble compounds that can be easily excreted from the body. However, variations in the activity of this enzyme between individuals can lead to differences in drug metabolism and response. Some people may have higher or lower levels of aldehyde oxidase activity, which can affect how quickly they metabolize certain drugs and whether they experience adverse effects.

In addition to its role in drug metabolism, aldehyde oxidase has been implicated in the development of various diseases, including cancer, cardiovascular disease, and neurodegenerative disorders. For example, elevated levels of aldehydes produced by lipid peroxidation have been linked to oxidative stress and inflammation, which can contribute to the progression of these conditions. Aldehyde oxidase may also play a role in the detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and heterocyclic amines (HCAs), which have been associated with an increased risk of cancer.

Overall, aldehyde oxidase is an important enzyme that plays a critical role in the metabolism of drugs and other substances, as well as in the development of various diseases. Understanding its activity and regulation may help to develop new strategies for treating or preventing these conditions.

Coenzymes are small organic molecules that assist enzymes in catalyzing chemical reactions within cells. They typically act as carriers of specific atoms or groups of atoms during enzymatic reactions, facilitating the conversion of substrates into products. Coenzymes often bind temporarily to enzymes at the active site, forming an enzyme-coenzyme complex.

Coenzymes are usually derived from vitamins or minerals and are essential for maintaining proper metabolic functions in the body. Examples of coenzymes include nicotinamide adenine dinucleotide (NAD+), flavin adenine dinucleotide (FAD), and coenzyme A (CoA). When a coenzyme is used up in a reaction, it must be regenerated or replaced for the enzyme to continue functioning.

In summary, coenzymes are vital organic compounds that work closely with enzymes to facilitate biochemical reactions, ensuring the smooth operation of various metabolic processes within living organisms.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Glucose oxidase (GOD) is an enzyme that catalyzes the oxidation of D-glucose to D-glucono-1,5-lactone, while reducing oxygen to hydrogen peroxide in the process. This reaction is a part of the metabolic pathway in some organisms that convert glucose into energy. The systematic name for this enzyme is D-glucose:oxygen 1-oxidoreductase.

Glucose oxidase is commonly found in certain fungi, such as Aspergillus niger, and it has various applications in industry, medicine, and research. For instance, it's used in the production of glucose sensors for monitoring blood sugar levels, in the detection and quantification of glucose in food and beverages, and in the development of biosensors for environmental monitoring.

It's worth noting that while glucose oxidase has many applications, it should not be confused with glutathione peroxidase, another enzyme involved in the reduction of hydrogen peroxide to water.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Ceruloplasmin is a protein found in blood plasma that binds and transports copper ions. It plays a crucial role in copper metabolism, including the oxidation of ferrous iron to ferric iron, which is necessary for the incorporation of iron into transferrin, another protein responsible for transporting iron throughout the body. Ceruloplasmin also acts as an antioxidant by scavenging free radicals and has been implicated in neurodegenerative disorders like Alzheimer's disease and Wilson's disease, a genetic disorder characterized by abnormal copper accumulation in various organs.

Oxidoreductases acting on CH-NH2 group donors are a class of enzymes that catalyze the oxidation-reduction reactions involving the transfer of electrons from a donor with a CH-NH2 group to an electron acceptor. This category of enzymes is classified under EC 1.5.99 in the Enzyme Commission (EC) system.

The reaction catalyzed by these enzymes typically results in the formation of a carbon-nitrogen double bond, with the concomitant reduction of the electron acceptor. Examples of such reactions include the oxidative deamination of amino acids to produce keto acids and ammonia, as well as the conversion of primary amines to aldehydes or nitro compounds.

These enzymes are widely distributed in nature and play important roles in various biological processes, such as metabolism, detoxification, and biosynthesis. They require various cofactors, such as NAD+, NADP+, FAD, or PQQ, to facilitate the electron transfer during the reaction.

In summary, oxidoreductases acting on CH-NH2 group donors are a class of enzymes that catalyze the oxidation of CH-NH2 group donors and the reduction of various electron acceptors, with important roles in diverse biological processes.

Allylamine is an organic compound with the formula CH2=CH-CH2-NH2. It is a colorless liquid that is soluble in water and polar organic solvents. Allylamine is used as a building block in the synthesis of various chemical compounds, including pharmaceuticals, agrochemicals, and polymers.

In the medical field, allylamine derivatives are used as antifungal agents. These drugs work by inhibiting the enzyme squalene epoxidase, which is necessary for the synthesis of ergosterol, a key component of fungal cell membranes. By blocking the production of ergosterol, allylamine derivatives disrupt the integrity of fungal cell membranes and prevent the growth of fungi. Examples of allylamine antifungal drugs include terbinafine and naftifine.

Hydrazines are not a medical term, but rather a class of organic compounds containing the functional group N-NH2. They are used in various industrial and chemical applications, including the production of polymers, pharmaceuticals, and agrochemicals. However, some hydrazines have been studied for their potential therapeutic uses, such as in the treatment of cancer and cardiovascular diseases. Exposure to high levels of hydrazines can be toxic and may cause damage to the liver, kidneys, and central nervous system. Therefore, medical professionals should be aware of the potential health hazards associated with hydrazine exposure.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Metalloproteins are proteins that contain one or more metal ions as a cofactor, which is required for their biological activity. These metal ions play crucial roles in the catalytic function, structural stability, and electron transfer processes of metalloproteins. The types of metals involved can include iron, zinc, copper, magnesium, calcium, or manganese, among others. Examples of metalloproteins are hemoglobin (contains heme-bound iron), cytochrome c (contains heme-bound iron and functions in electron transfer), and carbonic anhydrase (contains zinc and catalyzes the conversion between carbon dioxide and bicarbonate).

Fabaceae is the scientific name for a family of flowering plants commonly known as the legume, pea, or bean family. This family includes a wide variety of plants that are important economically, agriculturally, and ecologically. Many members of Fabaceae have compound leaves and produce fruits that are legumes, which are long, thin pods that contain seeds. Some well-known examples of plants in this family include beans, peas, lentils, peanuts, clover, and alfalfa.

In addition to their importance as food crops, many Fabaceae species have the ability to fix nitrogen from the atmosphere into the soil through a symbiotic relationship with bacteria that live in nodules on their roots. This makes them valuable for improving soil fertility and is one reason why they are often used in crop rotation and as cover crops.

It's worth noting that Fabaceae is sometimes still referred to by its older scientific name, Leguminosae.

