The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)
A P450 oxidoreductase that catalyzes the hydroxylation of the terminal carbon of linear hydrocarbons such as octane and FATTY ACIDS in the omega position. The enzyme may also play a role in the oxidation of a variety of structurally unrelated compounds such as XENOBIOTICS, and STEROIDS.
Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
An NADPH-dependent flavin monooxygenase that plays a key role in the catabolism of TRYPTOPHAN by catalyzing the HYDROXYLATION of KYNURENINE to 3-hydroxykynurenine. It was formerly characterized as EC 1.14.1.2 and EC 1.99.1.5.
Butanes are flammable, colorless gases with a mild petroleum-like odor, consisting of either one of two isomeric forms of butane (n-butane or isobutane), used primarily as fuel, in the production of a wide range of chemicals, and as a refrigerant.
A family of gram-negative, aerobic bacteria utilizing only one-carbon organic compounds and isolated from in soil and water.
A species of METHYLOCOCCUS which forms capsules and is capable of autotrophic carbon dioxide fixation. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
Naturally occurring complex liquid hydrocarbons which, after distillation, yield combustible fuels, petrochemicals, and lubricants.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A bacterial genus of the order ACTINOMYCETALES.
A species of METHYLOSINUS which is capable of degrading trichloroethylene and other organic pollutants.
Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon atoms, forming the basis of classes such as alkanes, alkenes, alkynes, and aromatic hydrocarbons, which play a vital role in energy production and chemical synthesis.
Eight-carbon saturated hydrocarbon group of the methane series. Include isomers and derivatives.
A soluble cytochrome P-450 enzyme that catalyzes camphor monooxygenation in the presence of putidaredoxin, putidaredoxin reductase, and molecular oxygen. This enzyme, encoded by the CAMC gene also known as CYP101, has been crystallized from bacteria and the structure is well defined. Under anaerobic conditions, this enzyme reduces the polyhalogenated compounds bound at the camphor-binding site.
A class of iron-sulfur proteins that contains one iron coordinated to the sulfur atom of four cysteine residues. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408)
The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed)
Propane is a colorless, odorless, and chemically simple hydrocarbon (C3H8), commonly used as a fuel for heating, cooking, and engines, which exists as a gas at room temperature but can be liquefied under pressure and stored in cylinders or tanks.
A genus of gram-negative, ellipsoidal or rod-shaped bacteria whose major source of energy and reducing power is from the oxidation of ammonia to nitrite. Its species occur in soils, oceans, lakes, rivers, and sewage disposal systems.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A genus of gram-positive BACTERIA in the family Gordoniaceae, isolated from soil and from sputa of patients with chest disorders. It is also used for biotransformation of natural products.
A benzyl-indazole having analgesic, antipyretic, and anti-inflammatory effects. It is used to reduce post-surgical and post-traumatic pain and edema and to promote healing. It is also used topically in treatment of RHEUMATIC DISEASES and INFLAMMATION of the mouth and throat.
An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2.
The second enzyme in the committed pathway for CHOLESTEROL biosynthesis, this enzyme catalyzes the first oxygenation step in the biosynthesis of STEROLS and is thought to be a rate limiting enzyme in this pathway. Specifically, this enzyme catalyzes the conversion of SQUALENE to (S)-squalene-2,3-epoxide.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.
A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.
These enzymes catalyze the elimination of ammonia from amidines with the formation of a double bond. EC 4.3.2.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.
A family of halophilic bacteria in the order Oceanospirillales. Its principal carbon and energy sources are linear-chain ALKANES and their derivatives.
An antiseptic and disinfectant aromatic alcohol.
Ethane is an organic compound, specifically a hydrocarbon (aliphatic alkane), with the chemical formula C2H6, which consists of two carbon atoms and six hydrogen atoms, and is the second simplest alkane after methane. However, it's important to note that ethane is not a medical term or concept; it's a basic chemistry term.
A highly volatile inhalation anesthetic used mainly in short surgical procedures where light anesthesia with good analgesia is required. It is also used as an industrial solvent. Prolonged exposure to high concentrations of the vapor can lead to cardiotoxicity and neurological impairment.
A widely used industrial solvent.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
The rate dynamics in chemical or physical systems.
A family of gram-negative methanotrophs in the order Rhizobiales, distantly related to the nitrogen-fixing and phototrophic bacteria.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Hydrocarbon compounds with one or more of the hydrogens replaced by CHLORINE.
A plastic substance deposited by insects or obtained from plants. Waxes are esters of various fatty acids with higher, usually monohydric alcohols. The wax of pharmacy is principally yellow wax (beeswax), the material of which honeycomb is made. It consists chiefly of cerotic acid and myricin and is used in making ointments, cerates, etc. (Dorland, 27th ed)
A family of aerobic gram-negative rods that are nitrogen fixers. They are highly viscous, and appear as a semitransparent slime in giant colonies.
Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
Drug metabolizing enzymes which oxidize methyl ethers. Usually found in liver microsomes.
A drug-metabolizing enzyme found in the hepatic, placental and intestinal microsomes that metabolizes 7-alkoxycoumarin to 7-hydroxycoumarin. The enzyme is cytochrome P-450- dependent.
A species of gram-negative bacteria in the genus PSEUDOMONAS, which is found in SOIL and WATER.
Phenols substituted with one or more chlorine atoms in any position.
A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity.
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
The functional hereditary units of BACTERIA.
Proteins found in any species of bacterium.
Compounds used extensively as acetylation, oxidation and dehydrating agents and in the modification of proteins and enzymes.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Toxic chlorinated unsaturated hydrocarbons. Include both the 1,1- and 1,2-dichloro isomers. Both isomers are toxic, but 1,1-dichloroethylene is the more potent CNS depressant and hepatotoxin. It is used in the manufacture of thermoplastic polymers.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Organic compounds containing carbon and hydrogen in the form of an unsaturated, usually hexagonal ring structure. The compounds can be single ring, or double, triple, or multiple fused rings.
Halogenated hydrocarbons refer to organic compounds containing carbon and hydrogen atoms, where one or more hydrogen atoms are replaced by halogens such as fluorine, chlorine, bromine, or iodine.
Acetylene is not typically considered a medical term, but rather a chemical compound (C2H2) commonly used in industrial and laboratory settings for its high energy content and reactivity, which may have various applications in medicine such as wound healing and surgical procedures, but it is not a medical diagnosis or disease.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The relationships of groups of organisms as reflected by their genetic makeup.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
A species of gram-negative bacteria in the genus PSEUDOMONAS, containing multiple genomovars. It is distinguishable from other pseudomonad species by its ability to use MALTOSE and STARCH as sole carbon and energy sources. It can degrade ENVIRONMENTAL POLLUTANTS and has been used as a model organism to study denitrification.
'Ketones' are organic compounds with a specific structure, characterized by a carbonyl group (a carbon double-bonded to an oxygen atom) and two carbon atoms, formed as byproducts when the body breaks down fats for energy due to lack of glucose, often seen in diabetes and starvation states.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
A colorless liquid used as a solvent and an antiseptic. It is one of the ketone bodies produced during ketoacidosis.
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
8-Hydroxyquinolinols chlorinated on the number 5 and/or 7 carbon atom(s). They are antibacterial, antiprotozoal, and antidiarrheal, especially in amebiasis, and have also been used as antiseborrheics. The compounds are mostly used topically, but have been used also as animal feed additives. They may cause optic and other neuropathies and are most frequently administered in combination with other agents.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
An enzyme that catalyzes the hydroxylation of TRYPTOPHAN to 5-HYDROXYTRYPTOPHAN in the presence of NADPH and molecular oxygen. It is important in the biosynthesis of SEROTONIN.
A genus of saprobic mushrooms in the family Bolbitiaceae that grow in grass, dung, garden mulch, or in woods.
Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Compounds in which one or more of the three hydroxyl groups of glycerol are in ethereal linkage with a saturated or unsaturated aliphatic alcohol; one or two of the hydroxyl groups of glycerol may be esterified. These compounds have been found in various animal tissue.
A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues.
A flavoprotein that catalyzes the synthesis of protocatechuic acid from 4-hydroxybenzoate in the presence of molecular oxygen. EC 1.14.13.2.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Rhodium. A hard and rare metal of the platinum group, atomic number 45, atomic weight 102.905, symbol Rh. (Dorland, 28th ed)
An enzyme that catalyzes the oxidation of BENZOATE to 4-hydroxybenzoate. It requires IRON and tetrahydropteridine.

The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants. (1/260)

The alk genes are located on the OCT plasmid of Pseudomonas oleovorans and encode an inducible pathway for the utilization of n-alkanes as carbon and energy sources. We have investigated the influence of alternative carbon sources on the induction of this pathway in P. oleovorans and Escherichia coli alk+ recombinants. In doing so, we confirmed earlier reports that induction of alkane hydroxylase activity in pseudomonads is subject to carbon catabolite repression. Specifically, synthesis of the monooxygenase component AlkB is repressed at the transcriptional level. The alk genes have been cloned into plasmid pGEc47, which has a copy number of about 5 to 10 per cell in both E. coli and pseudomonads. Pseudomonas putida GPo12 is a P. oleovorans derivative cured of the OCT plasmid. Upon introduction of pGEc47 in this strain, carbon catabolite repression of alkane hydroxylase activity was reduced significantly. In cultures of recombinant E. coli HB101 and W3110 carrying pGEc47, induction of AlkB and transcription of the alkB gene were no longer subject to carbon catabolite repression. This suggests that carbon catabolite repression of alkane degradation is regulated differently in Pseudomonas and in E. coli strains. These results also indicate that PalkBFGHJKL, the Palk promoter, might be useful in attaining high expression levels of heterologous genes in E. coli grown on inexpensive carbon sources which normally trigger carbon catabolite repression of native expression systems in this host.  (+info)

Characterization of cytochrome P450 expression in human oesophageal mucosa. (2/260)

