Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively
Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.
One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation.
Hypoxia-inducible factor 1, alpha subunit is a basic helix-loop-helix transcription factor that is regulated by OXYGEN availability and is targeted for degradation by VHL TUMOR SUPPRESSOR PROTEIN.
A member of the NICOTINIC ACETYLCHOLINE RECEPTOR subfamily of the LIGAND-GATED ION CHANNEL family. It consists entirely of pentameric a7 subunits expressed in the CNS, autonomic nervous system, vascular system, lymphocytes and spleen.
Cell surface receptor for LAMININ, epiligrin, FIBRONECTINS, entactin, and COLLAGEN. Integrin alpha3beta1 is the major integrin present in EPITHELIAL CELLS, where it plays a role in the assembly of BASEMENT MEMBRANE as well as in cell migration, and may regulate the functions of other integrins. Two alternatively spliced isoforms of the alpha subunit (INTEGRIN ALPHA3), are differentially expressed in different cell types.
An integrin alpha subunit that is unique in that it does not contain an I domain, and its proteolytic cleavage site is near the middle of the extracellular portion of the polypeptide rather than close to the membrane as in other integrin alpha subunits.
An integrin alpha subunit that primarily associates with INTEGRIN BETA1 or INTEGRIN BETA4 to form laminin-binding heterodimers. Integrin alpha6 has two alternatively spliced isoforms: integrin alpha6A and integrin alpha6B, which differ in their cytoplasmic domains and are regulated in a tissue-specific and developmental stage-specific manner.
An integrin found in FIBROBLASTS; PLATELETS; MONOCYTES, and LYMPHOCYTES. Integrin alpha5beta1 is the classical receptor for FIBRONECTIN, but it also functions as a receptor for LAMININ and several other EXTRACELLULAR MATRIX PROTEINS.
Integrin alpha4beta1 is a FIBRONECTIN and VCAM-1 receptor present on LYMPHOCYTES; MONOCYTES; EOSINOPHILS; NK CELLS and thymocytes. It is involved in both cell-cell and cell- EXTRACELLULAR MATRIX adhesion and plays a role in INFLAMMATION, hematopoietic cell homing and immune function, and has been implicated in skeletal MYOGENESIS; NEURAL CREST migration and proliferation, lymphocyte maturation and morphogenesis of the PLACENTA and HEART.
An interleukin-1 subtype that occurs as a membrane-bound pro-protein form that is cleaved by proteases to form a secreted mature form. Unlike INTERLEUKIN-1BETA both membrane-bound and secreted forms of interleukin-1alpha are biologically active.
An integrin found on fibroblasts, platelets, endothelial and epithelial cells, and lymphocytes where it functions as a receptor for COLLAGEN and LAMININ. Although originally referred to as the collagen receptor, it is one of several receptors for collagen. Ligand binding to integrin alpha2beta1 triggers a cascade of intracellular signaling, including activation of p38 MAP kinase.
A subclass of alpha-adrenergic receptors that mediate contraction of SMOOTH MUSCLE in a variety of tissues such as ARTERIOLES; VEINS; and the UTERUS. They are usually found on postsynaptic membranes and signal through GQ-G11 G-PROTEINS.
This integrin alpha subunit combines with INTEGRIN BETA1 to form a receptor (INTEGRIN ALPHA5BETA1) that binds FIBRONECTIN and LAMININ. It undergoes posttranslational cleavage into a heavy and a light chain that are connected by disulfide bonds.
Integrin alpha1beta1 functions as a receptor for LAMININ and COLLAGEN. It is widely expressed during development, but in the adult is the predominant laminin receptor (RECEPTORS, LAMININ) in mature SMOOTH MUSCLE CELLS, where it is important for maintenance of the differentiated phenotype of these cells. Integrin alpha1beta1 is also found in LYMPHOCYTES and microvascular endothelial cells, and may play a role in angiogenesis. In SCHWANN CELLS and neural crest cells, it is involved in cell migration. Integrin alpha1beta1 is also known as VLA-1 and CD49a-CD29.
A subclass of alpha-adrenergic receptors found on both presynaptic and postsynaptic membranes where they signal through Gi-Go G-PROTEINS. While postsynaptic alpha-2 receptors play a traditional role in mediating the effects of ADRENERGIC AGONISTS, the subset of alpha-2 receptors found on presynaptic membranes signal the feedback inhibition of NEUROTRANSMITTER release.
A cell surface receptor mediating cell adhesion to the EXTRACELLULAR MATRIX and to other cells via binding to LAMININ. It is involved in cell migration, embryonic development, leukocyte activation and tumor cell invasiveness. Integrin alpha6beta1 is the major laminin receptor on PLATELETS; LEUKOCYTES; and many EPITHELIAL CELLS, and ligand binding may activate a number of signal transduction pathways. Alternative splicing of the cytoplasmic domain of the alpha6 subunit (INTEGRIN ALPHA6) results in the formation of A and B isoforms of the heterodimer, which are expressed in a tissue-specific manner.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
This intrgrin is a key component of HEMIDESMOSOMES and is required for their formation and maintenance in epithelial cells. Integrin alpha6beta4 is also found on thymocytes, fibroblasts, and Schwann cells, where it functions as a laminin receptor (RECEPTORS, LAMININ) and is involved in wound healing, cell migration, and tumor invasiveness.
The alpha subunits of integrin heterodimers (INTEGRINS), which mediate ligand specificity. There are approximately 18 different alpha chains, exhibiting great sequence diversity; several chains are also spliced into alternative isoforms. They possess a long extracellular portion (1200 amino acids) containing a MIDAS (metal ion-dependent adhesion site) motif, and seven 60-amino acid tandem repeats, the last 4 of which form EF HAND MOTIFS. The intracellular portion is short with the exception of INTEGRIN ALPHA4.
A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors(RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation.
An integrin alpha subunit that binds COLLAGEN and LAMININ though its I domain. It combines with INTEGRIN BETA1 to form the heterodimer INTEGRIN ALPHA1BETA1.
Brain waves characterized by a relatively high voltage or amplitude and a frequency of 8-13 Hz. They constitute the majority of waves recorded by EEG registering the activity of the parietal and occipital lobes when the individual is awake, but relaxed with the eyes closed.
An integrin alpha subunit that occurs as alternatively spliced isoforms. The isoforms are differentially expressed in specific cell types and at specific developmental stages. Integrin alpha3 combines with INTEGRIN BETA1 to form INTEGRIN ALPHA3BETA1 which is a heterodimer found primarily in epithelial cells.
Deficiency of the protease inhibitor ALPHA 1-ANTITRYPSIN that manifests primarily as PULMONARY EMPHYSEMA and LIVER CIRRHOSIS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors.
Drugs that selectively bind to and activate alpha adrenergic receptors.
A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR GAMMA is important to metabolism of LIPIDS. It is the target of FIBRATES to control HYPERLIPIDEMIAS.
A naturally occurring prostaglandin that has oxytocic, luteolytic, and abortifacient activities. Due to its vasocontractile properties, the compound has a variety of other biological actions.
Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma.
Proteins prepared by recombinant DNA technology.
Hepatocyte nuclear factor 1-alpha is a transcription factor found in the LIVER; PANCREAS; and KIDNEY that regulates HOMEOSTASIS of GLUCOSE.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Glycoprotein found in alpha(1)-globulin region in human serum. It inhibits chymotrypsin-like proteinases in vivo and has cytotoxic killer-cell activity in vitro. The protein also has a role as an acute-phase protein and is active in the control of immunologic and inflammatory processes, and as a tumor marker. It is a member of the serpin superfamily.
An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The rate dynamics in chemical or physical systems.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Drugs that bind to and block the activation of ADRENERGIC ALPHA-1 RECEPTORS.
Nucleocytoplasmic transport molecules that bind to the NUCLEAR LOCALIZATION SIGNALS of cytoplasmic molecules destined to be imported into the CELL NUCLEUS. Once attached to their cargo they bind to BETA KARYOPHERINS and are transported through the NUCLEAR PORE COMPLEX. Inside the CELL NUCLEUS alpha karyopherins dissociate from beta karypherins and their cargo. They then form a complex with CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN and RAN GTP-BINDING PROTEIN which is exported to the CYTOPLASM.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION.
The physiologically active and stable hydrolysis product of EPOPROSTENOL. Found in nearly all mammalian tissue.
Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
A plant alkaloid with alpha-2-adrenergic blocking activity. Yohimbine has been used as a mydriatic and in the treatment of ERECTILE DYSFUNCTION.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Compounds that bind to and activate ADRENERGIC ALPHA-2 RECEPTORS.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.

The extracellular matrix in the mouse brain: its reactions to endo-alpha-N-acetylgalactosaminidase and certain other enzymes. (1/59)

As our previous studies have indicated, the cingulate cortex of the adult mouse brain contains many neurons with rich cell surface glycoproteins which are linked by collagenous ligands to perineuronal proteoglycans. The present study demonstrated that exclusive incubation with endo-alpha-N-acetylgalactosaminidase abolished the lectin Vicia villosa or Wisteria floribunda agglutinin (VVA or WFA) labeling of the nerve cell surface glycoproteins, while it neither interfered with the cationic iron colloid or aldehyde fuchsin stainings of the perineuronal proteoglycans nor abolished the Gomori's ammoniacal silver impregnation of the collagenous ligands. Double incubations with endo-alpha-N-acetylgalactosaminidase and collagenase did not eliminate the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, though they did eliminate the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans as well as the Gomori's ammoniacal silver impregnation of the collagenous ligands. Triple incubations with endo-alpha-N-acetylgalactosaminidase, collagenase, and endo-alpha-N-acetylgalactosaminidase abolished the lectin VVA or WFA labeling of the nerve cell surface glycoproteins, and also eliminated the cationic iron colloid and aldehyde fuchsin stainings of the perineuronal proteoglycans and the Gomori's ammoniacal silver impregnation of the collagenous ligands. These findings indicate that: the nerve cell surface glycoproteins or their terminal N-acetylgalactosamines are digested by endo-alpha-N-acetylgalactosaminidase; these galactosamines associated with the collagenous ligands or perineuronal proteoglycans are not digested by endo-alpha-N-acetylgalactosaminidase; and the terminal N-acetylgalactosamines newly exposed by collagenase incubation are digested by this galactosaminidase. It was further demonstrated that hyaluronidase incubation neither digests the collagenous ligands nor revives the lectin VVA or WFA labeling of the nerve cell surface proteoglycans.  (+info)

Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. (2/59)

Glycoproteinoses belong to the lysosomal storage disorders group. The common feature of these diseases is the deficiency of a lysosomal protein that is part of glycan catabolism. Most of the lysosomal enzymes involved in the hydrolysis of glycoprotein carbohydrate chains are exo-glycosidases, which stepwise remove terminal monosaccharides. Thus, the deficiency of a single enzyme causes the blockage of the entire pathway and induces a storage of incompletely degraded substances inside the lysosome. Different mutations may be observed in a single disease and in all cases account for the nonexpression of lysosomal glycosidase activity. Different clinical phenotypes generally characterize a specific disorder, which rather must be described as a continuum in severity, suggesting that other biochemical or environmental factors influence the course of the disease. This review provides details on clinical features, genotype-phenotype correlations, enzymology and biochemical storage of four human glycoprotein lysosomal storage disorders, respectively alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Moreover, several animal disorders of glycoprotein metabolism have been found and constitute valuable models for the understanding of their human counterparts.  (+info)

Human alpha-N-acetylgalactosaminidase: site occupancy and structure of N-linked oligosaccharides. (3/59)

Human alpha-N-acetylgalactosaminidase (alpha-GalNAc; also known as alpha-galactosidase B) is the lysosomal exoglycohydrolase that cleaves alpha-N-acetylgalactosaminyl moieties in glycoconjugates. Mutagenesis studies indicated that the first five (N124, N177, N201, N359, and N385) of the six potential N-glycosylation sites were occupied. Site 3 occupancy was important for enzyme function and stability. Characterization of the N-linked oligosaccharide structures on the secreted enzyme overexpressed in Chinese hamster ovary cells revealed highly heterogeneous structures consisting of complex (approximately 53%), hybrid (approximately 12%), and high mannose-type (approximately 33%) oligosaccharides. The complex structures were mono-, bi-, 2,4-tri-, 2,6-tri-, and tetraantennary, among which the biantennary structures were most predominant (approximately 53%). Approximately 80% of the complex oligo-saccharides had a core-region fucose and 50% of the complex oligosaccharides were sialylated exclusively with alpha-2,3-linked sialic acid residues. The majority of hybrid type oligo-saccharides were GalGlcNAcMan(6)GlcNAc-Fuc(0-1)GlcNAc. Approximately 54% of the hybrid oligosaccharide were phosphorylated and one-third of these structures were further sialylated, the latter representing unique phosphorylated and sialylated structures. Of the high mannose oligosaccharides, Man(5-7)GlcNAc(2) were the predominant species (approximately 90%) and about 50% of the high mannose oligosaccharides were phosphorylated, exclusively as monoesters whose positions were determined. Comparison of the oligosaccharide structures of alpha-GalNAc and alpha-galactosidase A, an evolutionary-related and highly homologous exoglycosidase, indicated that alpha-GalNAc had more completed complex chains, presumably due to differences in enzyme structure/domains, rate of biosynthesis, and/or aggregation of the overexpressed recombinant enzymes.  (+info)

Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting. (4/59)

The malaria parasite Plasmodium falciparum utilizes molecules present on the surface of uninfected red blood cells (RBC) for rosette formation, and a dependency on ABO antigens has been previously shown. In this study, the antirosetting effect of immune sera was related to the blood group of the infected human host. Sera from malaria-immune blood group A (or B) individuals were less prone to disrupt rosettes from clinical isolates of blood group A (or B) patients than to disrupt rosettes from isolates of blood group O patients. All fresh clinical isolates and laboratory strains exhibited distinct ABO blood group preferences, indicating that utilization of blood group antigens is a general feature of P. falciparum rosetting. Soluble A antigen strongly inhibited rosette formation when the parasite was cultivated in A RBC, while inhibition by glycosaminoglycans decreased. Furthermore, a soluble A antigen conjugate bound to the cell surface of parasitized RBC. Selective enzymatic digestion of blood group A antigen from the uninfected RBC surfaces totally abolished the preference of the parasite to form rosettes with these RBC, but rosettes could still form. Altogether, present data suggest an important role for A and B antigens as coreceptors in P. falciparum rosetting.  (+info)

Adhesion of human lung mast cells to bronchial epithelium: evidence for a novel carbohydrate-mediated mechanism. (5/59)

Mast cells contribute to the pathophysiology of asthma through their immunomediator-secretory activity in response to both immunological and nonimmunological stimuli, and infiltrate the bronchial epithelium in this disease. We hypothesized that human lung mast cells (HLMC) localize to the bronchial epithelium via a specific cell-cell adhesion mechanism. We investigated the adhesion of HLMC to primary bronchial epithelial cells and the bronchial epithelial cell line BEAS-2B. HLMC adhered avidly to both primary cultures of bronchial epithelial cells and BEAS-2B cells (mean adhesion 68.4 and 60.1%, respectively) compared with eosinophil adhesion to BEAS-2B (mean adhesion 10.3%). HLMC adhesion did not alter after epithelial activation with cytokines, did not require Ca2+, and was not integrin-mediated. IgE-dependent activation of HLMC produced an approximately 40% inhibition of adhesion. There was significant attenuation of adhesion after incubation of HLMC with pronase, beta-galactosidase, and endo-alpha-N-acetylgalactosaminidase, indicating that HLMC adhere to bronchial epithelial cells via galactose-bearing carbohydrates expressed on a cell-surface peptide(s).  (+info)

Trypsin inhibitory activity of bovine fetuin de-O-glycosylated by endo-alpha-N-acetylgalactosaminidase. (6/59)

The effects of bovine fetuin O-glycans on its trypsin inhibitory activity were examined. De-sialylated (asialo-) and de-O-glycosylated fetuin were prepared from native fetuin using Arthrobacter neuraminidase and the mixture of it and Bacillus endo-alpha-N-acetylgalactosaminidase, respectively. De-sialylation and de-O-glycosylation from fetuin were confirmed with SDS-PAGE followed by western blotting using anti-human Thomsen-Friedenreich antigen (T antigen) antibody which recognizes O-linked galactosyl beta1,3 N-acetylgalactosamine (Gal beta1-->3GalNAc). Native fetuin completely inhibited the trypsin activity at about a 1:1 molar ratio. In contrast, the trypsin inhibitory activity of asialo- and de-O-glycosylated fetuin decreased about a half and one-third of that of native fetuin, respectively.  (+info)

Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? (7/59)

Two new individuals with alpha-NAGA deficiency are presented. The index patient, 3 years old, has congenital cataract, slight motor retardation and secondary demyelinisation. Screening of his sibs revealed an alpha-NAGA deficiency in his 7-year-old healthy brother who had no clinical or neurological symptoms. Both sibs are homozygous for the E325K mutation, the same genotype that was found in the most severe form of alpha-NAGA deficiency presenting as infantile neuroaxonal dystrophy. Thus, at the age of 7 years the same genotype of alpha-NAGA may present as a 'non-disease' (present healthy case) and can be associated with the vegetative state (the first two patients described with alpha-NAGA deficiency). The clinical heterogeneity among the 11 known individuals with alpha-NAGA deficiency is extreme, with a 'non-disease' (two cases) and infantile neuroaxonal dystrophy (two cases) at the opposite sides of the clinical spectrum. The broad spectrum is completed by a very heterogeneous group of patients with various degrees of epilepsy/behavioural difficulties/psychomotor retardation (four patients) and a mild phenotype in adults without overt neurological manifestations who have angiokeratoma and clear vacuolisation in various cell types (three cases). These observations are difficult to reconcile with a straightforward genotype-phenotype correlation and suggest that factors or genes other than alpha-NAGA contribute to the clinical heterogeneity of the 11 patients with alpha-NAGA deficiency.  (+info)

Efficient synthesis of O-linked glycopeptide by a transglycosylation using endo alpha-N-acetylgalactosaminidase from Streptomyces sp. (8/59)

Gal beta-(1-->3)-GalNAc-linked hexapeptide was synthesized by a transglycosylation using Gal beta-(1-->3)-GalNAc beta-pNP as a donor and a serine-containing hexapeptide as an acceptor using endo GalNAc-ase from Streptomyces sp.. The Gal beta-(1-->3)-GalNAc residue was transferred to the hydroxyl group of the serine residue of the peptide. The total yield of the glycopeptide via this process was better than that of the chemoenzymatic method. This process was confirmed to be a versatile method for the synthesis of O-linked glycopeptides.  (+info)

Inhibins are a group of protein hormones that play a crucial role in regulating the function of the reproductive system, specifically by inhibiting the production of follicle-stimulating hormone (FSH) in the pituitary gland. They are produced and secreted primarily by the granulosa cells in the ovaries of females and Sertoli cells in the testes of males.

Inhibins consist of two subunits, an alpha subunit, and a beta subunit, which can be further divided into two types: inhibin A and inhibin B. Inhibin A is primarily produced by the granulosa cells of developing follicles in the ovary, while inhibin B is mainly produced by the Sertoli cells in the testes.

By regulating FSH production, inhibins help control the development and maturation of ovarian follicles in females and spermatogenesis in males. Abnormal levels of inhibins have been associated with various reproductive disorders, including polycystic ovary syndrome (PCOS) and certain types of cancer.

Alpha 1-antitrypsin (AAT, or α1-antiproteinase, A1AP) is a protein that is primarily produced by the liver and released into the bloodstream. It belongs to a group of proteins called serine protease inhibitors, which help regulate inflammation and protect tissues from damage caused by enzymes involved in the immune response.

Alpha 1-antitrypsin is particularly important for protecting the lungs from damage caused by neutrophil elastase, an enzyme released by white blood cells called neutrophils during inflammation. In the lungs, AAT binds to and inhibits neutrophil elastase, preventing it from degrading the extracellular matrix and damaging lung tissue.

Deficiency in alpha 1-antitrypsin can lead to chronic obstructive pulmonary disease (COPD) and liver disease. The most common cause of AAT deficiency is a genetic mutation that results in abnormal folding and accumulation of the protein within liver cells, leading to reduced levels of functional AAT in the bloodstream. This condition is called alpha 1-antitrypsin deficiency (AATD) and can be inherited in an autosomal codominant manner. Individuals with severe AATD may require augmentation therapy with intravenous infusions of purified human AAT to help prevent lung damage.

