Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Amidohydrolases are enzymes that catalyze the hydrolysis of amides and related compounds, playing a crucial role in various biological processes including the breakdown and synthesis of bioactive molecules.
Enzymes that catalyze the joining of either ammonia or an amide with another molecule, in which the linkage is in the form of a carbon-nitrogen bond. EC 6.3.1.
Peptides derived from proglucagon which is also the precursor of pancreatic GLUCAGON. Despite expression of proglucagon in multiple tissues, the major production site of glucagon-like peptides (GLPs) is the INTESTINAL L CELLS. GLPs include glucagon-like peptide 1, glucagon-like peptide 2, and the various truncated forms.
Amides composed of unsaturated aliphatic FATTY ACIDS linked with AMINES by an amide bond. They are most prominent in ASTERACEAE; PIPERACEAE; and RUTACEAE; and also found in ARISTOLOCHIACEAE; BRASSICACEAE; CONVOLVULACEAE; EUPHORBIACEAE; MENISPERMACEAE; POACEAE; and SOLANACEAE. They are recognized by their pungent taste and for causing numbing and salivation.
Fatty acid derivatives that have specificity for CANNABINOID RECEPTORS. They are structurally distinct from CANNABINOIDS and were originally discovered as a group of endogenous CANNABINOID RECEPTOR AGONISTS.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
A research technique to measure solvent exposed regions of molecules that is used to provide insight about PROTEIN CONFORMATION.
Derivatives of carbamic acid, H2NC(=O)OH. Included under this heading are N-substituted and O-substituted carbamic acids. In general carbamate esters are referred to as urethanes, and polymers that include repeating units of carbamate are referred to as POLYURETHANES. Note however that polyurethanes are derived from the polymerization of ISOCYANATES and the singular term URETHANE refers to the ethyl ester of carbamic acid.
Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained.
The first chemical element in the periodic table. It has the atomic symbol H, atomic number 1, and atomic weight [1.00784; 1.00811]. It exists, under normal conditions, as a colorless, odorless, tasteless, diatomic gas. Hydrogen ions are PROTONS. Besides the common H1 isotope, hydrogen exists as the stable isotope DEUTERIUM and the unstable, radioactive isotope TRITIUM.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Compounds that interact with and modulate the activity of CANNABINOID RECEPTORS.
Deuterium. The stable isotope of hydrogen. It has one neutron and one proton in the nucleus.
Arachidonic acids are polyunsaturated fatty acids, specifically a type of omega-6 fatty acid, that are essential for human nutrition and play crucial roles in various biological processes, including inflammation, immunity, and cell signaling. They serve as precursors to eicosanoids, which are hormone-like substances that mediate a wide range of physiological responses.
A peptide of 36 or 37 amino acids that is derived from PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. GLP-1(1-37 or 1-36) is further N-terminally truncated resulting in GLP-1(7-37) or GLP-1-(7-36) which can be amidated. These GLP-1 peptides are known to enhance glucose-dependent INSULIN release, suppress GLUCAGON release and gastric emptying, lower BLOOD GLUCOSE, and reduce food intake.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the hydrolysis of glycerol monoesters of long-chain fatty acids EC 3.1.1.23.
Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion.
Stable nitrogen atoms that have the same atomic number as the element nitrogen, but differ in atomic weight. N-15 is a stable nitrogen isotope.
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.
The rate dynamics in chemical or physical systems.
The characteristic three-dimensional shape of a molecule.
A subclass of cannabinoid receptor found primarily on central and peripheral NEURONS where it may play a role modulating NEUROTRANSMITTER release.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
"Esters are organic compounds that result from the reaction between an alcohol and a carboxylic acid, playing significant roles in various biological processes and often used in pharmaceutical synthesis."
The process of cleaving a chemical compound by the addition of a molecule of water.
Peptides composed of between two and twelve amino acids.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Cell surface receptors that bind glucagon with high affinity and trigger intracellular changes which influence the behavior of cells. Activation of glucagon receptors causes a variety of effects; the best understood is the initiation of a complex enzymatic cascade in the liver which ultimately increases the availability of glucose to body organs.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Elements of the lanthanoid series including atomic number 57 (LANTHANUM) through atomic number 71 (LUTETIUM).
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Peptides composed of two amino acid units.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES.
A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A group of compounds derived from ammonia by substituting organic radicals for the hydrogens. (From Grant & Hackh's Chemical Dictionary, 5th ed)
The isotopic compound of hydrogen of mass 2 (deuterium) with oxygen. (From Grant & Hackh's Chemical Dictionary, 5th ed) It is used to study mechanisms and rates of chemical or nuclear reactions, as well as biological processes.
Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed)
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Polymers of N-SUBSTITUTED GLYCINES containing chiral centers at the a-position of their side chains. These oligomers lack HYDROGEN BONDING donors, preventing formation of the usual intrachain hydrogen bonds but can form helices driven by the steric influence of chiral side chains.
BENZOIC ACID amides.
A class of antimicrobial peptides discovered in the skin of XENOPUS LAEVIS. They kill bacteria by permeabilizing cell membranes without exhibiting significant toxicity against mammalian cells.
Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
A mass spectrometric technique that is used for the analysis of a wide range of biomolecules, such as glycoalkaloids, glycoproteins, polysaccharides, and peptides. Positive and negative fast atom bombardment spectra are recorded on a mass spectrometer fitted with an atom gun with xenon as the customary beam. The mass spectra obtained contain molecular weight recognition as well as sequence information.
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
The addition of an organic acid radical into a molecule.
AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Changing an open-chain hydrocarbon to a closed ring. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A family of hexahydropyridines.
A subclass of cannabinoid receptor found primarily on immune cells where it may play a role modulating release of CYTOKINES.
Compounds having the cannabinoid structure. They were originally extracted from Cannabis sativa L. The most pharmacologically active constituents are TETRAHYDROCANNABINOL; CANNABINOL; and CANNABIDIOL.
A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry.
Compounds based on benzene fused to oxole. They can be formed from methylated CATECHOLS such as EUGENOL.
Enzymes that catalyze the transfer of nitrogenous groups, primarily amino groups, from a donor, generally an amino acid, to an acceptor, usually a 2-oxoacid. EC 2.6.
GLYCEROL esterified with FATTY ACIDS.
A 27-amino acid peptide with histidine at the N-terminal and isoleucine amide at the C-terminal. The exact amino acid composition of the peptide is species dependent. The peptide is secreted in the intestine, but is found in the nervous system, many organs, and in the majority of peripheral tissues. It has a wide range of biological actions, affecting the cardiovascular, gastrointestinal, respiratory, and central nervous systems.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An insect growth regulator which interferes with the formation of the insect cuticle. It is effective in the control of mosquitoes and flies.
Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Ring compounds having atoms other than carbon in their nuclei. (Grant & Hackh's Chemical Dictionary, 5th ed)
Compounds that inhibit or block the activity of CANNABINOID RECEPTORS.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
A group of 16-carbon fatty acids that contain no double bonds.
Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499)
Organic compounds containing the radical -CSNH2.

The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. The tryptic peptides. (1/3261)

The NADP-specific glutamate dehydrogenase of Neurospora crassa was digested with trypsin, and peptides accounting for 441 out of the 452 residues of the polypeptide chain were isolated and substantially sequenced. Additional experimental detail has been deposited as Supplementary Publication SUP 50052 (11 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem J. (1975) 145, 5.  (+info)

Transformation mediated by RhoA requires activity of ROCK kinases. (2/3261)

BACKGROUND: The Ras-related GTPase RhoA controls signalling processes required for cytoskeletal reorganisation, transcriptional regulation, and transformation. The ability of RhoA mutants to transform cells correlates not with transcription but with their ability to bind ROCK-I, an effector kinase involved in cytoskeletal reorganisation. We used a recently developed specific ROCK inhibitor, Y-27632, and ROCK truncation mutants to investigate the role of ROCK kinases in transcriptional activation and transformation. RESULTS: In NIH3T3 cells, Y-27632 did not prevent the activation of serum response factor, transcription of c-fos or cell cycle re-entry following serum stimulation. Repeated treatment of NIH3T3 cells with Y-27632, however, substantially disrupted their actin fibre network but did not affect their growth rate. Y-27632 blocked focus formation by RhoA and its guanine-nucleotide exchange factors Dbl and mNET1. It did not affect the growth rate of cells transformed by Dbl and mNET1, but restored normal growth control at confluence and prevented their growth in soft agar. Y-27632 also significantly inhibited focus formation by Ras, but had no effect on the establishment or maintenance of transformation by Src. Furthermore, it significantly inhibited anchorage-independent growth of two out of four colorectal tumour cell lines. Consistent with these data, a truncated ROCK derivative exhibited weak ability to cooperate with activated Raf in focus formation assays. CONCLUSIONS: ROCK signalling is required for both the establishment and maintenance of transformation by constitutive activation of RhoA, and contributes to the Ras-transformed phenotype. These observations provide a potential explanation for the requirement for Rho in Ras-mediated transformation. Moreover, the inhibition of ROCK kinases may be of therapeutic use.  (+info)

The amino acid sequence of Neurospora NADP-specific glutamate dehydrogenase. Peptic and chymotryptic peptides and the complete sequence. (3/3261)

Peptic and chymotryptic peptides were isolated form the NADP-specific glutamate dehydrogenase of Neurospora crassa and substantially sequenced. Out of 452 residues in the polypeptide chain, 265 were recovered in the peptic and 427 in the chymotryptic peptides. Together with the tryptic peptides [Wootton, J. C., Taylor, J. G., Jackson, A. A., Chambers, G. K. & Fincham, J. R. S. (1975) Biochem. J. 149, 749-755], these establish the complete sequence of the chain, including the acid and amide assignments, except for seven places where overlaps are inadequate. These remaining alignments are deduced from information on the CNBr fragments obtained in another laboratory [Blumenthal, K. M., Moon, K. & Smith, E. L. (1975), J. Biol. Chem. 250, 3644-3654]. Further information has been deposited as Supplementary Publication SUP 50054 (17 pages) with the British Library (Lending Division), Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained under the terms given in Biochem. J. (1975) 145, 5.  (+info)

Deamidation and isoaspartate formation in smeared tau in paired helical filaments. Unusual properties of the microtubule-binding domain of tau. (4/3261)

An extensive loss of a selected population of neurons in Alzheimer's disease is closely related to the formation of paired helical filaments (PHFs). The most striking characteristic of PHFs upon Western blotting is their smearing. According to a previously described protocol (Morishima-Kawashima, M., Hasegawa, M., Takio, K., Suzuki, M., Titani, K., and Ihara, Y. (1993) Neuron 10, 1151-1160), smeared tau was purified, and its peptide map was compared with that of soluble (normal) tau. A CNBr fragment from soluble tau (CN5; residues 251-419 according to the 441-residue isoform) containing the microtubule-binding domain migrated at 15 and 18 kDa on SDS-polyacrylamide gel electrophoresis, whereas that from smeared tau exhibited two larger, unusually broad bands at approximately 30 and approximately 45 kDa, presumably representing dimers and trimers of CN5. In the peptide map of smeared tau-derived CN5, distinct peaks eluting at unusual locations were noted. Amino acid sequence and mass spectrometric analyses revealed that these distinct peptides bear isoaspartate at Asn-381 and Asp-387. Because no unusual peptides other than aspartyl or isoaspartyl peptide were found in the digests of smeared tau-derived CN5, it is likely that site-specific deamidation and isoaspartate formation are involved in its dimerization and trimerization and thus in PHF formation in vivo.  (+info)

Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. (5/3261)

1. We have studied the modulation of volume-regulated anion channels (VRACs) by the small GTPase Rho and by one of its targets, Rho kinase, in calf pulmonary artery endothelial (CPAE) cells. 2. RT-PCR and immunoblot analysis showed that both RhoA and Rho kinase are expressed in CPAE cells. 3. ICl,swell, the chloride current through VRACs, was activated by challenging CPAE cells with a 25 % hypotonic extracellular solution (HTS) or by intracellular perfusion with a pipette solution containing 100 microM GTPgammaS. 4. Pretreatment of CPAE cells with the Clostridium C2IN-C3 fusion toxin, which inactivates Rho by ADP ribosylation, significantly impaired the activation of ICl,swell in response to the HTS. The current density at +100 mV was 49 +/- 13 pA pF-1 (n = 17) in pretreated cells compared with 172 +/- 17 pA pF-1 (n = 21) in control cells. 5. The volume-independent activation of ICl,swell by intracellular perfusion with GTPgammaS was also impaired in C2IN-C3-pretreated cells (31 +/- 7 pA pF-1, n = 11) compared with non-treated cells (132 +/- 21 pA pF-1, n = 15). 6. Activation of ICl,swell was pertussis toxin (PTX) insensitive. 7. Y-27632, a blocker of Rho kinase, inhibited ICl,swell and delayed its activation. 8. Inhibition of Rho and of Rho kinase by the above-described treatments did not affect the extent of cell swelling in response to HTS. 9. These experiments provide strong evidence that the Rho-Rho kinase pathway is involved in the VRAC activation cascade.  (+info)

Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. (6/3261)

The role of a Rho-associated coiled-coil forming kinase in migration of neutrophils has been investigated. Rho-associated coiled-coil forming kinase I was expressed in human neutrophils. Chemotactic peptide led to a Rho-associated coiled-coil forming kinase-dependent increase in phosphorylation of myosin light chain. This was determined with the help of an antibody directed against serine 19-phosphorylated myosin light chain and an inhibitor of Rho-associated coiled-coil forming kinase (Y-27632). Y-27632 suppressed myosin light chain phosphorylation and chemotactic peptide-induced development of cell polarity and locomotion with similar potency (ED50 0.5-1.1 microM). The data strongly suggest that a Rho-associated coiled-coil forming kinase isoform, activated in human neutrophils exposed to chemotactic peptide, is important for motile functions of these cells.  (+info)

Determination of the lipophilicity of active anticonvulsant N-substituted amides of alpha-arylalkylamine-gamma-hydroxybutyric acid. (7/3261)

The lipophilicities of fourteen anticonvulsant active N-substituted amides of alpha-arylalkylamine-gamma-hydroxybutyric acid [I-XIV] have been determined by reversed-phase thin-layer chromatography with a mixture of methanol, TRIS buffer, and acetic acid as the solvent system. The RM value of each compound decreased linearly with increasing concentration of methanol. The partition coefficients (log P) of the amides were calculated by use of the Prolog P module of the Pallas system. Comparison of RM and log P enabled clog P values to be calculated. It was found that the anticonvulsant activity of amides [I-XIV] can be explained on the basis of their lipophilicity.  (+info)

Comparison of three solutions of ropivacaine/fentanyl for postoperative patient-controlled epidural analgesia. (8/3261)

BACKGROUND: Ropivacaine, 0.2%, is a new local anesthetic approved for epidural analgesia. The addition of 4 microg/ml fentanyl improves analgesia from epidural ropivacaine. Use of a lower concentration of ropivacaine-fentanyl may further improve analgesia or decrease side effects. METHODS: Thirty patients undergoing lower abdominal surgery were randomized in a double-blinded manner to receive one of three solutions: 0.2% ropivacaine-4 microg fentanyl 0.1% ropivacaine-2 microg fentanyl, or 0.05% ropivacaine-1 microg fentanyl for patient-controlled epidural analgesia after standardized combined epidural and general anesthesia. Patient-controlled epidural analgesia settings and adjustments for the three solutions were standardized to deliver equivalent drug doses. Pain scores (rest, cough, and ambulation), side effects (nausea, pruritus, sedation, motor block, hypotension, and orthostasis), and patient-controlled epidural analgesia consumption were measured for 48 h. RESULTS: All three solutions produced equivalent analgesia. Motor block was significantly more common (30 vs. 0%) and more intense with the 0.2% ropivacaine-4 microg fentanyl solution. Other side effects were equivalent between solutions and mild in severity. A significantly smaller volume of 0.2% ropivacaine-4 microg fentanyl solution was used, whereas the 0.1% ropivacaine-2 microg fentanyl group used a significantly greater amount of ropivacaine and fentanyl. CONCLUSIONS: Lesser concentrations of ropivacaine and fentanyl provide comparable analgesia with less motor block despite the use of similar amounts of ropivacaine and fentanyl. This finding suggests that concentration of local anesthetic solution at low doses is a primary determinant of motor block with patient-controlled epidural analgesia after lower abdominal surgery.  (+info)

An amide is a functional group or a compound that contains a carbonyl group (a double-bonded carbon atom) and a nitrogen atom. The nitrogen atom is connected to the carbonyl carbon atom by a single bond, and it also has a lone pair of electrons. Amides are commonly found in proteins and peptides, where they form amide bonds (also known as peptide bonds) between individual amino acids.

The general structure of an amide is R-CO-NHR', where R and R' can be alkyl or aryl groups. Amides can be classified into several types based on the nature of R and R' substituents:

* Primary amides: R-CO-NH2
* Secondary amides: R-CO-NHR'
* Tertiary amides: R-CO-NR''R'''

Amides have several important chemical properties. They are generally stable and resistant to hydrolysis under neutral or basic conditions, but they can be hydrolyzed under acidic conditions or with strong bases. Amides also exhibit a characteristic infrared absorption band around 1650 cm-1 due to the carbonyl stretching vibration.

In addition to their prevalence in proteins and peptides, amides are also found in many natural and synthetic compounds, including pharmaceuticals, dyes, and polymers. They have a wide range of applications in chemistry, biology, and materials science.

Amidohydrolases are a class of enzymes that catalyze the hydrolysis of amides and related compounds, resulting in the formation of an acid and an alcohol. This reaction is also known as amide hydrolysis or amide bond cleavage. Amidohydrolases play important roles in various biological processes, including the metabolism of xenobiotics (foreign substances) and endogenous compounds (those naturally produced within an organism).

The term "amidohydrolase" is a broad one that encompasses several specific types of enzymes, such as proteases, esterases, lipases, and nitrilases. These enzymes have different substrate specificities and catalytic mechanisms but share the common ability to hydrolyze amide bonds.

Proteases, for example, are a major group of amidohydrolases that specifically cleave peptide bonds in proteins. They are involved in various physiological processes, such as protein degradation, digestion, and regulation of biological pathways. Esterases and lipases hydrolyze ester bonds in various substrates, including lipids and other organic compounds. Nitrilases convert nitriles into carboxylic acids and ammonia by cleaving the nitrile bond (C≡N) through hydrolysis.

Amidohydrolases are found in various organisms, from bacteria to humans, and have diverse applications in industry, agriculture, and medicine. For instance, they can be used for the production of pharmaceuticals, biofuels, detergents, and other chemicals. Additionally, inhibitors of amidohydrolases can serve as therapeutic agents for treating various diseases, such as cancer, viral infections, and neurodegenerative disorders.

Amide synthases are a class of enzymes that catalyze the formation of amide bonds between two molecules. Specifically, they facilitate the reaction between a carboxylic acid and an amine to produce an amide. This process is also known as amide bond formation or amide synthesis.

In the context of medical research and therapeutic development, amide synthases are important for understanding the biosynthesis of various endogenous compounds, such as peptides and proteins, as well as for developing methods to synthesize novel drugs and pharmaceutical agents.

There are several types of amide synthases, including:

1. Non-ribosomal peptide synthetases (NRPS): These enzymes catalyze the formation of complex peptides without the involvement of ribosomes. They typically consist of multiple modules, each of which is responsible for adding a single amino acid to the growing peptide chain.
2. Amidotransferases: These enzymes transfer an amino group from a donor molecule (usually glutamine) to a carboxylic acid, resulting in the formation of an amide bond. They are involved in various metabolic pathways, including the biosynthesis of amino acids, nucleotides, and other biomolecules.
3. Amide synthetases involved in lipid metabolism: These enzymes catalyze the formation of amide bonds between fatty acids and various amine-containing molecules, such as sphingosine or serine, during the biosynthesis of complex lipids like sphingolipids and glycerophospholipids.

Understanding the function and regulation of amide synthases is crucial for developing strategies to modulate their activity in various disease contexts, including infectious diseases, cancer, and neurodegenerative disorders.

Glucagon-like peptides (GLPs) are hormones that are produced in the intestines in response to food consumption. They belong to a class of hormones known as incretins, which play a role in regulating blood sugar levels by stimulating the pancreas to produce insulin and inhibiting the release of glucagon.

There are two main types of GLPs: GLP-1 and GLP-2. GLP-1 is secreted in response to meals and stimulates the pancreas to produce insulin, suppresses glucagon production, slows gastric emptying, and promotes satiety. GLP-2, on the other hand, promotes intestinal growth and improves nutrient absorption.

GLP-1 receptor agonists are a class of medications used to treat type 2 diabetes. They mimic the effects of natural GLP-1 by stimulating insulin secretion, suppressing glucagon release, slowing gastric emptying, and promoting satiety. These medications have been shown to improve blood sugar control, reduce body weight, and lower the risk of cardiovascular events in people with type 2 diabetes.

I'm sorry for any confusion, but "Polyunsaturated Alkamides" is not a widely recognized medical term or concept. It seems to be a combination of two different terms: "polyunsaturated" which relates to fatty acid chemistry, and "alkamides" which are a type of compound found in certain plants.

1. Polyunsaturated: This term refers to fatty acids that have multiple double bonds in their carbon chain. These fatty acids are essential to the human diet and are commonly found in foods like fish, nuts, and seeds. They are often referred to as Omega-3 or Omega-6 fatty acids.

2. Alkamides: These are a type of compound found in some plants, including Echinacea species. They have been studied for their potential biological activities, such as anti-inflammatory and immunomodulatory effects.

Without more context, it's difficult to provide a precise definition or medical interpretation of "Polyunsaturated Alkamides." If you have more information about how these terms are being used together, I'd be happy to try to provide a more specific answer.

Endocannabinoids are naturally occurring compounds in the body that bind to cannabinoid receptors, which are found in various tissues and organs throughout the body. These compounds play a role in regulating many physiological processes, including appetite, mood, pain sensation, and memory. They are similar in structure to the active components of cannabis (marijuana), called phytocannabinoids, such as THC (tetrahydrocannabinol) and CBD (cannabidiol). However, endocannabinoids are produced by the body itself, whereas phytocannabinoids come from the cannabis plant. The two most well-known endocannabinoids are anandamide and 2-arachidonoylglycerol (2-AG).