Polyamines are organic compounds with more than one amino group (-NH2) and at least one carbon atom bonded to two or more amino groups. They are found in various tissues and fluids of living organisms and play important roles in many biological processes, such as cell growth, differentiation, and apoptosis (programmed cell death). Polyamines are also involved in the regulation of ion channels and transporters, DNA replication and gene expression. The most common polyamines found in mammalian cells are putrescine, spermidine, and spermine. They are derived from the decarboxylation of amino acids such as ornithine and methionine. Abnormal levels of polyamines have been associated with various pathological conditions, including cancer and neurodegenerative diseases.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

D-amino-acid oxidase (DAAO) is an enzyme that catalyzes the oxidative deamination of D-amino acids to their corresponding α-keto acids, ammonia, and hydrogen peroxide. This enzyme plays a crucial role in the metabolism of D-amino acids in various organisms, including humans. In humans, DAAO is primarily expressed in the brain and contributes to the regulation of neurotransmitter levels and other physiological processes. Genetic variations and dysregulation of DAAO have been implicated in several neurological disorders, such as schizophrenia and bipolar disorder.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Butylamines are a class of organic compounds that contain a butyl group (a chain of four carbon atoms) attached to an amine functional group, which consists of nitrogen atom bonded to one or more hydrogen atoms. The general structure of a primary butylamine is R-NH2, where R represents the butyl group.

Butylamines can be found in various natural and synthetic substances. Some of them have important uses in industry as solvents, intermediates in chemical synthesis, or building blocks for pharmaceuticals. However, some butylamines are also known to have psychoactive effects and may be used as recreational drugs or abused.

It is worth noting that the term "butylamine" can refer to any of several specific compounds, depending on the context. For example, n-butylamine (also called butan-1-amine) has the formula CH3CH2CH2CH2NH2, while tert-butylamine (also called 2-methylpropan-2-amine) has the formula (CH3)3CNH2. These two compounds have different physical and chemical properties due to their structural differences.

In a medical context, butylamines may be encountered as drugs of abuse or as components of pharmaceuticals. Some examples of butylamine-derived drugs include certain antidepressants, anesthetics, and muscle relaxants. However, it is important to note that these compounds are often highly modified from their parent butylamine structure, and may not resemble them closely in terms of their pharmacological properties or toxicity profiles.

Ascorbate oxidase is an enzyme that catalyzes the oxidation of ascorbic acid (vitamin C) to dehydroascorbic acid in the presence of oxygen. This reaction also results in the production of water and hydrogen peroxide as byproducts. Ascorbate oxidase plays a significant role in regulating the levels of ascorbic acid in plants, where it is primarily found. It belongs to the family of copper-containing oxidoreductases. The enzyme's active site contains two copper ions that facilitate the electron transfer during the catalytic process. Ascorbate oxidase is not considered essential for human health since humans do not produce ascorbic acid and must obtain it through dietary sources.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Amino acid oxidoreductases are a class of enzymes that catalyze the reversible oxidation and reduction reactions involving amino acids. They play a crucial role in the metabolism of amino acids by catalyzing the interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing a cofactor such as NAD(P)+ or FAD.

The reaction catalyzed by these enzymes can be represented as follows:

L-amino acid + H2O + Coenzyme (Oxidized) → α-keto acid + NH3 + Coenzyme (Reduced)

Amino acid oxidoreductases are classified into two main types based on their cofactor requirements and reaction mechanisms. The first type uses FAD as a cofactor and is called amino acid flavoprotein oxidoreductases. These enzymes typically catalyze the oxidative deamination of L-amino acids to form α-keto acids, ammonia, and reduced FAD. The second type uses pyridine nucleotides (NAD(P)+) as cofactors and is called amino acid pyridine nucleotide-dependent oxidoreductases. These enzymes catalyze the reversible interconversion of L-amino acids to their corresponding α-keto acids, while simultaneously reducing or oxidizing NAD(P)H/NAD(P)+.

Amino acid oxidoreductases are widely distributed in nature and play important roles in various biological processes, including amino acid catabolism, nitrogen metabolism, and the biosynthesis of various secondary metabolites. Dysregulation of these enzymes has been implicated in several diseases, including neurodegenerative disorders and cancer. Therefore, understanding the structure, function, and regulation of amino acid oxidoreductases is crucial for developing novel therapeutic strategies to treat these diseases.

Spermidine is a polycationic polyamine that is found in various tissues and fluids, including semen, from which it derives its name. It is synthesized in the body from putrescine, another polyamine, through the action of the enzyme spermidine synthase.

In addition to its role as a metabolic intermediate, spermidine has been shown to have various cellular functions, including regulation of gene expression, DNA packaging and protection, and modulation of enzymatic activities. It also plays a role in the process of cell division and differentiation.

Spermidine has been studied for its potential anti-aging effects, as it has been shown to extend the lifespan of various organisms, including yeast, flies, and worms, by activating autophagy, a process by which cells break down and recycle their own damaged or unnecessary components. However, more research is needed to determine whether spermidine has similar effects in humans.

Spectrum analysis in the context of Raman spectroscopy refers to the measurement and interpretation of the Raman scattering spectrum of a material or sample. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to examine the vibrational modes of molecules.

When a monochromatic light source, typically a laser, illuminates a sample, a small fraction of the scattered light undergoes a shift in frequency due to interactions with the molecular vibrations of the sample. This shift in frequency is known as the Raman shift and is unique to each chemical bond or functional group within a molecule.

In a Raman spectrum, the intensity of the scattered light is plotted against the Raman shift, which is expressed in wavenumbers (cm-1). The resulting spectrum provides a "fingerprint" of the sample's molecular structure and composition, allowing for the identification and characterization of various chemical components within the sample.

Spectrum analysis in Raman spectroscopy can reveal valuable information about the sample's crystallinity, phase transitions, polymorphism, molecular orientation, and other properties. This technique is widely used across various fields, including materials science, chemistry, biology, pharmaceuticals, and forensics, to analyze a diverse range of samples, from simple liquids and solids to complex biological tissues and nanomaterials.

Kynurenine aminotransferase (also known as Kynuramine transaminase) is an enzyme that plays a role in the metabolism of the amino acid tryptophan. This enzyme catalyzes the conversion of kynurenine to kynurenic acid, which is a neuroprotective compound.

Kynurenine and kynurenic acid are both important components of the kynurenine pathway, which is a major metabolic route for tryptophan in mammals. The kynurenine pathway plays a role in various physiological processes, including the immune response and the regulation of neurotransmission.

Abnormalities in the kynurenine pathway have been implicated in several neurological and psychiatric disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, and depression. Therefore, understanding the enzymes involved in this pathway, including kynuramine transaminase, is important for gaining insights into the underlying mechanisms of these diseases and for developing potential therapeutic strategies.