The expression of cytochrome (CYP) P450 enzymes in human oesophageal mucosa was investigated in a total of 25 histologically non-neoplastic surgical tissue specimens by using specific antibodies in immunoblots and by RT-PCR mRNA analysis. The presence of CYP1A, 2E1, 3A and 4A enzymes was demonstrated by both techniques; CYP2A reactive protein was also detected by immunoblot. The presence of CYP4B1 mRNA was established but no specific antibody was available for detection of the corresponding protein by immunoblot. CYP2B6/7 mRNA was not detected in any sample. The mRNA transcripts for CYP1A1, 2E1, 4A11 and 4B1 were consistently detected in the majority of samples (>84%), whereas CYP1A2 mRNA was only detected in 11 of 19 specimens examined. An RT-PCR method to differentiate CYP3A4 and 3A5 mRNA was developed. This demonstrated CYP3A5 mRNA expression in all samples tested, whereas CYP3A4 mRNA was not detectable, suggesting that CYP3A5 is the major CYP3A protein in human oesophagus. There were significant interindividual variations in the amount of proteins, ranging from 8-fold for CYP4A to 43-fold for CYP2E1. For each patient, data on exposure to risk factors for oesophageal cancer were available, including tobacco smoke, alcohol, gastro-oesophageal reflux and hot beverage consumption. None of these risk factors or other patient characteristics (age, sex, tumour location and tumour stage) were correlated with the protein level of the individual CYP enzymes as determined by quantitation of immunoblot staining. However, the small series of samples precludes any strong conclusion concerning the lack of such correlations. There were no differences between squamous cell carcinomas and adenocarcinomas in either the qualitative or quantitative expression of the CYP enzymes. These data demonstrate that a range of CYP enzymes are expressed in human oesophageal mucosa and indicate that this tissue has the capacity to activate chemical carcinogens to reactive DNA binding metabolites.  (+info)

Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. (3/260)

The AlkS protein activates transcription from the PalkB promoter, allowing the expression of a number of genes required for the assimilation of alkanes in Pseudomonas oleovorans. We have identified the promoter from which the alkS gene is transcribed, PalkS, and analyzed its expression under different conditions and genetic backgrounds. Transcription from PalkS was very low during the exponential phase of growth and increased considerably when cells reached the stationary phase. The PalkS -10 region was similar to the consensus described for promoters recognized by Escherichia coli RNA polymerase bound to the alternative sigma factor sigmaS, which directs the expression of many stationary-phase genes. Reporter strains containing PalkS-lacZ transcriptional fusions showed that PalkS promoter is very weakly expressed in a Pseudomonas putida strain bearing an inactivated allele of the gene coding for sigmaS, rpoS. When PalkS was transferred to E. coli, transcription started at the same site and expression was higher in stationary phase only if sigmaS-RNA polymerase was present. The low levels of AlkS protein generated in the absence of sigmaS were enough to support a partial induction of the PalkB promoter. The -10 and -35 regions of PalkS promoter also show some similarity to the consensus recognized by sigmaD-RNA polymerase, the primary form of RNA polymerase. We propose that in exponential phase PalkS is probably recognized both by sigmaD-RNA polymerase (inefficiently) and by sigmaS-RNA polymerase (present at low levels), leading to low-level expression of the alkS gene. sigmaS-RNA polymerase would be responsible for the high level of activity of PalkS observed in stationary phase.  (+info)

Insulin differentially affects xenobiotic-enhanced, cytochrome P-450 (CYP)2E1, CYP2B, CYP3A, and CYP4A expression in primary cultured rat hepatocytes. (4/260)

Uncontrolled diabetes results in enhanced expression of cytochrome P-450 (CYP)2E1, CYP2B, CYP3A, and CYP4A. Because of the simultaneous and confounding metabolic and hormonal changes that occur in vivo as a consequence of diabetes, primary cultured rat hepatocytes provide an excellent model system for examination of the effects of insulin on P-450 expression and on xenobiotic-mediated P-450 expression. In the present study, we examined the effects of insulin on pyridine-, phenobarbital-, and ciprofibrate-mediated expression of CYP2E1, CYP2B, CYP3A, and CYP4A in primary cultured rat hepatocytes. Pyridine addition to primary rat hepatocytes cultured in the presence of 1 nM insulin or in the absence of insulin resulted in a 3.5-fold and 3-fold enhancement in CYP2E1 protein expression, respectively, in the absence of any pyridine-mediated increase in mRNA expression. In contrast, hepatocytes cultured in the standard concentration of 1 microM insulin resulted in only a 2-fold increase in protein expression. Thus, the fold-induction of CYP2E1 protein in response to pyridine was 1.5- to 1.8-fold greater in either the absence of insulin or in the presence of 1 nM insulin, respectively, than that monitored in the presence of 1 microM insulin. To examine whether insulin effects on xenobiotic-mediated CYP2E1 expression were selective, insulin effects on xenobiotic-mediated expression of transcriptionally regulated CYP2B, CYP3A, and CYP4A were examined. Pyridine- or phenobarbital-mediated induction of CYP2B mRNA and protein expression in hepatocytes was suppressed by as much as 80% at lower insulin levels (0 and 1 nM), relative to the level monitored in the presence of 1 microM insulin. Omitting insulin from the medium resulted in a 50% decrease in CYP3A mRNA levels in response to phenobarbital treatment and a 30% decrease in CYP4A mRNA levels in response to ciprofibrate treatment, relative to the level obtained in response to these treatments in the presence of 1 microM insulin. The results of this study demonstrate that decreasing the insulin level in the primary hepatocyte culture medium enhanced xenobiotic-mediated CYP2E1 expression, whereas lower insulin levels suppressed xenobiotic-mediated CYP2B, CYP3A, and CYP4A expression in this cell culture system.  (+info)

Hypoxia-induced production of 12-hydroxyeicosanoids in the corneal epithelium: involvement of a cytochrome P-4504B1 isoform. (5/260)

The corneal epithelium metabolizes arachidonic acid by a cytochrome P-450 (CYP)-mediated activity to 12-hydroxy-5,8,11, 14-eicosatetraenoic acid (12(R)-HETE) and 12-hydroxy-5,8, 14-eicosatrienoic acid (12(R)-HETrE ). Both metabolites possess potent inflammatory properties, with 12(R)-HETrE being a powerful angiogenic factor, and they assume the role of inflammatory mediators in hypoxia- and chemical-induced injury in the cornea in vivo and in vitro. We used a model of corneal organ culture that exhibits hypoxia-induced epithelial CYP-dependent 12(R)-HETE and 12(R)-HETrE synthesis for isolating, identifying, and characterizing the CYP protein responsible for these eicosanoid syntheses. Northern analysis revealed the presence of a CYP4A-hybridizable mRNA, the levels of which were increased after hypoxia. Reverse transcription-polymerase chain reaction analysis with primers specific for the CYP4A family led to the isolation of a 671-base pair fragment with a 98.8% sequence homology to the rabbit lung CYP4B1 isoform, of which the levels in the corneal epithelium were greatly increased under hypoxic conditions. Moreover, phenobarbital, an inducer of hepatic CYP4B1 in the rabbit, also induced 12-HETE and 12-HETrE synthesis. Antibodies against CYP4B1, but not against CYP4A1, inhibited hypoxia-, clofibrate-, and phenobarbital-induced 12-HETE and 12-HETrE synthesis. These results suggest the involvement of a CYP4B1 isoform in the corneal epithelial synthesis of these eicosanoids in response to hypoxia.  (+info)

Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. (6/260)

N-6 polyunsaturated fatty acids (PUFA) suppress hepatic and adipocyte de novo lipogenesis by inhibiting the transcription of genes encoding key lipogenic proteins. In cultured 3T3-L1 adipocytes, arachidonic acid (20:4,n-6) suppression of lipogenic gene expression requires cyclooxygenase (COX) activity. In this study, we found no evidence to support a role for COX-1 or -2 in the 20:4,n-6 inhibition of hepatocyte lipogenic gene expression. In contrast to L1 preadipocytes, adipocytes and rat liver, RT-PCR and Western analyses did not detect COX-1 or COX-2 expression in cultured primary hepatocytes. Moreover, the COX inhibitor, flurbiprofen, did not affect the 20:4,n-6 regulation of lipogenic gene expression in primary hepatocytes. Despite the absence of COX-1 and -2 expression in primary hepatocytes, prostaglandins (PGE2 and PGF2alpha) suppressed fatty acid synthase, l-pyruvate kinase, and the S14 protein mRNA, while having no effect on acyl-CoA oxidase or CYP4A2 mRNA. Using PGE2 receptor agonist, the PGE2 effect on lipogenic gene expression was linked to EP3 receptors. PGE2 inhibited S14CAT activity in transfected primary hepatocytes and targeted the S14 PUFA-response region located -220 to -80 bp upstream from the transcription start site. Taken together, these studies show that COX-1 and COX-2 do not contribute to the n-6 PUFA suppression of hepatocyte lipogenic gene expression. However, cyclooxygenase products from non-parenchymal cells can act on parenchymal cells through a paracrine process and mimic the effects of n-6 PUFA on lipogenic gene expression.  (+info)

Kinetic profile of the rat CYP4A isoforms: arachidonic acid metabolism and isoform-specific inhibitors. (7/260)

20-Hydroxyeicosatetraenoic acid (HETE), the cytochrome P-450 (CYP) 4A omega-hydroxylation product of arachidonic acid, has potent biological effects on renal tubular and vascular functions and on the control of arterial pressure. We have expressed high levels of the rat CYP4A1, -4A2, -4A3, and -4A8 cDNAs, using baculovirus and Sf 9 insect cells. Arachidonic acid omega- and omega-1-hydroxylations were catalyzed by three of the CYP4A isoforms; the highest catalytic efficiency of 947 nM-1. min-1 for CYP4A1 was followed by 72 and 22 nM-1. min-1 for CYP4A2 and CYP4A3, respectively. CYP4A2 and CYP4A3 exhibited an additional arachidonate 11,12-epoxidation activity, whereas CYP4A1 operated solely as an omega-hydroxylase. CYP4A8 did not catalyze arachidonic or linoleic acid but did have a detectable lauric acid omega-hydroxylation activity. The inhibitory activity of various acetylenic and olefinic fatty acid analogs revealed differences and indicated isoform-specific inhibition. These studies suggest that CYP4A1, despite its low expression in extrahepatic tissues, may constitute the major source of 20-HETE synthesis. Moreover, the ability of CYP4A2 and -4A3 to catalyze the formation of two opposing biologically active metabolites, 20-HETE and 11, 12-epoxyeicosatrienoic acid, may be of great significance to the regulation of vascular tone.  (+info)