Adrenergic receptors are a type of G protein-coupled receptor that bind and respond to catecholamines, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). Alpha adrenergic receptors (α-ARs) are a subtype of adrenergic receptors that are classified into two main categories: α1-ARs and α2-ARs.

The activation of α1-ARs leads to the activation of phospholipase C, which results in an increase in intracellular calcium levels and the activation of various signaling pathways that mediate diverse physiological responses such as vasoconstriction, smooth muscle contraction, and cell proliferation.

On the other hand, α2-ARs are primarily located on presynaptic nerve terminals where they function to inhibit the release of neurotransmitters, including norepinephrine. The activation of α2-ARs also leads to the inhibition of adenylyl cyclase and a decrease in intracellular cAMP levels, which can mediate various physiological responses such as sedation, analgesia, and hypotension.

Overall, α-ARs play important roles in regulating various physiological functions, including cardiovascular function, mood, and cognition, and are also involved in the pathophysiology of several diseases, such as hypertension, heart failure, and neurodegenerative disorders.

Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that plays a crucial role in the body's response to low oxygen levels, also known as hypoxia. HIF-1 is a heterodimeric protein composed of two subunits: an alpha subunit (HIF-1α) and a beta subunit (HIF-1β).

The alpha subunit, HIF-1α, is the regulatory subunit that is subject to oxygen-dependent degradation. Under normal oxygen conditions (normoxia), HIF-1α is constantly produced in the cell but is rapidly degraded by proteasomes due to hydroxylation of specific proline residues by prolyl hydroxylase domain-containing proteins (PHDs). This hydroxylation reaction requires oxygen as a substrate, and under hypoxic conditions, the activity of PHDs is inhibited, leading to the stabilization and accumulation of HIF-1α.

Once stabilized, HIF-1α translocates to the nucleus, where it heterodimerizes with HIF-1β and binds to hypoxia-responsive elements (HREs) in the promoter regions of target genes. This binding results in the activation of gene transcription programs that promote cellular adaptation to low oxygen levels. These adaptive responses include increased erythropoiesis, angiogenesis, glucose metabolism, and pH regulation, among others.

Therefore, HIF-1α is a critical regulator of the body's response to hypoxia, and its dysregulation has been implicated in various pathological conditions, including cancer, cardiovascular disease, and neurodegenerative disorders.

The alpha7 nicotinic acetylcholine receptor (α7nAChR) is a type of cholinergic receptor found in the nervous system that is activated by the neurotransmitter acetylcholine. It is a ligand-gated ion channel that is widely distributed throughout the central and peripheral nervous systems, including in the hippocampus, cortex, thalamus, and autonomic ganglia.

The α7nAChR is composed of five subunits arranged around a central pore, and it has a high permeability to calcium ions (Ca2+). When acetylcholine binds to the receptor, it triggers a conformational change that opens the ion channel, allowing Ca2+ to flow into the cell. This influx of Ca2+ can activate various intracellular signaling pathways and have excitatory or inhibitory effects on neuronal activity, depending on the location and function of the receptor.

The α7nAChR has been implicated in a variety of physiological processes, including learning and memory, attention, sensory perception, and motor control. It has also been studied as a potential therapeutic target for various neurological and psychiatric disorders, such as Alzheimer's disease, schizophrenia, and pain.

Integrin α3β1 is a type of cell surface receptor that is widely expressed in various tissues, including epithelial and endothelial cells. It is composed of two subunits, α3 and β1, which form a heterodimeric complex that plays a crucial role in cell-matrix adhesion and signaling.

Integrin α3β1 binds to several extracellular matrix proteins, such as laminin, fibronectin, and collagen IV, and mediates various cellular functions, including cell migration, proliferation, differentiation, and survival. It also participates in intracellular signaling pathways that regulate cell behavior and tissue homeostasis.

Mutations in the genes encoding integrin α3β1 have been associated with several human diseases, including blistering skin disorders, kidney disease, and cancer. Therefore, understanding the structure, function, and regulation of integrin α3β1 is essential for developing new therapeutic strategies to treat these conditions.

Integrin α4 (also known as CD49d or ITGA4) is a subunit of integrin proteins, which are heterodimeric transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions. Integrin α4 typically pairs with β1 (CD29 or ITGB1) or β7 (ITGB7) subunits to form integrins α4β1 and α4β7, respectively.

Integrin α4β1, also known as very late antigen-4 (VLA-4), is widely expressed on various hematopoietic cells, including lymphocytes, monocytes, eosinophils, and basophils. It plays crucial roles in the adhesion, migration, and homing of these cells to secondary lymphoid organs, as well as in the recruitment of immune cells to inflammatory sites. Integrin α4β1 binds to its ligands, vascular cell adhesion molecule-1 (VCAM-1) and fibronectin, via the arginine-glycine-aspartic acid (RGD) motif.

Integrin α4β7, on the other hand, is primarily expressed on gut-homing lymphocytes and interacts with mucosal addressin cell adhesion molecule-1 (MAdCAM-1), a protein mainly found in the high endothelial venules of intestinal Peyer's patches and mesenteric lymph nodes. This interaction facilitates the trafficking of immune cells to the gastrointestinal tract, where they participate in immune responses against pathogens and maintain gut homeostasis.

In summary, Integrin α4 is a crucial subunit of integrins that mediates cell adhesion, migration, and homing to specific tissues through its interactions with various ligands. Dysregulation of integrin α4 has been implicated in several pathological conditions, including inflammatory diseases, autoimmune disorders, and cancer metastasis.

Integrin α6 (also known as CD49f) is a type of integrin, which is a heterodimeric transmembrane receptor that mediates cell-cell and cell-extracellular matrix (ECM) interactions. Integrins play crucial roles in various biological processes such as cell adhesion, migration, proliferation, differentiation, and survival.

Integrin α6 is a 130 kDa glycoprotein that pairs with integrin β1, β4 or β5 to form three distinct heterodimeric complexes: α6β1, α6β4, and α6β5. Among these, the α6β4 integrin is the most extensively studied. It specifically binds to laminins in the basement membrane and plays essential roles in maintaining epithelial tissue architecture and function.

The α6β4 integrin has a unique structure with an extended cytoplasmic domain of β4 that can interact with intracellular signaling molecules, cytoskeletal proteins, and other adhesion receptors. This interaction allows the formation of stable adhesion complexes called hemidesmosomes, which anchor epithelial cells to the basement membrane and provide mechanical stability to tissues.

Mutations in integrin α6 or its partners can lead to various human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and mucous membranes that blister and tear easily.

Integrin α5β1, also known as very late antigen-5 (VLA-5) or fibronectin receptor, is a heterodimeric transmembrane receptor protein composed of two subunits: α5 and β1. This integrin is widely expressed in various cell types, including endothelial cells, smooth muscle cells, and fibroblasts.

Integrin α5β1 plays a crucial role in mediating cell-matrix adhesion by binding to the arginine-glycine-aspartic acid (RGD) sequence present in the extracellular matrix protein fibronectin. The interaction between integrin α5β1 and fibronectin is essential for various biological processes, such as cell migration, proliferation, differentiation, and survival. Additionally, this integrin has been implicated in several pathological conditions, including tumor progression, angiogenesis, and fibrosis.

Integrin α4β1, also known as Very Late Antigen-4 (VLA-4), is a heterodimeric transmembrane receptor protein composed of two subunits, α4 and β1. It is involved in various cellular activities such as adhesion, migration, and signaling. This integrin plays a crucial role in the immune system by mediating the interaction between leukocytes (white blood cells) and the endothelial cells that line blood vessels. The activation of Integrin α4β1 allows leukocytes to roll along and then firmly adhere to the endothelium, followed by their migration into surrounding tissues, particularly during inflammation and immune responses. Additionally, Integrin α4β1 also interacts with extracellular matrix proteins such as fibronectin and helps regulate cell survival, proliferation, and differentiation in various cell types.

Interleukin-1 alpha (IL-1α) is a member of the interleukin-1 cytokine family, which plays a crucial role in the regulation of inflamation and immune responses. IL-1α is primarily produced by activated macrophages, epithelial cells, and fibroblasts. It is a potent proinflammatory cytokine that binds to the interleukin-1 receptor (IL-1R) and activates signaling pathways leading to the expression of genes involved in inflammation, fever, and cellular activation. IL-1α is involved in various physiological processes such as hematopoiesis, bone remodeling, and response to infection or injury. Dysregulation of IL-1α has been implicated in several pathological conditions including autoimmune diseases, atherosclerosis, and cancer.

Integrin α2β1, also known as very late antigen-2 (VLA-2) or laminin receptor, is a heterodimeric transmembrane receptor protein composed of α2 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α2β1 is widely expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some hematopoietic cells. It functions as a receptor for several ECM proteins, such as collagens (type I, II, III, and V), laminin, and fibronectin. The binding of integrin α2β1 to these ECM components mediates cell adhesion, migration, proliferation, differentiation, and survival, thereby regulating various physiological and pathological processes, such as tissue repair, angiogenesis, inflammation, and tumor progression.

In addition, integrin α2β1 has been implicated in several diseases, including fibrosis, atherosclerosis, and cancer. Therefore, targeting this integrin with therapeutic strategies may provide potential benefits for treating these conditions.

Alpha-1 adrenergic receptors (also known as α1-adrenoreceptors) are a type of G protein-coupled receptor that binds catecholamines, such as norepinephrine and epinephrine. These receptors are primarily found in the smooth muscle of various organs, including the vasculature, heart, liver, kidneys, gastrointestinal tract, and genitourinary system.

When an alpha-1 adrenergic receptor is activated by a catecholamine, it triggers a signaling cascade that leads to the activation of phospholipase C, which in turn activates protein kinase C and increases intracellular calcium levels. This ultimately results in smooth muscle contraction, increased heart rate and force of contraction, and vasoconstriction.

Alpha-1 adrenergic receptors are also found in the central nervous system, where they play a role in regulating wakefulness, attention, and anxiety. There are three subtypes of alpha-1 adrenergic receptors (α1A, α1B, and α1D), each with distinct physiological roles and pharmacological properties.

