alpha 1-Antitrypsin: Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.alpha 1-Antitrypsin Deficiency: Deficiency of the protease inhibitor ALPHA 1-ANTITRYPSIN that manifests primarily as PULMONARY EMPHYSEMA and LIVER CIRRHOSIS.Pulmonary Emphysema: Enlargement of air spaces distal to the TERMINAL BRONCHIOLES where gas-exchange normally takes place. This is usually due to destruction of the alveolar wall. Pulmonary emphysema can be classified by the location and distribution of the lesions.Pancreatic Elastase: A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36.alpha 1-Antichymotrypsin: Glycoprotein found in alpha(1)-globulin region in human serum. It inhibits chymotrypsin-like proteinases in vivo and has cytotoxic killer-cell activity in vitro. The protein also has a role as an acute-phase protein and is active in the control of immunologic and inflammatory processes, and as a tumor marker. It is a member of the serpin superfamily.Emphysema: A pathological accumulation of air in tissues or organs.Trypsin Inhibitors: Serine proteinase inhibitors which inhibit trypsin. They may be endogenous or exogenous compounds.Leukocyte Elastase: An enzyme that catalyzes the hydrolysis of proteins, including elastin. It cleaves preferentially bonds at the carboxyl side of Ala and Val, with greater specificity for Ala. EC 3.4.21.37.Receptors, Adrenergic, alpha: One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation.Hypoxia-Inducible Factor 1, alpha Subunit: Hypoxia-inducible factor 1, alpha subunit is a basic helix-loop-helix transcription factor that is regulated by OXYGEN availability and is targeted for degradation by VHL TUMOR SUPPRESSOR PROTEIN.Serpins: A family of serine proteinase inhibitors which are similar in amino acid sequence and mechanism of inhibition, but differ in their specificity toward proteolytic enzymes. This family includes alpha 1-antitrypsin, angiotensinogen, ovalbumin, antiplasmin, alpha 1-antichymotrypsin, thyroxine-binding protein, complement 1 inactivators, antithrombin III, heparin cofactor II, plasminogen inactivators, gene Y protein, placental plasminogen activator inhibitor, and barley Z protein. Some members of the serpin family may be substrates rather than inhibitors of SERINE ENDOPEPTIDASES, and some serpins occur in plants where their function is not known.Serine Proteinase Inhibitors: Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.alpha7 Nicotinic Acetylcholine Receptor: A member of the NICOTINIC ACETYLCHOLINE RECEPTOR subfamily of the LIGAND-GATED ION CHANNEL family. It consists entirely of pentameric a7 subunits expressed in the CNS, autonomic nervous system, vascular system, lymphocytes and spleen.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Isoelectric Focusing: Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Integrin alpha3beta1: Cell surface receptor for LAMININ, epiligrin, FIBRONECTINS, entactin, and COLLAGEN. Integrin alpha3beta1 is the major integrin present in EPITHELIAL CELLS, where it plays a role in the assembly of BASEMENT MEMBRANE as well as in cell migration, and may regulate the functions of other integrins. Two alternatively spliced isoforms of the alpha subunit (INTEGRIN ALPHA3), are differentially expressed in different cell types.Integrin alpha4: An integrin alpha subunit that is unique in that it does not contain an I domain, and its proteolytic cleavage site is near the middle of the extracellular portion of the polypeptide rather than close to the membrane as in other integrin alpha subunits.Integrin alpha6: An integrin alpha subunit that primarily associates with INTEGRIN BETA1 or INTEGRIN BETA4 to form laminin-binding heterodimers. Integrin alpha6 has two alternatively spliced isoforms: integrin alpha6A and integrin alpha6B, which differ in their cytoplasmic domains and are regulated in a tissue-specific and developmental stage-specific manner.