Alteromonas: A genus of gram-negative, straight or curved rods which are motile by means of a single, polar flagellum. Members of this genus are found in coastal waters and the open ocean. (From Bergey's Manual of Determinative Bacteriology, 9th ed)Gram-Negative Aerobic Bacteria: A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.Seawater: The salinated water of OCEANS AND SEAS that provides habitat for marine organisms.Gentian Violet: A dye that is a mixture of violet rosanilinis with antibacterial, antifungal, and anthelmintic properties.PhenazinesThiocapsa roseopersicina: A species of THIOCAPSA which is facultatively aerobic and chemotrophic and which can utilize thiosulfate. (From Bergey's Manual of Determinative Bacteriology, 9th ed)Laminaria: A genus of BROWN ALGAE in the family Laminariaceae. Dried pencil-like pieces may be inserted in the cervix where they swell as they absorb moisture, serving as osmotic dilators.Water Microbiology: The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.ChitinaseSargassum: One of the largest genera of BROWN ALGAE, comprised of more than 150 species found in tropical, subtropical, and temperate zones of both hemispheres. Some species are attached (benthic) but most float in the open sea (pelagic). Sargassum provides a critical habitat for hundreds of species of FISHES; TURTLES; and INVERTEBRATES.Gammaproteobacteria: A group of the proteobacteria comprised of facultatively anaerobic and fermentative gram-negative bacteria.Pacific OceanBiofouling: Process by which unwanted microbial, plant or animal materials or organisms accumulate on man-made surfaces.DNA, Ribosomal: DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.Ecotype: Geographic variety, population, or race, within a species, that is genetically adapted to a particular habitat. An ecotype typically exhibits phenotypic differences but is capable of interbreeding with other ecotypes.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.RNA, Ribosomal, 16S: Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.Black Sea: An inland sea between Europe and Asia. It is connected with the Aegean Sea by the Bosporus, the Sea of Marmara, and the Dardanelles.Base Composition: The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.Genes, rRNA: Genes, found in both prokaryotes and eukaryotes, which are transcribed to produce the RNA which is incorporated into RIBOSOMES. Prokaryotic rRNA genes are usually found in OPERONS dispersed throughout the GENOME, whereas eukaryotic rRNA genes are clustered, multicistronic transcriptional units.Phylogeny: The relationships of groups of organisms as reflected by their genetic makeup.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.alpha-Amylases: Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.Comamonadaceae: A family of gram-negative aerobic bacteria in the class BETA PROTEOBACTERIA, encompassing the acidovorans rRNA complex. Some species are pathogenic for PLANTS.Proteome: The protein complement of an organism coded for by its genome.Gentisates: Salts and esters of gentisic acid.Azoarcus: A genus of gram-negative, facultatively anaerobic bacteria including species which are often associated with grasses (POACEAE) and which fix nitrogen as well as species which anaerobically degrade toluene and other mono-aromatic hydrocarbons.Naphthalenes: Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.Proteomics: The systematic study of the complete complement of proteins (PROTEOME) of organisms.DNA Mismatch Repair: A DNA repair pathway involved in correction of errors introduced during DNA replication when an incorrect base, which cannot form hydrogen bonds with the corresponding base in the parent strand, is incorporated into the daughter strand. Excinucleases recognize the BASE PAIR MISMATCH and cause a segment of polynucleotide chain to be excised from the daughter strand, thereby removing the mismatched base. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)Base Pair Mismatch: The presence of an uncomplimentary base in double-stranded DNA caused by spontaneous deamination of cytosine or adenine, mismatching during homologous recombination, or errors in DNA replication. Multiple, sequential base pair mismatches lead to formation of heteroduplex DNA; (NUCLEIC ACID HETERODUPLEXES).MutS Homolog 2 Protein: MutS homolog 2 protein is found throughout eukaryotes and is a homolog of the MUTS DNA MISMATCH-BINDING PROTEIN. It plays an essential role in meiotic RECOMBINATION and DNA REPAIR of mismatched NUCLEOTIDES.DNA Repair: The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.Crotonates: Derivatives of BUTYRIC ACID that include a double bond between carbon 2 and 3 of the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.Citric Acid Cycle: A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.PyruvatesCitratesCarbon: A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.Citrate (si)-Synthase: Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC Science Disciplines: All of the divisions of the natural sciences dealing with the various aspects of the phenomena of life and vital processes. The concept includes anatomy and physiology, biochemistry and biophysics, and the biology of animals, plants, and microorganisms. It should be differentiated from BIOLOGY, one of its subdivisions, concerned specifically with the origin and life processes of living organisms.Periodicals as Topic: A publication issued at stated, more or less regular, intervals.PubMed: A bibliographic database that includes MEDLINE as its primary subset. It is produced by the National Center for Biotechnology Information (NCBI), part of the NATIONAL LIBRARY OF MEDICINE. PubMed, which is searchable through NLM's Web site, also includes access to additional citations to selected life sciences journals not in MEDLINE, and links to other resources such as the full-text of articles at participating publishers' Web sites, NCBI's molecular biology databases, and PubMed Central.Directories as Topic: Lists of persons or organizations, systematically arranged, usually in alphabetic or classed order, giving address, affiliations, etc., for individuals, and giving address, officers, functions, and similar data for organizations. (ALA Glossary of Library and Information Science, 1983)Dictionaries, MedicalDictionaries as Topic: Lists of words, usually in alphabetical order, giving information about form, pronunciation, etymology, grammar, and meaning.Dictionaries, ChemicalTerminology as Topic: The terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area.Sulfonium Compounds: Sulfur compounds in which the sulfur atom is attached to three organic radicals and an electronegative element or radical.Fermentation: Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.Anti-Inflammatory Agents: Substances that reduce or suppress INFLAMMATION.Polysaccharides, Bacterial: Polysaccharides found in bacteria and in capsules thereof.