In summary, alpha-1 adrenergic receptors are a type of G protein-coupled receptor that binds catecholamines and mediates various physiological responses, including smooth muscle contraction, increased heart rate and force of contraction, vasoconstriction, and regulation of wakefulness and anxiety.

Integrin α5 (also known as CD49e) is a subunit of the heterodimeric integrin receptor called very late antigen-5 (VLA-5). Integrins are transmembrane adhesion receptors that play crucial roles in cell-cell and cell-extracellular matrix interactions. The α5β1 integrin, formed by the association of α5 and β1 subunits, specifically recognizes and binds to fibronectin, a major extracellular matrix protein. This binding event is essential for various biological processes such as cell migration, proliferation, differentiation, and survival.

In summary, Integrin alpha5 (α5) is an essential subunit of the α5β1 integrin receptor that mediates cell-fibronectin interactions and contributes to several vital cellular functions.

Integrin α1β1, also known as Very Late Antigen-1 (VLA-1) or CD49a/CD29, is a heterodimeric transmembrane receptor protein composed of α1 and β1 subunits. It belongs to the integrin family of adhesion molecules that play crucial roles in cell-cell and cell-extracellular matrix (ECM) interactions.

Integrin α1β1 is primarily expressed on various cell types, including fibroblasts, endothelial cells, smooth muscle cells, and some immune cells. This integrin binds to several ECM proteins, such as collagens (type I, II, III, IV), laminin, and fibronectin, mediating cell adhesion, migration, proliferation, differentiation, and survival. Additionally, α1β1 integrin has been implicated in various physiological and pathological processes, such as tissue repair, fibrosis, and tumor progression.

Alpha-2 adrenergic receptors are a type of G protein-coupled receptor that binds catecholamines, such as norepinephrine and epinephrine. These receptors are widely distributed in the central and peripheral nervous system, as well as in various organs and tissues throughout the body.

Activation of alpha-2 adrenergic receptors leads to a variety of physiological responses, including inhibition of neurotransmitter release, vasoconstriction, and reduced heart rate. These receptors play important roles in regulating blood pressure, pain perception, and various cognitive and emotional processes.

There are several subtypes of alpha-2 adrenergic receptors, including alpha-2A, alpha-2B, and alpha-2C, which may have distinct physiological functions and be targeted by different drugs. For example, certain medications used to treat hypertension or opioid withdrawal target alpha-2 adrenergic receptors to produce their therapeutic effects.

Integrin α6β1, also known as CD49f/CD29, is a heterodimeric transmembrane receptor protein composed of α6 and β1 subunits. It is widely expressed in various tissues, including epithelial cells, endothelial cells, fibroblasts, and hematopoietic cells. Integrin α6β1 plays a crucial role in cell-matrix adhesion, particularly to the laminin component of the extracellular matrix (ECM). This receptor is involved in various biological processes such as cell migration, proliferation, differentiation, and survival. Additionally, integrin α6β1 has been implicated in tumor progression, metastasis, and drug resistance in certain cancers.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Integrin α6β4 is a type of cell surface receptor that is composed of two subunits, α6 and β4. It is also known as CD49f/CD104. This integrin is primarily expressed in epithelial cells and plays important roles in cell adhesion, migration, and signal transduction.

Integrin α6β4 specifically binds to laminin-332 (also known as laminin-5), a component of the basement membrane, and forms a stable anchorage complex that links the cytoskeleton to the extracellular matrix. This interaction is critical for maintaining the integrity of epithelial tissues and regulating cell behavior during processes such as wound healing and tissue regeneration.

Mutations in the genes encoding integrin α6β4 have been associated with various human diseases, including epidermolysis bullosa, a group of inherited skin disorders characterized by fragile skin and blistering. Additionally, integrin α6β4 has been implicated in cancer progression and metastasis, as its expression is often upregulated in tumor cells and contributes to their invasive behavior.

Integrins are a family of cell-surface receptors that play crucial roles in various biological processes, including cell adhesion, migration, and signaling. Integrin alpha chains are one of the two subunits that make up an integrin heterodimer, with the other subunit being an integrin beta chain.

Integrin alpha chains are transmembrane glycoproteins consisting of a large extracellular domain, a single transmembrane segment, and a short cytoplasmic tail. The extracellular domain contains several domains that mediate ligand binding, while the cytoplasmic tail interacts with various cytoskeletal proteins and signaling molecules to regulate intracellular signaling pathways.

There are 18 different integrin alpha chains known in humans, each of which can pair with one or more beta chains to form distinct integrin heterodimers. These heterodimers exhibit unique ligand specificities and functions, allowing them to mediate diverse cell-matrix and cell-cell interactions.

In summary, integrin alpha chains are essential subunits of integrin receptors that play crucial roles in regulating cell adhesion, migration, and signaling by mediating interactions between cells and their extracellular environment.

Integrins are a type of cell-adhesion molecule that play a crucial role in cell-cell and cell-extracellular matrix (ECM) interactions. They are heterodimeric transmembrane receptors composed of non-covalently associated α and β subunits, which form more than 24 distinct integrin heterodimers in humans.

Integrins bind to specific ligands, such as ECM proteins (e.g., collagen, fibronectin, laminin), cell surface molecules, and soluble factors, through their extracellular domains. The intracellular domains of integrins interact with the cytoskeleton and various signaling proteins, allowing them to transduce signals from the ECM into the cell (outside-in signaling) and vice versa (inside-out signaling).

These molecular interactions are essential for numerous biological processes, including cell adhesion, migration, proliferation, differentiation, survival, and angiogenesis. Dysregulation of integrin function has been implicated in various pathological conditions, such as cancer, fibrosis, inflammation, and autoimmune diseases.

Integrin α1 (also known as ITGA1 or CD49a) is a subunit of a heterodimeric integrin receptor, specifically the collagen receptor α1β1. Integrins are transmembrane proteins that play crucial roles in cell-cell and cell-extracellular matrix (ECM) adhesion, signaling, migration, proliferation, and differentiation. The α1β1 integrin binds to various collagen types, such as collagens I, II, III, and V, and mediates cellular responses upon binding to these ECM components.

The gene encoding Integrin α1 is located on chromosome 5 (5q31) in humans. Mutations in the ITGA1 gene can lead to various diseases, including leukocyte adhesion deficiency type II and some forms of epidermolysis bullosa.

Alpha rhythm is a type of brain wave that is typically observed in the electroencephalogram (EEG) of normal, awake individuals when they have their eyes closed. It is characterized by sinusoidal waves with a frequency range of 8-13 Hz and is most prominent over the occipital region of the head, which is located at the back of the skull above the brain's visual cortex.

Alpha rhythm is typically associated with relaxed wakefulness, and its presence may indicate that an individual is awake but not engaged in any mentally demanding tasks. It can be blocked or suppressed by various stimuli, such as opening one's eyes, hearing a loud noise, or engaging in mental activity.

Disruptions in alpha rhythm have been observed in various neurological and psychiatric conditions, including epilepsy, dementia, depression, and anxiety disorders. However, more research is needed to fully understand the clinical significance of these abnormalities.

Integrin α3 (also known as ITGA3) is a subunit of a type of cell-surface receptor called an integrin. Integrins are involved in cell-cell and cell-extracellular matrix (ECM) interactions, and play important roles in various biological processes such as cell adhesion, migration, and survival.

Integrin α3 combines with the β1 subunit to form the integrin heterodimer α3β1, which is widely expressed in many tissues including epithelial cells, endothelial cells, and fibroblasts. Integrin α3β1 binds to various ECM proteins such as laminin-5, fibronectin, and collagen IV, and mediates cell adhesion and migration on these substrates.

Mutations in the ITGA3 gene have been associated with several human genetic disorders, including epidermolysis bullosa with pyloric atresia (EB-PA), a severe form of inherited skin fragility disorder, and Adams-Oliver syndrome, a rare genetic disorder characterized by scalp defects and limb abnormalities.

Alpha 1-Antitrypsin (AAT) deficiency is a genetic disorder that results from insufficient levels of the protective protein AAT in the blood and lungs. This protein is produced by the liver and helps to protect the lungs from damage caused by inflammation and the action of enzymes, such as neutrophil elastase, that are released during the immune response.

In people with AAT deficiency, the lack of adequate AAT levels leads to an uncontrolled increase in neutrophil elastase activity, which can cause damage to lung tissue and result in emphysema, a condition characterized by shortness of breath, coughing, and wheezing. Additionally, some individuals with AAT deficiency may develop liver disease due to the accumulation of abnormal AAT proteins in liver cells.

There are different variants or genotypes associated with AAT deficiency, with the most common and severe form being the PiZZ genotype. This variant is caused by mutations in the SERPINA1 gene, which encodes for the AAT protein. Individuals who inherit two copies of this mutated gene (one from each parent) will have very low levels of AAT in their blood and are at increased risk of developing emphysema and liver disease.

Diagnosis of AAT deficiency typically involves measuring AAT levels in the blood and performing genetic testing to identify specific variants of the SERPINA1 gene. Treatment may include lifestyle modifications, such as smoking cessation, bronchodilators, and corticosteroids to manage lung symptoms, as well as augmentation therapy with intravenous infusions of AAT protein to help slow disease progression in individuals with severe deficiency. Liver transplantation may be considered for those with advanced liver disease.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Nicotinic receptors are a type of ligand-gated ion channel receptor that are activated by the neurotransmitter acetylcholine and the alkaloid nicotine. They are widely distributed throughout the nervous system and play important roles in various physiological processes, including neuronal excitability, neurotransmitter release, and cognitive functions such as learning and memory. Nicotinic receptors are composed of five subunits that form a ion channel pore, which opens to allow the flow of cations (positively charged ions) when the receptor is activated by acetylcholine or nicotine. There are several subtypes of nicotinic receptors, which differ in their subunit composition and functional properties. These receptors have been implicated in various neurological disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia.

Adrenergic alpha-agonists are a type of medication that binds to and activates adrenergic alpha receptors, which are found in the nervous system and other tissues throughout the body. These receptors are activated naturally by chemicals called catecholamines, such as norepinephrine and epinephrine (also known as adrenaline), that are released in response to stress or excitement.