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Integrin alpha5beta1: An integrin found in FIBROBLASTS; PLATELETS; MONOCYTES, and LYMPHOCYTES. Integrin alpha5beta1 is the classical receptor for FIBRONECTIN, but it also functions as a receptor for LAMININ and several other EXTRACELLULAR MATRIX PROTEINS.OrosomucoidProtein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Integrin alpha4beta1: Integrin alpha4beta1 is a FIBRONECTIN and VCAM-1 receptor present on LYMPHOCYTES; MONOCYTES; EOSINOPHILS; NK CELLS and thymocytes. It is involved in both cell-cell and cell- EXTRACELLULAR MATRIX adhesion and plays a role in INFLAMMATION, hematopoietic cell homing and immune function, and has been implicated in skeletal MYOGENESIS; NEURAL CREST migration and proliferation, lymphocyte maturation and morphogenesis of the PLACENTA and HEART.Interleukin-1alpha: An interleukin-1 subtype that occurs as a membrane-bound pro-protein form that is cleaved by proteases to form a secreted mature form. Unlike INTERLEUKIN-1BETA both membrane-bound and secreted forms of interleukin-1alpha are biologically active.Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Liver Diseases: Pathological processes of the LIVER.Kinetics: The rate dynamics in chemical or physical systems.Integrin alpha2beta1: An integrin found on fibroblasts, platelets, endothelial and epithelial cells, and lymphocytes where it functions as a receptor for COLLAGEN and LAMININ. Although originally referred to as the collagen receptor, it is one of several receptors for collagen. Ligand binding to integrin alpha2beta1 triggers a cascade of intracellular signaling, including activation of p38 MAP kinase.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Hepatocyte Nuclear Factor 1-alpha: Hepatocyte nuclear factor 1-alpha is a transcription factor found in the LIVER; PANCREAS; and KIDNEY that regulates HOMEOSTASIS of GLUCOSE.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Receptors, Adrenergic, alpha-1: A subclass of alpha-adrenergic receptors that mediate contraction of SMOOTH MUSCLE in a variety of tissues such as ARTERIOLES; VEINS; and the UTERUS. They are usually found on postsynaptic membranes and signal through GQ-G11 G-PROTEINS.Haptoglobins: Plasma glycoproteins that form a stable complex with hemoglobin to aid the recycling of heme iron. They are encoded in man by a gene on the short arm of chromosome 16.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Integrin alpha5: This integrin alpha subunit combines with INTEGRIN BETA1 to form a receptor (INTEGRIN ALPHA5BETA1) that binds FIBRONECTIN and LAMININ. It undergoes posttranslational cleavage into a heavy and a light chain that are connected by disulfide bonds.Integrin alpha1beta1: Integrin alpha1beta1 functions as a receptor for LAMININ and COLLAGEN. It is widely expressed during development, but in the adult is the predominant laminin receptor (RECEPTORS, LAMININ) in mature SMOOTH MUSCLE CELLS, where it is important for maintenance of the differentiated phenotype of these cells. Integrin alpha1beta1 is also found in LYMPHOCYTES and microvascular endothelial cells, and may play a role in angiogenesis. In SCHWANN CELLS and neural crest cells, it is involved in cell migration. Integrin alpha1beta1 is also known as VLA-1 and CD49a-CD29.Receptors, Adrenergic, alpha-2: A subclass of alpha-adrenergic receptors found on both presynaptic and postsynaptic membranes where they signal through Gi-Go G-PROTEINS. While postsynaptic alpha-2 receptors play a traditional role in mediating the effects of ADRENERGIC AGONISTS, the subset of alpha-2 receptors found on presynaptic membranes signal the feedback inhibition of NEUROTRANSMITTER release.Chymotrypsin: A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side.Integrin alpha6beta1: A cell surface receptor mediating cell adhesion to the EXTRACELLULAR MATRIX and to other cells via binding to LAMININ. It is involved in cell migration, embryonic development, leukocyte activation and tumor cell invasiveness. Integrin alpha6beta1 is the major laminin receptor on PLATELETS; LEUKOCYTES; and many EPITHELIAL CELLS, and ligand binding may activate a number of signal transduction pathways. Alternative splicing of the cytoplasmic domain of the alpha6 subunit (INTEGRIN ALPHA6) results in the formation of A and B isoforms of the heterodimer, which are expressed in a tissue-specific manner.Protein-Losing Enteropathies: Pathological conditions in the INTESTINES that are characterized by