Hydrogen peroxide (H2O2) is a colorless, odorless, clear liquid with a slightly sweet taste, although drinking it is harmful and can cause poisoning. It is a weak oxidizing agent and is used as an antiseptic and a bleaching agent. In diluted form, it is used to disinfect wounds and kill bacteria and viruses on the skin; in higher concentrations, it can be used to bleach hair or remove stains from clothing. It is also used as a propellant in rocketry and in certain industrial processes. Chemically, hydrogen peroxide is composed of two hydrogen atoms and two oxygen atoms, and it is structurally similar to water (H2O), with an extra oxygen atom. This gives it its oxidizing properties, as the additional oxygen can be released and used to react with other substances.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

Bis-trimethylammonium compounds are a type of organic compound that contain two positively charged trimethylammonium groups ([CH3]3N+) in their structure. These compounds are often used as disinfectants, antimicrobial agents, and cationic surfactants due to their ability to interact with negatively charged cell membranes and disrupt their function.

The general formula for a bis-trimethylammonium compound is [(CH3)3N+]2X-, where X- represents anions that balance the positive charge of the two trimethylammonium groups. Examples of bis-trimethylammonium compounds include benzalkonium chloride, didecyldimethylammonium chloride, and cetylpyridinium chloride.

It is important to note that while these compounds can be effective at killing microorganisms, they can also have harmful effects on human health and the environment. Therefore, they should be used with caution and in accordance with recommended guidelines.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Galactose oxidase is an enzyme with the systematic name D-galactose:oxygen oxidoreductase. It is found in certain fungi and bacteria, and it catalyzes the following reaction:

D-galactose + O2 -> D-galacto-hexodialdose + H2O2

In this reaction, the enzyme oxidizes the hydroxyl group (-OH) on the sixth carbon atom of D-galactose to an aldehyde group (-CHO), forming D-galacto-hexodialdose. At the same time, it reduces molecular oxygen (O2) to hydrogen peroxide (H2O2).

Galactose oxidase is a copper-containing enzyme and requires the cofactor molybdenum for its activity. It has potential applications in various industrial processes, such as the production of D-galacto-hexodialdose and other sugar derivatives, as well as in biosensors for detecting glucose levels in biological samples.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Putrescine is an organic compound with the chemical formula NH2(CH2)4NH2. It is a colorless, viscous liquid that is produced by the breakdown of amino acids in living organisms and is often associated with putrefaction, hence its name. Putrescine is a type of polyamine, which is a class of organic compounds that contain multiple amino groups.

Putrescine is produced in the body through the decarboxylation of the amino acid ornithine by the enzyme ornithine decarboxylase. It is involved in various cellular processes, including the regulation of gene expression and cell growth. However, at high concentrations, putrescine can be toxic to cells and has been implicated in the development of certain diseases, such as cancer.

Putrescine is also found in various foods, including meats, fish, and some fruits and vegetables. It contributes to the unpleasant odor that develops during spoilage, which is why putrescine is often used as an indicator of food quality and safety.

Cation transport proteins are a type of membrane protein that facilitate the movement of cations (positively charged ions) across biological membranes. These proteins play a crucial role in maintaining ion balance and electrical excitability within cells, as well as in various physiological processes such as nutrient uptake, waste elimination, and signal transduction.

There are several types of cation transport proteins, including:

1. Ion channels: These are specialized protein structures that form a pore or channel through the membrane, allowing ions to pass through rapidly and selectively. They can be either voltage-gated or ligand-gated, meaning they open in response to changes in electrical potential or binding of specific molecules, respectively.

2. Ion pumps: These are active transport proteins that use energy from ATP hydrolysis to move ions against their electrochemical gradient, effectively pumping them from one side of the membrane to the other. Examples include the sodium-potassium pump (Na+/K+-ATPase) and calcium pumps (Ca2+ ATPase).

3. Ion exchangers: These are antiporter proteins that facilitate the exchange of one ion for another across the membrane, maintaining electroneutrality. For example, the sodium-proton exchanger (NHE) moves a proton into the cell in exchange for a sodium ion being moved out.

4. Symporters: These are cotransporter proteins that move two or more ions together in the same direction, often coupled with the transport of a solute molecule. An example is the sodium-glucose cotransporter (SGLT), which facilitates glucose uptake into cells by coupling its movement with that of sodium ions.

Collectively, cation transport proteins help maintain ion homeostasis and contribute to various cellular functions, including electrical signaling, enzyme regulation, and metabolic processes. Dysfunction in these proteins can lead to a range of diseases, such as neurological disorders, cardiovascular disease, and kidney dysfunction.

Aldehydes are a class of organic compounds characterized by the presence of a functional group consisting of a carbon atom bonded to a hydrogen atom and a double bonded oxygen atom, also known as a formyl or aldehyde group. The general chemical structure of an aldehyde is R-CHO, where R represents a hydrocarbon chain.

Aldehydes are important in biochemistry and medicine as they are involved in various metabolic processes and are found in many biological molecules. For example, glucose is converted to pyruvate through a series of reactions that involve aldehyde intermediates. Additionally, some aldehydes have been identified as toxicants or environmental pollutants, such as formaldehyde, which is a known carcinogen and respiratory irritant.

Formaldehyde is also commonly used in medical and laboratory settings for its disinfectant properties and as a fixative for tissue samples. However, exposure to high levels of formaldehyde can be harmful to human health, causing symptoms such as coughing, wheezing, and irritation of the eyes, nose, and throat. Therefore, appropriate safety measures must be taken when handling aldehydes in medical and laboratory settings.

Guanidines are organic compounds that contain a guanidino group, which is a functional group with the formula -NH-C(=NH)-NH2. Guanidines can be found in various natural sources, including some animals, plants, and microorganisms. They also occur as byproducts of certain metabolic processes in the body.

In a medical context, guanidines are most commonly associated with the treatment of muscle weakness and neuromuscular disorders. The most well-known guanidine compound is probably guanidine hydrochloride, which has been used as a medication to treat conditions such as myasthenia gravis and Eaton-Lambert syndrome.

However, the use of guanidines as medications has declined in recent years due to their potential for toxicity and the development of safer and more effective treatments. Today, guanidines are mainly used in research settings to study various biological processes, including protein folding and aggregation, enzyme inhibition, and cell signaling.

I'm sorry for any confusion, but "spectrum analysis" is not a commonly used medical term. Spectrum analysis is a term that is more frequently used in the fields of physics, mathematics, and engineering to describe the process of breaking down a signal or a wave into its different frequencies and amplitudes, creating a visual representation called a spectrum.

If you have any concerns about a medical issue, I would recommend consulting with a healthcare professional for accurate information and guidance.

Urate oxidase, also known as uricase, is an enzyme that catalyzes the oxidation of uric acid to allantoin. This reaction is an essential part of purine metabolism in many organisms, as allantoin is more soluble and easier to excrete than uric acid. In humans, urate oxidase is non-functional due to mutations in the gene encoding it, which leads to the accumulation of uric acid and predisposes to gout and kidney stones. Urate oxidase is found in some bacteria, fungi, and plants, and can be used as a therapeutic agent in humans to lower serum uric acid levels in conditions such as tumor lysis syndrome and gout.