When adrenergic alpha-agonists bind to these receptors, they mimic the effects of catecholamines and cause various physiological responses, such as vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and relaxation of smooth muscle in the airways.

Adrenergic alpha-agonists are used to treat a variety of medical conditions, including hypertension (high blood pressure), glaucoma, nasal congestion, and attention deficit hyperactivity disorder (ADHD). Examples of adrenergic alpha-agonists include phenylephrine, clonidine, and guanfacine.

It's important to note that adrenergic alpha-agonists can have both beneficial and harmful effects, depending on the specific medication, dosage, and individual patient factors. Therefore, they should only be used under the guidance of a healthcare professional.

PPAR-alpha (Peroxisome Proliferator-Activated Receptor alpha) is a type of nuclear receptor protein that functions as a transcription factor, regulating the expression of specific genes involved in lipid metabolism. It plays a crucial role in the breakdown of fatty acids and the synthesis of high-density lipoproteins (HDL or "good" cholesterol) in the liver. PPAR-alpha activation also has anti-inflammatory effects, making it a potential therapeutic target for metabolic disorders such as diabetes, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD).

Dinoprost is a synthetic form of prostaglandin F2α, which is a naturally occurring hormone-like substance in the body. It is used in veterinary medicine as a uterotonic agent to induce labor and abortion in various animals such as cows and pigs. In human medicine, it may be used off-label for similar purposes, but its use must be under the close supervision of a healthcare provider due to potential side effects and risks.

It is important to note that Dinoprost is not approved by the FDA for use in humans, and its availability may vary depending on the country or region. Always consult with a licensed healthcare professional before using any medication, including Dinoprost.

Adrenergic alpha-antagonists, also known as alpha-blockers, are a class of medications that block the effects of adrenaline and noradrenaline at alpha-adrenergic receptors. These receptors are found in various tissues throughout the body, including the smooth muscle of blood vessels, the heart, the genitourinary system, and the eyes.

When alpha-blockers bind to these receptors, they prevent the activation of the sympathetic nervous system, which is responsible for the "fight or flight" response. This results in a relaxation of the smooth muscle, leading to vasodilation (widening of blood vessels), decreased blood pressure, and increased blood flow.

Alpha-blockers are used to treat various medical conditions, such as hypertension (high blood pressure), benign prostatic hyperplasia (enlarged prostate), pheochromocytoma (a rare tumor of the adrenal gland), and certain types of glaucoma.

Examples of alpha-blockers include doxazosin, prazosin, terazosin, and tamsulosin. Side effects of alpha-blockers may include dizziness, lightheadedness, headache, weakness, and orthostatic hypotension (a sudden drop in blood pressure upon standing).

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Hepatocyte Nuclear Factor 1-alpha (HNF1A) is a transcription factor that plays a crucial role in the development and function of the liver. It belongs to the family of winged helix transcription factors and is primarily expressed in the hepatocytes, which are the major cell type in the liver.

HNF1A regulates the expression of various genes involved in glucose and lipid metabolism, bile acid synthesis, and drug metabolism. Mutations in the HNF1A gene have been associated with maturity-onset diabetes of the young (MODY), a form of diabetes that is typically inherited in an autosomal dominant manner and often diagnosed in early adulthood. These mutations can lead to impaired insulin secretion and decreased glucose tolerance, resulting in the development of diabetes.

In addition to its role in diabetes, HNF1A has also been implicated in liver diseases such as nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Dysregulation of HNF1A has been shown to contribute to the development and progression of these conditions by altering the expression of genes involved in lipid metabolism, inflammation, and fibrosis.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Alpha 1-Antichymotrypsin (ACT), also known as Serpin A1, is a protein found in the blood that belongs to the serine protease inhibitor family. It functions to regulate enzymes that break down other proteins in the body. ACT helps to prevent excessive and potentially harmful proteolytic activity, which can contribute to tissue damage and inflammation.

Deficiency or dysfunction of alpha 1-Antichymotrypsin has been associated with several medical conditions, including:

1. Alpha 1-Antichymotrypsin Deficiency: A rare genetic disorder characterized by low levels of ACT in the blood, which can lead to increased risk of developing lung and liver diseases.
2. Alzheimer's Disease: Increased levels of ACT have been found in the brains of individuals with Alzheimer's disease, suggesting a possible role in the pathogenesis of this neurodegenerative disorder.
3. Cancer: Elevated levels of ACT have been observed in various types of cancer, including lung, breast, and prostate cancers, potentially contributing to tumor growth and metastasis.
4. Inflammatory and immune-mediated disorders: Increased ACT levels are associated with several inflammatory conditions, such as rheumatoid arthritis, systemic lupus erythematosus (SLE), and vasculitis, suggesting its involvement in the regulation of the immune response.
5. Cardiovascular diseases: Elevated ACT levels have been linked to an increased risk of developing cardiovascular diseases, including atherosclerosis and myocardial infarction (heart attack).

Understanding the role of alpha 1-Antichymotrypsin in various physiological and pathological processes can provide valuable insights into disease mechanisms and potential therapeutic targets.

Transforming Growth Factor-alpha (TGF-α) is a type of growth factor, specifically a peptide growth factor, that plays a role in cell growth, proliferation, and differentiation. It belongs to the epidermal growth factor (EGF) family of growth factors. TGF-α binds to the EGF receptor (EGFR) on the surface of cells and activates intracellular signaling pathways that promote cellular growth and division.

TGF-α is involved in various biological processes, including embryonic development, wound healing, and tissue repair. However, abnormal regulation of TGF-α has been implicated in several diseases, such as cancer. Overexpression or hyperactivation of TGF-α can contribute to uncontrolled cell growth and tumor progression by stimulating the proliferation of cancer cells and inhibiting their differentiation and apoptosis (programmed cell death).

TGF-α is produced by various cell types, including epithelial cells, fibroblasts, and immune cells. It can be secreted in a membrane-bound form (pro-TGF-α) or as a soluble protein after proteolytic cleavage.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Adrenergic alpha-1 receptor antagonists, also known as alpha-blockers, are a class of medications that block the effects of the neurotransmitter norepinephrine at alpha-1 receptors. These receptors are found in various tissues throughout the body, including the smooth muscle of blood vessels, the bladder, and the eye.

When norepinephrine binds to alpha-1 receptors, it causes smooth muscle to contract, leading to vasoconstriction (constriction of blood vessels), increased blood pressure, and other effects. By blocking these receptors, alpha-blockers can cause relaxation of smooth muscle, leading to vasodilation (expansion of blood vessels), decreased blood pressure, and other effects.

Alpha-blockers are used in the treatment of various medical conditions, including hypertension (high blood pressure), benign prostatic hyperplasia (enlarged prostate), and pheochromocytoma (a rare tumor of the adrenal gland). Examples of alpha-blockers include doxazosin, prazosin, and terazosin.

It's important to note that while alpha-blockers can be effective in treating certain medical conditions, they can also have side effects, such as dizziness, lightheadedness, and orthostatic hypotension (a sudden drop in blood pressure when standing up). As with any medication, it's important to use alpha-blockers under the guidance of a healthcare provider.

Alpha karyopherins, also known as importin-α or karyopherin-α, are a family of transport receptors that play a crucial role in the nuclear transport of proteins. They facilitate the entry of specific proteins containing a nuclear localization signal (NLS) into the nucleus through the nuclear pore complex (NPC).

In this process, alpha karyopherins first bind to the NLS-containing protein in the cytoplasm. This complex then interacts with beta karyopherins (importin-β or karyopherin-β) and forms a trimeric complex. The trimeric complex is then transported through the NPC into the nucleus, where RanGTP binds to the importin-β component, causing dissociation of the complex. The alpha karyopherins, along with importin-β, are subsequently exported back to the cytoplasm via a separate nuclear export pathway for reuse in subsequent transport cycles.

There are several isoforms of alpha karyopherins, each recognizing specific NLS sequences and playing distinct roles in various cellular processes, such as gene regulation, DNA repair, and signal transduction. Dysregulation of alpha karyopherins has been implicated in several diseases, including cancer and neurodegenerative disorders.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

**Prazosin** is an antihypertensive drug, which belongs to the class of medications called alpha-blockers. It works by relaxing the muscles in the blood vessels, which helps to lower blood pressure and improve blood flow. Prazosin is primarily used to treat high blood pressure (hypertension), but it may also be used for the management of symptoms related to enlarged prostate (benign prostatic hyperplasia).

In a medical definition context:

Prazosin: A selective α1-adrenergic receptor antagonist, used in the treatment of hypertension and benign prostatic hyperplasia. It acts by blocking the action of norepinephrine on the smooth muscle of blood vessels, resulting in vasodilation and decreased peripheral vascular resistance. This leads to a reduction in blood pressure and an improvement in urinary symptoms associated with an enlarged prostate.

6-Ketoprostaglandin F1 alpha, also known as prostaglandin H1A, is a stable metabolite of prostaglandin F2alpha (PGF2alpha). It is a type of eicosanoid, which is a signaling molecule made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids. Prostaglandins are a subclass of eicosanoids and have diverse hormone-like effects in various tissues, including smooth muscle contraction, vasodilation, and modulation of inflammation.

6-Ketoprostaglandin F1 alpha is formed by the oxidation of PGF2alpha by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that metabolizes prostaglandins and thromboxanes. It has been used as a biomarker for the measurement of PGF2alpha production in research settings, but it does not have any known physiological activity.

A protein subunit refers to a distinct and independently folding polypeptide chain that makes up a larger protein complex. Proteins are often composed of multiple subunits, which can be identical or different, that come together to form the functional unit of the protein. These subunits can interact with each other through non-covalent interactions such as hydrogen bonds, ionic bonds, and van der Waals forces, as well as covalent bonds like disulfide bridges. The arrangement and interaction of these subunits contribute to the overall structure and function of the protein.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Clonidine is an medication that belongs to a class of drugs called centrally acting alpha-agonist hypotensives. It works by stimulating certain receptors in the brain and lowering the heart rate, which results in decreased blood pressure. Clonidine is commonly used to treat hypertension (high blood pressure), but it can also be used for other purposes such as managing withdrawal symptoms from opioids or alcohol, treating attention deficit hyperactivity disorder (ADHD), and preventing migraines. It can be taken orally in the form of tablets or transdermally through a patch applied to the skin. As with any medication, clonidine should be used under the guidance and supervision of a healthcare provider.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Yohimbine is defined as an alkaloid derived from the bark of the Pausinystalia yohimbe tree, primarily found in Central Africa. It functions as a selective antagonist of α2-adrenergers, which results in increased noradrenaline levels and subsequent vasodilation, improved sexual dysfunction, and potentially increased energy and alertness.