the gastrointestinal loss of serum proteins, including SERUM ALBUMIN; IMMUNOGLOBULINS; and at times LYMPHOCYTES. Severe condition can result in HYPOGAMMAGLOBULINEMIA or LYMPHOPENIA. Protein-losing enteropathies are associated with a number of diseases including INTESTINAL LYMPHANGIECTASIS; WHIPPLE'S DISEASE; and NEOPLASMS of the SMALL INTESTINE.Macroglobulins: Serum globulins with high molecular weight. (Dorland, 28th ed)Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Integrin alpha6beta4: This intrgrin is a key component of HEMIDESMOSOMES and is required for their formation and maintenance in epithelial cells. Integrin alpha6beta4 is also found on thymocytes, fibroblasts, and Schwann cells, where it functions as a laminin receptor (RECEPTORS, LAMININ) and is involved in wound healing, cell migration, and tumor invasiveness.Integrin alpha Chains: The alpha subunits of integrin heterodimers (INTEGRINS), which mediate ligand specificity. There are approximately 18 different alpha chains, exhibiting great sequence diversity; several chains are also spliced into alternative isoforms. They possess a long extracellular portion (1200 amino acids) containing a MIDAS (metal ion-dependent adhesion site) motif, and seven 60-amino acid tandem repeats, the last 4 of which form EF HAND MOTIFS. The intracellular portion is short with the exception of INTEGRIN ALPHA4.Endoplasmic Reticulum: A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)Integrins: A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors(RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation.Albumins: Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating.Blood Proteins: Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.Integrin alpha1: An integrin alpha subunit that binds COLLAGEN and LAMININ though its I domain. It combines with INTEGRIN BETA1 to form the heterodimer INTEGRIN ALPHA1BETA1.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).alpha-Macroglobulins: Glycoproteins with a molecular weight of approximately 620,000 to 680,000. Precipitation by electrophoresis is in the alpha region. They include alpha 1-macroglobulins and alpha 2-macroglobulins. These proteins exhibit trypsin-, chymotrypsin-, thrombin-, and plasmin-binding activity and function as hormonal transporters.Trypsin: A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.Heterozygote: An individual having different alleles at one or more loci regarding a specific character.Homozygote: An individual in which both alleles at a given locus are identical.Alpha Rhythm: Brain waves characterized by a relatively high voltage or amplitude and a frequency of 8-13 Hz. They constitute the majority of waves recorded by EEG registering the activity of the parietal and occipital lobes when the individual is awake, but relaxed with the eyes closed.Protein C Inhibitor: A member of the serpin family of proteins that is found in plasma and urine. It is dependent on heparin and is able to inhibit activated PROTEIN C; THROMBIN; KALLIKREIN; and other SERINE ENDOPEPTIDASES.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Proprotein Convertase 5: A serine endopeptidase found primarily in the EXTRACELLULAR MATRIX. It has specificity for cleavage of a variety of substrates including PRORENIN, pro-membrane type-1 matrix metalloproteinase, and NEURAL CELL ADHESION MOLECULE L1.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Pancreatin: A mammalian pancreatic extract composed of enzymes with protease, amylase and lipase activities. It is used as a digestant in pancreatic malfunction.Integrin alpha3: An integrin alpha subunit that occurs as alternatively spliced isoforms. The isoforms are differentially expressed in specific cell types and at specific developmental stages. Integrin alpha3 combines with INTEGRIN BETA1 to form INTEGRIN ALPHA3BETA1 which is a heterodimer found primarily in epithelial cells.Furin: A proprotein convertase with specificity for the proproteins of PROALBUMIN; COMPLEMENT 3C; and VON WILLEBRAND FACTOR. It has specificity for cleavage near paired ARGININE residues that are separated by two amino acids.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Mice, Inbred C57BL