The effect of motility and cell-surface polymers on bacterial attachment. (1/69)

Recently it was shown that motility of Vibrio alginolyticus facilitated cell attachment to glass surfaces. In the present study the same relationship between motility and cell attachment was confirmed for Alcaligenes and Alteromonas spp. These findings clearly answer a long-standing question: does motility facilitate attachment? However, they are contradictory to a general view on cell attachment that the energy barrier due to electrostatic repulsion between negatively charged bacterial cells and a glass surface is much greater than both the thermal kinetic energy of the bacterial cell and the bacterial swimming energy. It is shown that the energy barrier becomes far less than that usually estimated when bacterial cells are rich in polymers at their surfaces. This finding reasonably explains the dependence of bacterial attachment rate on cell motility and demands reconsideration of the mechanism of bacterial attachment.  (+info)

Cloning and sequencing of the gene encoding an aldehyde dehydrogenase that is induced by growing Alteromonas sp. Strain KE10 in a low concentration of organic nutrients. (2/69)

The protein composition of Alteromonas sp. strain KE10 cultured at two different organic-nutrient concentrations was determined by using two-dimensional polyacrylamide gel electrophoresis. The cellular levels of three proteins, OlgA, -B, and -C, were considerably higher in cells grown in a low concentration of organic nutrient medium (LON medium; 0.2 mg of carbon per liter) than cells grown in a high concentration of organic nutrient medium (HON; 200 mg of C liter(-1)) or cells starved for organic nutrients. In the LON medium, the cellular levels of the Olg proteins were higher at the exponential growth phase than at the stationary growth phase. A sequence of the gene for OlgA revealed that the amino acid sequence had a high degree of similarity to the NAD(+)-dependent aldehyde dehydrogenases of several bacteria. OlgA, expressed in Escherichia coli, catalyzed the dehydrogenation of acetaldehyde, propionaldehyde, and butyraldehyde. The aldehyde dehydrogenase activity of KE10 was higher in cells growing exponentially in LON medium than in HON. OlgA may be involved in the growth under low-nutrient conditions. The physiological role of OlgA is discussed here.  (+info)

Reclassification of Alteromonas distincta Romanenko et al. 1995 as Pseudoalteromonas distincta comb. nov. (3/69)

The 16S rRNA gene of Alteromonas distincta KMM 638T was amplified, cloned and sequenced. The nucleotide sequence was aligned with sequences of representative strains of Alteromonas, Moritella, Pseudoalteromonas and Shewanella. Results of phylogenetic analysis, using neighbour-joining and Fitch-Margoliash methods, clearly indicated that this species should be assigned to the genus Pseudoalteromonas. On the basis of polyphasic data obtained from previous work and this study, it is proposed that the species Alteromonas distincta be reclassified as Pseudoalteromonas distincta comb. nov. with type strain KMM 638T (= ATCC 700518T).  (+info)

Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. (4/69)