It is used in traditional medicine for the treatment of erectile dysfunction and as an aphrodisiac, but its efficacy and safety are still subjects of ongoing research and debate. It's important to note that yohimbine can have significant side effects, including anxiety, increased heart rate, and high blood pressure, and should only be used under the supervision of a healthcare professional.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Adrenergic alpha-2 receptor agonists are a class of medications that bind to and activate adrenergic alpha-2 receptors, which are found in the nervous system and other tissues. These receptors play a role in regulating various bodily functions, including blood pressure, heart rate, and release of certain hormones.

When adrenergic alpha-2 receptor agonists bind to these receptors, they can cause a variety of effects, such as:

* Vasoconstriction (narrowing of blood vessels), which can increase blood pressure
* Decreased heart rate and force of heart contractions
* Suppression of the release of norepinephrine (a hormone and neurotransmitter involved in the "fight or flight" response) from nerve endings
* Analgesia (pain relief)

Adrenergic alpha-2 receptor agonists are used in a variety of medical conditions, including:

* High blood pressure
* Glaucoma (to reduce pressure in the eye)
* Anesthesia (to help prevent excessive bleeding and to provide sedation)
* Opioid withdrawal symptoms (to help manage symptoms such as anxiety, agitation, and muscle aches)

Examples of adrenergic alpha-2 receptor agonists include clonidine, brimonidine, and dexmedetomidine.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