Spermine is a polyamine compound that is involved in various biological processes, including cell growth and differentiation, DNA packaging, and gene expression. It is synthesized from the amino acid ornithine through a series of enzymatic reactions and is found in high concentrations in tissues such as the prostate gland, liver, and brain. Spermine has been shown to have antioxidant properties and may play a role in protecting cells against oxidative stress. In addition, spermine has been implicated in the regulation of ion channels and receptors, and may be involved in the modulation of neuronal excitability.

An apoenzyme is the protein component of an enzyme that is responsible for its catalytic activity. It combines with a cofactor, which can be either an organic or inorganic non-protein molecule, to form the active enzyme. The cofactor can be a metal ion or a small organic molecule called a coenzyme.

The term "apoenzyme" is used to describe the protein portion of an enzyme after it has lost its cofactor. When the apoenzyme combines with the cofactor, the active holoenzyme is formed, which is capable of carrying out the specific biochemical reaction for which the enzyme is responsible.

In some cases, the loss of a cofactor can result in the complete loss of enzymatic activity, while in other cases, the apoenzyme may retain some residual activity. The relationship between an apoenzyme and its cofactor is specific, meaning that each cofactor typically only binds to and activates one particular type of apoenzyme.

Hepatolenticular degeneration, also known as Wilson's disease, is a rare genetic disorder of copper metabolism. It is characterized by the accumulation of copper in various organs, particularly the liver and brain. This leads to progressive damage and impairment of their functions.

The medical definition of Hepatolenticular degeneration (Wilson's disease) is:

A genetic disorder caused by a mutation in the ATP7B gene, resulting in impaired biliary excretion of copper and its accumulation within hepatocytes. This causes liver damage, which can manifest as acute hepatitis, cirrhosis, or fulminant hepatic failure. Additionally, excess copper is released into the bloodstream and deposited in various tissues, including the basal ganglia of the brain, leading to neurological symptoms such as tremors, rigidity, dysarthria, and behavioral changes. Other features include Kayser-Fleischer rings (copper deposition in the cornea), splenomegaly, and hemolytic anemia. Early diagnosis and treatment with copper-chelating agents can significantly improve outcomes and prevent complications.

Formic acid esters are chemical compounds formed by the reaction between formic acid and alcohols. This reaction, known as esterification, results in the formation of an ester group where the hydroxyl group (-OH) of the alcohol was. The general formula for a formic acid ester is:

R-O-CO-CHO

Where R represents the alkyl or aromatic group derived from the alcohol.

Formic acid esters are used in various applications, including as solvents, flavorings, and fragrances. Some examples of formic acid esters include methyl formate (methyl methanoate), ethyl formate (ethyl methanoate), and propyl formate (propyl methanoate).

In a medical context, formic acid esters have been studied for their potential therapeutic uses. For instance, sodium formate has been used as a treatment for methanol poisoning, as it helps to metabolize the toxic alcohol and reduce its harmful effects on the body. However, formic acid esters are not commonly used in mainstream medical treatments or therapies.

"Lathyrus" is a genus of plants, also known as "peavines" or "sweet peas." While not a medical term itself, certain species of Lathyrus contain a toxin called beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (ODAP) that can cause a neurological disorder known as lathyrism if consumed in large quantities. This condition is characterized by the degeneration of nerve cells and can lead to muscle spasticity and paralysis. However, it's important to note that this is not a common occurrence and typically only happens under conditions of severe malnutrition or famine when these plants are used as a primary food source.

Menkes kinky hair syndrome, also known as Menkes disease or Steely hair syndrome, is a rare X-linked recessive genetic disorder caused by mutations in the ATP7A gene. This gene provides instructions for making a protein that plays an essential role in the body's ability to absorb and utilize copper, which is necessary for various enzymes involved in vital functions such as energy production, antioxidant activity, connective tissue synthesis, and neurotransmitter synthesis.

The main features of Menkes kinky hair syndrome include:

1. Kinky or steely hypopigmented hair: The hair is often sparse, brittle, and has a characteristic steel wool appearance due to abnormal keratin formation caused by copper deficiency.
2. Neurological symptoms: These may include developmental delays, seizures, hypotonia (low muscle tone), and progressive neurodegeneration leading to severe intellectual disability.
3. Connective tissue abnormalities: Loose skin, joint laxity, hernias, and fragile blood vessels are common features of the condition.
4. Growth failure: Affected individuals often have poor growth and weight gain.
5. Other symptoms: Menkes kinky hair syndrome can also cause gastrointestinal problems, cardiovascular issues, and temperature regulation difficulties.

The onset of symptoms typically occurs within the first few months of life, with most affected children not surviving beyond early childhood due to the severity of their neurological impairments. However, some milder forms of the disorder have been reported, which may allow for a longer lifespan and less severe symptoms.

Zinc is an essential mineral that is vital for the functioning of over 300 enzymes and involved in various biological processes in the human body, including protein synthesis, DNA synthesis, immune function, wound healing, and cell division. It is a component of many proteins and participates in the maintenance of structural integrity and functionality of proteins. Zinc also plays a crucial role in maintaining the sense of taste and smell.

The recommended daily intake of zinc varies depending on age, sex, and life stage. Good dietary sources of zinc include red meat, poultry, seafood, beans, nuts, dairy products, and fortified cereals. Zinc deficiency can lead to various health problems, including impaired immune function, growth retardation, and developmental delays in children. On the other hand, excessive intake of zinc can also have adverse effects on health, such as nausea, vomiting, and impaired immune function.

I'm sorry for any confusion, but "peas" is not a term typically used in medical definitions. Peas are a type of legume that is commonly consumed as a vegetable. They are rich in nutrients such as protein, fiber, vitamin C, and vitamin K. If you have any questions about the health benefits or potential risks of consuming peas, I would be happy to try to help with that.

Acyl-CoA oxidase is an enzyme that plays a crucial role in the breakdown of fatty acids within the body. It is located in the peroxisomes, which are small organelles found in the cells of living organisms. The primary function of acyl-CoA oxidase is to catalyze the initial step in the beta-oxidation of fatty acids, a process that involves the sequential removal of two-carbon units from fatty acid molecules in the form of acetyl-CoA.

The reaction catalyzed by acyl-CoA oxidase is as follows:

acyl-CoA + FAD → trans-2,3-dehydroacyl-CoA + FADH2 + H+

In this reaction, the enzyme removes a hydrogen atom from the fatty acyl-CoA molecule and transfers it to its cofactor, flavin adenine dinucleotide (FAD). This results in the formation of trans-2,3-dehydroacyl-CoA, FADH2, and a proton. The FADH2 produced during this reaction can then be used to generate ATP through the electron transport chain, while the trans-2,3-dehydroacyl-CoA undergoes further reactions in the beta-oxidation pathway.