A marine bacterium, Alteromonas elyakovii KMM 162T, which was described recently, and five strains isolated from spot-wounded fronds of Laminaria japonica have been subjected to phylogenetic analysis, and geno- and phenotypic characterization. The phenotypic features of Pseudoalteromonas elyakovii strains were closely related to that of Pseudoalteromonas espejiana IAM 12640T, but utilization of three carbon compounds (D-mannose, L-tyrosine and trehalose) distinguished both species. The G+C content of Pseudoalteromonas elyakovii was between 38.5 and 38.9 mol%. Pseudoalteromonas elyakovii KMM 162T and the five Laminaria isolates constitute a single species different from any other Alteromonas and Pseudoalteromonas species as revealed by DNA-DNA hybridization data, especially Pseudoalteromonas distincta KMM 638T (52.4%), Pseudoalteromonas citrea KMM 216 (49.5%), Pseudoalteromonas carrageenovora NCIMB 302T (46.9%) and Pseudoalteromonas espejiana IAM 12640T (29.9%). All the data indicated that Alteromonas elyakovii KMM 162T should be reclassified as Pseudoalteromonas elyakovii and five strains isolated from Laminaria japonica have to be included in the species. Pseudoalteromonas elyakovii comb. nov. (type strain, KMM 162T = ATCC 700519T) is proposed and a set of phenotypic features which differentiate the Pseudoalteromonas species is described.  (+info)

A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. (5/69)

The cloning, overexpression and characterization of a cold-adapted DNA ligase from the Antarctic sea water bacterium Pseudoalteromonas haloplanktis are described. Protein sequence analysis revealed that the cold-adapted Ph DNA ligase shows a significant level of sequence similarity to other NAD+-dependent DNA ligases and contains several previously described sequence motifs. Also, a decreased level of arginine and proline residues in Ph DNA ligase could be involved in the cold-adaptation strategy. Moreover, 3D modelling of the N-terminal domain of Ph DNA ligase clearly indicates that this domain is destabilized compared with its thermophilic homologue. The recombinant Ph DNA ligase was overexpressed in Escherichia coli and purified to homogeneity. Mass spectroscopy experiments indicated that the purified enzyme is mainly in an adenylated form with a molecular mass of 74 593 Da. Ph DNA ligase shows similar overall catalytic properties to other NAD+-dependent DNA ligases but is a cold-adapted enzyme as its catalytic efficiency (kcat/Km) at low and moderate temperatures is higher than that of its mesophilic counterpart E. coli DNA ligase. A kinetic comparison of three enzymes adapted to different temperatures (P. haloplanktis, E. coli and Thermus scotoductus DNA ligases) indicated that an increased kcat is the most important adaptive parameter for enzymatic activity at low temperatures, whereas a decreased Km for the nicked DNA substrate seems to allow T. scotoductus DNA ligase to work efficiently at high temperatures. Besides being useful for investigation of the adaptation of enzymes to extreme temperatures, P. haloplanktis DNA ligase, which is very efficient at low temperatures, offers a novel tool for biotechnology.  (+info)

Differentiation of chitinase-active and non-chitinase-active subpopulations of a marine bacterium during chitin degradation. (6/69)

The ability of marine bacteria to adhere to detrital particulate organic matter and rapidly switch on metabolic genes in an effort to reproduce is an important response for bacterial survival in the pelagic marine environment. The goal of this investigation was to evaluate the relationship between chitinolytic gene expression and extracellular chitinase activity in individual cells of the marine bacterium Pseudoalteromonas sp. strain S91 attached to solid chitin. A green fluorescent protein reporter gene under the control of the chiA promoter was used to evaluate chiA gene expression, and a precipitating enzyme-linked fluorescent probe, ELF-97-N-acetyl-beta-D-glucosaminide, was used to evaluate extracellular chitinase activity among cells in the bacterial population. Evaluation of chiA expression and ELF-97 crystal location at the single-cell level revealed two physiologically distinct subpopulations of S91 on the chitin surface: one that was chitinase active and remained associated with the surface and another that was non-chitinase active and released daughter cells into the bulk aqueous phase. It is hypothesized that the surface-associated, non-chitinase-active population is utilizing chitin degradation products that were released by the adjacent chitinase-active population for cell replication and dissemination into the bulk aqueous phase.  (+info)

Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. (7/69)