... may refer to: Mucinaminylserine mucinaminidase, an enzyme Glycopeptide alpha-N- ... acetylgalactosaminidase, an enzyme This set index page lists enzyme articles associated with the same name. If an internal link ...
Endo-alpha-N-acetylgalactosaminidase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology ( ... Ashida H, Yamamoto K, Murata T, Usui T, Kumagai H (January 2000). "Characterization of endo-alpha-N-acetylgalactosaminidase ... Endo-α-N-acetylgalactosaminidase (EC 3.2.1.97, endo-α-acetylgalactosaminidase, endo-α-N-acetyl-D-galactosaminidase, ... and characterization of a novel endo-alpha-N-acetylgalactosaminidase from Enterococcus faecalis". Biochemical and Biophysical ...
Corti, A; Fassina, G; Marcucci, F; Barbanti, E; Cassani, G (1992). "Oligomeric tumour necrosis factor alpha slowly converts ... Weissmann, Bernard; Hinrichsen, Dorotea F. (1969). "Mammalian α-acetylgalactosaminidase. Occurrence, partial purification, and ... Weissmann, Bernard; Wang, Ching-Te (1971). "Association-dissociation and abnormal kinetics of bovine .alpha.- ...
1996). "Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and ... 1989). "Molecular cloning of a full-length cDNA for human alpha-N-acetylgalactosaminidase (alpha-galactosidase B)". Biochem. ... NAGA encodes the lysosomal enzyme alpha-N-acetylgalactosaminidase, which cleaves alpha-N-acetylgalactosaminyl moieties from ... "Structural organization and complete sequence of the human alpha-N-acetylgalactosaminidase gene: homology with the alpha- ...
"Cloning and expression of biologically active alpha N-acetylgalactosaminidase", published 1996-02-13, assigned to Mount Sinai ... National Institute of Diabetes and Digestive and Kidney Diseases Alpha Galactosidases A And B - Molecular and Cellular ... Cloning and expression of biologically active alpha-galactosidase A as a fusion protein, (1996). Acid sphingomyelinase gene and ... Correction of the biochemical and functional deficits in Fabry mice following AAV8-mediated hepatic expression of alpha- ...
Other names in common use include endo-alpha-N-acetylgalactosaminidase, and endo-alpha-N-acetyl-D-galactosaminidase. ... Endo Y, Kobata A (July 1976). "Partial purification and characterization of an endo-alpha-N-acetylgalactosaminidase from the ... Bhavanandan VP, Umemoto J, Davidson EA (1976). "Characterization of an endo-alpha-N-acetyl galactosaminidase from Diplococcus ... Umemoto J, Bhavanandan VP, Davidson EA (1977). "Purification and properties of an endo-alpha-N-acetyl-D-galactosaminidase from ...
Alpha-N-acetylgalactosaminidase (EC 3.2.1.49) catalyzes the hydrolysis of terminal non-reducing N-acetyl-D-galactosamine ... Wang AM, Bishop DF, Desnick RJ (1990). "Human alpha-N-acetylgalactosaminidase-molecular cloning, nucleotide sequence, and ... a superfamily of alpha-galactosidases, alpha-N-acetylgalactosaminidases, and isomaltodextranases which are likely to share a ... Alpha-galactosidase (EC 3.2.1.22) (melibiase) catalyzes the hydrolysis of melibiose into galactose and glucose. In man, the ...
Alpha-N-acetylgalactosaminidase (EC 3.2.1.49) catalyzes the hydrolysis of terminal non-reducing N-acetyl-D-galactosamine ... Wang AM, Bishop DF, Desnick RJ (1990). "Human alpha-N-acetylgalactosaminidase-molecular cloning, nucleotide sequence, and ... Raffinose (O-alpha- D-galactopyranosyl- (1-->6)- O-alpha- D-glucopyranosyl-(1<-->2)- O-beta- D-fructofuranoside) is a ... a superfamily of alpha-galactosidases, alpha-N-acetylgalactosaminidases, and isomaltodextranases which are likely to share a ...
This lysosomal storage disorder is caused by a deficiency in the enzyme alpha-NAGA (alpha-N-acetylgalactosaminidase), ... Schindler disease, also known as Kanzaki disease and alpha-N-acetylgalactosaminidase deficiency, is a rare disease found in ... the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy". J. Clin. ... A deficiency of the alpha-NAGA enzyme leads to an accumulation of glycosphingolipids throughout the body. This accumulation of ...
... resulting in alpha-N-acetylgalactosaminidase deficiency, cause an infantile neuroaxonal dystrophy known as Schindler disease. ... the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy". J. Clin. ...
... alpha-N-acetylgalactosaminidase deficiency) Schinzel-Giedion syndrome Scleroatrophic syndrome of Huriez (Huriez syndrome, ... Acquired generalized lipodystrophy (Lawrence syndrome, Lawrence-Seip syndrome) Adiposis dolorosa (Dercum's disease) Alpha-1 ... Familial alpha-lipoprotein deficiency (Tangier disease) Familial amyloid polyneuropathy Familial apoprotein CII deficiency ...
... misleadingly based on reduced levels of the alpha-N-acetylgalactosaminidase enzyme (also known as nagalase), whose production ...
... which encodes the enzyme alpha-N-acetylgalactosaminidase Nagasaki Nagamaki Nagaland (disambiguation) Naga City (disambiguation ...
... alpha-N-acetylgalactosaminidase MeSH D08.811.277.450.483.112 - Beta-N-acetylgalactosaminidase MeSH D08.811.277.450.483.180 - ... gtp-binding protein alpha subunits MeSH D08.811.277.040.330.300.200.100.100 - gtp-binding protein alpha subunits, g12-g13 MeSH ... gtp-binding protein alpha subunit, gi2 MeSH D08.811.277.040.330.300.200.100.300 - gtp-binding protein alpha subunits, gq-g11 ... steroid 12-alpha-hydroxylase MeSH D08.811.682.690.708.170.915.737 - steroid 16-alpha-hydroxylase MeSH D08.811.682.690.708.170. ...
Hou Y, Tse R, Mahuran DJ (April 1996). "Direct determination of the substrate specificity of the alpha-active site in ... and β-N-acetylgalactosaminidase from calf brain". Biochemistry. 6 (9): 2775-82. doi:10.1021/bi00861a018. PMID 6055190. Li SC, ... and a loop structure that forms from the amino acid sequence in the alpha subunit. The loop in the α subunit, consisting of Gly ... β-N-acetylhexosaminidase and β-N-acetylgalactosaminidase". Biochem. J. 261 (3): 1059-60. doi:10.1042/bj2611059b. PMC 1138940. ...
It has been suggested this rare finding may be linked to the fact that alpha dystroglycan is highly conserved from lower ... endo-α-N-Acetylgalactosaminidase (O-glycosidase from Streptococcus pneumoniae): removes O-glycosylation. This enzyme cleaves ... Mannose has recently been reported in a vertebrate, the mouse, Mus musculus, on the cell-surface laminin receptor alpha ... A C-C bond is formed between the first carbon of the alpha-mannose and the second carbon of the tryptophan. However, not all ...
Endo-alpha-N-acetylgalactosaminidase may refer to: Mucinaminylserine mucinaminidase, an enzyme Glycopeptide alpha-N- ... acetylgalactosaminidase, an enzyme This set index page lists enzyme articles associated with the same name. If an internal link ...
Find support organizations and financial resources for Alpha-N-acetylgalactosaminidase deficiency type 3. ... Alpha-N-acetylgalactosaminidase deficiency type 3. Other Names: NAGA deficiency type 3; Schindler disease type 3NAGA deficiency ...
Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and phenotype. ... Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and phenotype. ... Two of them are homozygous for the stop mutation E193X, leading to complete loss of alpha-NAGA protein. These observations are ... Up to now eight patients with alpha-NAGA deficiency have been described. This includes the newly identified patient reported ...
Book Alpha N-acetyl Galactosaminidase Schindler Disease Test near me in Kannur at the lowest price from Healthians. Compare ... Alpha N-acetyl Galactosaminidase Schindler Disease Test in. Kannur. Also Known asAlpha-NAGA, alpha-galactosidase B ... Alpha N-acetyl Galactosaminidase Schindler Disease Test price in Kannur. *. The regular cost of Alpha N-acetyl ... About Alpha N-Acetyl Galactosaminidase Schindler disease Test in Kannur. Pathology tests cover blood tests, and tests on urine ...
NAGA: alpha-N-acetylgalactosaminidase. *NAGLU: N-acetyl-alpha-glucosaminidase. *NAGS: N-acetylglutamate synthase ...
alpha-N-Acetylgalactosaminidase / deficiency * alpha-N-Acetylgalactosaminidase / urine Substances * Oligosaccharides * alpha-N- ...
Oncoimmunology: "GC Protein-Derived Macrophage-Activating Factor Decreases alpha-N-acetylgalactosaminidase Levels in Advanced ...
Bovine NAGA/Alpha-N-acetylgalactosaminidase ELISA Kit Bovine NAGA/Alpha-N-acetylgalactosaminidase ELISA Kitis available at ... Natural and recombinant Bovine Alpha-N-acetylgalactosaminidase GeneName: NAGA ProteinName: Alpha-N-acetylgalactosaminidase ... Specificity: Natural and recombinant Bovine Alpha-actinin-3 GeneName: ACTN3 ProteinName: Alpha-actinin-3 Alternative: Alpha- ... Specificity: Natural and recombinant Bovine Alpha-actinin-1 GeneName: ACTN1 ProteinName: Alpha-actinin-1 Alternative: Alpha- ...
Schindler disease results from the deficient activity of the enzyme alpha-N -acetylgalactosaminidase (alpha-galactosidase B), ... Alpha-Mannosidosis and Beta-Mannosidosis. Lysosomal alpha-mannosidase is a major exoglycosidase in the glycoprotein degradation ... Schindler disease/Kanzaki disease (alpha-N -acetylgalactosaminidase deficiency) (See Schindler Disease for detailed information ... Alpha-mannosidosis and beta-mannosidosis (See Alpha-Mannosidosis and Beta-Mannosidosis for detailed information.) ...
... and alpha-N-acetylgalactosaminidase. In addition, identical lesions can be seen in patients without detectable enzymatic ... Scott M Acker, MD is a member of the following medical societies: Alpha Omega Alpha, American Medical Association, American ... Broad range of adverse cutaneous eruptions in patients on TNF-alpha antagonists. J Cutan Pathol. 2012 May. 39(5):481-92. [QxMD ... It is usually associated with Anderson-Fabry disease, an X-linked recessive disorder characterized by a deficiency of alpha- ...
Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the envelope glycoprotein gp160 of human ... Haug et al theorized that TNF-alpha and possibly other cytokinesAny of various protein molecules secreted by cells of the ... Carcinogenic role of tumor necrosis factor-alpha inducing protein of Helicobacter pylori in human stomach. J Biochem Mol Biol. ... Activation of the human immunodeficiency virus type I long terminal repeat by 1 alpha,25-dihydroxyvitamin D3. J Mol Endocrinol ...
Alpha-N-acetylgalactosaminidase: https://en.wikipedia.org/wiki/Alpha-N-acetylgalactosaminidase. Elizabethkingia meningoseptica ... Mutations in this gene and the deficiency in alpha-N-acetylgalactosaminidase activity have been identified as the cause of ... α-N-acetylgalactosaminidase (EC 3.2.1.49) is a glycoside hydrolase from bacteria and animals, also known as nagalase. ... test on brain Alpha waves) that test patterns in the childs brain that co-relate to the PAS digit span test, which is a test ...
Alpha-N-acetylgalactosaminidase. TGF-beta receptor type-2. ADP-ribosylation factor 1. Bifunctional 3-phosphoadenosine 5- ...
Protein description: Alpha-N-acetylgalactosaminidase Protein isoelectric point: 5.4054 Protein molecular weight: 47140.34 NCBI ...
Removes terminal alpha-N-acetylgalactosamine residues from glycolipids and glycopeptides. Required for the breakdown of glycoli ... Alpha-N-acetylgalactosaminidase - Also known as NAGAB_HUMAN, NAGA. ... Removes terminal alpha-N-acetylgalactosamine residues from glycolipids and glycopeptides. Required for the breakdown of ... Removes terminal alpha-N-acetylgalactosamine residues from glycolipids and glycopeptides. Required for the breakdown of ...
glucan 1,4-alpha-maltohydrolase activity GO:0043897 * beta-N-acetylgalactosaminidase activity ...
Elevated circulating alpha-fetoprotein concentration, Hypercholesterolemia, Hypoalbuminemia. OMIM:616267. Reese Retinal ... Elevated circulating alpha-fetoprotein concentration, Hypercholesterolemia, Elevated circulating .... ORPHA:64753. Intellectual ... Hypoproteinemia, Hyperlipidemia, Increased alpha-globulin, Hypercholesterolemia, Hypoalbuminemia. ORPHA:86816. Ataxia With ... Elevated circulating alpha-fetoprotein concentration, Increased serum bile acid concentration, Hy.... OMIM:619662. ...
alpha-N-acetylgalactosaminidase [So.... NANS. 54187. NANS. N-acetylneuraminate synthase [Sourc.... NAPSA. 9476. NAPSA. napsin A ...
Alpha-mannosidosis. Alpha-mannosidase. *Schindler/Kanzaki disease. Alpha-N-acetylgalactosaminidase. *Gaucher disease. Beta- ...
glycopeptide alpha-N-acetylgalactosaminidase activity. IEP. Neighborhood. BP. GO:0042592. homeostatic process. IEP. ...
glycopeptide alpha-N-acetylgalactosaminidase activity. IEP. Neighborhood. BP. GO:0048544. recognition of pollen. IEP. ...
Alpha-N-Acetylgalactosaminidase Deficiency Type 3. Cataract. ORPHA:79281. Microphthalmia, Isolated, With Coloboma 3. ...
Funciton: Alpha-N-acetylgalactosaminidase (EC 3.2.1.49) Locus tag: BDP_2091. Name: abfA. Funciton: Alpha-N-arabinofuranosidase ...
Hyperlipidemia, Increased alpha-globulin, Hypoalbuminemia, Hypercholesterolemia, Hypoproteinemia. ORPHA:86816. Acropectoral ... Elevated circulating alpha-fetoprotein concentration, Hypoalbuminemia, Hyperbilirubinemia. OMIM:251880. Vitreoretinal ...
Sma3: Alpha-galactosidase/alpha-n-acetylgalactosaminidase, putative 1.034e-16 Internal sp_v3.0_unigene145959 SustainPine v3.0 ... AutoFact: alpha-galactosidase [Phaseolus vulgaris] 0.0 • FL-Next: tr=Putative uncharacterized protein; Picea sitchensis (Sitka ... AutoFact: alpha-galactosidase [Helianthus annuus] 2.0e-17 • FL-Next: tr=Putative uncharacterized protein; Picea sitchensis ( ... AutoFact: Alpha-galactosidase 1 n=1 Tax=Pisum sativum RepID=Q5ZP79_PEA 1.0e-18 ...
glucan 1,4-alpha-maltohexaosidase activity GO:0033927 * glycopeptide alpha-N-acetylgalactosaminidase activity ... linalyl 6-O-alpha-L-arabinopyranosyl-beta-D-glucopyranoside glucosidase (Yabukita) activity ...