Regulation of P-450 4A activity in the glomerulus of the rat. (8/260)

We recently reported that an enzyme of the cytochrome P-450 4A family is expressed in the glomerulus, but there is no evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) can be produced by this tissue. The purpose of present study was to determine whether glomeruli isolated from the kidney of rats can produce 20-HETE and whether the production of this metabolite is regulated by nitric oxide (NO) and dietary salt intake. Isolated glomeruli produced 20-HETE, dihydroxyeicosatrienoic acids, and 12-hydroxyeicosatetraenoic acid (4.13 +/- 0.38, 4.20 +/- 0.38, and 2. 10 +/- 0.20 pmol. min-1. mg protein-1, respectively) when incubated with arachidonic acid (10 microM). The formation of 20-HETE was dependent on the availability of NADPH and the PO2 of the incubation medium. The formation of 20-HETE was inhibited by NO donors in a concentration-dependent manner. The production of 20-HETE was greater in glomeruli isolated from the kidneys of rats fed a low-salt diet than in kidneys of rats fed a high-salt diet (5.67 +/- 0.32 vs. 2.83 +/- 0.32 pmol. min-1. mg protein-1). Immunoblot experiments indicated that the expression of P-450 4A protein in glomeruli from the kidneys of rats fed a low-salt diet was sixfold higher than in kidneys of rats fed a high-salt diet. These results indicate that arachidonic acid is primarily metabolized to 20-HETE and dihydroxyeicosatrienoic acids in glomeruli and that glomerular P-450 activity is modulated by NO and dietary salt intake.  (+info)

Alkanes are a group of saturated hydrocarbons, which are characterized by the presence of single bonds between carbon atoms in their molecular structure. The general formula for alkanes is CnH2n+2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkane is methane (CH4), which contains one carbon atom and four hydrogen atoms. As the number of carbon atoms increases, the length and complexity of the alkane chain also increase. For example, ethane (C2H6) contains two carbon atoms and six hydrogen atoms, while propane (C3H8) contains three carbon atoms and eight hydrogen atoms.

Alkanes are important components of fossil fuels such as natural gas, crude oil, and coal. They are also used as starting materials in the production of various chemicals and materials, including plastics, fertilizers, and pharmaceuticals. In the medical field, alkanes may be used as anesthetics or as solvents for various medical applications.

Alkane 1-monooxygenase is an enzyme that catalyzes the addition of one oxygen atom from molecular oxygen to a alkane, resulting in the formation of an alcohol. This reaction also requires the cofactor NADH or NADPH and generates water as a byproduct.

The general reaction catalyzed by alkane 1-monooxygenase can be represented as follows:

R-CH3 + O2 + NAD(P)H + H+ -> R-CH2OH + H2O + NAD(P)+

where R represents an alkyl group.

This enzyme is found in various microorganisms, such as bacteria and fungi, and plays a crucial role in their ability to degrade hydrocarbons, including alkanes, which are major components of fossil fuels. Alkane 1-monooxygenase has potential applications in bioremediation and the production of biofuels from renewable resources.

Oxygenases are a class of enzymes that catalyze the incorporation of molecular oxygen (O2) into their substrates. They play crucial roles in various biological processes, including the biosynthesis of many natural products, as well as the detoxification and degradation of xenobiotics (foreign substances).

There are two main types of oxygenases: monooxygenases and dioxygenases. Monooxygenases introduce one atom of molecular oxygen into a substrate while reducing the other to water. An example of this type of enzyme is cytochrome P450, which is involved in drug metabolism and steroid hormone synthesis. Dioxygenases, on the other hand, incorporate both atoms of molecular oxygen into their substrates, often leading to the formation of new carbon-carbon bonds or the cleavage of existing ones.

It's important to note that while oxygenases are essential for many life-sustaining processes, they can also contribute to the production of harmful reactive oxygen species (ROS) during normal cellular metabolism. An imbalance in ROS levels can lead to oxidative stress and damage to cells and tissues, which has been linked to various diseases such as cancer, neurodegeneration, and cardiovascular disease.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

Kynurenine 3-Monooxygenase (KMO) is an enzyme that is involved in the metabolism of the amino acid tryptophan. Specifically, it is a key enzyme in the kynurenine pathway, which is the primary route of tryptophan breakdown in mammals.

KMO catalyzes the conversion of L-kynurenine to 3-hydroxykynurenine using molecular oxygen and nicotinamide adenine dinucleotide phosphate (NADPH) as cofactors. This reaction is an important step in the production of several neuroactive metabolites, including quinolinic acid and kynurenic acid, which have been implicated in various neurological disorders such as Alzheimer's disease, Parkinson's disease, and depression.

Inhibition of KMO has been suggested as a potential therapeutic strategy for the treatment of these disorders due to its role in regulating the balance between neuroprotective and neurotoxic kynurenine metabolites.

Butanes are a group of flammable, colorless gases that are often used as fuel or in the production of other chemicals. They have the chemical formula C4H10 and are composed of four carbon atoms and ten hydrogen atoms. Butanes are commonly found in natural gas and crude oil, and they can be extracted through a process called distillation.

There are two main types of butane: n-butane and isobutane. N-butane has a straight chain of four carbon atoms, while isobutane has a branched chain with one carbon atom branching off the main chain. Both forms of butane are used as fuel for lighters, stoves, and torches, and they are also used as refrigerants and in the production of aerosols.

Butanes are highly flammable and can be dangerous if not handled properly. They should be stored in a cool, well-ventilated area away from sources of ignition, and they should never be used near an open flame or other source of heat. Ingesting or inhaling butane can be harmful and can cause symptoms such as dizziness, nausea, and vomiting. If you suspect that you have been exposed to butane, it is important to seek medical attention immediately.

Methylococcaceae is a family of bacteria that have the ability to oxidize methane as their source of carbon and energy. These bacteria are also known as methanotrophs. They are gram-negative, aerobic, and typically occur in freshwater and marine environments. The family includes several genera such as Methylococcus, Methylomonas, and Methylothermus. These bacteria play an important role in the global carbon cycle by converting methane, a potent greenhouse gas, into carbon dioxide.

"Methylococcus capsulatus" is a species of gram-negative, facultatively aerobic, methane-oxidizing bacteria that belongs to the family Methylococcaceae. These bacteria are characterized by their ability to use methane as their sole source of carbon and energy for growth, a process known as methanotrophy. "Methylococcus capsulatus" is commonly found in freshwater and terrestrial environments, such as soil, lakes, and rivers.

The bacteria are spherical to oval-shaped and are surrounded by a distinct, protective outer layer called a capsule, which gives the species its name "capsulatus." The cells can exist as single cells or in pairs, and they may form aggregates when grown in culture. They are able to grow at a wide range of temperatures, from 4°C to 37°C, making them adaptable to various environmental conditions.

"Methylococcus capsulatus" has attracted interest for its potential use in bioremediation and waste treatment due to its ability to consume methane, a potent greenhouse gas. Additionally, the bacteria have been studied as a source of single-cell protein and other valuable bioproducts.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

Environmental biodegradation is the breakdown of materials, especially man-made substances such as plastics and industrial chemicals, by microorganisms such as bacteria and fungi in order to use them as a source of energy or nutrients. This process occurs naturally in the environment and helps to break down organic matter into simpler compounds that can be more easily absorbed and assimilated by living organisms.

Biodegradation in the environment is influenced by various factors, including the chemical composition of the substance being degraded, the environmental conditions (such as temperature, moisture, and pH), and the type and abundance of microorganisms present. Some substances are more easily biodegraded than others, and some may even be resistant to biodegradation altogether.

Biodegradation is an important process for maintaining the health and balance of ecosystems, as it helps to prevent the accumulation of harmful substances in the environment. However, some man-made substances, such as certain types of plastics and industrial chemicals, may persist in the environment for long periods of time due to their resistance to biodegradation, leading to negative impacts on wildlife and ecosystems.

In recent years, there has been increasing interest in developing biodegradable materials that can break down more easily in the environment as a way to reduce waste and minimize environmental harm. These efforts have led to the development of various biodegradable plastics, coatings, and other materials that are designed to degrade under specific environmental conditions.

"Pseudomonas" is a genus of Gram-negative, rod-shaped bacteria that are widely found in soil, water, and plants. Some species of Pseudomonas can cause disease in animals and humans, with P. aeruginosa being the most clinically relevant as it's an opportunistic pathogen capable of causing various types of infections, particularly in individuals with weakened immune systems.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants, making infections caused by this bacterium difficult to treat. It can cause a range of healthcare-associated infections, such as pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. In addition, it can also cause external ear infections and eye infections.

Prompt identification and appropriate antimicrobial therapy are crucial for managing Pseudomonas infections, although the increasing antibiotic resistance poses a significant challenge in treatment.

Petroleum is not a medical term, but it is a term used in the field of geology and petrochemicals. It refers to a naturally occurring liquid found in rock formations, which is composed of a complex mixture of hydrocarbons, organic compounds consisting primarily of carbon and hydrogen.

Petroleum is not typically associated with medical definitions; however, it's worth noting that petroleum and its derivatives are widely used in the production of various medical supplies, equipment, and pharmaceuticals. Some examples include plastic syringes, disposable gloves, catheters, lubricants for medical devices, and many active ingredients in medications.

In a broader sense, environmental or occupational exposure to petroleum and its byproducts could lead to health issues, but these are not typically covered under medical definitions of petroleum itself.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Rhodococcus is a genus of gram-positive, aerobic, actinomycete bacteria that are widely distributed in the environment, including soil and water. Some species of Rhodococcus can cause opportunistic infections in humans and animals, particularly in individuals with weakened immune systems. These infections can affect various organs and tissues, such as the lungs, skin, and brain, and can range from mild to severe.