Growth of the chitin-degrading marine bacterium S91 on solid surfaces under oligotrophic conditions was accompanied by the displacement of a large fraction of the surface-derived bacterial production into the flowing bulk aqueous phase, irrespective of the value of the surface as a nutrient source. Over a 200-h period of surface colonization, 97 and 75% of the bacterial biomass generated on biodegradable chitin and a nonnutritional silicon surface, respectively, detached to become part of the free-living population in the bulk aqueous phase. Specific surface-associated growth rates that included the cells that subsequently detached from the substrata varied depending on the nutritional value of the substratum and during the period of surface colonization. Specific growth rates of 3.79 and 2.83 day(-1) were obtained when cells first began to proliferate on a pure chitin film and a silicon surface, respectively. Later, when cell densities on the surface and detached cells as CFU in the bulk aqueous phase achieved a quasi-steady state, specific growth rates decreased to 1.08 and 0.79 day(-1) on the chitin and silicon surfaces, respectively. Virtually all of the cells that detached from either the chitin or the silicon surfaces and the majority of cells associated with the chitin surface over the 200-h period of surface colonization displayed no detectable expression of the chitin-degrading genes chiA and chiB. Cells displaying high levels of chiA-chiB expression were detected only on the chitin surface and then only clustered in discrete areas of the surface. Surface-associated, differential gene expression and displacement of bacterial production from surfaces represent adaptations at the population level that promote efficient utilization of limited resources and dispersal of progeny to maximize access to new sources of energy and maintenance of the population.  (+info)

A serine protease-encoding gene (aprII) of Alteromonas sp. Strain O-7 is regulated by the iron uptake regulator (Fur) protein. (8/69)

The ferric uptake regulator (Fur) box-like sequence was located upstream of the serine protease-encoding gene (aprII) from a marine bacterium, Alteromonas sp. strain O-7. To clarify whether the production of AprII (the gene product of aprII) is regulated by the environmental iron concentrations, this strain was cultured under iron-depleted or iron-rich conditions and the level of AprII in the culture supernatant was analyzed by Western blotting. The production of AprII was significantly repressed under iron-rich conditions. Northern hybridization analysis demonstrated that AprII biosynthesis was regulated by iron through the control of transcription. These results indicate that aprII is a new member of the iron regulon and plays an important role in the iron acquisition system of the strain. Furthermore, the gene encoding Fur was cloned and sequenced. The deduced amino acid sequence of the cloned Fur showed high sequence similarity with that from gram-negative bacteria.  (+info)

  • Interactions between copper ions and exopolymer from the marine film-forming bacterium Alteromonas atlantica were evaluated by a two-phase model that treats the polymer as if it exists in a phase separate from the bulk solution. (
  • To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. (
  • The three newly identified pathogens that cause the bleaching disease are members of the Alteromonas, Aquimarina and Agarivorans genera. (
  • Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. (
  • Prochlorococcus is able to thrive in the nutrient-poor conditions found in the vast regions of the open ocean due to microbial helpers like Alteromonas, which takes care of some activities tiny Prochlorococcus can't perform on its own. (
  • Seawater isolates, including Alteromonas agarlyticus GJ1B (Potin et al. (
  • Intracellular alginate-oligosaccharide degrading enzyme activity that is incapable of degrading intact alginate from a marine bacterium Alteromonas sp. (
  • Intracellular homo-and hetero-polymeric blocks degrading enzyme activity incapable of degrading intact sodium alginate was detected in Alteromonas sp. (
  • Scripps's Byron Pedler, Lihini Aluwihare, and Farooq Azam found that a single bacterium called Alteromonas could consume as much dissolved organic carbon as a diverse community of organisms. (
  • Scientists at Lamont-Doherty Earth Observatory and their colleagues found rising carbon dioxide levels influence the activity of two ocean-dwelling microbes, Prochlorococcus and Alteromonas, breaking up their helpful partnership. (
  • To better understand the partnership between Prochlorococcus and Alteromonas, Hennon and her colleagues grew the microbes together in the lab under the concentration of carbon dioxide in the atmosphere today, 400 parts per million. (
  • When Prochlorococcus and Alteromonas were grown under 800 parts per million - the amount of carbon dioxide expected to be in the atmosphere by 2100 - Prochlorococcus had a greater mortality rate and appeared to have more free radicals. (
  • Under higher levels of carbon dioxide, Alteromonas doesn't provide the same level of ecosystem services. (
  • The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. (
  • Geesey, G.G., P.J. Bremer, J.J. Smith, M. Muegge, and L.K. Jang, "Two-phase model for describing the interactions between copper ions and exopolymers from alteromonas atlantica," Canad. (