Polyclonal Antibody for Human Alpha-N-acetylgalactosaminidase. P13422Rb-h. 人. 人神经肽FF感受器2(NPFF2)Polyclonal Antibody Polyclonal ... Polyclonal Antibody for Human NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 ...
Post-translational processing reactions involved in the biosynthesis of lysosomal alpha-N-acetylgalactosaminidase in cultured ... Tulsiani DR, Hubbard SC, Robbins PW, Touster O. alpha-D-Mannosidases of rat liver Golgi membranes. Mannosidase II is the ... Yeast glycoprotein biosynthesis: MNT1 encodes an alpha-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci ... Novel purification of the catalytic domain of Golgi alpha-mannosidase II. Characterization and comparison with the intact ...
There is a third: alpha-N-acetylgalactosaminidase or for short -Nagalase.. As soon as a cell is forced into hypoxia and in ...
  • Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and phenotype. (bmj.com)
  • Up to now eight patients with alpha-NAGA deficiency have been described. (bmj.com)
  • The newly identified patient is consanguineous with the first patients reported with alpha-NAGA deficiency and neuroaxonal dystrophy and they all had the alpha-NAGA genotype E325K/E325K. (bmj.com)
  • Clinical heterogeneity among patients with alpha-NAGA deficiency is extreme. (bmj.com)
  • Two of them are homozygous for the stop mutation E193X, leading to complete loss of alpha-NAGA protein. (bmj.com)
  • These observations are difficult to reconcile with a simple genotype-phenotype correlation and we suggest that factors or genes other than alpha-NAGA contribute to the clinical heterogeneity of the eight patients with alpha-NAGA deficiency. (bmj.com)
  • At the metabolic level, the patients with alpha-NAGA deficiency are similar. (bmj.com)
  • Alpha N-acetyl Galactosaminidase Schindler Disease Test (Alpha-NAGA, alpha-galactosidase B) in Kannur at Rs. (bajajfinservhealth.in)
  • Bovine NAGA/Alpha-N-acetylgalactosaminidase ELISA Kitis available at Gentaur for Next week Delivery. (researchd.com)
  • Endo-alpha-N-acetylgalactosaminidase may refer to: Mucinaminylserine mucinaminidase, an enzyme Glycopeptide alpha-N-acetylgalactosaminidase, an enzyme This set index page lists enzyme articles associated with the same name. (wikipedia.org)
  • The regular cost of Alpha N-acetyl Galactosaminidase Schindler Disease Test is ₹6300 in Kannur, but we are offering a 5% discount, so you can book it for just ₹5985. (bajajfinservhealth.in)
  • How home sample collection for Alpha N-acetyl Galactosaminidase Schindler Disease Test in Kannur works? (bajajfinservhealth.in)
  • Can I have Alpha N-Acetyl Galactosaminidase Schindler disease test at home in Kannur? (bajajfinservhealth.in)
  • Check if selected lab partner in Kannur provides home sample collection for Alpha N-Acetyl Galactosaminidase Schindler disease test. (bajajfinservhealth.in)
  • What should be the next step after I receive my Alpha N-Acetyl Galactosaminidase Schindler disease test report? (bajajfinservhealth.in)
  • Once you receive your Alpha N-Acetyl Galactosaminidase Schindler disease test results, your physician might advise you with corrective measures if they are not in the normal range. (bajajfinservhealth.in)
  • How can I book a Alpha N-Acetyl Galactosaminidase Schindler disease test near me in Kannur? (bajajfinservhealth.in)
  • You can easily book an appointment for Alpha N-Acetyl Galactosaminidase Schindler disease test on our website. (bajajfinservhealth.in)
  • 2) The patients with depressed levels of 1,25-D were characterized by advanced clinical HIV infection, low CD4+ lymphocyte counts, and high serum levels of tumor TNF-alpha - all indication of more severe forms of the disease. (mpkb.org)
  • Specificity: Natural and recombinant Bovine Alpha-lactalbumin GeneName: LALBA ProteinName: Alpha-lactalbumin Alternative: Lactose synthase B protein,ALACTA Assay. (researchd.com)
  • Specificity: Natural and recombinant Bovine Alpha-hemoglobin-stabilizing protein GeneName: AHSP ProteinName: Alpha-hemoglobin-stabilizing protein. (researchd.com)
  • In E. coli , Glucose transfer is performed by 4-alpha-glucanotransferase, a 78.5 kDa protein coded for by the gene malQ. (wikidoc.org)
  • These articles were published in the week of 9 - 14 December 2012:Analytical Chemistry InsightsEvaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin AnalysisAutism InsightsInitial Observations of Elevated Alpha-N-Acetylgalactosaminidase Activity Associated with Autism and Observed Reductions from GC Protein-Macrophage Activating Factor Injec. (la-press.org)
  • Elevated serum alpha-N-acetylgalactosaminidase (nagalase) is associated with a number of life threatening and/or debilitating conditions ranging from cancer (Korbelik et al. (simplymimi.net)
  • Description: A sandwich quantitative ELISA assay kit for detection of Human Inter Alpha-Globulin Inhibitor H1 (ITIH1) in samples from serum, plasma, tissue homogenates, cell lysates, cell culture supernates or other biological fluids. (jemsec.com)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Inter Alpha-Globulin Inhibitor H1 (ITIH1) in serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids. (jemsec.com)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Inter Alpha-Globulin Inhibitor H1 (ITIH1) in samples from Serum, plasma, tissue homogenates, cell lysates, cell culture supernates and other biological fluids with no significant corss-reactivity with analogues from other species. (jemsec.com)
  • Air, Soil and Water ResearchSpatial Variability of Heavy Metal Contamination in Alluvial Soils in Relation to Flood Risk Zones in Southern Québec, Canada Analytical Chemistry InsightsEvaluation of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Second-Generation Lignin AnalysisAutism InsightsInitial Observations of Elevated Alpha-N-Acetylgalactosaminidase Activity Associat. (la-press.org)
  • Specificity: Natural and recombinant Bovine Alpha-2-HS-glycoprotein GeneName: AHSG ProteinName: Alpha-2-HS-glycoprotein Alternative: Asialofetuin,Fetuin-A,FETUA. (researchd.com)
  • Specificity: Natural and recombinant Bovine Alpha-1-acid glycoprotein GeneName: ORM1 ProteinName: Alpha-1-acid glycoprotein Alternative: Orosomucoid,OMD,AGP. (researchd.com)
  • Alpha-crystallins also act as molecular chaperones that bind to denatured proteins, keep them in solution and thereby maintain the translucency of the lens. (lookformedical.com)
  • Amylo-α-1,6-glucosidase ( EC 3.2.1.33 ), or glucosidase , cleaves the remaining alpha-1,6 linkage, producing glucose and a linear chain of glycogen. (wikidoc.org)
  • The proteins exist as large oligomers that are formed from ALPHA-CRYSTALLIN A CHAIN and ALPHA-CRYSTALLIN B CHAIN subunits. (lookformedical.com)
  • Such a role for nagalase is now well established as exemplified by the title of a recent review that reads " Is α-N-acetylgalactosaminidase the key to curing cancer? (simplymimi.net)
  • Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. (lookformedical.com)
  • R.E.D. Laboratories is een Belgisch privébedrijf dat zich toelegt op de ontwikkeling en uitvoering van gespecialiseerd onderzoek en diagnostische tests voor chronische immuunstoornissen, darmstoornissen, door teken overgedragen ziekten (ziekte van Lyme) en multifactoriële aandoeningen zoals autisme en CVS. (redlabs.be)
  • Lysosomal alpha-N-acetylgalactosaminidase deficiency, the enzymatic defect in angiokeratoma corporis diffusum with glycopeptiduria. (nih.gov)
  • alpha-N-acetylgalactosaminidase deficiency, a new lysosomal storage disorder. (nih.gov)
  • Schindler disease: an inherited neuroaxonal dystrophy due to alpha-N-acetylgalactosaminidase deficiency. (nih.gov)
  • Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? (nih.gov)
  • Kanekura T, Sakuraba H, Matsuzawa F, Aikawa S, Doi H, Hirabayashi Y, Yoshii N, Fukushige T, Kanzaki T. Three dimensional structural studies of alpha-N-acetylgalactosaminidase (alpha-NAGA) in alpha-NAGA deficiency (Kanzaki disease): different gene mutations cause peculiar structural changes in alpha-NAGAs resulting in different substrate specificities and clinical phenotypes. (medlineplus.gov)
  • Michalski JC, Klein A. Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. (medlineplus.gov)
  • 8. Alteration of α-N-acetylgalactosaminidase (nagalase) concentration in alcohol-dependent individuals without liver disease, during the detoxification therapy. (nih.gov)
  • The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. (scienceblogs.com)
  • GcMAF can be deactivated by the enzyme alpha-N-acetylgalactosaminidase (nagalase), which is produced by cancer cells and viruses. (brandonlagreca.com)
  • Endo-alpha-N-acetylgalactosaminidase may refer to: Mucinaminylserine mucinaminidase, an enzyme Glycopeptide alpha-N-acetylgalactosaminidase, an enzyme This set index page lists enzyme articles associated with the same name. (wikipedia.org)
  • The NAGA gene provides instructions for making the enzyme alpha-N-acetylgalactosaminidase. (medlineplus.gov)
  • Most of these mutations are believed to change the 3-dimensional shape of the alpha-N-acetylgalactosaminidase enzyme, interfering with its ability to break down glycoproteins and glycolipids. (medlineplus.gov)
  • Babies born with it have a faulty copy of a single gene that codes for the alpha-N-acetylgalactosaminidase (alpha-NAGAL) enzyme, one of the cell's "recycling" machines that clean up used, toxic molecules, or substrate. (sciencedaily.com)
  • The faulty gene causes its damage by misfolding proteins, yielding an unstable, poorly functioning alpha-NAGAL enzyme. (sciencedaily.com)
  • The two molecules two Garman and colleagues identified and tested keep the alpha-NAGAL enzyme on track to proper folding. (sciencedaily.com)
  • In their paper, the UMass Amherst researchers show how these chaperones, sugar mimics (iminosugars) DGJ and DGJNAc, stabilize the defective alpha-NAGAL enzyme. (sciencedaily.com)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Internexin Neuronal Intermediate Filament Protein Alpha (INa) in Tissue homogenates, cell lysates and other biological fluids. (jemsec.com)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Human Internexin Neuronal Intermediate Filament Protein Alpha (INa) in samples from Tissue homogenates, cell lysates and other biological fluids with no significant corss-reactivity with analogues from other species. (jemsec.com)
  • Zhu A, Wang Z-K, Beavis R. Structural studies of α-N-acetylgalactosaminidase: effect of glycosilation on the level of expression, secretion, efficiency, and enzyme activity. (ukrbiochemjournal.org)
  • The 1.9 a structure of human alpha-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. (medlineplus.gov)
  • They developed assays to measure how the small molecule chaperones bind to alpha-NAGAL and how they affect the enzymatic activity, the stability, and the cellular location of alpha-NAGAL. (sciencedaily.com)
  • α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. (aber.ac.uk)
  • EDEM2 (Endoplasmic reticulum Degradation-Enhancing alpha-Mannosidase-like protein 2) is one of the key-proteins suggested to be involved in the selection and degradation of misfolded proteins from the endoplasmic reticulum. (researchgate.net)
  • 9. Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the envelope glycoprotein gp160 of human immunodeficiency virus Type 1. (nih.gov)
  • Description: A sandwich ELISA kit for detection of Internexin Neuronal Intermediate Filament Protein Alpha from Human in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (jemsec.com)
  • 6. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation. (nih.gov)
  • 7. Pathogenic significance of alpha-N-acetylgalactosaminidase activity found in the hemagglutinin of influenza virus. (nih.gov)
  • A hexosaminidase with specificity for terminal non-reducing N-acetyl-D-galactosamine residues in N-acetyl-alpha-D-galactosaminides. (nih.gov)
  • HN - 2005 MH - alpha-N-Acetylgalactosaminidase UI - D048809 MN - D8.811.277.450.483.44 MS - A hexosaminidase with specificity for terminal non-reducing N-acetyl-D-galactosamine residues in N-acetyl-alpha-D-galactosaminides. (nih.gov)
  • A method for the rapid detection of urinary glycopeptides in .alpha. (jcggdb.jp)
  • One route to treat the disease is to stabilize alpha-NAGAL by using small molecules as so-called "pharmacological chaperones. (sciencedaily.com)
  • When it works normally, alpha-NAGAL breaks down a sugar-containing substrate in the cell's recycling center, the lysosome. (sciencedaily.com)
  • Endo-alpha-N-acetylglucosaminidase (O-glycanase) digestion subsequent to neuraminidase treatment showed no additional effect on either receptor. (nih.gov)
  • 11. Effect of salivary gland adenocarcinoma cell-derived alpha-N-acetylgalactosaminidase on the bioactivity of macrophage activating factor. (nih.gov)
  • 12. Deglycosylation of serum vitamin D3-binding protein by alpha-N-acetylgalactosaminidase detected in the plasma of patients with systemic lupus erythematosus. (nih.gov)
  • 1. Serum alpha-N-acetylgalactosaminidase is associated with diagnosis/prognosis of patients with squamous cell carcinoma of the uterine cervix. (nih.gov)
  • 3. Prognostic utility of serum alpha-N-acetylgalactosaminidase and immunosuppression resulted from deglycosylation of serum Gc protein in oral cancer patients. (nih.gov)
  • If alpha-NAGAL underperforms or fails, patients have neuromuscular problems such as seizures and muscle weakness. (sciencedaily.com)