Rhodococcus species are known for their ability to degrade a wide variety of organic compounds, including hydrocarbons, making them important players in bioremediation processes. They also have complex cell walls that make them resistant to many antibiotics and disinfectants, which can complicate treatment of Rhodococcus infections.

"Methylosinus trichosporium" is not a medical term, but rather a term used in microbiology to describe a specific species of bacteria. It's a type of methanotrophic bacterium, which means it can use methane as its source of carbon and energy. The bacteria are often found in environments that contain methane, such as soil, wetlands, and freshwater and marine sediments. While not directly related to medical definitions, these types of bacteria do have potential applications in bioremediation and waste treatment.

I'm sorry for any confusion, but "hydrocarbons" is not a term that has a specific medical definition. Hydrocarbons are organic compounds consisting entirely of hydrogen and carbon. They are primarily used in industry as fuel, lubricants, and as raw materials for the production of plastics, fibers, and other chemicals.

However, in a broader scientific context, hydrocarbons can be relevant to medical discussions. For instance, in toxicology, exposure to certain types of hydrocarbons (like those found in gasoline or solvents) can lead to poisoning and related health issues. In environmental medicine, the pollution of air, water, and soil with hydrocarbons is a concern due to potential health effects.

But in general clinical medicine, 'hydrocarbons' wouldn't have a specific definition.

I'm sorry for any confusion, but "octanes" is not a medical term. It is a term used in chemistry and physics, particularly in reference to fuel. Octane is a hydrocarbon molecule found in gasoline, and it is used as a measure of the fuel's ability to resist engine knocking or pinging during combustion.

The octane rating of gasoline typically ranges from 87 (regular) to 91-93 (premium). Higher-octane fuels are often recommended for high-performance vehicles that have higher compression ratios in their engines. If you have any questions related to medical terminology, I'd be happy to help!

Camphor 5-monooxygenase is an enzyme that catalyzes the conversion of camphor to 5-exo-hydroxycamphor, which is the first step in the degradation of camphor by certain bacteria. This enzyme is a member of the cytochrome P450 family and requires NADPH and molecular oxygen for its activity. The gene that encodes this enzyme is often used as a marker for the presence of camphor-degrading bacteria in environmental samples.

Rubredoxins are small iron-sulfur proteins that contain a single iron atom bonded to four cysteine residues, forming an iron(II)-sulfur cluster. They play a role in electron transfer reactions in certain bacteria and archaea. The name "rubredoxin" comes from the fact that these proteins can be easily reduced, turning them red in color. They have a molecular weight of around 6,000 daltons and are known for their stability and resistance to chemical changes. Rubredoxins are not commonly found in higher organisms such as plants and animals.

Alkenes are unsaturated hydrocarbons that contain at least one carbon-carbon double bond in their molecular structure. The general chemical formula for alkenes is CnH2n, where n represents the number of carbon atoms in the molecule.

The double bond in alkenes can undergo various reactions, such as addition reactions, where different types of molecules can add across the double bond to form new compounds. The relative position of the double bond in the carbon chain and the presence of substituents on the carbon atoms can affect the physical and chemical properties of alkenes.

Alkenes are important industrial chemicals and are used as starting materials for the synthesis of a wide range of products, including plastics, resins, fibers, and other chemicals. They are also found in nature, occurring in some plants and animals, and can be produced by certain types of bacteria through fermentation processes.

Methane is not a medical term, but it is a chemical compound that is often mentioned in the context of medicine and health. Medically, methane is significant because it is one of the gases produced by anaerobic microorganisms during the breakdown of organic matter in the gut, leading to conditions such as bloating, cramping, and diarrhea. Excessive production of methane can also be a symptom of certain digestive disorders like irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth (SIBO).

In broader terms, methane is a colorless, odorless gas that is the primary component of natural gas. It is produced naturally by the decomposition of organic matter in anaerobic conditions, such as in landfills, wetlands, and the digestive tracts of animals like cows and humans. Methane is also a potent greenhouse gas with a global warming potential 25 times greater than carbon dioxide over a 100-year time frame.

Hydroxylation is a biochemical process that involves the addition of a hydroxyl group (-OH) to a molecule, typically a steroid or xenobiotic compound. This process is primarily catalyzed by enzymes called hydroxylases, which are found in various tissues throughout the body.

In the context of medicine and biochemistry, hydroxylation can have several important functions:

1. Drug metabolism: Hydroxylation is a common way that the liver metabolizes drugs and other xenobiotic compounds. By adding a hydroxyl group to a drug molecule, it becomes more polar and water-soluble, which facilitates its excretion from the body.
2. Steroid hormone biosynthesis: Hydroxylation is an essential step in the biosynthesis of many steroid hormones, including cortisol, aldosterone, and the sex hormones estrogen and testosterone. These hormones are synthesized from cholesterol through a series of enzymatic reactions that involve hydroxylation at various steps.
3. Vitamin D activation: Hydroxylation is also necessary for the activation of vitamin D in the body. In order to become biologically active, vitamin D must undergo two successive hydroxylations, first in the liver and then in the kidneys.
4. Toxin degradation: Some toxic compounds can be rendered less harmful through hydroxylation. For example, phenol, a toxic compound found in cigarette smoke and some industrial chemicals, can be converted to a less toxic form through hydroxylation by enzymes in the liver.

Overall, hydroxylation is an important biochemical process that plays a critical role in various physiological functions, including drug metabolism, hormone biosynthesis, and toxin degradation.

I'm sorry for any confusion, but "Propane" is not a medical term. It is a chemical compound commonly used as a fuel for heating, cooking, and engines. Propane is a gas at room temperature and pressure, but it can be liquefied under moderate pressure and stored in cylinders or tanks.

If you have any questions about a medical term or concept, I'd be happy to try to help answer those for you!

"Nitrosomonas" is a genus of Gram-negative, aerobic bacteria that are capable of oxidizing ammonia to nitrite as part of the nitrogen cycle. These bacteria play a crucial role in nitrification, a process that converts harmful ammonia into less toxic forms. They are commonly found in various environments such as soil, freshwater, and oceans, where they help maintain nutrient balance. The genus "Nitrosomonas" belongs to the family Methylocystaceae within the class Alphaproteobacteria. It's important to note that while these bacteria have medical relevance in understanding environmental and ecological systems, they are not typically associated with human diseases or infections.

Flavin-Adenine Dinucleotide (FAD) is a coenzyme that plays a crucial role in various metabolic processes, particularly in the electron transport chain where it functions as an electron carrier in oxidation-reduction reactions. FAD is composed of a flavin moiety, riboflavin or vitamin B2, and adenine dinucleotide. It can exist in two forms: an oxidized form (FAD) and a reduced form (FADH2). The reduction of FAD to FADH2 involves the gain of two electrons and two protons, which is accompanied by a significant conformational change that allows FADH2 to donate its electrons to subsequent components in the electron transport chain, ultimately leading to the production of ATP, the main energy currency of the cell.

"Pseudomonas putida" is a species of gram-negative, rod-shaped bacteria that is commonly found in soil and water environments. It is a non-pathogenic, opportunistic microorganism that is known for its versatile metabolism and ability to degrade various organic compounds. This bacterium has been widely studied for its potential applications in bioremediation and industrial biotechnology due to its ability to break down pollutants such as toluene, xylene, and other aromatic hydrocarbons. It is also known for its resistance to heavy metals and antibiotics, making it a valuable tool in the study of bacterial survival mechanisms and potential applications in bioremediation and waste treatment.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Gordonia bacterium is a type of gram-positive, aerobic bacteria that belongs to the family Gordoniaceae. These bacteria are typically found in soil, water, and clinical specimens such as respiratory secretions, wounds, and blood. They are catalase-positive and oxidase-negative, and many species can produce colonies with a distinctive orange or pink color due to the production of pigments such as gordoniabactin.

Gordonia species are generally considered to be low-virulence organisms, but they have been associated with various types of infections, particularly in immunocompromised individuals. These infections can include respiratory tract infections, catheter-related bloodstream infections, and skin and soft tissue infections.

Gordonia species are often resistant to many antibiotics, including beta-lactams, macrolides, and aminoglycosides. Therefore, identification of the specific Gordonia species and susceptibility testing are important for guiding appropriate antimicrobial therapy.

Benzydamine is a non-steroidal anti-inflammatory drug (NSAID) with local analgesic, anti-inflammatory, and antipyretic properties. It works by inhibiting the production of prostaglandins, which are involved in inflammation, pain perception, and fever. Benzydamine is available as a topical cream, gel, spray, or mouthwash for the relief of pain and inflammation associated with various conditions such as mouth ulcers, sore throat, sprains, strains, and other localized painful and inflammatory conditions. It is not commonly used systemically due to its short half-life and potential for gastrointestinal side effects.

Tyrosine 3-Monooxygenase (also known as Tyrosinase or Tyrosine hydroxylase) is an enzyme that plays a crucial role in the synthesis of catecholamines, which are neurotransmitters and hormones in the body. This enzyme catalyzes the conversion of the amino acid L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by adding a hydroxyl group to the 3rd carbon atom of the tyrosine molecule.

The reaction is as follows:

L-Tyrosine + O2 + pterin (co-factor) -> L-DOPA + pterin (oxidized) + H2O

This enzyme requires molecular oxygen and a co-factor such as tetrahydrobiopterin to carry out the reaction. Tyrosine 3-Monooxygenase is found in various tissues, including the brain and adrenal glands, where it helps regulate the production of catecholamines like dopamine, norepinephrine, and epinephrine. Dysregulation of this enzyme has been implicated in several neurological disorders, such as Parkinson's disease.

Squalene monooxygenase is an enzyme involved in the biosynthesis of cholesterol and other sterols. This enzyme catalyzes the conversion of squalene to squalene 2,3-epoxide, which is a key step in the biosynthetic pathway leading to the formation of cholesterol. The reaction catalyzed by squalene monooxygenase involves the incorporation of molecular oxygen and the reduction of NADPH to NADP+.

The gene that encodes squalene monooxygenase is called SQLE, which is located on human chromosome 8 (8p21.3). Mutations in this gene have been associated with several genetic disorders, including Smith-Lemli-Opitz syndrome and desmosterolosis, which are characterized by abnormal cholesterol metabolism.