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Deuterium exchange measurement is a technique used in physical chemistry and biochemistry to study the structure, dynamics, and interactions of proteins, peptides, and other biological macromolecules. This method involves the exchange of deuterium (a heavy isotope of hydrogen) for hydrogen atoms in the molecule of interest.

The process typically begins with the preparation of a sample containing the macromolecule, which is then exposed to an environment with a high concentration of deuterated solvent, such as heavy water (D2O). Over time, some or all of the exchangeable hydrogen atoms in the molecule will be replaced by deuterium atoms through a series of chemical reactions.

The rate and extent of this deuterium exchange can provide valuable information about various aspects of the macromolecule's structure and behavior, including:

1. Solvent accessibility: Regions of the molecule that are exposed to solvent will typically undergo faster deuterium exchange than those that are buried within the protein's core or shielded by other structures. This allows researchers to identify which parts of the molecule are accessible to the solvent and infer information about its overall shape and conformation.
2. Dynamics: The rate of deuterium exchange can also be used to study the flexibility and dynamics of different regions of the macromolecule. Flexible or disordered regions will typically exhibit faster exchange rates than more rigid or structured ones, providing insights into the molecule's internal motions and conformational changes.
3. Interactions: Deuterium exchange measurements can also be used to study how the macromolecule interacts with other molecules, such as ligands, drugs, or other proteins. By comparing the deuterium exchange patterns in the presence and absence of these interaction partners, researchers can identify which regions of the molecule are involved in binding and learn more about the nature of these interactions.

There are several experimental methods for measuring deuterium exchange, including nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and infrared spectroscopy (IR). Each method has its advantages and limitations, but all provide valuable information that can help researchers better understand the structure, dynamics, and function of biological macromolecules.

Carbamates are a group of organic compounds that contain the carbamate functional group, which is a carbon atom double-bonded to oxygen and single-bonded to a nitrogen atom (> N-C=O). In the context of pharmaceuticals and agriculture, carbamates are a class of drugs and pesticides that have carbamate as their core structure.

Carbamate insecticides work by inhibiting the enzyme acetylcholinesterase, which is responsible for breaking down the neurotransmitter acetylcholine in the synapses of the nervous system. When this enzyme is inhibited, acetylcholine accumulates in the synaptic cleft, leading to overstimulation of the nervous system and ultimately causing paralysis and death in insects.

Carbamate drugs are used for a variety of medical indications, including as anticonvulsants, muscle relaxants, and psychotropic medications. They work by modulating various neurotransmitter systems in the brain, such as GABA, glutamate, and dopamine. Carbamates can also be used as anti- parasitic agents, such as ivermectin, which is effective against a range of parasites including nematodes, arthropods, and some protozoa.

It's important to note that carbamate pesticides can be toxic to non-target organisms, including humans, if not used properly. Therefore, it's essential to follow all safety guidelines when handling or using these products.

Spectrophotometry, Infrared is a scientific analytical technique used to measure the absorption or transmission of infrared light by a sample. It involves the use of an infrared spectrophotometer, which directs infrared radiation through a sample and measures the intensity of the radiation that is transmitted or absorbed by the sample at different wavelengths within the infrared region of the electromagnetic spectrum.

Infrared spectroscopy can be used to identify and quantify functional groups and chemical bonds present in a sample, as well as to study the molecular structure and composition of materials. The resulting infrared spectrum provides a unique "fingerprint" of the sample, which can be compared with reference spectra to aid in identification and characterization.

Infrared spectrophotometry is widely used in various fields such as chemistry, biology, pharmaceuticals, forensics, and materials science for qualitative and quantitative analysis of samples.

Fourier Transform Infrared (FTIR) spectroscopy is a type of infrared spectroscopy that uses the Fourier transform mathematical technique to convert the raw data obtained from an interferometer into a more interpretable spectrum. This technique allows for the simultaneous collection of a wide range of wavelengths, resulting in increased sensitivity and speed compared to traditional dispersive infrared spectroscopy.

FTIR spectroscopy measures the absorption or transmission of infrared radiation by a sample as a function of frequency, providing information about the vibrational modes of the molecules present in the sample. This can be used for identification and quantification of chemical compounds, analysis of molecular structure, and investigation of chemical interactions and reactions.

In summary, FTIR spectroscopy is a powerful analytical technique that uses infrared radiation to study the vibrational properties of molecules, with increased sensitivity and speed due to the use of Fourier transform mathematical techniques and an interferometer.

I'm sorry for any confusion, but "Hydrogen" is not a medical term. It is a chemical element with the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, making up about 75% of its elemental mass.

In a medical context, hydrogen can be discussed in terms of molecular hydrogen (H2) which has been studied for potential therapeutic benefits. Some research explores its use as an antioxidant and anti-inflammatory agent, but more studies are needed to confirm these effects and understand the mechanisms behind them.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Cannabinoid receptor modulators are a class of compounds that interact with and modify the function of cannabinoid receptors, which are part of the endocannabinoid system in the human body. These receptors play a role in regulating various physiological processes such as pain, mood, memory, appetite, and immunity.

There are two main types of cannabinoid receptors: CB1 receptors, which are primarily found in the brain and central nervous system, and CB2 receptors, which are mainly found in the immune system and peripheral tissues. Cannabinoid receptor modulators can be classified into three categories based on their effects on these receptors:

1. Agonists: These compounds bind to and activate cannabinoid receptors, leading to a range of effects such as pain relief, anti-inflammation, and mood enhancement. Examples include THC (tetrahydrocannabinol), the psychoactive component of marijuana, and synthetic cannabinoids like dronabinol (Marinol) and nabilone (Cesamet).
2. Antagonists: These compounds bind to cannabinoid receptors but do not activate them, instead blocking or reducing the effects of agonist compounds. Examples include rimonabant (Acomplia), which was withdrawn from the market due to psychiatric side effects, and SR141716A.
3. Inverse Agonists: These compounds bind to cannabinoid receptors and produce effects opposite to those of agonist compounds. Examples include CBD (cannabidiol), a non-psychoactive component of marijuana that has anti-inflammatory, anxiolytic, and neuroprotective properties.

Cannabinoid receptor modulators have potential therapeutic applications in various medical conditions such as chronic pain, multiple sclerosis, epilepsy, cancer, and mental health disorders. However, further research is needed to fully understand their mechanisms of action and potential side effects.

Deuterium is a stable and non-radioactive isotope of hydrogen. The atomic nucleus of deuterium, called a deuteron, contains one proton and one neutron, giving it an atomic weight of approximately 2.014 atomic mass units (amu). It is also known as heavy hydrogen or heavy water because its hydrogen atoms contain one neutron in addition to the usual one proton found in common hydrogen atoms.

Deuterium occurs naturally in trace amounts in water and other organic compounds, typically making up about 0.015% to 0.018% of all hydrogen atoms. It can be separated from regular hydrogen through various methods such as electrolysis or distillation, and it has many applications in scientific research, particularly in the fields of chemistry and physics.

In medical contexts, deuterium is sometimes used as a tracer to study metabolic processes in the body. By replacing hydrogen atoms in specific molecules with deuterium atoms, researchers can track the movement and transformation of those molecules within living organisms. This technique has been used to investigate various physiological processes, including drug metabolism, energy production, and lipid synthesis.

Arachidonic acids are a type of polyunsaturated fatty acid that is primarily found in the phospholipids of cell membranes. They contain 20 carbon atoms and four double bonds (20:4n-6), with the first double bond located at the sixth carbon atom from the methyl end.

Arachidonic acids are derived from linoleic acid, an essential fatty acid that cannot be synthesized by the human body and must be obtained through dietary sources such as meat, fish, and eggs. Once ingested, linoleic acid is converted to arachidonic acid in a series of enzymatic reactions.

Arachidonic acids play an important role in various physiological processes, including inflammation, immune response, and cell signaling. They serve as precursors for the synthesis of eicosanoids, which are signaling molecules that include prostaglandins, thromboxanes, and leukotrienes. These eicosanoids have diverse biological activities, such as modulating blood flow, platelet aggregation, and pain perception, among others.

However, excessive production of arachidonic acid-derived eicosanoids has been implicated in various pathological conditions, including inflammation, atherosclerosis, and cancer. Therefore, the regulation of arachidonic acid metabolism is an important area of research for the development of new therapeutic strategies.

Glucagon-like peptide 1 (GLP-1) is a hormone that is secreted by the intestines in response to food intake. It plays a crucial role in regulating blood sugar levels through several mechanisms, including stimulation of insulin secretion from the pancreas, inhibition of glucagon release, slowing gastric emptying, and promoting satiety. GLP-1 is an important target for the treatment of type 2 diabetes due to its insulin-secretory and glucose-lowering effects. In addition, GLP-1 receptor agonists are used in the management of obesity due to their ability to promote weight loss by reducing appetite and increasing feelings of fullness.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Hydrogen bonding is not a medical term per se, but it is a fundamental concept in chemistry and biology that is relevant to the field of medicine. Here's a general definition:

Hydrogen bonding is a type of attractive force between molecules or within a molecule, which occurs when a hydrogen atom is bonded to a highly electronegative atom (like nitrogen, oxygen, or fluorine) and is then attracted to another electronegative atom. This attraction results in the formation of a partially covalent bond known as a "hydrogen bond."

In biological systems, hydrogen bonding plays a crucial role in the structure and function of many biomolecules, such as DNA, proteins, and carbohydrates. For example, the double helix structure of DNA is stabilized by hydrogen bonds between complementary base pairs (adenine-thymine and guanine-cytosine). Similarly, the three-dimensional structure of proteins is maintained by a network of hydrogen bonds that help to determine their function.

In medical contexts, hydrogen bonding can be relevant in understanding drug-receptor interactions, where hydrogen bonds between a drug molecule and its target protein can enhance the binding affinity and specificity of the interaction, leading to more effective therapeutic outcomes.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Monoacylglycerol lipases (MAGLs) are a type of enzyme that play a role in the metabolism of lipids, specifically by breaking down monoacylglycerols into glycerol and free fatty acids. Monoacylglycerols are formed during the digestion of dietary fats and are also produced endogenously as a result of the breakdown of complex lipids.

MAGLs are widely distributed throughout the body, but are particularly abundant in tissues that utilize large amounts of fatty acids for energy, such as the liver, heart, and skeletal muscle. In addition to their role in lipid metabolism, MAGLs have been implicated in various physiological processes, including inflammation, pain perception, and cancer.

Inhibition of MAGL activity has been proposed as a potential therapeutic strategy for the treatment of various diseases, including obesity, diabetes, and neurodegenerative disorders. However, further research is needed to fully understand the role of MAGLs in these processes and to determine the safety and efficacy of MAGL inhibitors as drugs.

In the context of medicine, particularly in relation to cancer treatment, protons refer to positively charged subatomic particles found in the nucleus of an atom. Proton therapy, a type of radiation therapy, uses a beam of protons to target and destroy cancer cells with high precision, minimizing damage to surrounding healthy tissue. The concentrated dose of radiation is delivered directly to the tumor site, reducing side effects and improving quality of life during treatment.

Nitrogen isotopes are different forms of the nitrogen element (N), which have varying numbers of neutrons in their atomic nuclei. The most common nitrogen isotope is N-14, which contains 7 protons and 7 neutrons in its nucleus. However, there are also heavier stable isotopes such as N-15, which contains one extra neutron.