There are two main isoforms of acyl-CoA oxidase found in humans: ACOX1 and ACOX2. ACOX1 is primarily responsible for oxidizing straight-chain fatty acids, while ACOX2 specializes in the breakdown of branched-chain fatty acids. Mutations in the genes encoding these enzymes can lead to various metabolic disorders, such as peroxisomal biogenesis disorders and Refsum disease.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

'Aspergillus niger' is a species of fungi that belongs to the genus Aspergillus. It is a ubiquitous microorganism that can be found in various environments, including soil, decaying vegetation, and indoor air. 'Aspergillus niger' is a black-colored mold that produces spores that are easily dispersed in the air.

This fungus is well known for its ability to produce a variety of enzymes and metabolites, some of which have industrial applications. For example, it is used in the production of citric acid, which is widely used as a food additive and preservative.

However, 'Aspergillus niger' can also cause health problems in humans, particularly in individuals with weakened immune systems or underlying lung conditions. It can cause allergic reactions, respiratory symptoms, and invasive aspergillosis, a serious infection that can spread to other organs in the body.

In addition, 'Aspergillus niger' can produce mycotoxins, which are toxic compounds that can contaminate food and feed and cause various health effects in humans and animals. Therefore, it is important to prevent the growth and proliferation of this fungus in indoor environments and food production facilities.

Histone demethylases are enzymes that remove methyl groups from histone proteins, which are the structural components around which DNA is wound in chromosomes. These enzymes play a crucial role in regulating gene expression by modifying the chromatin structure and influencing the accessibility of DNA to transcription factors and other regulatory proteins.

Histones can be methylated at various residues, including lysine and arginine residues, and different histone demethylases specifically target these modified residues. Histone demethylases are classified into two main categories based on their mechanisms of action:

1. Lysine-specific demethylases (LSDs): These enzymes belong to the flavin adenine dinucleotide (FAD)-dependent amine oxidase family and specifically remove methyl groups from lysine residues. They target mono- and di-methylated lysines but cannot act on tri-methylated lysines.
2. Jumonji C (JmjC) domain-containing histone demethylases: These enzymes utilize Fe(II) and α-ketoglutarate as cofactors to hydroxylate methyl groups on lysine residues, leading to their removal. JmjC domain-containing histone demethylases can target all three states of lysine methylation (mono-, di-, and tri-methylated).

Dysregulation of histone demethylases has been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the functions and regulation of these enzymes is essential for developing novel therapeutic strategies to target these conditions.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Indolequinones are a type of chemical compound that consist of an indole ring, which is a heterocyclic aromatic organic compound, fused to a quinone ring. They can be found in some natural sources, including certain types of bacteria and fungi, as well as in synthetic forms.

Indolequinones have been studied for their potential use in medical treatments, particularly in the area of cancer research. Some indolequinones have been shown to have antitumor properties and are being investigated as possible chemotherapeutic agents. However, they can also be toxic and may have side effects, so further research is needed to determine their safety and effectiveness for medical use.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Catechol oxidase, also known as polyphenol oxidase, is an enzyme that catalyzes the oxidation of catechols and other phenolic compounds to quinones. These quinones can then undergo further reactions to form various pigmented compounds, such as melanins. Catechol oxidase is widely distributed in nature and is found in plants, fungi, and some bacteria. In humans, catechol oxidase is involved in the metabolism of neurotransmitters such as dopamine and epinephrine.

Cholesterol oxidase is an enzyme that catalyzes the conversion of cholesterol to cholest-4-en-3-one, while reducing molecular oxygen to hydrogen peroxide. This reaction is commonly used in clinical and research settings to measure cholesterol levels in samples of blood or other biological fluids. The enzyme is produced by various bacteria, fungi, and plants, and can be purified for use in diagnostic kits and biochemical assays. In addition to its role in cholesterol analysis, cholesterol oxidase has also been studied as a potential therapeutic agent for the treatment of bacterial infections and cancer.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

L-amino acid oxidase (LAAO) is an enzyme that belongs to the family of flavin monooxygenases. It catalyzes the oxidative deamination of L-amino acids into corresponding α-keto acids, ammonia, and hydrogen peroxide. The reaction takes place in the presence of molecular oxygen and FAD (flavin adenine dinucleotide) as a cofactor.

LAAO is found in various organisms, including mammals, reptiles, fish, insects, bacteria, and plants. In some species, LAAO plays a role in the metabolism of amino acids, while in others, it functions as a part of the immune system or contributes to the development of venoms and toxins.

In humans, LAAO is primarily located in the peroxisomes of liver, kidney, and intestinal cells, where it participates in the catabolism of amino acids. In addition, LAAO has been found to have potential roles in several pathological conditions, such as neurodegenerative disorders, atherosclerosis, and cancer, due to its ability to generate hydrogen peroxide and induce oxidative stress.

Pyruvate oxidase is not a term that has a widely recognized medical definition. However, pyruvate oxidase is an enzyme that plays a role in the metabolism of glucose in cells. It is involved in the conversion of pyruvate, a product of glycolysis, into acetyl-CoA, which can then be used in the citric acid cycle (also known as the Krebs cycle) to generate energy in the form of ATP.

Pyruvate oxidase is found in the mitochondria of cells and requires molecular oxygen (O2) to function. It catalyzes the following reaction:

pyruvate + CoA + NAD+ + H2O → acetyl-CoA + CO2 + NADH + H+

Deficiencies in pyruvate oxidase have been associated with certain metabolic disorders, such as pyruvate dehydrogenase deficiency and Leigh syndrome. However, these conditions are typically caused by defects in other enzymes involved in the metabolism of pyruvate rather than pyruvate oxidase itself.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Superoxides are partially reduced derivatives of oxygen that contain one extra electron, giving them an overall charge of -1. They are highly reactive and unstable, with the most common superoxide being the hydroxyl radical (•OH-) and the superoxide anion (O2-). Superoxides are produced naturally in the body during metabolic processes, particularly within the mitochondria during cellular respiration. They play a role in various physiological processes, but when produced in excess or not properly neutralized, they can contribute to oxidative stress and damage to cells and tissues, potentially leading to the development of various diseases such as cancer, atherosclerosis, and neurodegenerative disorders.