Squalene monooxygenase is an important enzyme in the regulation of cholesterol biosynthesis, and its activity is regulated by several factors, including sterol regulatory element-binding proteins (SREBPs) and insulin-induced gene 1 (INSIG1). Inhibition of squalene monooxygenase has been explored as a potential therapeutic strategy for the treatment of hypercholesterolemia and related cardiovascular diseases.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Flavin Mononucleotide (FMN) Reductase is an enzyme that catalyzes the reduction of FMN to FMNH2 using NADH or NADPH as an electron donor. This enzyme plays a crucial role in the electron transport chain and is involved in various redox reactions within the cell. It is found in many organisms, including bacteria, fungi, plants, and animals. In humans, FMN Reductase is encoded by the RIBFLR gene and is primarily located in the mitochondria. Defects in this enzyme can lead to various metabolic disorders.

NADPH-ferrihemoprotein reductase, also known as diaphorase or NO synthase reductase, is an enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing cofactor. This reaction plays a crucial role in various biological processes such as the detoxification of certain compounds and the regulation of cellular signaling pathways.

The systematic name for this enzyme is NADPH:ferrihemoprotein oxidoreductase, and it belongs to the family of oxidoreductases that use NADH or NADPH as electron donors. The reaction catalyzed by this enzyme can be represented as follows:

NADPH + H+ + ferrihemoprotein ↔ NADP+ + ferrohemoprotein

In this reaction, the ferric (FeIII) form of hemoproteins is reduced to its ferrous (FeII) form by accepting electrons from NADPH. This enzyme is widely distributed in various tissues and organisms, including bacteria, fungi, plants, and animals. It has been identified as a component of several multi-enzyme complexes involved in different metabolic pathways, such as nitric oxide synthase (NOS) and cytochrome P450 reductase.

In summary, NADPH-ferrihemoprotein reductase is an essential enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing agent, playing a critical role in various biological processes and metabolic pathways.

Amidine-lyases are a class of enzymes that catalyze the cleavage of a nitrogen-carbon bond in an amidine molecule, resulting in the formation of a nitrogen gas (N2) and a carbonyl compound. This reaction is also known as deamination or deaminative cleavage.

The systematic name for this class of enzymes is "amidine hydrolase (deaminating)". They are classified under EC number 4.3.1, which includes enzymes that catalyze the hydrolysis of various bonds.

Amidine-lyases play important roles in various metabolic pathways, including the breakdown of amino acids and other nitrogen-containing compounds. They are found in a wide range of organisms, from bacteria to humans.

It's worth noting that amidines are organic compounds containing a nitrogen atom bonded to two carbon atoms, and they can be found in various natural and synthetic compounds. The term "amidine-lyases" refers specifically to enzymes that cleave the nitrogen-carbon bond in these compounds.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Flavins are a group of naturally occurring organic compounds that contain a characteristic isoalloxazine ring, which is a tricyclic aromatic structure. The most common and well-known flavin is flavin adenine dinucleotide (FAD), which plays a crucial role as a coenzyme in various biological oxidation-reduction reactions. FAD accepts electrons and hydrogens to form the reduced form, flavin adenine dinucleotide hydride (FADH2). Another important flavin is flavin mononucleotide (FMN), which is derived from FAD and functions similarly as a coenzyme. Flavins are yellow in color and can be found in various biological systems, including animals, plants, and microorganisms. They are involved in several metabolic pathways, such as the electron transport chain, where they contribute to energy production.

Gram-negative aerobic bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, which is a technique used to differentiate bacterial species based on their cell wall composition. These bacteria have a thin peptidoglycan layer and an outer membrane containing lipopolysaccharides (LPS), making them resistant to many antibiotics and disinfectants. They are called aerobic because they require oxygen for their growth and metabolism. Examples of Gram-negative aerobic bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. These bacteria can cause various infections in humans, such as pneumonia, urinary tract infections, and sepsis.

Alcanivoraceae is a family of Gram-negative, aerobic, and rod-shaped bacteria that are known for their ability to degrade hydrocarbons. These bacteria are commonly found in marine environments and play an essential role in the natural bioremediation of oil spills. They have the ability to use alkanes, which are a major component of crude oil, as their sole source of carbon and energy. This makes them particularly useful for cleaning up oil-contaminated waters, as they can help to break down the oil into smaller, less toxic compounds.

The type genus of Alcanivoraceae is Alcanivorax, which was first described in 1998. Since then, several other genera have been added to the family, including Cycloclasticus, Marinobacter, and Neptuniibacter. These bacteria are typically found in marine environments, such as seawater, sediments, and oil-contaminated waters. They are also known to be associated with marine animals, such as sea turtles and sponges.

In addition to their role in bioremediation, Alcanivoraceae bacteria have been studied for their potential use in a variety of industrial applications, including the production of biofuels and other valuable chemicals. However, more research is needed to fully understand the biology and ecology of these bacteria before they can be widely used in these contexts.

Phenol, also known as carbolic acid, is an organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is slightly soluble in water and has a melting point of 40-42°C. Phenol is a weak acid, but it is quite reactive and can be converted into a variety of other chemicals.

In a medical context, phenol is most commonly used as a disinfectant and antiseptic. It has a characteristic odor that is often described as "tarry" or " medicinal." Phenol is also used in some over-the-counter products, such as mouthwashes and throat lozenges, to help kill bacteria and freshen breath.

However, phenol is also a toxic substance that can cause serious harm if it is swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and mucous membranes, and it can damage the liver and kidneys if ingested. Long-term exposure to phenol has been linked to an increased risk of cancer.

Because of its potential for harm, phenol is regulated as a hazardous substance in many countries, and it must be handled with care when used in medical or industrial settings.

Ethane is not a medical term, but it is a chemical compound that is part of the human environment. Ethane is a hydrocarbon, which means it contains only hydrogen and carbon atoms. Specifically, ethane is made up of two carbon atoms and six hydrogen atoms (C2H6). It is a colorless gas at room temperature and has no smell or taste.

In the context of human health, ethane is not considered to be harmful in small amounts. However, exposure to high levels of ethane can cause respiratory irritation and other symptoms. Ethane is also a greenhouse gas, which means that it contributes to global warming when released into the atmosphere.

Ethane is produced naturally during the breakdown of organic matter, such as plants and animals. It is also produced in small amounts during the digestion of food in the human body. However, most ethane used in industry is extracted from natural gas and petroleum deposits. Ethane is used as a fuel and as a raw material in the production of plastics and other chemicals.

Trichloroethylene (TCE) is a volatile, colorless liquid with a chloroform-like odor. In the medical field, it is primarily used as a surgical anesthetic and an analgesic. However, its use in medicine has significantly decreased due to the availability of safer alternatives.

In a broader context, TCE is widely used in various industries as a solvent for cleaning metal parts, degreasing fabrics and other materials, and as a refrigerant. It's also present in some consumer products like paint removers, adhesives, and typewriter correction fluids.

Prolonged or repeated exposure to TCE can lead to various health issues, including neurological problems, liver and kidney damage, and an increased risk of certain cancers. Therefore, its use is regulated by environmental and occupational safety agencies worldwide.

Toluene is not a medical condition or disease, but it is a chemical compound that is widely used in various industrial and commercial applications. Medically, toluene can be relevant as a substance of abuse due to its intoxicating effects when inhaled or sniffed. It is a colorless liquid with a distinctive sweet aroma, and it is a common solvent found in many products such as paint thinners, adhesives, and rubber cement.

In the context of medical toxicology, toluene exposure can lead to various health issues, including neurological damage, cognitive impairment, memory loss, nausea, vomiting, and hearing and vision problems. Chronic exposure to toluene can also cause significant harm to the developing fetus during pregnancy, leading to developmental delays, behavioral problems, and physical abnormalities.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Methylocystaceae is a family of aerobic, methane-oxidizing bacteria within the order Rhizobiales. These bacteria are capable of using methane as their sole source of carbon and energy for growth, a process known as methanotrophy. Methylocystaceae are unique among methanotrophs because they possess a type II methanotrophic pathway, which involves the assimilation of formaldehyde into biomass via the ribulose monophosphate (RuMP) cycle.

The family Methylocystaceae contains several genera, including Methylocystis, Methylosinus, and Methylocapsa. These bacteria are commonly found in a variety of environments, such as soils, freshwater, and marine systems, where they play an important role in the global carbon cycle by converting methane into carbon dioxide.

It's worth noting that medical professionals may not typically use the term Methylocystaceae in a clinical context, but rather in research or environmental settings related to microbiology and ecology.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Chlorinated hydrocarbons are a group of organic compounds that contain carbon (C), hydrogen (H), and chlorine (Cl) atoms. These chemicals are formed by replacing one or more hydrogen atoms in a hydrocarbon molecule with chlorine atoms. The properties of chlorinated hydrocarbons can vary widely, depending on the number and arrangement of chlorine and hydrogen atoms in the molecule.

Chlorinated hydrocarbons have been widely used in various industrial applications, including as solvents, refrigerants, pesticides, and chemical intermediates. Some well-known examples of chlorinated hydrocarbons are:

1. Methylene chloride (dichloromethane) - a colorless liquid with a mild sweet odor, used as a solvent in various industrial applications, including the production of pharmaceuticals and photographic films.
2. Chloroform - a heavy, volatile, and sweet-smelling liquid, used as an anesthetic in the past but now mainly used in chemical synthesis.
3. Carbon tetrachloride - a colorless, heavy, and nonflammable liquid with a mildly sweet odor, once widely used as a solvent and fire extinguishing agent but now largely phased out due to its ozone-depleting properties.
4. Vinyl chloride - a flammable, colorless gas, used primarily in the production of polyvinyl chloride (PVC) plastic and other synthetic materials.
5. Polychlorinated biphenyls (PCBs) - a group of highly stable and persistent organic compounds that were widely used as coolants and insulating fluids in electrical equipment but are now banned due to their toxicity and environmental persistence.