In medical terms, nitrogen isotopes can be used in research and diagnostic procedures to study various biological processes. For example, N-15 can be used in a technique called "nitrogen-15 nuclear magnetic resonance (NMR) spectroscopy" to investigate the metabolism of nitrogen-containing compounds in the body. Additionally, stable isotope labeling with nitrogen-15 has been used in clinical trials and research studies to track the fate of drugs and nutrients in the body.

In some cases, radioactive nitrogen isotopes such as N-13 or N-16 may also be used in medical imaging techniques like positron emission tomography (PET) scans to visualize and diagnose various diseases and conditions. However, these applications are less common than the use of stable nitrogen isotopes.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

A cannabinoid receptor, CB1, is a G protein-coupled receptor that is primarily found in the brain and central nervous system. It is one of the two main types of cannabinoid receptors, the other being CB2, and is activated by the endocannabinoid anandamide and the phytocannabinoid Delta-9-tetrahydrocannabinol (THC), which is the primary psychoactive component of cannabis. The activation of CB1 receptors is responsible for many of the psychological effects of cannabis, including euphoria, altered sensory perception, and memory impairment. CB1 receptors are also found in peripheral tissues, such as the adipose tissue, liver, and muscles, where they play a role in regulating energy metabolism, appetite, and pain perception.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Esters are organic compounds that are formed by the reaction between an alcohol and a carboxylic acid. They are widely found in nature and are used in various industries, including the production of perfumes, flavors, and pharmaceuticals. In the context of medical definitions, esters may be mentioned in relation to their use as excipients in medications or in discussions of organic chemistry and biochemistry. Esters can also be found in various natural substances such as fats and oils, which are triesters of glycerol and fatty acids.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Glucagon receptors are a type of G protein-coupled receptor found on the surface of cells in the body, particularly in the liver, fat, and muscle tissues. These receptors bind to the hormone glucagon, which is produced and released by the alpha cells of the pancreas in response to low blood sugar levels (hypoglycemia).

When glucagon binds to its receptor, it triggers a series of intracellular signaling events that lead to the breakdown of glycogen (a stored form of glucose) in the liver and the release of glucose into the bloodstream. This helps to raise blood sugar levels back to normal.

Glucagon receptors also play a role in regulating fat metabolism, as activation of these receptors in adipose tissue can stimulate the breakdown of triglycerides (a type of fat) into free fatty acids and glycerol, which can then be used as energy sources.

Abnormalities in glucagon receptor function or expression have been implicated in various metabolic disorders, including diabetes and obesity.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

The Lanthanoid series, also known as the lanthanides, refers to the 15 metallic chemical elements in the periodic table that make up row 6 of the f-block. These elements include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).

These elements are characterized by having similar properties, including being soft, silvery-white, highly reactive, and divalent or trivalent in their chemical behavior. They have incompletely filled f orbitals, which results in unique magnetic and optical properties that make them useful in various applications, such as magnets, batteries, and phosphors.

The lanthanoid series elements are often extracted from minerals such as monazite and bastnasite, and their production involves complex chemical processes to separate them from each other. Due to their similar properties, this separation can be challenging and requires significant expertise and resources.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

A dipeptide is a type of molecule that is formed by the condensation of two amino acids. In this process, the carboxyl group (-COOH) of one amino acid combines with the amino group (-NH2) of another amino acid, releasing a water molecule and forming a peptide bond.

The resulting molecule contains two amino acids joined together by a single peptide bond, which is a type of covalent bond that forms between the carboxyl group of one amino acid and the amino group of another. Dipeptides are relatively simple molecules compared to larger polypeptides or proteins, which can contain hundreds or even thousands of amino acids linked together by multiple peptide bonds.

Dipeptides have a variety of biological functions in the body, including serving as building blocks for larger proteins and playing important roles in various physiological processes. Some dipeptides also have potential therapeutic uses, such as in the treatment of hypertension or muscle wasting disorders.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Carboxylic acids are organic compounds that contain a carboxyl group, which is a functional group made up of a carbon atom doubly bonded to an oxygen atom and single bonded to a hydroxyl group. The general formula for a carboxylic acid is R-COOH, where R represents the rest of the molecule.

Carboxylic acids can be found in various natural sources such as in fruits, vegetables, and animal products. Some common examples of carboxylic acids include formic acid (HCOOH), acetic acid (CH3COOH), propionic acid (C2H5COOH), and butyric acid (C3H7COOH).

Carboxylic acids have a variety of uses in industry, including as food additives, pharmaceuticals, and industrial chemicals. They are also important intermediates in the synthesis of other organic compounds. In the body, carboxylic acids play important roles in metabolism and energy production.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Cannabinoid receptors are a class of cell membrane receptors in the endocannabinoid system that are activated by cannabinoids. The two major types of cannabinoid receptors are CB1 receptors, which are predominantly found in the brain and central nervous system, and CB2 receptors, which are primarily found in the immune system and peripheral tissues. These receptors play a role in regulating various physiological processes such as appetite, pain-sensation, mood, and memory. They can be activated by endocannabinoids (cannabinoids produced naturally in the body), phytocannabinoids (found in cannabis plants), and synthetic cannabinoids.

I'm sorry for any confusion, but "thermodynamics" is not a term that has a specific medical definition. It is a branch of physics that deals with the relationships between heat and other forms of energy. However, the principles of thermodynamics can be applied to biological systems, including those in the human body, such as in the study of metabolism or muscle function. But in a medical context, "thermodynamics" would not be a term used independently as a diagnosis, treatment, or any medical condition.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Amines are organic compounds that contain a basic nitrogen atom with a lone pair of electrons. They are derived from ammonia (NH3) by replacing one or more hydrogen atoms with alkyl or aryl groups. The nomenclature of amines follows the substitutive type, where the parent compound is named as an aliphatic or aromatic hydrocarbon, and the functional group "amine" is designated as a suffix or prefix.

Amines are classified into three types based on the number of carbon atoms attached to the nitrogen atom:

1. Primary (1°) amines: One alkyl or aryl group is attached to the nitrogen atom.
2. Secondary (2°) amines: Two alkyl or aryl groups are attached to the nitrogen atom.
3. Tertiary (3°) amines: Three alkyl or aryl groups are attached to the nitrogen atom.

Quaternary ammonium salts have four organic groups attached to the nitrogen atom and a positive charge, with anions balancing the charge.

Amines have a wide range of applications in the chemical industry, including pharmaceuticals, dyes, polymers, and solvents. They also play a significant role in biological systems as neurotransmitters, hormones, and cell membrane components.

Deuterium oxide, also known as heavy water, is a compound consisting of two atoms of deuterium (a heavy isotope of hydrogen) and one atom of oxygen. Its chemical formula is D2O. Deuterium oxide has physical and chemical properties similar to those of regular water (H2O), but its density and boiling point are slightly higher due to the increased atomic weight. It is used in various scientific research applications, including as a tracer in biochemical and medical studies.

Solvents, in a medical context, are substances that are capable of dissolving or dispersing other materials, often used in the preparation of medications and solutions. They are commonly organic chemicals that can liquefy various substances, making it possible to administer them in different forms, such as oral solutions, topical creams, or injectable drugs.

However, it is essential to recognize that solvents may pose health risks if mishandled or misused, particularly when they contain volatile organic compounds (VOCs). Prolonged exposure to these VOCs can lead to adverse health effects, including respiratory issues, neurological damage, and even cancer. Therefore, it is crucial to handle solvents with care and follow safety guidelines to minimize potential health hazards.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

I'm sorry for any confusion, but "peptoids" is not a commonly used medical term in the way that we typically define medical conditions or treatments. However, peptoids are a term used in the field of chemistry and biochemistry.

Peptoids, also known as oligourethanes, are a type of organic polymer mimic of peptides (short proteins). They are made up of repeating units called N-substituted glycines, where the side chain is attached to the nitrogen atom rather than the alpha carbon atom as in natural peptides. This structural difference makes peptoids more resistant to degradation and more stable under a wider range of conditions compared to their peptide counterparts.

Peptoids have been explored for various applications, including drug discovery, where they can be designed to bind specifically to certain proteins or receptors, potentially leading to the development of new therapeutic agents.

Benzamides are a class of organic compounds that consist of a benzene ring (a aromatic hydrocarbon) attached to an amide functional group. The amide group can be bound to various substituents, leading to a variety of benzamide derivatives with different biological activities.

In a medical context, some benzamides have been developed as drugs for the treatment of various conditions. For example, danzol (a benzamide derivative) is used as a hormonal therapy for endometriosis and breast cancer. Additionally, other benzamides such as sulpiride and amisulpride are used as antipsychotic medications for the treatment of schizophrenia and related disorders.

It's important to note that while some benzamides have therapeutic uses, others may be toxic or have adverse effects, so they should only be used under the supervision of a medical professional.

Magainins are a group of antimicrobial peptides that were first isolated from the skin of the African clawed frog, Xenopus laevis. These peptides have broad-spectrum activity against various microorganisms including bacteria, fungi, and enveloped viruses. Magainins are thought to play a crucial role in the innate immune system of the frog, helping to protect the animal from infection through its skin. They function by disrupting the membranes of microbial cells, leading to cell death. Magainins have been studied for their potential use as therapeutic agents, particularly in the context of antibiotic-resistant bacterial infections. However, more research is needed to fully understand their mechanisms of action and safety profile before they can be widely used in clinical settings.

Spectrum analysis in the context of Raman spectroscopy refers to the measurement and interpretation of the Raman scattering spectrum of a material or sample. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to examine the vibrational modes of molecules.

When a monochromatic light source, typically a laser, illuminates a sample, a small fraction of the scattered light undergoes a shift in frequency due to interactions with the molecular vibrations of the sample. This shift in frequency is known as the Raman shift and is unique to each chemical bond or functional group within a molecule.

In a Raman spectrum, the intensity of the scattered light is plotted against the Raman shift, which is expressed in wavenumbers (cm-1). The resulting spectrum provides a "fingerprint" of the sample's molecular structure and composition, allowing for the identification and characterization of various chemical components within the sample.

Spectrum analysis in Raman spectroscopy can reveal valuable information about the sample's crystallinity, phase transitions, polymorphism, molecular orientation, and other properties. This technique is widely used across various fields, including materials science, chemistry, biology, pharmaceuticals, and forensics, to analyze a diverse range of samples, from simple liquids and solids to complex biological tissues and nanomaterials.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

In the context of medical terminology, "solutions" refers to a homogeneous mixture of two or more substances, in which one substance (the solute) is uniformly distributed within another substance (the solvent). The solvent is typically the greater component of the solution and is capable of dissolving the solute.

Solutions can be classified based on the physical state of the solvent and solute. For instance, a solution in which both the solvent and solute are liquids is called a liquid solution or simply a solution. A solid solution is one where the solvent is a solid and the solute is either a gas, liquid, or solid. Similarly, a gas solution refers to a mixture where the solvent is a gas and the solute can be a gas, liquid, or solid.

In medical applications, solutions are often used as vehicles for administering medications, such as intravenous (IV) fluids, oral rehydration solutions, eye drops, and topical creams or ointments. The composition of these solutions is carefully controlled to ensure the appropriate concentration and delivery of the active ingredients.