The copper amine oxidase 3-dimensional structure was determined through X-ray crystallography. The copper amine oxidases occur ... Amine oxidase (copper-containing) (AOC) (EC 1.4.3.21 and EC 1.4.3.22; formerly EC 1.4.3.6) is a family of amine oxidase enzymes ... Yamada H, Adachi O, Ogata K (1965). "Amine oxidases of microorganisms. Part III. Properties of amine oxidase of Aspergillus ... Yamada H, Adachi O, Ogata K (1965). "Amine oxidases of microorganisms. Part IV. Further properties of amine oxidase of ...
Tipping AJ, McPherson MJ (Jul 1995). "Cloning and molecular analysis of the pea seedling copper amine oxidase". The Journal of ... Primary-amine oxidase, also known as semicarbazide-sensitive amine oxidase (SSAO), is an enzyme (EC 1.4.3.21) with the ... AOC2 AOC3 Tyramine oxidase (tynA) in Escherichia coli Andrew McDonald. "Primary-amine oxidase". ExplorEnz - The Enzyme Database ... Distribution, purification and properties of two primary-amine oxidases from the yeast Candida boidinii grown on amines as sole ...
The protein is a copper-containing primary amine oxidase enzyme. Copper amine oxidases catalyze the oxidative conversion of ... "Entrez Gene: Amine oxidase, copper containing 2". Retrieved 2015-12-31. Human AOC2 genome location and AOC2 gene details page ... Amine oxidase, copper containing 2 (AOC2) is a protein that in humans is encoded by the AOC2 gene. ... This gene shows high sequence similarity to copper amine oxidases from various species ranging from bacteria to mammals. The ...
VAP-1 constitutes the copper dependent class of amine oxidases, such as lysyl oxidase or lysine demethylase, and is one of the ... This protein is a member of the semicarbazide-sensitive amine oxidase (SSAO; aka primary amine oxidase) family of enzymes and ... "Entrez Gene: AOC3 Amine oxidase, copper containing 3". Foot JS, Yow TT, Schilter H, Buson A, Deodhar M, Findlay AD, Guo L, ... Amine oxidase, copper containing 3 (AOC3), also known as vascular adhesion protein (VAP-1) and HPAO is an enzyme that in humans ...
The enzyme belongsthe category of quinone-containing copper amine oxidases. The reaction requires the cofactor lysyl ... ISBN 978-0-8153-3218-3. Csiszar K (2001). Lysyl oxidases: a novel multifunctional amine oxidase family. Progress in Nucleic ... Csiszar K (2001). Lysyl oxidases: a novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular ... Lysyl oxidase is an extracellular copper-dependent enzyme that catalyzes formation of aldehydes from lysine residues in ...
For example, copper amine oxidase, catalyzes the oxidative deamination of polyamines, especially putrescine, and releases the ... NADPH oxidase, oxalate oxidase, peroxidases, and flavin containing amine oxidases. In some cases, the cells surrounding the ... "Molecular cloning and heterologous expression of pea seedling copper amine oxidase". Bioscience, Biotechnology, and ... Other enzymes thought to play a role in ROS production include xanthine oxidase, ...
"Characterization of the Preprocessed Copper Site Equilibrium in Amine Oxidase and Assignment of the Reactive Copper Site in ... copper-containing amine oxidase at 2.2 å resolution". Structure. 4 (8): 943-955. doi:10.1016/S0969-2126(96)00101-3. PMID ... "Crystal Structures of the Copper-Containing Amine Oxidase from Arthrobacter globiformis in the Holo and Apo Forms: Implications ... semiquinone state in substrate-reduced amine oxidases". Nature. 349 (6306): 262-264. Bibcode:1991Natur.349..262D. doi:10.1038/ ...
The enzyme belongs to the amine oxidase (copper-containing) (AOC) family of amine oxidase enzymes. The enzyme is expressed in ... Diamine oxidase (DAO), also known "amine oxidase, copper-containing, 1" (AOC1), formerly called histaminase, is an enzyme (EC ... Amine+Oxidase+(Copper-Containing) at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e (Articles with ... In case of a shortage or low enzymatic activity of diamine oxidase in the human body, it may appear as an allergy or histamine ...
... copper-containing amine oxidase at 2.2 Ã… resolution". Structure. 4 (8): 943-955. doi:10.1016/S0969-2126(96)00101-3. PMID ... Investigation of Methionine-Copper Coordination". J. Am. Chem. Soc. 104 (20): 5364-5369. doi:10.1021/ja00384a020. Penner-Hahn, ... His research group extended its interests beyond purely organic compounds and on to metal complexes (such as copper biuret, one ... In 1970, the focus of Freeman's research became protein crystallography and he turned his attention to the blue copper proteins ...
It is used by copper amine oxidases which contain a tyrosine residue near the active site. This residue catalyses its own ...
... amine oxidase, copper containing 3 This disambiguation page lists articles associated with the title AOCE. If an internal link ...
... may refer to: AOC3, Amine oxidase, copper containing 3 (vascular adhesion protein 1) N1-acetylpolyamine oxidase, an enzyme ...
... encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in ... A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting ... Lysyl oxidase homolog 4 is an enzyme that in humans is encoded by the LOXL4 gene. This gene encodes a member of the lysyl ... "Entrez Gene: LOXL4 lysyl oxidase-like 4". Molnar J, Fong KS, He QP, et al. (2003). "Structural and functional diversity of ...
... amine oxidase A, aldehyde dehydrogenase 1A3 and membrane copper amine oxidase. Nutaratat P, Srisuk N, Arunrattiyakorn P, ... Indole-3-acetaldehyde is a substrate for retina-specific copper amine oxidase, aldehyde dehydrogenase X (mitochondrial), amine ... oxidase B, amiloride-sensitive amine oxidase, aldehyde dehydrogenase (mitochondrial), fatty aldehyde dehydrogenase, 4- ...
... encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in ... Csiszar K (2001). "Lysyl oxidases: a novel multifunctional amine oxidase family". Prog. Nucleic Acid Res. Mol. Biol. Progress ... A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting ... Jung ST, Kim MS, Seo JY, Kim HC, Kim Y (2004). "Purification of enzymatically active human lysyl oxidase and lysyl oxidase-like ...
... encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in ... Csiszar K (2001). "Lysyl oxidases: a novel multifunctional amine oxidase family". Prog. Nucleic Acid Res. Mol. Biol. Progress ... Lee JE, Kim Y (2007). "A tissue-specific variant of the human lysyl oxidase-like protein 3 (LOXL3) functions as an amine ... A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting ...
... encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in ... Csiszar K (2001). Lysyl oxidases: a novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular ... A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting ... Lysyl oxidase homolog 2 is an enzyme that in humans is encoded by the LOXL2 gene. This gene encodes a member of the lysyl ...
... via extensive crosslinking by members of the lysyl oxidase and lysyl oxidase like family of copper-dependent amine oxidases ... and Marfan's syndrome have been associated with defects in copper metabolism and lysyl oxidase or defects in the microfibril ( ... Maintenance of crosslinked elastin is carried out by a number of proteins including lysyl oxidase-like 1 protein. Mature ... Lucero HA, Kagan HM (October 2006). "Lysyl oxidase: an oxidative enzyme and effector of cell function". Cellular and Molecular ...