The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. (1/1525)

The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  (+info)

Identification of DNA polymorphisms associated with the V type alpha1-antitrypsin gene. (2/1525)

alpha1-Antitrypsin (alpha1-AT) is a highly polymorphic protein. The V allele of alpha1-AT has been shown to be associated with focal glomerulosclerosis (FGS) in Negroid and mixed race South African patients. To identify mutations and polymorphisms in the gene for the V allele of alpha1-AT in five South African patients with FGS nephrotic syndrome DNA sequence analysis and restriction fragment length polymorphisms of the coding exons were carried out. Four of the patients were heterozygous for the BstEII RFLP in exon III [M1(Val213)(Ala213)] and one patient was a M1(Ala213) homozygote. The mutation for the V allele was identified in exon II as Gly-148 (GGG)-->Arg (AGG) and in all patients was associated with a silent mutation at position 158 (AAC-->AAT). The patient who was homozygous for (Ala213) also had a silent mutation at position 256 in exon III (GAT-->GAC) which was not present in any of the other four patients. Although the V allele of alpha1-AT is not associated with severe plasma deficiency, it may be in linkage disequilibrium with other genes on chromosome 14 that predispose to FGS. Furthermore, the associated silent mutation at position 158 and the Ala213 polymorphism are of interest, as these could represent an evolutionary intermediate between the M1(Ala213) and M1(Val213) subtypes.  (+info)

The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. (3/1525)

Alpha1 Protease inhibitor (alpha1PI) modulates serine protease activity in the lung. Reactive oxygen species inactivate alpha1PI, and this process has been implicated in the pathogenesis of a variety of forms of lung injury. An imbalance of protease-antiprotease activity is also detected in the airways of patients with cystic fibrosis-associated lung disease who are infected with Pseudomonas aeruginosa. P. aeruginosa secretes pyocyanin, which, through its ability to redox cycle, induces cells to generate reactive oxygen species. We tested the hypothesis that redox cycling of pyocyanin could lead to inactivation of alpha1PI. When alpha1PI was exposed to NADH and pyocyanin, a combination that results in superoxide production, alpha1PI lost its ability to form an inhibitory complex with both porcine pancreatic elastase (PPE) and trypsin. Similarly, addition of pyocyanin to cultures of human airway epithelial cells to which alpha1PI was also added resulted in a loss of the ability of alpha1PI to form a complex with PPE or trypsin. Neither superoxide dismutase, catalase, nor dimethylthiourea nor depletion of the media of O2 to prevent formation of reactive oxygen species blocked pyocyanin-mediated inactivation of alpha1PI. These data raise the possibility that a direct interaction between reduced pyocyanin and alpha1PI is involved in the process. Consistent with this possibility, pretreatment of alpha1PI with the reducing agent beta-mercaptoethanol also inhibited binding of trypsin to alpha1PI. These data suggest that pyocyanin could contribute to lung injury in the P. aeruginosa-infected airway of cystic fibrosis patients by decreasing the ability of alpha1PI to control the local activity of serine proteases.  (+info)

Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. (4/1525)

The role of conformation-based quality control in the early secretory pathway is to eliminate misfolded polypeptides and unassembled multimeric protein complexes from the endoplasmic reticulum, ensuring the deployment of only functional molecules to distal sites. The intracellular fate of terminally misfolded human alpha1-antitrypsin was examined in hepatoma cells to identify the functional role of asparagine-linked oligosaccharide modification in the selection of glycoproteins for degradation by the cytosolic proteasome. Proteasomal degradation required physical interaction with the molecular chaperone calnexin. Altered sedimentation of intracellular complexes following treatment with the specific proteasome inhibitor lactacystin, and in combination with mannosidase inhibition, revealed that the removal of mannose from attached oligosaccharides abrogates the release of misfolded alpha1-antitrypsin from calnexin prior to proteasomal degradation. Intracellular turnover was arrested with kifunensine, implicating the participation of endoplasmic reticulum mannosidase I in the disposal process. Accelerated degradation occurred in a mannosidase-independent manner and was arrested by lactacystin, in response to the posttranslational inhibition of glucosidase II, demonstrating that the attenuated removal of glucose from attached oligosaccharides functions as the underlying rate-limiting step in the proteasome-mediated pathway. A model is proposed in which the removal of mannose from multiple attached oligosaccharides directs calnexin in the selection of misfolded alpha1-antitrypsin for degradation by the proteasome.  (+info)