Exposure to chlorinated hydrocarbons can occur through inhalation, skin contact, or ingestion, depending on the specific compound and its physical state. Some chlorinated hydrocarbons have been linked to various health effects, including liver and kidney damage, neurological disorders, reproductive issues, and cancer. Therefore, proper handling, use, and disposal of these chemicals are essential to minimize potential health risks.

I believe you may be asking for a medical explanation or examples of substances that are referred to as "waxes." Waxes are not a specific medical term, but they can refer to various natural or synthetic esters that are insoluble in water and have a soft, waxy consistency. In a medical context, the term "waxes" might refer to:

1. Cerumen (Earwax): A yellowish waxy substance produced by glands in the ear canal. Cerumen helps protect the ear by trapping dirt, dust, and other particles and preventing them from entering the inner ear.
2. Sebaceous Waxes: These are esters found in sebum, an oily substance produced by sebaceous glands in the skin. Sebum helps keep the skin and hair moisturized and protected.
3. Cutaneous Waxes: These are lipid-rich substances secreted by specialized sweat glands called eccrine glands. They help to waterproof and protect the skin.
4. Histological Waxes: Paraffin or other waxes used in histology for tissue processing, embedding, and microtomy to prepare thin sections of tissues for examination under a microscope.

These are some examples of substances that can be referred to as "waxes" in a medical context.

Beijerinckiaceae is a family of bacteria within the order Rhizobiales. These bacteria are gram-negative, motile, and chemoorganotrophic, meaning they obtain energy by oxidizing organic compounds. They are commonly found in soil, water, and plant root nodules. Some members of this family have the ability to fix nitrogen, making them important for agriculture and the global nitrogen cycle. The family is named after the Dutch microbiologist Martinus Willem Beijerinck, who made significant contributions to the study of bacteria and their role in nitrogen fixation.

In chemistry, an alcohol is a broad term that refers to any organic compound characterized by the presence of a hydroxyl (-OH) functional group attached to a carbon atom. This means that alcohols are essentially hydrocarbons with a hydroxyl group. The simplest alcohol is methanol (CH3OH), and ethanol (C2H5OH), also known as ethyl alcohol, is the type of alcohol found in alcoholic beverages.

In the context of medical definitions, alcohol primarily refers to ethanol, which has significant effects on the human body when consumed. Ethanol can act as a central nervous system depressant, leading to various physiological and psychological changes depending on the dose and frequency of consumption. Excessive or prolonged use of ethanol can result in various health issues, including addiction, liver disease, neurological damage, and increased risk of injuries due to impaired judgment and motor skills.

It is important to note that there are other types of alcohols (e.g., methanol, isopropyl alcohol) with different chemical structures and properties, but they are not typically consumed by humans and can be toxic or even lethal in high concentrations.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

Oxidoreductases, O-demethylating are enzymes that belong to the larger family of oxidoreductases. Specifically, they are involved in catalyzing the removal of methyl groups (-CH3) from various substrates through oxidation reactions. This process is known as O-demethylation.

These enzymes play a crucial role in the metabolism of xenobiotics (foreign substances) such as drugs, toxins, and carcinogens. They help convert these substances into more water-soluble forms, which can then be easily excreted from the body. O-demethylating oxidoreductases are often found in the liver, where they contribute to the detoxification of xenobiotics.

The reaction catalyzed by these enzymes involves the transfer of a hydrogen atom and the addition of an oxygen atom to the methyl group, resulting in the formation of formaldehyde (-CH2O) and a demethylated product. The cytochrome P450 family of enzymes is one example of O-demethylating oxidoreductases.

7-Alkoxycoumarin O-Dealkylase is an enzyme that catalyzes the chemical reaction to remove alkoxy groups (O-dealkylation) from xenobiotic compounds, particularly 7-alkoxycoumarins. This enzyme is involved in the metabolism and detoxification of these substances in the body. It is also known as CYP2B6, which is a member of the cytochrome P450 family of enzymes.

"Pseudomonas mendocina" is a gram-negative, rod-shaped bacterium that belongs to the family Pseudomonadaceae. It is commonly found in soil and water environments. This species is generally considered to be nonpathogenic, meaning it does not typically cause disease in humans. However, there have been rare cases of infection associated with this bacterium, particularly in individuals with weakened immune systems.

The name "mendocina" comes from the location where the bacterium was first isolated, which is Mendocino County in California, USA. Like other Pseudomonas species, it can survive under a wide range of environmental conditions and can metabolize various organic compounds as its energy source.

It's worth noting that while "Pseudomonas mendocina" is not a common human pathogen, identifying the specific bacterial species involved in an infection is important for appropriate treatment. Therefore, laboratory testing and identification of bacteria to the species level can be helpful in guiding medical decision-making.

Chlorophenols are a group of chemical compounds that consist of a phenol ring substituted with one or more chlorine atoms. They are widely used as pesticides, disinfectants, and preservatives. Some common examples of chlorophenols include pentachlorophenol, trichlorophenol, and dichlorophenol.

Chlorophenols can be harmful to human health and the environment. They have been linked to a variety of adverse health effects, including skin and eye irritation, respiratory problems, damage to the liver and kidneys, and an increased risk of cancer. Exposure to chlorophenols can occur through contact with contaminated soil, water, or air, as well as through ingestion or absorption through the skin.

It is important to handle chlorophenols with care and to follow proper safety precautions when using them. If you are concerned about exposure to chlorophenols, it is recommended that you speak with a healthcare professional for further guidance.

'Acinetobacter' is a genus of gram-negative, aerobic bacteria that are commonly found in the environment, including water, soil, and healthcare settings. They are known for their ability to survive in a wide range of temperatures and pH levels, as well as their resistance to many antibiotics.

Some species of Acinetobacter can cause healthcare-associated infections, particularly in patients who are hospitalized, have weakened immune systems, or have been exposed to medical devices such as ventilators or catheters. These infections can include pneumonia, bloodstream infections, wound infections, and meningitis.

Acinetobacter baumannii is one of the most common species associated with human infection and is often resistant to multiple antibiotics, making it a significant public health concern. Infections caused by Acinetobacter can be difficult to treat and may require the use of last-resort antibiotics.

Preventing the spread of Acinetobacter in healthcare settings is important and includes practices such as hand hygiene, environmental cleaning, and contact precautions for patients with known or suspected infection.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Acetic anhydride is a chemical compound with the formula (CH3CO)2O. It is a colorless liquid that is used as a reagent in organic synthesis, particularly in the production of cellulose acetate and other acetate esters. Acetic anhydride is also an important intermediate in the synthesis of certain pharmaceuticals and dyes.

In medical terminology, acetic anhydride is not typically used as a diagnostic or therapeutic agent. However, it can be used in laboratory settings to synthesize compounds that may have medical applications. For example, acetic anhydride has been used to produce certain antiviral drugs and antibiotics.

It is important to note that acetic anhydride can be harmful or fatal if swallowed, inhaled, or absorbed through the skin. It can cause burns and eye damage, and may be harmful to the respiratory system if inhaled. Therefore, it should be handled with care and used only in well-ventilated areas with appropriate personal protective equipment.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Dichloroethylenes are a group of chemical compounds that contain two chlorine atoms and two hydrogen atoms bonded to a pair of carbon atoms. The two carbon atoms are arranged in a double-bonded configuration, resulting in a geometric isomerism known as cis-trans isomerism.

Therefore, there are two main types of dichloroethylenes:

1. cis-1,2-Dichloroethylene (also known as (Z)-1,2-dichloroethylene): This is a colorless liquid with a mild sweet odor. It is used as a solvent and in the production of other chemicals.
2. trans-1,2-Dichloroethylene (also known as (E)-1,2-dichloroethylene): This is also a colorless liquid with a mild sweet odor. It is used as a refrigerant, solvent, and in the production of other chemicals.

Both cis- and trans-1,2-dichloroethylenes can be harmful if ingested, inhaled, or come into contact with the skin. They can cause irritation to the eyes, nose, throat, and lungs, and prolonged exposure can lead to more serious health effects such as damage to the liver and kidneys.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Aromatic hydrocarbons, also known as aromatic compounds or arenes, are a class of organic compounds characterized by a planar ring structure with delocalized electrons that give them unique chemical properties. The term "aromatic" was originally used to describe their distinctive odors, but it now refers to their characteristic molecular structure and stability.

Aromatic hydrocarbons contain one or more benzene rings, which are cyclic structures consisting of six carbon atoms arranged in a planar hexagonal shape. Each carbon atom in the benzene ring is bonded to two other carbon atoms and one hydrogen atom, forming alternating double and single bonds between the carbon atoms. However, the delocalized electrons in the benzene ring are evenly distributed around the ring, leading to a unique electronic structure that imparts stability and distinctive chemical properties to aromatic hydrocarbons.

Examples of aromatic hydrocarbons include benzene, toluene, xylene, and naphthalene. These compounds have important uses in industry, but they can also pose health risks if not handled properly. Exposure to high levels of aromatic hydrocarbons has been linked to various health effects, including cancer, neurological damage, and respiratory problems.

Halogenated hydrocarbons are organic compounds containing carbon (C), hydrogen (H), and one or more halogens, such as fluorine (F), chlorine (Cl), bromine (Br), or iodine (I). These compounds are formed when halogens replace one or more hydrogen atoms in a hydrocarbon molecule.

Halogenated hydrocarbons can be further categorized into two groups:

1. Halogenated aliphatic hydrocarbons: These include alkanes, alkenes, and alkynes with halogen atoms replacing hydrogen atoms. Examples include chloroform (trichloromethane, CHCl3), methylene chloride (dichloromethane, CH2Cl2), and trichloroethylene (C2HCl3).
2. Halogenated aromatic hydrocarbons: These consist of aromatic rings, such as benzene, with halogen atoms attached. Examples include chlorobenzene (C6H5Cl), bromobenzene (C6H5Br), and polyhalogenated biphenyls like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs).

Halogenated hydrocarbons have various industrial applications, including use as solvents, refrigerants, fire extinguishing agents, and intermediates in chemical synthesis. However, some of these compounds can be toxic, environmentally persistent, and bioaccumulative, posing potential health and environmental risks.