... and in amine oxidases. These enzyme catalyze reactions for oxidative phosphorylation, iron transportation, antioxidant and free ... Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present ... Copper is required for the functioning of many enzymes, such as cytochrome c oxidase, which is complex IV in the mitochondrial ... Copper is integrated in the enzymes cytochrome c oxidase, which is involved in cellular respiration and oxidative ...
These include copper transport to deliver the Cu to extrahepatic tissues, amine oxidase activity that controls the level of ... copper ion. The two T3 copper ions are bridged by a hydroxide ligand while another hydroxide ligand links the T2 copper ion to ... Ceruloplasmin exhibits a copper-dependent oxidase activity, which is associated with possible oxidation of Fe2+ (ferrous iron) ... The multicopper active site of CP contains a type I (T1) mononuclear copper site and a trinuclear copper center ~ 12-13 Ã… away ...
... amine oxidase (copper-containing) MeSH D08.811.682.664.500 - amino acid oxidoreductases MeSH D08.811.682.664.500.062 - alanine ... sarcosine oxidase MeSH D08.811.682.662.640 - proline oxidase MeSH D08.811.682.662.680 - pyridoxamine-phosphate oxidase MeSH ... proline oxidase MeSH D08.811.682.664.500.848 - protein-lysine 6-oxidase MeSH D08.811.682.664.500.924 - valine dehydrogenase ( ... galactose oxidase MeSH D08.811.682.047.239 - glucose oxidase MeSH D08.811.682.047.370 - homoserine dehydrogenase MeSH D08.811. ...
... support oxidative deamination of primary amines by passing electrons from aromatic amine dehydrogenase to cytochrome oxidase, ... A single-atom copper binding site is located about 7 Ã… below each monomer's surface towards its northern end; the copper atom ... Plastocyanin family of copper-binding proteins De Rienzo F, Gabdoulline RR, Menziani MC, Wade RC (August 2000). "Blue copper ... With the exception of Gly45, the copper-binding configuration above is common to the structures of all blue type 1 copper- ...
... is a copper oxidase that contains a type 3 di-copper cofactor and catalyzes the oxidation of ortho-diphenols ... In particular, thiol and amine functional groups on the side chains of amino acids are highly susceptible to quinone binding ... Polyphenol oxidases are a family of di-copper metalloenzymes that include tyrosinase and catechol oxidase. In plants, both ... The structural mimicry of certain copper proteins (e.g. hemocyanin, tyrosinase and catechol oxidase), containing type-3 copper ...
Nitroalkane oxidase and 3-nitropropionate oxidase oxidize aliphatic nitro compounds exclusively, whereas other enzymes such as ... Ehud, Keinan; Yehuda, Mazur (1977). "Dry ozonation of amines. Conversion of primary amines to nitro compounds". The Journal of ... Jubert, Carole & Knochel, Paul (1992). "Preparation of polyfunctional nitro olefins and nitroalkanes using the copper-zinc ... Virtually all aromatic amines (anilines) are derived from nitroaromatics. A variation is formation of a dimethylaminoarene with ...
Pesticides which possess elements like calcium, lead, copper, and zinc reside at the end of usage in the soil, which affects ... Other examples of toxication by enzymatic metabolism include: Conversion of secondary amines in the stomach into carcinogenic ... Paracetamol (acetaminophen, APAP) is converted into the hepatotoxic metabolite NAPQI via the cytochrome P450 oxidase system, ... Their components of lead, zinc, and copper might cause acute diseases. In adults, most of them are affected by occupational ...
Chelating agents − Polyphenol oxidase requires copper as a cofactor for its functionality, thus copper-chelating agents inhibit ... It is a chemical reaction that takes place between the amine group of a free amino acid and the carbonyl group of a reducing ... Generally, it is a chemical reaction involving polyphenol oxidase (PPO), catechol oxidase, and other enzymes that create ... The rate of enzymatic browning is reflected by the amount of active polyphenol oxidases present in the food. Hence, most ...
... and copper. The final step in adrenaline biosynthesis is the methylation of the primary amine of noradrenaline. This reaction ... Oanca G, Stare J, Mavri J (December 2017). "How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B ... Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological ... Its action is terminated with reuptake into nerve terminal endings, some minute dilution, and metabolism by monoamine oxidase ...
4-dihydroxyphenethylamine beta-oxidase 4-(2-aminoethyl) pyrocatechol beta-oxidase dopa beta-hydroxylase dopamine beta-oxidase ... Physical properties, copper content, and role of copper in the catalytic activity". The Journal of Biological Chemistry. 240 ( ... Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological ... DBH is a 290 kDa copper-containing oxygenase consisting of four identical subunits, and its activity requires ascorbate as a ...
Metal glycinate complexes, e.g. copper(II) glycinate are used as supplements for animal feeds. The U.S. "Food and Drug ... In the third pathway of its degradation, glycine is converted to glyoxylate by D-amino acid oxidase. Glyoxylate is then ... With nitrous acid, one obtains glycolic acid (van Slyke determination). With methyl iodide, the amine becomes quaternized to ... Casari, B. M.; Mahmoudkhani, A. H.; Langer, V. (2004). "A Redetermination of cis-Aquabis(glycinato-κ2N,O)copper(II)". Acta ...
High levels of catecholamines can also be caused by monoamine oxidase A (MAO-A) deficiency, known as Brunner syndrome. As MAO-A ... Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological ... The enzyme dopamine hydroxylase requires copper as a cofactor (not shown in the diagram) and DOPA decarboxylase requires PLP ( ... They can be degraded either by methylation by catechol-O-methyltransferases (COMT) or by deamination by monoamine oxidases (MAO ...
  • This gene encodes a member of the lysyl oxidase gene family. (joplink.net)
  • Subsequent work from her group showed that the extracellular protein lysyl oxidase, responsible for collagen and elastin cross-linking, contains a lysine cross-linked variant of TPQ, while mechanistic probes advanced knowledge of cofactor biogenesis and catalysis in the copper amine oxidases. (nationalmedals.org)
  • We further studied lysyl oxidase (LOX) expression in CRC tissue and demonstrated that LOX expression is closely correlated with CRC progression. (ijbs.com)
  • In the process of malignant transformation, progression and metastasis of tumors, the ECM is modified by many enzymes, including matrix metalloproteinases (MMPs) and lysyl oxidase (LOX) family oxidases. (ijbs.com)
  • Description: Quantitative sandwich ELISA for measuring Rat Lysyl oxidase (LOX) in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids. (antibody-tech.com)
  • Description: A sandwich quantitative ELISA assay kit for detection of Human Lysyl Oxidase (LOX) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates or other biological fluids. (antibody-tech.com)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Lysyl Oxidase (LOX) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids. (antibody-tech.com)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Lysyl Oxidase (LOX) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids with no significant corss-reactivity with analogues from other species. (antibody-tech.com)