Pyrrolidonecarboxylic acid, also known as Proline or Prolinic acid, is an organic compound with the formula N-pyrrolidinecarboxylic acid. It is a cyclic amino acid, which means that its side chain is bonded to the rest of the molecule in a ring structure.

Proline is an important constituent of many proteins and plays a crucial role in maintaining the structural integrity of the protein. It is classified as a non-essential amino acid because it can be synthesized by the human body from other amino acids, such as glutamic acid.

Pyrrolidonecarboxylic acid has a variety of uses in medicine and industry, including as a chiral auxiliary in organic synthesis, a building block for pharmaceuticals, and a component in cosmetics and personal care products. It is also used as a buffering agent and a stabilizer in various medical and industrial applications.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

Fast Atom Bombardment (FAB) Mass Spectrometry is a technique used for determining the mass of ions in a sample. In FAB-MS, the sample is mixed with a matrix material and then bombarded with a beam of fast atoms, usually xenon or cesium. This bombardment leads to the formation of ions from the sample which can then be detected and measured using a mass analyzer. The resulting mass spectrum provides information about the molecular weight and structure of the sample molecules. FAB-MS is particularly useful for the analysis of large, thermally labile, or polar molecules that may not ionize well by other methods.

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

Asparagine is an organic compound that is classified as a naturally occurring amino acid. It contains an amino group, a carboxylic acid group, and a side chain consisting of a single carbon atom bonded to a nitrogen atom, making it a neutral amino acid. Asparagine is encoded by the genetic codon AAU or AAC in the DNA sequence.

In the human body, asparagine plays important roles in various biological processes, including serving as a building block for proteins and participating in the synthesis of other amino acids. It can also act as a neurotransmitter and is involved in the regulation of cellular metabolism. Asparagine can be found in many foods, particularly in high-protein sources such as meat, fish, eggs, and dairy products.

Acylation is a medical and biological term that refers to the process of introducing an acyl group (-CO-) into a molecule. This process can occur naturally or it can be induced through chemical reactions. In the context of medicine and biology, acylation often occurs during post-translational modifications of proteins, where an acyl group is added to specific amino acid residues, altering the protein's function, stability, or localization.

An example of acylation in medicine is the administration of neuraminidase inhibitors, such as oseltamivir (Tamiflu), for the treatment and prevention of influenza. These drugs work by inhibiting the activity of the viral neuraminidase enzyme, which is essential for the release of newly formed virus particles from infected cells. Oseltamivir is administered orally as an ethyl ester prodrug, which is then hydrolyzed in the body to form the active acylated metabolite that inhibits the viral neuraminidase.

In summary, acylation is a vital process in medicine and biology, with implications for drug design, protein function, and post-translational modifications.

Ethanolamines are a class of organic compounds that contain an amino group (-NH2) and a hydroxyl group (-OH) attached to a carbon atom. They are derivatives of ammonia (NH3) in which one or two hydrogen atoms have been replaced by a ethanol group (-CH2CH2OH).

The most common ethanolamines are:

* Monethanolamine (MEA), also called 2-aminoethanol, with the formula HOCH2CH2NH2.
* Diethanolamine (DEA), also called 2,2'-iminobisethanol, with the formula HOCH2CH2NHCH2CH2OH.
* Triethanolamine (TEA), also called 2,2',2''-nitrilotrisethanol, with the formula N(CH2CH2OH)3.

Ethanolamines are used in a wide range of industrial and consumer products, including as solvents, emulsifiers, detergents, pharmaceuticals, and personal care products. They also have applications as intermediates in the synthesis of other chemicals. In the body, ethanolamines play important roles in various biological processes, such as neurotransmission and cell signaling.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Cyclization is a chemical process that involves forming a cyclic structure or ring-shaped molecule from a linear or open-chain compound. In the context of medicinal chemistry and drug design, cyclization reactions are often used to synthesize complex molecules, including drugs, by creating rings or fused ring systems within the molecule's structure.

Cyclization can occur through various mechanisms, such as intramolecular nucleophilic substitution, electrophilic addition, or radical reactions. The resulting cyclized compounds may exhibit different chemical and biological properties compared to their linear precursors, making them valuable targets for drug discovery and development.

In some cases, the cyclization process can lead to the formation of stereocenters within the molecule, which can impact its three-dimensional shape and how it interacts with biological targets. Therefore, controlling the stereochemistry during cyclization reactions is crucial in medicinal chemistry to optimize the desired biological activity.

Overall, cyclization plays a significant role in the design and synthesis of many pharmaceutical compounds, enabling the creation of complex structures that can interact specifically with biological targets for therapeutic purposes.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

A cannabinoid receptor CB2 is a G-protein coupled receptor that is primarily found in the immune system and cells associated with the immune system. They are expressed on the cell surface and are activated by endocannabinoids, plant-derived cannabinoids (phytocannabinoids) like those found in marijuana, and synthetic cannabinoids.

CB2 receptors are involved in a variety of physiological processes including inflammation, pain perception, and immune function. They have been shown to play a role in modulating the release of cytokines, which are signaling molecules that mediate and regulate immunity and inflammation. CB2 receptors may also be found in the brain, although at much lower levels than CB1 receptors.

CB2 receptor agonists have been studied as potential treatments for a variety of conditions including pain management, neuroinflammation, and autoimmune disorders. However, more research is needed to fully understand their therapeutic potential and any associated risks.

Cannabinoids are a class of chemical compounds that are produced naturally in the resin of the cannabis plant (also known as marijuana). There are more than 100 different cannabinoids that have been identified, the most well-known of which are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

THC is the primary psychoactive component of cannabis, meaning it is responsible for the "high" or euphoric feeling that people experience when they use marijuana. CBD, on the other hand, does not have psychoactive effects and is being studied for its potential therapeutic uses in a variety of medical conditions, including pain management, anxiety, and epilepsy.

Cannabinoids work by interacting with the body's endocannabinoid system, which is a complex network of receptors and chemicals that are involved in regulating various physiological processes such as mood, appetite, pain sensation, and memory. When cannabinoids bind to these receptors, they can alter or modulate these processes, leading to potential therapeutic effects.

It's important to note that while some cannabinoids have been shown to have potential medical benefits, marijuana remains a controlled substance in many countries, and its use is subject to legal restrictions. Additionally, the long-term health effects of using marijuana or other forms of cannabis are not fully understood and are the subject of ongoing research.

Mass spectrometry with electrospray ionization (ESI-MS) is an analytical technique used to identify and quantify chemical species in a sample based on the mass-to-charge ratio of charged particles. In ESI-MS, analytes are ionized through the use of an electrospray, where a liquid sample is introduced through a metal capillary needle at high voltage, creating an aerosol of charged droplets. As the solvent evaporates, the analyte molecules become charged and can be directed into a mass spectrometer for analysis.

ESI-MS is particularly useful for the analysis of large biomolecules such as proteins, peptides, and nucleic acids, due to its ability to gently ionize these species without fragmentation. The technique provides information about the molecular weight and charge state of the analytes, which can be used to infer their identity and structure. Additionally, ESI-MS can be interfaced with separation techniques such as liquid chromatography (LC) for further purification and characterization of complex samples.

Benzodioxoles are chemical compounds that consist of a benzene ring (a six-carbon cyclic structure with alternating double bonds) linked to two oxide groups through methane bridges. They can be found naturally in some plants, such as nutmeg and tea, but they are also synthesized for use in various pharmaceuticals and illicit drugs.

In the medical field, benzodioxoles are used in the synthesis of certain drugs, including some antimicrobials, antihelmintics (drugs that treat parasitic worm infections), and muscle relaxants. However, they are perhaps best known for their use as a structural component in certain illicit drugs, such as ecstasy (MDMA) and related substances.

It's important to note that while benzodioxoles themselves may have some medical uses, many of the drugs that contain this structure can be dangerous when used improperly or without medical supervision.

Nitrogenous group transferases are a class of enzymes that catalyze the transfer of nitrogen-containing groups from one molecule to another. These enzymes play a crucial role in various metabolic pathways, including the biosynthesis and degradation of amino acids, nucleotides, and other nitrogen-containing compounds.

The term "nitrogenous group" refers to any chemical group that contains nitrogen atoms. Examples of nitrogenous groups include amino groups (-NH2), amide groups (-CONH2), and cyano groups (-CN). Transferases that move these groups from one molecule to another are classified as nitrogenous group transferases.

These enzymes typically require cofactors such as ATP, NAD+, or other small molecules to facilitate the transfer of the nitrogenous group. They follow the general reaction mechanism of a transferase enzyme, where the substrate (donor) binds to the active site of the enzyme and transfers its nitrogenous group to an acceptor molecule, resulting in the formation of a new product.

Examples of nitrogenous group transferases include:

* Glutamine synthetase, which catalyzes the conversion of glutamate to glutamine by adding an ammonia group (-NH3) from ATP.
* Aspartate transcarbamylase, which catalyzes the transfer of a carbamoyl group (-CO-NH2) from carbamoyl phosphate to aspartate during pyrimidine biosynthesis.
* Argininosuccinate synthetase, which catalyzes the formation of argininosuccinate by transferring an aspartate group from aspartate to citrulline during the urea cycle.

Understanding nitrogenous group transferases is essential for understanding various metabolic pathways and their regulation in living organisms.

Glycerides are esters formed from glycerol and one, two, or three fatty acids. They include monoglycerides (one fatty acid), diglycerides (two fatty acids), and triglycerides (three fatty acids). Triglycerides are the main constituents of natural fats and oils, and they are a major form of energy storage in animals and plants. High levels of triglycerides in the blood, also known as hypertriglyceridemia, can increase the risk of heart disease and stroke.

I'm sorry for the confusion, but "Peptide PHI" is not a widely recognized or established medical term. It seems that there might be some misunderstanding or miscommunication related to this term.

If you are referring to a specific type of peptide or a research study, could you please provide more context or clarify the source of the term? I would be happy to help you with accurate and reliable information once I have a better understanding of what you are asking about.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Diflubenzuron is an insect growth regulator that belongs to the benzoylphenyl urea class. It works by inhibiting the synthesis of chitin, a crucial component of the exoskeleton of insects, which results in the prevention of their normal molting and growth. Diflubenzuron is used primarily for pest control in agriculture, forestry, and vector management (such as controlling mosquito populations). It's important to note that this compound is not typically used in human medicine.

Coumarins are a class of organic compounds that occur naturally in certain plants, such as sweet clover and tonka beans. They have a characteristic aroma and are often used as fragrances in perfumes and flavorings in food products. In addition to their use in consumer goods, coumarins also have important medical applications.

One of the most well-known coumarins is warfarin, which is a commonly prescribed anticoagulant medication used to prevent blood clots from forming or growing larger. Warfarin works by inhibiting the activity of vitamin K-dependent clotting factors in the liver, which helps to prolong the time it takes for blood to clot.

Other medical uses of coumarins include their use as anti-inflammatory agents and antimicrobial agents. Some coumarins have also been shown to have potential cancer-fighting properties, although more research is needed in this area.

It's important to note that while coumarins have many medical uses, they can also be toxic in high doses. Therefore, it's essential to use them only under the guidance of a healthcare professional.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Heterocyclic compounds are organic compounds that contain at least one atom within the ring structure, other than carbon, such as nitrogen, oxygen, sulfur or phosphorus. These compounds make up a large class of naturally occurring and synthetic materials, including many drugs, pigments, vitamins, and antibiotics. The presence of the heteroatom in the ring can have significant effects on the physical and chemical properties of the compound, such as its reactivity, stability, and bonding characteristics. Examples of heterocyclic compounds include pyridine, pyrimidine, and furan.