Acetylene is defined as a colorless, highly flammable gas with a distinctive odor, having the chemical formula C2H2. It is the simplest and lightest hydrocarbon in which two carbon atoms are bonded together by a triple bond. Acetylene is used as a fuel in welding and cutting torches, and it can also be converted into other chemicals, such as vinyl acetate and acetic acid. In medical terms, acetylene is not a substance that is commonly used or discussed.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

"Pseudomonas stutzeri" is a gram-negative, rod-shaped bacterium that is widely found in various environments such as soil, water, and plants. It is a non-fermentative, motile bacterium that can survive in diverse conditions due to its metabolic versatility. While it is not typically considered a human pathogen, there have been reports of P. stutzeri causing infections in immunocompromised individuals or those with underlying medical conditions. These infections can include respiratory tract infections, urinary tract infections, and bacteremia. However, such cases are relatively rare, and the bacterium is generally considered to have low pathogenic potential for humans.

Ketones are organic compounds that contain a carbon atom bound to two oxygen atoms and a central carbon atom bonded to two additional carbon groups through single bonds. In the context of human physiology, ketones are primarily produced as byproducts when the body breaks down fat for energy in a process called ketosis.

Specifically, under conditions of low carbohydrate availability or prolonged fasting, the liver converts fatty acids into ketone bodies, which can then be used as an alternative fuel source for the brain and other organs. The three main types of ketones produced in the human body are acetoacetate, beta-hydroxybutyrate, and acetone.

Elevated levels of ketones in the blood, known as ketonemia, can occur in various medical conditions such as diabetes, starvation, alcoholism, and high-fat/low-carbohydrate diets. While moderate levels of ketosis are generally considered safe, severe ketosis can lead to a life-threatening condition called diabetic ketoacidosis (DKA) in people with diabetes.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

Microsomes are subcellular membranous vesicles that are obtained as a byproduct during the preparation of cellular homogenates. They are not naturally occurring structures within the cell, but rather formed due to fragmentation of the endoplasmic reticulum (ER) during laboratory procedures. Microsomes are widely used in various research and scientific studies, particularly in the fields of biochemistry and pharmacology.

Microsomes are rich in enzymes, including the cytochrome P450 system, which is involved in the metabolism of drugs, toxins, and other xenobiotics. These enzymes play a crucial role in detoxifying foreign substances and eliminating them from the body. As such, microsomes serve as an essential tool for studying drug metabolism, toxicity, and interactions, allowing researchers to better understand and predict the effects of various compounds on living organisms.

"Pseudomonas fluorescens" is a gram-negative, rod-shaped bacterium found in various environments such as soil, water, and some plants. It is a non-pathogenic species of the Pseudomonas genus, which means it does not typically cause disease in humans. The name "fluorescens" comes from its ability to produce a yellow-green pigment that fluoresces under ultraviolet light. This bacterium is known for its versatility and adaptability, as well as its ability to break down various organic compounds, making it useful in bioremediation and other industrial applications.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Acetone is a colorless, volatile, and flammable liquid organic compound with the chemical formula (CH3)2CO. It is the simplest and smallest ketone, and its molecules consist of a carbonyl group linked to two methyl groups. Acetone occurs naturally in the human body and is produced as a byproduct of normal metabolic processes, particularly during fat burning.

In clinical settings, acetone can be measured in breath or blood to assess metabolic status, such as in cases of diabetic ketoacidosis, where an excess production of acetone and other ketones occurs due to insulin deficiency and high levels of fatty acid breakdown. High concentrations of acetone can lead to a sweet, fruity odor on the breath, often described as "fruity acetone" or "acetone breath."

Copper is a chemical element with the symbol Cu (from Latin: *cuprum*) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. Copper is found as a free element in nature, and it is also a constituent of many minerals such as chalcopyrite and bornite.

In the human body, copper is an essential trace element that plays a role in various physiological processes, including iron metabolism, energy production, antioxidant defense, and connective tissue synthesis. Copper is found in a variety of foods, such as shellfish, nuts, seeds, whole grains, and organ meats. The recommended daily intake of copper for adults is 900 micrograms (mcg) per day.

Copper deficiency can lead to anemia, neutropenia, impaired immune function, and abnormal bone development. Copper toxicity, on the other hand, can cause nausea, vomiting, abdominal pain, diarrhea, and in severe cases, liver damage and neurological symptoms. Therefore, it is important to maintain a balanced copper intake through diet and supplements if necessary.

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

Chloroquinolinols are a class of chemical compounds that contain a quinoline ring substituted with a chlorine atom and a hydroxy or alkoxy group. These compounds have various medical applications, particularly in the treatment of parasitic diseases such as malaria. Chloroquine is one of the most well-known chloroquinolinols, which has been widely used as an antimalarial drug for many years. Other examples of chloroquinolinols include hydroxychloroquine and chloroxynol. These compounds have anti-inflammatory, antimicrobial, and antiviral properties, making them useful in the treatment of a variety of medical conditions. However, they can also have side effects and potential toxicity, so their use must be carefully monitored and managed by healthcare professionals.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Tryptophan hydroxylase is an enzyme that plays a crucial role in the synthesis of neurotransmitters and hormones, including serotonin and melatonin. It catalyzes the conversion of the essential amino acid tryptophan to 5-hydroxytryptophan (5-HTP), which is then further converted to serotonin. This enzyme exists in two isoforms, TPH1 and TPH2, with TPH1 primarily located in peripheral tissues and TPH2 mainly found in the brain. The regulation of tryptophan hydroxylase activity has significant implications for mood, appetite, sleep, and pain perception.

Agrocybe is a genus of fungi in the family Strophariaceae. These mushrooms are commonly known as "meadow mushrooms" or " lawn mushrooms." They are saprobic, meaning they obtain their nutrients by decomposing organic matter. Some species of Agrocybe are considered edible and are found in many parts of the world. However, it is important to note that some species can be toxic and should not be consumed without proper identification by a trained mycologist.

Here is a medical definition of Agrocybe:

A genus (Agrocybe) of fungi in the family Strophariaceae, characterized by brown to yellow-brown pileus (cap), adnexed to adnate gills, and a stipe (stem) that is often bulbous at the base. Some species are considered edible, while others can be toxic. Proper identification of Agrocybe species is important before consumption.

Epoxy compounds, also known as epoxy resins, are a type of thermosetting polymer characterized by the presence of epoxide groups in their molecular structure. An epoxide group is a chemical functional group consisting of an oxygen atom double-bonded to a carbon atom, which is itself bonded to another carbon atom.

Epoxy compounds are typically produced by reacting a mixture of epichlorohydrin and bisphenol-A or other similar chemicals under specific conditions. The resulting product is a two-part system consisting of a resin and a hardener, which must be mixed together before use.

Once the two parts are combined, a chemical reaction takes place that causes the mixture to cure or harden into a solid material. This curing process can be accelerated by heat, and once fully cured, epoxy compounds form a strong, durable, and chemically resistant material that is widely used in various industrial and commercial applications.

In the medical field, epoxy compounds are sometimes used as dental restorative materials or as adhesives for bonding medical devices or prosthetics. However, it's important to note that some people may have allergic reactions to certain components of epoxy compounds, so their use must be carefully evaluated and monitored in a medical context.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Glyceryl ethers, also known as glycerol ethers or alkyl glycosides, are a class of compounds formed by the reaction between glycerol and alcohols. In the context of medical definitions, glyceryl ethers may refer to a group of naturally occurring compounds found in some organisms, including humans.

These compounds are characterized by an ether linkage between the glycerol molecule and one or more alkyl chains, which can vary in length. Glyceryl ethers have been identified as components of various biological tissues, such as lipid fractions of human blood and lung surfactant.

In some cases, glyceryl ethers may also be used as pharmaceutical excipients or drug delivery systems due to their unique physicochemical properties. For example, they can enhance the solubility and bioavailability of certain drugs, making them useful in formulation development. However, it is important to note that specific medical applications and uses of glyceryl ethers may vary depending on the particular compound and its properties.

Flavin Mononucleotide (FMN) is a coenzyme that plays a crucial role in biological oxidation-reduction reactions. It is derived from the vitamin riboflavin (also known as vitamin B2) and is composed of a flavin molecule bonded to a nucleotide. FMN functions as an electron carrier, accepting and donating electrons in various metabolic pathways, including the citric acid cycle and the electron transport chain, which are essential for energy production in cells. It also participates in the detoxification of harmful substances and contributes to the maintenance of cellular redox homeostasis. FMN can exist in two forms: the oxidized form (FMN) and the reduced form (FMNH2), depending on its involvement in redox reactions.

4-Hydroxybenzoate-3-Monooxygenase is a type of enzyme that catalyzes the conversion of 4-hydroxybenzoate to 3,4-dihydroxybenzoate using NADPH and oxygen as cofactors. This enzyme plays a role in the degradation of aromatic compounds in some bacteria. The systematic name for this enzyme is 4-hydroxybenzoate,NAD(P)H:oxygen oxidoreductase (3-hydroxylating).

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

I'm sorry for any confusion, but "Rhodium" is not a medical term. It is a chemical element with the symbol Rh and atomic number 45. It is a rare, silvery-white, hard, corrosion-resistant, and chemically inert transition metal. It is found in small quantities in platinum or nickel ores along with some other rare metals.

It's primarily used in industrial applications, such as being a key component in catalytic converters in automobiles, which helps to reduce harmful emissions. It's also used in jewelry, electronics, and scientific instruments due to its properties of resistance to corrosion and heat.

If you have any medical terms or concepts that you would like me to explain, please let me know!

Benzoate 4-Monooxygenase is an enzyme found in certain bacteria that catalyzes the conversion of benzoate to 4-hydroxybenzoate using molecular oxygen. This reaction is part of the pathway for the bacterial degradation of aromatic compounds. The enzyme requires NADH and FAD as cofactors. Its systematic name is benzoate,NADH:oxygen oxidoreductase (4-hydroxylating).