Enhanced tumor growth and invasiveness in vivo by a carboxyl-terminal fragment of alpha1-proteinase inhibitor generated by matrix metalloproteinases: a possible modulatory role in natural killer cytotoxicity. (5/1525)

Matrix metalloproteinases (MMPs) are believed to contribute to the complex process of cancer progression. They also exhibit an alpha1-proteinase inhibitor (alphaPI)-degrading activity generating a carboxyl-terminal fragment of approximately 5 kd (alphaPI-C). This study reports that overexpression of alphaPI-C in S2-020, a cloned subline derived from the human pancreas adenocarcinoma cell line SUIT-2, potentiates the growth capability of the cells in nude mice. After stable transfection of a vector containing a chimeric cDNA encoding a signal peptide sequence of tissue inhibitor of metalloproteinase-1 followed by cDNA for alphaPI-C into S2-020 cells, three clones that stably secrete alphaPI-C were obtained. The ectopic expression of alphaPI-C did not alter in vitro cellular growth. However, subcutaneous injection of the alphaPI-C-secreting clones resulted in tumors that were 1.5 to 3-fold larger than those of control clones with an increased tendency to invasiveness and lymph node metastasis. These effects could be a result of modulation of natural killer (NK) cell-mediated control of tumor growth in nude mice, as the growth advantage of alphaPI-C-secreting clones was not observed in NK-depleted mice, and alphaPI-C-secreting clones showed decreased NK sensitivity in vitro. In addition, production of alphaPI and generation of the cleaved form of alphaPI by MMP were observed in various human tumor cell lines and in a highly metastatic subline of SUIT-2 in vitro. These results provide experimental evidence that the alphaPI-degrading activity of MMPs may play a role in tumor progression not only via the inactivation of alphaPI but also via the generation of alphaPI-C.  (+info)

Cytokines and inflammatory mediators do not indicate acute infection in cystic fibrosis. (6/1525)

Various treatment regimens and difficulties with research design are encountered with cystic fibrosis (CF) because no standard diagnostic criteria exist for defining acute respiratory exacerbations. This study evaluated the role of serial monitoring of concentrations of selected cytokines and inflammatory mediators in serum and sputum as predictors of respiratory exacerbation, as useful outcome measures for CF, and to guide therapy. Interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-alpha), neutrophil elastase-alpha-1-protease inhibitor complex (NE complex), protein, and alpha-1-protease inhibitor (alpha-1-PI) were measured in serum and sputum collected from CF patients during respiratory exacerbations and periods of well-being. Levels of NE complex, protein, and alpha-1-PI in sputum rose during respiratory exacerbations and fell after institution of antibiotic therapy (P = 0.078, 0.001, and 0.002, respectively). Mean (+/- standard error of the mean) levels of IL-8 and TNF-alpha were extremely high in sputum (13,780 +/- 916 and 249.4 +/- 23.5 ng/liter, respectively) but did not change significantly with clinical deterioration of the patient (P > 0.23). IL-8 and TNF-alpha were generally undetectable in serum, and therefore these measures were unhelpful. Drop in forced expiratory volume in 1 s was the only clinical or laboratory parameter that was close to being a determinant of respiratory exacerbation (P = 0.055). This study provides evidence of intense immunological activity occurring continually within the lungs of adult CF patients. Measurement of cytokines and inflammatory mediators in CF sputum is not helpful for identifying acute respiratory exacerbations.  (+info)

Probing the unfolding pathway of alpha1-antitrypsin. (7/1525)