Cannabinoid receptor antagonists are a class of compounds that bind to and block cannabinoid receptors, which are specialized proteins found on the surface of certain cells in the body. These receptors play an important role in regulating various physiological processes, including pain perception, appetite regulation, and memory formation.

There are two main types of cannabinoid receptors: CB1 receptors, which are primarily found in the brain and central nervous system, and CB2 receptors, which are mainly found in immune cells and other peripheral tissues.

Cannabinoid receptor antagonists work by preventing the activation of these receptors by natural cannabinoids such as THC (tetrahydrocannabinol), the main psychoactive component of marijuana. By blocking the effects of THC, cannabinoid receptor antagonists can be used to treat conditions that are exacerbated by THC, such as substance use disorders and psychosis.

One example of a cannabinoid receptor antagonist is rimonabant, which was approved in Europe for the treatment of obesity but was later withdrawn from the market due to concerns about psychiatric side effects. Other cannabinoid receptor antagonists are currently being investigated for their potential therapeutic uses, including the treatment of pain, inflammation, and neurodegenerative disorders.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

Indicators and reagents are terms commonly used in the field of clinical chemistry and laboratory medicine. Here are their definitions:

1. Indicator: An indicator is a substance that changes its color or other physical properties in response to a chemical change, such as a change in pH, oxidation-reduction potential, or the presence of a particular ion or molecule. Indicators are often used in laboratory tests to monitor or signal the progress of a reaction or to indicate the end point of a titration. A familiar example is the use of phenolphthalein as a pH indicator in acid-base titrations, which turns pink in basic solutions and colorless in acidic solutions.

2. Reagent: A reagent is a substance that is added to a system (such as a sample or a reaction mixture) to bring about a chemical reaction, test for the presence or absence of a particular component, or measure the concentration of a specific analyte. Reagents are typically chemicals with well-defined and consistent properties, allowing them to be used reliably in analytical procedures. Examples of reagents include enzymes, antibodies, dyes, metal ions, and organic compounds. In laboratory settings, reagents are often prepared and standardized according to strict protocols to ensure their quality and performance in diagnostic tests and research applications.

Thioamides are a type of organic compound that contain a sulfur atom (S) in place of the oxygen atom (O) in an amide. The general structure of a thioamide is R-C(=S)-NH-R', where R and R' are organic groups. Thioamides are found in some naturally occurring compounds, such as certain antibiotics and enzyme inhibitors, and they can also be synthesized in the laboratory. They have been studied for their potential use as pharmaceuticals and agrochemicals.