  • They catalyse the oxidation of primary amines to aldehydes, with the subsequent release of ammonia and hydrogen peroxide, which requires one copper ion per subunit and topaquinone as cofactor: RCH2NH2 + H2O + O2 ⇌ {\displaystyle \rightleftharpoons } RCHO + NH3 + H2O2 The 3 substrates of this enzyme are primary amines (RCH2NH2), H2O, and O2, whereas its 3 products are RCHO, NH3, and H2O2. (wikipedia.org)
  • In prokaryotes, the enzyme enables various amine substrates to be used as sources of carbon and nitrogen. (wikipedia.org)
  • The systematic name of this enzyme class is amine:oxygen oxidoreductase (deaminating) (copper-containing). (wikipedia.org)
  • A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. (sciencedaily.com)
  • Now, in a study recently published in ACS Catalysis , a team led by researchers at Osaka Medical and Pharmaceutical University and Osaka University has used neutron crystallography to image the atom-by-atom structure of a copper amine oxidase enzyme. (sciencedaily.com)
  • We disclose binding of a second molecule of high-affinity amine substrate during the enzymatic reaction, a previously unknown event in the enzyme active site," says Toshihide Okajima, senior author. (sciencedaily.com)
  • This work has provided previously undisclosed structural details in a copper amine oxidase enzyme that has many functions in biochemical metabolism. (sciencedaily.com)
  • and ACC oxidase (ethylene-forming enzyme or EFE) (Hamilton et al. (scite.ai)
  • Human kidney diamine oxidase has been overexpressed as a secreted enzyme under the control of a metallothionein promoter in Drosophila S2 cell culture. (rhea-db.org)
  • Importantly, we also uncovered a key enzyme, a copper amine oxidase, that converts the victorin peptide into the active form. (growkudos.com)
  • A team led by researchers at SANKEN (The Institute of Scientific and Industrial Research), at Osaka University has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. (asiaresearchnews.com)
  • Also, it is hypothesized that Histamine (biogenic amine), catabolized by Diamine oxidase (DAO), induces a vascular headache. (tci-thaijo.org)
  • Human kidney diamine oxidase: heterologous expression, purification, and characterization. (rhea-db.org)
  • Active compounds delayed the disappearance of histamine from the bathing solutions and inhibited colonic diamine oxidase, an effect mimicked by standard inhibitors aminoguanidine and semicarbazide. (mcmaster.ca)
  • Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. (lookformedical.com)
  • The substrate specificity of catechol oxidase from Lycopus europaeus towards phenols is examined. (lookformedical.com)
  • As such it deaminates primary amines to form the corresponding aldehyde, ammonia and hydrogen peroxide, although the physiological substrates are not well defined. (biomedcentral.com)
  • these enzymes catalyze the oxidation of a wide range of biogenic amines including many neurotransmitters, histamine and xenobiotic amines. (wikipedia.org)
  • When your wounds heal and your liver detoxifies a poison such as histamine you ingested, you can thank the class of enzymes known as copper amine oxidases for their assistance. (sciencedaily.com)
  • Direct Influence of Caffeine on Glucose and Biogenic Amine Handling by Human Adipocytes. (tcd.ie)
  • The copper ion is coordinated with three histidine residues and two water molecules in a distorted square pyramidal geometry, and has a dual function in catalysis and TPQ biogenesis. (wikipedia.org)
  • The prototypic member of the family is essential to the biogenesis of connective tissue, encoding an extracellular copper-dependent amine oxidase that catalyses the first step in the formation of crosslinks in collagens and elastin. (joplink.net)
  • In l990, she demonstrated the presence of the neurotoxin, 6-hydroxydopa quinone (referred to as TPQ), at the active site of a copper-containing amine oxidase from bovine plasma, overcoming years of incorrect speculation regarding the nature of the active site structure and opening up the field of protein-derived quino-cofactors. (nationalmedals.org)
  • An additional domain is found at the N-terminal of some copper amine oxidases, as well as in related proteins such as cell wall hydrolase and N-acetylmuramoyl-L-alanine amidase. (wikipedia.org)
  • Importantly, LOX family oxidases (LOX and its family members, LOX-like proteins 1-4) are abnormally expressed in tumors and act as modifiers of the mechanical properties in the tumor microenvironment [ 12 ]. (ijbs.com)
  • It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. (lookformedical.com)
  • ACC oxidase activity was demonstrated in young Arabidopsis seedlings. (scite.ai)
  • Some copper amine oxidase enzymes exhibit unusual biochemistry, such as quantum tunneling, which enables otherwise inexplicably fast reaction rates. (sciencedaily.com)
  • Early studies on the sources of H2O2 mainly focused on NADPH oxidases and cell-wall peroxidases. (chinaagrisci.com)
  • Here, we report the involvement of polyamine oxidases (PAOs) in ethylene-induced H2O2 production in guard cells. (chinaagrisci.com)
  • DAO contains Copper as a cofactor and is coded by the Amine oxidase copper containing 1 (AOC1) gene. (tci-thaijo.org)
  • This study aims to determine the level of serum copper (Cu), an association of the AOC1 gene and antioxidant capacity in migraine patients. (tci-thaijo.org)
  • LOX is a secreted, copper-dependent amine oxidase and collagen cross-linker [ 13 ]. (ijbs.com)
  • AMT is also a monoamine oxidase A inhibitor that conceivably could contribute to its pharmacological effect and this drug also the most potent inhibitor of semicarbazide-sensitive amine oxidase (SSAO). (ncats.io)
  • The copper amine oxidase 3-dimensional structure was determined through X-ray crystallography. (wikipedia.org)
  • The copper amine oxidases occur as mushroom-shaped homodimers of 70-95 kDa, each monomer containing a copper ion and a covalently bound redox cofactor, topaquinone (TPQ). (wikipedia.org)
  • Substrates containing a -COOH group are inhibitors for catechol oxidase. (lookformedical.com)
  • A highly conserved amino acid sequence at the C-terminus end appears to be sufficient for amine oxidase activity, suggesting that each family member may retain this function. (joplink.net)
  • The catalytic domain is the largest of the 3-4 domains found in copper amine oxidases, and consists of a beta sandwich of 18 strands in two sheets. (wikipedia.org)
  • The ACC content and the in vivo activity of ACC oxidase were determined. (scite.ai)
  • Copper-containing amine oxidases are found in bacteria, fungi, plants and animals. (wikipedia.org)
  • VAP-1 mediates adhesion via heavily sialidated side chains but it also functions as a cell surface expressed ectoenzyme-a primary amine oxidase. (biomedcentral.com)
  • Similar to other low-molecular-weight amines, it has a fishy odor. (hmdb.ca)
  • In the human brain, 2-phenethylamine is believed to function as a neuromodulator or neurotransmitter (a trace amine). (hmdb.ca)