Protein misfolding plays a role in the pathogenesis of many diseases. alpha1-Antitrypsin misfolding leads to the accumulation of long chain polymers within the hepatocyte, reducing its plasma concentration and predisposing the patient to emphysema and liver disease. In order to understand the misfolding process, it is necessary to examine the folding of alpha1-antitrypsin through the different structures involved in this process. In this study we have used a novel technique in which unique cysteine residues were introduced at various positions into alpha1-antitrypsin and fluorescently labeled with N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)ethylenediamine. The fluorescence properties of each protein were studied in the native state and as a function of guanidine hydrochloride-mediated unfolding. The studies found that alpha1-antitrypsin unfolded through a series of intermediate structures. From the position of the fluorescence probes, the fluorescence quenching data, and the molecular modeling, we show that unfolding of alpha1-antitrypsin occurs via disruption of the A and C beta-sheets followed by the B beta-sheet. The implications of these data on both alpha1-antitrypsin function and polymerization are discussed.  (+info)

A kinetic mechanism for the polymerization of alpha1-antitrypsin. (8/1525)

The mutation in the Z deficiency variant of alpha1-antitrypsin perturbs the structure of the protein to allow a unique intermolecular linkage. These loop-sheet polymers are retained within the endoplasmic reticulum of hepatocytes to form inclusions that are associated with neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. The process of polymer formation has been investigated here by intrinsic tryptophan fluorescence, fluorescence polarization, circular dichroic spectra and extrinsic fluorescence with 8-anilino-1-naphthalenesulfonic acid and tetramethylrhodamine-5-iodoacetamide. These biophysical techniques have demonstrated that alpha1-antitrypsin polymerization is a two-stage process and have allowed the calculation of rates for both of these steps. The initial fast phase is unimolecular and likely to represent temperature-induced protein unfolding, while the slow phase is bimolecular and associated with loop-sheet interaction and polymer formation. The naturally occurring Z, S, and I variants and recombinant site-directed reactive loop and shutter domain mutants of alpha1-antitrypsin were used to demonstrate the close association between protein stability and rate of alpha1-antitrypsin polymerization. Taken together, these data allow us to propose a kinetic mechanism for alpha1-antitrypsin polymer formation that involves the generation of an unstable intermediate, which can form polymers or generate latent protein.  (+info)

  • The Company uses its proprietary platform technology and know-how for the extraction and purification of proteins from human plasma to produce Alpha-1 Antitrypsin (AAT) in a highly-purified, liquid form, as well as other plasma-derived Immune globulins. (kamada.com)
  • A Phase 1/2 clinical trial with G1-AAT IV for the treatment of steroid refractory GvHD is currently ongoing at the Fred Hutchinson Cancer Research Center in Seattle, WA, in collaboration with Shire. (kamada.com)
  • The interim data generated in the ongoing Phase 1/2 clinical trial provide us with initial evidence of the potential of Kamada's G1-AAT IV as an option to treat GvHD, if validated in the Phase 2/3 study. (kamada.com)
  • The previously completed interim analysis from the Phase 1/2 clinical trial indicated that continuous administration of G1-AAT IV as a therapy for steroid-refractory gut GvHD is feasible in this subject population. (kamada.com)
  • Previous studies on stabilizing mutations of alpha(1)-antitrypsin, a prototype of serpins, indicated that cavities provide a structural basis for the native strain of the molecule. (nih.gov)
  • We have systematically mapped the cavities of alpha(1)-antitrypsin that play such structural and functional roles by designing cavity-filling mutations at residues that line the walls of the cavities. (nih.gov)
  • Results show that energetically unfavorable cavities are distributed throughout the alpha(1)-antitrypsin molecule, and the cavity-filling mutations stabilized the native conformation at 8 out of 10 target sites. (nih.gov)
  • The stabilization effect of the individual cavity-filling mutations of alpha(1)-antitrypsin varied (0.2-1.9 kcal/mol for each additional methylene group) and appeared to depend largely on the structural flexibility of the cavity environment. (nih.gov)
  • Cavity-filling mutations that decreased inhibitory activity of alpha(1)-antitrypsin were localized in the loop regions that interact with beta-sheet A distal from the reactive center loop. (nih.gov)