Bulky amide ligands have a lesser tendency to bridge. Amide ligands may participate in metal-ligand π-bonding giving a complex ... The alkali metal amides, MNH2 (M = Li, Na, K) are commercially available. Sodium amide (also known as sodamide) is synthesized ... Metal amides (systematic name metal azanides) are a class of coordination compounds composed of a metal center with amide ... Lithium amides are the most important amides. They are prepared from n-butyllithium and the appropriate amine R2NH + BuLi → ...
... amide ligands and are part of a broader category of metal amides. Due to the bulky hydrocarbon backbone metal bis( ... amide. In line with the general method, bis(trimethylsilyl)amides of transition metals are prepared by a reaction between the ... Cage Complexes of N-Heterocyclic Amide and Bis(trimethylsilyl)amide Ligands: Synthesis, Structure, and Magnetic Properties". ... Metal bis(trimethylsilyl)amides are strong bases. They are corrosive, and are incompatible with many chlorinated solvents. ...
Cyclic amides are called lactams; they are necessarily secondary or tertiary amides. Amides are pervasive in nature and ... In primary and secondary amides, the presence of N-H dipoles allows amides to function as H-bond donors as well. Thus amides ... "amide". The American Heritage Dictionary of the English Language (5th ed.). HarperCollins. "amide - Definition of amide in ... of amides is called the amide group (specifically, carboxamide group). In the usual nomenclature, one adds the term "amide" to ...
The dansyl amide moiety is also called a dansyl group, and it can be introduced into amino acids or other amines in a reaction ... Dansyl amide is a fluorescent dye that forms in a reaction between dansyl chloride and ammonia. It is the simplest ...
... is an inorganic compound with the chemical formula KNH2. Like other alkali metal amides, it is a white solid ... Potassium amide is produced by the reaction of ammonia with potassium. The reaction typically requires a catalyst. ... O. Glemser, H. Sauer (1963). "Silver Amide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 1. ... Takaki, Katherine S. (2001). "Potassium Amide". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rp193. ...
H2 The conjugate bases of amines are known as amides. Thus, a lithium amide may also refer to any compound in the class of the ... Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH2. It is a white solid with a ... Sodium amide Butyllithium David, William I. F.; Jones, Martin O.; Gregory, Duncan H.; Jewell, Catherine M.; Johnson, Simon R.; ... The cyclic oligomers form when the nitrogen of the amide forms a sigma bond to a lithium, while the nitrogen lone pair binds to ...
As such, sodium amide is to be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples ... Sodium amide can be prepared by the reaction of sodium with ammonia gas, but it is usually prepared by the reaction in liquid ... Sodium amide is mainly used as a strong base in organic chemistry, often in liquid ammonia solution. It is the reagent of ... Sodium amide induces the loss of two equivalents of hydrogen bromide from a vicinal dibromoalkane to give a carbon-carbon ...
... in such structures a 9-atom amide ring occurs between the amide side chain of the pentapeptide's asparagine and the main chain ... Amide Rings are small motifs in proteins and polypeptides. They consist of 9-atom or 11-atom rings formed by two CO...HN ... An amide ring is employed in the specificity of the adaptor protein GRB2 for a particular asparagine within proteins it binds. ... An 11-atom amide ring, involving a glutamine residue, occurs at the interior of the light chain variable domains of some ...
N,N-disubstituted amides can be reduced to aldehydes by using an excess of the amide:[citation needed] R(CO)NRR' + LiAlH4 → ... Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group ... Some amides can be reduced to aldehydes in the Sonn-Müller method. A well known method for amide reduction is hydrosilylation ... Zhou, S.; Junge, K.; Addis, D.; Das, S.; Beller, M. (2009). "A Convenient and General Iron-Catalyzed Reduction of Amides to ...
Fatty acid amides (FAAs) are amides formed from a fatty acid and an amine. In nature, many FAAs have ethanolamine as the amine ... Other fatty acid amides are fatty acid primary amides (FAPAs). They contain the functionality RC(O)NH2). Oleamide is an example ... The signalling is controlled in part by fatty acid amide hydrolases, which convert the amide to the parent fatty acid. One ... Aliphatic amides can be found in Zanthoxylum species found in Nigeria. Fatty acid ester McKinney, Michele K.; Cravatt, Benjamin ...
... (EC 1.8.1.16, GAR) is an enzyme with systematic name glutathione amide:NAD+ oxidoreductase. This ... glutathione amide disulfide + NADH + H+ Glutathione amide reductase is a dimeric flavoprotein (FAD). Vergauwen B, Pauwels F, ... Glutathione+amide+reductase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.8.1) ... Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling". The Journal of Biological ...
cyclic amide or lactam, a cyclic compound with the amide group -C(=O)N- in the ring. metal amide, an ionic compound ("salt") ... "amide". The American Heritage Dictionary of the English Language (5th ed.). HarperCollins. "amide - Definition of amide in ... the "Gold Book") (1997). Online corrected version: (2006-) "amides". doi:10.1351/goldbook.A00266 (Amides). ... 2NR2 The term amide may also refer to amide group, a functional group -C(=O)N= consisting of a carbonyl adjacent to a nitrogen ...
... or PEBA is a thermoplastic elastomer (TPE). It is known under the tradename of PEBAX® (Arkema) and ... Eustache, R.-P. (2005). "Poly(Ether -b-Amide) TPE: Structure, Properties and Applications". In Fakirov, Stoyko (ed.). Handbook ...
... (EC 1.11.1.17) is an enzyme with systematic name glutathione amide:hydrogen-peroxide ... Glutathione+amide-dependent+peroxidase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology ... Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling". The Journal of Biological ... This enzyme catalyses the following chemical reaction 2 glutathione amide + H2O2 ⇌ {\displaystyle \rightleftharpoons } ...
L-proline+amide+hydrolase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 3.5.1). ... L-proline amide hydrolase (EC 3.5.1.101, S-stereoselective piperazine-2-tert-butylcarboxamide hydrolase, LaaA, L-amino acid ...
... , Sigma-Aldrich Tesh, Kris F.; Hanusa, Timothy P.; Huffman, John C. (1990). "Ion pairing in [ ... Potassium bis(trimethylsilyl)amide (commonly abbreviated as KHMDS, Potassium(K) HexaMethylDiSilazide) or potassium ... Metal bis(trimethylsilyl)amides "Potassium Hexamethyldisilazane". sigmaaldrich.com. Retrieved 1 April 2023. ...
The von Braun amide degradation is the chemical reaction of a monosubstituted amide with phosphorus pentachloride or thionyl ... The secondary amide 1 reacts via its enolized form with phosphorus pentachloride to form the oxonium ion 2. This produces a ... Phillips, B.A.; Fodor, G.; Gal, J.; Letourneau, F.; Ryan, J.J. (1973). "Mechanism of the von Braun amide degradations with ...
... amides Watson, B. T.; Lebel, H. "Sodium bis(trimethylsilyl)amide" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. ... Sodium bis(trimethylsilyl)amide is the organosilicon compound with the formula NaN(Si(CH3)3)2. This species, usually called ... amide". Organometallics. 16 (23): 5108-5112. doi:10.1021/om970444c. Sergey A. Kozmin, Shuwen He, and Viresh H. Rawal. " ...
... amides. MXn + n Li(HMDS) → M(HMDS)n + n LiX where X = Cl, Br, I and sometimes F Metal bis(trimethylsilyl)amide complexes are ... Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(Si(CH3)3)2. It is commonly ... S(N(Si(CH3)3)2)2 is prepared by the reaction of lithium bis(trimethylsilyl)amide and sulfur dichloride (SCl2). 2 LiN(Si(CH3)3)2 ... Lithium amide Lithium diisopropylamide Lithium tetramethylpiperidide Amonoo-Neizer, E. H.; Shaw, R. A.; Skovlin, D. O.; Smith, ...
... (NAAA) EC 3.5.1.- is a member of the choloylglycine hydrolase family, a subset of the N ... NAAA cleaves C-N non-peptide bonds in linear amides, particularly ethanolamides. Its mechanism is quite similar to that of AC, ... While NAAA operates much like fatty acid amide hydrolase (HUGO gene symbol: FAAH), the two enzymes are not homologous. On the ... and functional similarity to fatty acid amide hydrolase (FAAH) allow it to be studied extensively. The overall enzyme mechanism ...
... (3-Pentyllysergamide, LSP) is an analogue of LSD originally researched by David E. Nichols and ... Lysergic acid 2-butyl amide Methylisopropyllysergamide Nichols DE (2001). "LSD and Its Lysergamide Cousins". The Heffter Review ... "Stereoselective LSD-like activity in a series of d-lysergic acid amides of (R)- and (S)-2-aminoalkanes". Journal of Medicinal ...
Patricelli MP, Cravatt BF (October 1999). "Fatty acid amide hydrolase competitively degrades bioactive amides and esters ... Fatty-acid amide hydrolase 1 or FAAH-1(EC 3.5.1.99, oleamide hydrolase, anandamide amidohydrolase) is a member of the serine ... fatty-acid+amide+hydrolase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Proteopedia FAAH entry - ... In vivo, FAAH is the principal catabolic enzyme for a class of bioactive lipids called the fatty acid amides (FAAs). Members of ...
It is a structural isomer of LSD, with the two ethyl groups on the amide nitrogen having been replaced by a single sec-butyl ... Lysergic acid 2-butyl amide (2-Butyllysergamide, LSB) is an analogue of LSD originally developed by Richard Pioch at Eli Lilly ... US patent 2997470, Richard P. Pioch, "LYSERGIC ACID AMIDES", published 1956-03-05, issued 1961-08-22 Oberlender R, Pfaff RC, ... and while lysergic acid 2-butyl amide is more potent than LSD as a 5-HT1A agonist, it is slightly less potent as a 5-HT2A ...
A qualitative order of electrophilicity is RCHO (aldehydes) > R2CO (ketones) > RCO2R' (esters) > RCONH2 (amides). A variety of ...
... a nitroso group bonded to the nitrogen of an amide or similar functional group. Specific classes include the N-nitrosamides, N- ...
Primary amides (RC(O)NH2) are more amenable to this reaction. In contrast to the reluctance of amides as substrates, urea is ... Transamidation is a chemical reaction in which an amide reacts with an amine to generate a new amide: RC(O)NR'2 + HNR"2 → RC(O) ... "A two-step approach to achieve secondary amide transamidation enabled by nickel catalysis". Nature Communications. 7: 11554. ...
Akiyama, Masayasu; Katoh, Akira; Ogawa, Takuya (1989). "N-hydroxy amides. Part 8. Synthesis and iron(III)-holding properties of ...
Amides give thioamides. With 1,4-diketones the reagent forms thiophenes. It is also used to deoxygenate sulfoxides. The use of ...
Linda P, Stener A, Cipiciani A, Savelli G (January-February 1983). "Hydrolysis of amides. Kinetics and mechanism of the basic ...
It is an amide of nicotinic acid. Foods that contain niacinamide include yeast, meat, milk, and green vegetables. Niacinamide ... The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It ... The enzyme allows for a more selective synthesis as further hydrolysis of the amide to nicotinic acid is avoided. Nicotinamide ... Schmidberger JW, Hepworth LJ, Green AP, Flitsch SL (2015). "Enzymatic Synthesis of Amides". In Faber K, Fessner WD, Turner NJ ( ...
Bulky amide ligands have a lesser tendency to bridge. Amide ligands may participate in metal-ligand π-bonding giving a complex ... The alkali metal amides, MNH2 (M = Li, Na, K) are commercially available. Sodium amide (also known as sodamide) is synthesized ... Metal amides (systematic name metal azanides) are a class of coordination compounds composed of a metal center with amide ... Lithium amides are the most important amides. They are prepared from n-butyllithium and the appropriate amine R2NH + BuLi → ...
The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database ...
Other reactions of amides . . .. The lack of base character in amides, the dehydration of amides to make nitriles, the Hofmann ... The hydrolysis of amides using acids or alkalis (including the test for an amide). ... degradation of amides to make primary amines with one less carbon atom, and the reduction of amides. ...
... was 4386944 Euros. Discover more data with ... How does Poland rank in Sold Production of Acyclic Amides and Their Derivatives and Salts Thereof?. #. 11 Countries. Euros. ... With €4,386,944 in 2019, the country was ranked number 9 among other countries in Sold Production of Acyclic Amides and Their ... Since 2014, Poland Sold Production of Acyclic Amides and Their Derivatives and Salts Thereof rose 7.8% year on year. ...
Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From ... Amides: Organic compounds containing the -CO-NH2 radical. ... Amides. Subscribe to New Research on Amides Organic compounds ... 09/01/2005 - "Many fatty acid amides appear to play a role in pain and inflammation. ". 11/26/2009 - "Among these, two amide ... 06/01/2004 - "Amino acid amides (AAA) were prepared and evaluated in seizure models. ". 03/01/1996 - "All obtained amides as ...
Poly(ester amide)s (PEAs) have been shown to exhibit promising properties for the development of particle-based intra-articular ... Poly(ester amide) particles for controlled delivery of celecoxib. Journal of Biomedical Materials Research - Part A * Ian J. ... Poly(ester amide)s (PEAs) have been shown to exhibit promising properties for the development of particle-based intra-articular ... Ian J. Villamagna, Trent N. Gordon, Mark B. Hurtig, Frank Beier, et al.. "Poly(ester amide) particles for controlled delivery ...
The temperature and solvent dependence of the nuclear magnetic resonance nmr spectra of a number of amides has been studied. ... The temperature and solvent dependence of the nuclear magnetic resonance nmr spectra of a number of amides has been studied. ...
However, after its secretion from the intestine, the insulinotropic GLP-1 (7-36) amide hormone is rapidly inactivated by ... amide. Inasmuch as most of the circulating GLP-1 is in the form of the metabolite GLP-1 (9-36) amide it has been suggested that ... GLP-1 (9-36) amide metabolite suppression of glucose production in isolated mouse hepatocytes Horm Metab Res. 2010 Aug;42(9): ... In earlier studies, infusions of GLP-1 (9-36) amide in obese insulin-resistant subjects showed a marked suppression of hepatic ...
US-2669582-A chemical patent summary.
Copyright The Student Room 2023 all rights reserved. The Student Room and The Uni Guide are trading names of The Student Room Group Ltd.. Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: Imperial House, 2nd Floor, 40-42 Queens Road, Brighton, East Sussex, BN1 3XB ...
... Subhash L. Yedage, Bhalchandra M. Bhanage*. * ... oxidative amidation of commercially affordable alcohols to Weinreb amides in very good yields. The reaction tolerates various ...
Crystal Structure of Human Fragment D Complexed with Ala-His-Arg-Pro-amide ... GLY-HIS-ARG-PRO-AMIDE peptide ligand. G [auth I],. H [auth J]. 5. N/A. Mutation(s): 0 ... Exclusive Binding of Ala-His-Arg-Pro-amide by the beta-Chain Hole.. Doolittle, R.F., Chen, A., Pandi, L.. (2006) Biochemistry ... Crystal Structure of Human Fragment D Complexed with Ala-His-Arg-Pro-amide. *PDB DOI: https://doi.org/10.2210/pdb2H43/pdb ...
Transition-metal-free catalytic protocols for controlled reduction of amide functions using cheap and bench-stable hydrosilanes ... Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. Wubing Yao*, ... as reducing agents enable the selective reduction of unactivated C-O bonds in amides. By altering the hydrosilane and solvent, ...
Citric Acid (3-Methanethiosulfonate Ethyl Amide) (3 suppliers). IUPAC Name: dimethyl 3-hydroxy-3-(2- ...
... amides results in constraining of the C-terminal residue in natively disallowed conformations both in crystals ... Selective modification of the C-terminal amide in peptides to dihydrooxazine (a novel stable imidate isostere) by ... amide. -to-. imidate. modification D. N. Reddy, R. Thirupathi and E. N. Prabhakaran, Chem. Commun., 2011, 47, 9417 DOI: 10.1039 ... Accessing the disallowed conformations of peptides employing amide-to-imidate modification† Damodara N. Reddy,a Ravula ...
... and mono-ethyl amides). Correlation of personality and drug reactions. J. Clin. Exper. Psychopath. 1956 17:414 ... "The response of normal men to lysergic acid derivatives (di- and mono-ethyl amides). Correlation of personality and drug ... "The response of normal men to lysergic acid derivatives (di- and mono-ethyl amides). Correlation of personality and drug ...
Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical ... Results: Eight metabolites were associated with amyloid β and one with t-tau in CSF, these were primary fatty acid amides ( ...
View and buy high purity products active at Fatty Acid Amide Hydrolase from Tocris Bioscience. ... Fatty Acid Amide Hydrolase. Fatty acid amide hydrolase, (FAAH, Oleamide hydrolase, Anandamide amidohydrolase), is an integral ... Literature for Fatty Acid Amide Hydrolase. Tocris offers the following scientific literature for Fatty Acid Amide Hydrolase to ... Fatty Acid Amide Hydrolase Gene Data. Gene Species Gene Symbol Gene Accession No. Protein Accession No. ...
Home » Peptide Synthesis Reagents » Resins for Solid Phase Peptide Synthesis » Rink Amide Resin ...
where to buy 79985-49-2(DYNORPHIN A (1-10) AMIDE).Also offer free database of 79985-49-2(DYNORPHIN A (1-10) AMIDE) including ... DYNORPHIN A (1-10) AMIDE Basic information Product Name: DYNORPHIN A (1-10) AMIDE Synonyms: H-TYR-GLY-GLY-PHE-LEU-ARG-ARG-ILE- ... a-Neoendorphin (pig),7-L-arginine-8-L-isoleucine-9-L-arginine-10-L-prolinamide-; Dynorphin (1-10)amide; Dynorphin A (1-10) ... ARG-PRO-NH2;DYNORPHIN A (1-10) AMIDE;D. Henan Sunlake Enterprise Corporation is located in Henan Province , the central plain ...
... Agriculture and Animal Feed Aviation ... Home / Clariant Specialty Chemicals / Clariant news / Clariant Launches Amide/Amine-Free Anti-Static C… ... Muttenz, September 26, 2017 - Clariant, a world leader in specialty chemicals, announces a new amide/amine-free anti-static ... Risk assessments that define migration limits applying to these additives cut allowable addition rates for amide- and amine- ...
We performed an alanine scan of the non-glycine residues up through residue 11 of Dyn B amide to explore the role of these side ... Similar to Dyn A the N-terminal Tyr1 and Phe4 residues of Dyn B amide are critical for opioid receptor affinity and KOR agonist ... The basic residues Arg6 and Arg7 contribute to the KOR affinity and agonist potency of Dyn B amide, while Lys10 contributes to ... The other unique C-terminal residues in Dyn B amide also appear to influence the relative affinity of this peptide for KOR. ...
Ethylene bis stearic acid amide emulsion_Material Science news, applications, product infor ...
Proteases (also called Proteolytic Enzymes, Peptidases, or Proteinases) are enzymes that hydrolyze the amide bonds within ...
... lysergic acid diethyl amide, and related compounds on respiratory enzyme activity of brain homogenates Fed. Proc. 1954 13:27 ... "Effect of mescaline, lysergic acid diethyl amide, and related compounds on respiratory enzyme activity of brain homogenates". ... "Effect of mescaline, lysergic acid diethyl amide, and related compounds on respiratory enzyme activity of brain homogenates" ...
6O6I: Endoplasmic reticulum protein 29 (ERp29) C-terminal domain: Structure Determination from Backbone Amide Pseudocontact ...
Inoue T Chromatographic separation of lysergic acid amide and isolysergic acid amide in morning glory seeds J. Chromatog. 1969 ... "Chromatographic separation of lysergic acid amide and isolysergic acid amide in morning glory seeds". ... "Chromatographic separation of lysergic acid amide and isolysergic acid amide in morning glory seeds" J. Chromatog.. 1969;43:510 ...
Background Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. Methods We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician
The invention discloses an insecticidal composition containing furan tebufenozide and amide compounds. The insecticidal ... Insecticidal composition containing furan tebufenozide and amide compounds CN102228055A (en) 2011-11-02. Pesticide composite ... Insecticidal composition containing furan tebufenozide and amide compounds Publications (1). Publication Number. Publication ... Insecticidal composition containing furan tebufenozide and amide compounds Applications Claiming Priority (1). Application ...
  • Send an inquiry for the most current price to purchase bulk Stearic Acid Amide Emulsion. (tatayoung.com)
  • How does Stearic Acid Amide Emulsion get made? (tatayoung.com)
  • Stearic-acid amide emulsion was kept at 20-35 degC for three months with no flocculation or delamination. (tatayoung.com)
  • You can choose from many kinds of packaging depending on your stearic Acid amide Emulsion Quantity. (tatayoung.com)
  • These findings support direct insulinomimetic actions of the GLP-1 metabolite on gluconeogenesis in hepatocytes that are independent of insulin action and the GLP-1 receptor, and suggest that GLP-1 (9-36) amide-based peptides might present a novel therapy for the treatment of excessive hepatic glucose production in individuals with insulin-resistant diabetes. (nih.gov)
  • Selective modification of the C-terminal amide in peptides to dihydrooxazine (a novel stable imidate isostere) by intramolecular nucleophilic cyclo- O -alkylation of the corresponding N -(3-bromopropyl)amides results in constraining of the C-terminal residue in natively disallowed conformations both in crystals and in solution. (rsc.org)
  • Comparison to the Ala analogs of Dyn A(1-13) suggests that the basic residues in the C-terminus of both peptides contribute to KOR binding, but differences in their relative positions may contribute to the different pharmacological profiles of Dyn A and Dyn B. The other unique C-terminal residues in Dyn B amide also appear to influence the relative affinity of this peptide for KOR. (ku.edu)
  • Proteases (also called Proteolytic Enzymes, Peptidases, or Proteinases) are enzymes that hydrolyze the amide bonds within proteins or peptides. (peprotech.com)
  • The rapid synthesis of an amide hydrogen bond templated [1]rotaxane is reported - demonstrating a potential pathway to synthetic analogues of lasso peptides. (rsc.org)
  • Amides are important functional synthons that have been widely used in the construction of peptides , natural products , and drugs . (bvsalud.org)
  • We performed an alanine scan of the non-glycine residues up through residue 11 of Dyn B amide to explore the role of these side chains in the activity of Dyn B. The analogs were synthesized by fluorenylmethyloxycarbonyl (Fmoc)-based solid phase peptide synthesis and evaluated for their opioid receptor affinities and opioid potency and efficacy at KOR. (ku.edu)
  • The basic residues Arg6 and Arg7 contribute to the KOR affinity and agonist potency of Dyn B amide, while Lys10 contributes to the opioid receptor affinity, but not KOR agonist potency, of this peptide. (ku.edu)
  • GLP-1 (9-36) amide is a N-terminal truncated metabolite of glucagon-like peptide GLP-1-(7-36) (Cat. (tocris.com)
  • Temporin L is a hydrophobic peptide amide derived from the frog Rana temporaria. (mobitec.com)
  • It hydrolyses peptide amides. (bvsalud.org)
  • Lithium amides are the most important amides. (wikipedia.org)
  • They are prepared from n-butyllithium and the appropriate amine R2NH + BuLi → R2NLi + BuH The lithium amides are more common and more soluble than the other alkali metal analogs. (wikipedia.org)
  • Potassium amides are prepared by transmetallation of lithium amides with potassium t-butoxide (see also Schlosser base) or by reaction of the amine with potassium, potassium hydride, n-butylpotassium, or benzylpotassium. (wikipedia.org)
  • An amide-type local anesthetic used for local or regional anesthesia during surgery and for short-term management of acute pain. (drugbank.com)
  • Lidocaine is an amide local anesthetic used in 1-2% concentration. (medscape.com)
  • The use of tert -butyl hydroperoxide as an oxidant and an inexpensive and air stable copper catalyst enables a simple and efficient protocol for the oxidative amidation of commercially affordable alcohols to Weinreb amides in very good yields. (organic-chemistry.org)
  • Muttenz, September 26, 2017 - Clariant, a world leader in specialty chemicals, announces a new amide/amine-free anti-static masterbatch concentrate for polyethylene films used in pharmaceutical production. (clariant.com)
  • The introduction is timely due to the changes in industry standards which, by 2020, will limit the acceptability of many of the currently used films that contain amide- and amine-based anti-stats, says Stephen Duckworth, Clariant's Head of Global Segment Medical and Pharmaceutical. (clariant.com)
  • Historically, these anti-static films have predominantly relied on "migrating" ethoxylated amine/amide-based anti-stats that had a degree of compliance to regulations for food contacting materials. (clariant.com)
  • Risk assessments that define migration limits applying to these additives cut allowable addition rates for amide- and amine-based additives to levels below of what is required for effective anti-static performance. (clariant.com)
  • Reaction of (R,R)- or (S,S)-bis(1-phenylethyl)amine with nBuLi in hexane solution gave the chiral amide [{PhC(H)Me}2NLi] 1. (strath.ac.uk)
  • shows a technique based on Amide Proton Transfer (APT) capable of imaging the pathophysiology of bladder cancer (BCa) causing tissue at the molecular level. (azooptics.com)
  • The feasibility of amide proton transfer imaging at 3 T for bladder cancer: a preliminary study. (azooptics.com)
  • Erowid.org: Erowid Reference 4202 : The response of normal men to lysergic acid derivatives (di- and mono-ethyl amides). (erowid.org)
  • Fatty acid amide hydrolase , (FAAH, Oleamide hydrolase, Anandamide amidohydrolase), is an integral membrane protein that hydrolyzes bioactive amides, including anandamide , to free fatty acid and ethanolamine. (tocris.com)
  • Tocris offers the following scientific literature for Fatty Acid Amide Hydrolase to showcase our products. (tocris.com)
  • Proline (Pro) is an outstanding amino acid in various biochemical and physicochemical perspectives, especially when considering the cis - trans isomerism of the peptidyl-Pro amide bond. (beilstein-journals.org)
  • By comparison of the amide rotational rates of peptidyl-Pro with the ones of the closest Pro structural analogues, azetidine-2-carboxylic acid (norproline) and pipecolic acid (homoproline) [4] , it appears that the high isomerization barrier is a feature associated with the 5-membered pyrrolidine ring of Pro [5] . (beilstein-journals.org)
  • However, it has also been reported that N -acylated pyroglutamic acid exhibits almost exclusively the s- trans amide conformation despite being formally a 5-substituted Pro [22] . (beilstein-journals.org)
  • A white stearic acid amide oil emulsion. (tatayoung.com)
  • Insoluble in water, stearic Acid amide must be prepared using emulsifiers. (tatayoung.com)
  • First, add the water-based water-basedstearic Acid amide to the water. (tatayoung.com)
  • To obtain the aqueous solution of stearic Acid amide amide. (tatayoung.com)
  • This prepared water-based, stearic-acid amide-amide emulsion contains 41.7% solids. (tatayoung.com)
  • The sensitizer of thermal paper is made from stearic Acid amide Ultrafine Aqueous Dispersion. (tatayoung.com)
  • The ultra-fine, water-based, stearic Acid amide dispersion serves as textile waterproofing, fabric softener and antistatic agent. (tatayoung.com)
  • Phthaloyl-Amino Acid Amides Enabled by Palladium-Catalyzed Selective C-N Bond Cleavage. (bvsalud.org)
  • The transamidation of secondary amides and the decarbonylation of phthalimide provide meaningful tools for the modification of amino acid derivatives. (bvsalud.org)
  • what does a secondary amide hydrolize to? (thestudentroom.co.uk)
  • However, amides , especially secondary amides , tend to be chemically inert due to the resonance of the amide bond. (bvsalud.org)
  • Since 2014, Poland Sold Production of Acyclic Amides and Their Derivatives and Salts Thereof rose 7.8% year on year. (nationmaster.com)
  • With €4,386,944 in 2019, the country was ranked number 9 among other countries in Sold Production of Acyclic Amides and Their Derivatives and Salts Thereof. (nationmaster.com)
  • Quantitative Structure Activity Relationships (QSAR) were studied for a series of 54 1-(3, 3-diphenylpropyl)-piperidinyl amides and ureas derivatives by means of Multiple Linear Regression (MLR), Genetic Algorithm (GA) and Artificial Neural Network (ANN) techniques. (inderscience.com)
  • Metal bis(trimethylsilyl)amides form a significant subcategory of metal amide compounds. (wikipedia.org)
  • Amide ligands may participate in metal-ligand Ï€-bonding giving a complex with the metal center being co-planar with the nitrogen and substituents. (wikipedia.org)
  • Early transition metal amides may be prepared by treating anhydrous metal chloride with alkali amide reagents. (wikipedia.org)
  • Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (curehunter.com)
  • s- cis -s- trans Amide bond isomerism in an N -acyl-proline fragment. (beilstein-journals.org)
  • However, after its secretion from the intestine, the insulinotropic GLP-1 (7-36) amide hormone is rapidly inactivated by enzymatic cleavage by the diaminopeptidyl peptidase-4 giving rise to GLP-1 (9-36) amide. (nih.gov)
  • The C-N bond cleavage provides the direct method for amide conversion. (bvsalud.org)
  • Inasmuch as most of the circulating GLP-1 is in the form of the metabolite GLP-1 (9-36) amide it has been suggested that it has insulin-like actions on peripheral insulin-sensitive tissues. (nih.gov)
  • Transition-metal-free catalytic protocols for controlled reduction of amide functions using cheap and bench-stable hydrosilanes as reducing agents enable the selective reduction of unactivated C-O bonds in amides. (organic-chemistry.org)
  • The lack of base character in amides, the dehydration of amides to make nitriles, the Hofmann degradation of amides to make primary amines with one less carbon atom, and the reduction of amides. (chemguide.co.uk)
  • Note that anesthetics are divided into 2 classes: amide and ester. (medscape.com)
  • Since then, multiple amide-type anesthetics have been introduced into clinical use. (medscape.com)
  • Sugar beet tops as basic feed with amide flakes as concentrate feed for dairy cows. (eurekamag.com)
  • In earlier studies, infusions of GLP-1 (9-36) amide in obese insulin-resistant subjects showed a marked suppression of hepatic glucose production. (nih.gov)
  • A kind of Pesticidal combination that contains furans worm hydrazides and amides compound, comprise effective active component, auxiliary agent and filler, it is characterized in that: active components A, B ratio of weight and number are 1: 60~60: 1, described active components A is selected from furans worm hydrazides, and active component B is selected from a kind of in fipronil bisamide, the Rynaxypyr. (google.com)
  • Here we show that GLP-1 (9-36) amide directly suppresses glucose production in isolated mouse hepatocytes ex vivo independent of the GLP-1 receptor. (nih.gov)
  • Poly(ester amide) particles for controlled delivery of celecoxib" Journal of Biomedical Materials Research - Part A Vol. 107 Iss. (bepress.com)