... alkane monooxygenase, 1-hydroxylase, AlkB, and alkane hydroxylase. It contains a diiron non-heme active site. Recently two ... In enzymology, an alkane 1-monooxygenase (EC 1.14.15.3) is an enzyme that catalyzes the chemical reactions an alkane + reduced ... Alkanes of 6 to 22 carbons have been observed as substrates. This enzyme belongs to the family of oxidoreductases, specifically ... The systematic name of this enzyme class is alkane, reduced-rubredoxin:oxygen 1-oxidoreductase. Other names in common use ...
... camphor 5-monooxygenase MeSH D08.811.682.690.708.170.500 - alkane 1-monooxygenase MeSH D08.811.682.690.708.170.915 - steroid ... 4-hydroxybenzoate 3-monooxygenase MeSH D08.811.682.690.708.557 - kynurenine 3-monooxygenase MeSH D08.811.682.690.708.601 - ... trans-cinnamate 4-monooxygenase MeSH D08.622.509.700 - pepsinogen a MeSH D08.622.509.725 - pepsinogen c MeSH D08.622.610.500 - ... monophenol monooxygenase MeSH D08.811.682.690.708.170 - cytochrome p-450 enzyme system MeSH D08.811.682.690.708.170.040 - aryl ...
... alkane, reduced-rubredoxin:oxygen 1-oxidoreductase) octane + reduced rubredoxin + O2 = 1-octanol + oxidized rubredoxin + H2O EC ... 2-monooxygenase [(+)-camphor, reduced-rubredoxin:oxygen oxidoreductase (1,2-lactonizing)] (+)-bornane-2,5-dione + reduced ... 1] The lower Fe2+ cation change of the reduced state leaves a higher negative charge on the Cys 9 Sγ-donor which attracts water ... Calderon, RH; de Vitry, C; Wollman, FA; Niyogi, KK (February 2023). "Rubredoxin 1 promotes the proper folding of D1 and is not ...
The n-alkanes are oxidized by monooxygenase to secondary alcohols, then to ketones and finally to fatty acids. R 1 − ( CH 2 ... linear alkanes branched alkanes > small aromatics > cyclic alkanes. Some compounds, such as the high molecular weight ... From the oxidation of the methyl group of n-alkanes by the alkane hydroxylase, n-alkanols are released which are further ... where toluene is converted into o-cresol by toluene 2-monooxygenase and subsequently another monooxygenase converts it to 3- ...
... olei to utilize petroleum hydrocarbons in farmland soil can be explained by its lack of alkane monooxygenase and aromatic ring- ... 1-13. ISBN 978-1-118-96060-8. Yabuuchi, E.; T. Kaneko; I. Yano; C.W. Moss; N. Miyoshi. (1 July 1983). "Sphingobacterium gen. ... Liu, Bin; Yang, Xiaojun; Sheng, Mengyao; Yang, Zhou; Qiu, Jiguo; Wang, Chenghong; He, Jian (1 March 2020). "Sphingobacterium ... 1 June 2017). "Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil". International Journal of Systematic ...
Rasche ME, Hicks RE, Hyman MR, Arp DJ (September 1990). "Oxidation of monohalogenated ethanes and n-chlorinated alkanes by ... "Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related". FEMS Microbiology ... Ammonia+monooxygenase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC 1.14.99). ... Ammonia monooxygenase (EC 1.14.99.39, AMO) is an enzyme, which catalyses the following chemical reaction ammonia + AH2 + O2 ...
2-monooxygenase. EC 1.14.15.3: alkane 1-monooxygenase EC 1.14.15.4: steroid 11β-monooxygenase EC 1.14.15.5: corticosterone 18- ... valine N-monooxygenase EC 1.14.14.39: isoleucine N-monooxygenase EC 1.14.14.40: phenylalanine N-monooxygenase EC 1.14.14.41: (E ... steroid 17α-monooxygenase EC 1.14.99.10: Now EC 1.14.14.16, steroid 21-monooxygenase EC 1.14.99.11: estradiol 6β-monooxygenase ... arginine 2-monooxygenase EC 1.13.12.2: lysine 2-monooxygenase EC 1.13.12.3: tryptophan 2-monooxygenase EC 1.13.12.4: lactate 2- ...
Musaev, Djamaladdin G.; Basch, Harold; Morokuma, Keiji (2002). "Theoretical Study of the Mechanism of Alkane Hydroxylation and ... "Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase". Journal of Computational ... 23 (1): 59-76. doi:10.1002/jcc.1157. ISSN 0192-8651. PMID 11913390. S2CID 24420102. Basch, Harold; Ratner, Mark A. (2003). " ...
Alkanes are the least reactive class of hydrocarbons due to their apolar sigma bonds. In the absence of high temperatures, high ... but serves as a reactant in the hydroxylation of both aliphatic and aromatic hydrocarbons via monooxygenase and dioxygenase ... It has also been shown that AK-01 uses not only alkanes but also 1-alkenes, 1-alkanols, fatty acids and other organic acids as ... AK-01 is a delta-proteobacterium capable of using C13-C18 alkanes as growth substrates (So et al., 1999). Analysis of labeled ...
... (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. Methane ... The particulate methane monooxygenase and related ammonia monooxygenase are integral membrane proteins, occurring in ... "Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related". FEMS Microbiology ... This is a classic monooxygenase reaction in which two reducing equivalents from NAD(P)H are utilized to split the O-O bond of ...
The transformation can also performed biologically by methane monooxygenase. Overall Transformation RH + H2O + [PtCl6]2− → ROH ... "Reactions of alkanes in solutions of platinum chloride complexes" Zh. Fiz. Khim. 1972, 46, 1353-13544 Gol'dshleger, N. F.; ... and the nucleophilic oxidation of the alkane substrate. An equivalent transformation is performed industrially by steam ... 1] and [2] ). Such premature oxidation shuts down the catalysis. Finally the PtIV-CH2R undergoes nucleophilic attack by OH− or ...
These monooxygenases are especially important, as they account for long-chain n-alkane hydroxylation. A. Pacificus is closely ... Found were genes encoding for four integral-membrane alkane monooxygenases, three cytochrome P450 enzymes, and four genes ... Part of this difference results from a 549 nucleotide fragment of the alkane hydroxylase gene alkB, which was amplified from ... Lai Q, Shao Z (December 2012). "Genome sequence of an alkane-degrading bacterium, Alcanivorax pacificus type strain W11-5, ...
Another example is Mycobacterium vaccae, which uses an alkane monooxygenase enzyme to oxidize propane. Accidentally, this ... OX1 can degrade PCE under aerobic conditions by using toluene-o-xylene monooxygenase (ToMO), an enzyme they produce to derive ... Several aerobic microorganisms have been demonstrated to be capable of doing this, including n-alkane, aromatic compound (e.g. ... These bacteria degrade their growth-substrate methane with the enzyme methane monooxygenase (MMO). MMO was discovered to be ...
The methanol reacts in the presence of a zeolite catalyst to form alkanes. In terms of mechanism, methanol is partially ... The relevant enzymes are methane monooxygenases, which are found both in soluble and particulate (i.e. membrane-bound) ... alkanes), aromatics, naphthenes (cycloalkanes) and small amounts of olefins (alkenes), mostly from C6 (number of carbon atoms ... Most of the non-condensed gas from the product separator becomes recycled gas and is sent back to the feed stream to Reactor 1 ...
The aerobic metabolism of alkanes is carried out through the terminal alkane oxidation pathway, where monooxygenases initiate ... borkumensis can consume a wider variety of alkanes than other known species. A. borkumensis primarily uses alkanes as its ... The A. borkumensis genome has many sequences that each code for a different type of alkane, allowing it to be highly adaptable ... Whereas most organisms use sugars or amino acids for their source of carbon/energy, A. borkumensis uses alkanes, a type of ...
Alkane hydroxylase is thought to play a similar role in pseudomonas species capable of polyethylene degradation. Once enzymes ... Following the monooxygenase step, the polystyrene molecule is transformed into phenylacetic acid during the upper pathway of ... Bacteria that are capable of degrading this molecule are documented to release monooxygenases to initiate the oxidization of ... 4 (1): 15. doi:10.1186/s40643-017-0145-9. ISSN 2197-4365. S2CID 3698066. Luu, Rita A.; Schneider, Benjamin J.; Ho, Christie C ...
Thermophilic Thermus and Bacillus species have demonstrated higher gene expression for the alkane mono-oxygenase alkB at ... 5 (1): 109-16. doi:10.1111/j.1758-2229.2012.00348.x. PMID 23757139. Krupovic M, Gonnet M, Hania WB, Forterre P, Erauso G (2013 ... 26 (1): 44-71. doi:10.1039/b800164m. PMID 19374122. Rossi M, Ciaramella M, Cannio R, Pisani FM, Moracci M, Bartolucci S (July ... 4 (1): 110-21. Fakayode, S.O. (2005). "Impact assessment of industrial effluent on water quality of the receiving Alaro River ...
... or methane monooxygenase (MMO), which degrade various environmental pollutants (i.e.: alkanes, alkenes, and mono- and poly- ... encoding a subunit of particulate methane monooxygenase), and fae (encoding formaldehyde activating enzyme) genes." The data ... 1. p. 233-238. Baev M V, Chistoserdova L V, Polanuer B M, et al. "Effect of formaldehyde on growth of obligate methylotroph ... p. 1-10. Marchenko GN, Marchenko ND, Tsygankov YD, Chistoserdov AY. "Organization of threonine biosynthesis genes from the ...
Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene ... certain fungi possess intracellular networks which constitute the xenome, consisting of cytochrome (CYP) P450 monooxygenases ... The subphylum Saccharomycotina mostly consists of yeasts and includes degraders of n-alkanes, n-alkylbenzenes, crude oil, the ... 198 (Pt 2): 1-11. doi:10.1016/j.jenvman.2017.05.010. PMID 28499155. The levels of adsorption of the phenolic and PAHs were ...
The enzyme methane monooxygenase produces methanol from methane, but cannot be used for industrial-scale reactions. Some ... Etymologically, the word methane is coined from the chemical suffix "-ane", which denotes substances belonging to the alkane ... Hydrogen Cycle Industrial gas Lake Kivu (more general: limnic eruption) List of straight-chain alkanes Methanation Methane ... 57-58 McBride, James Michael (1999) "Development of systematic names for the simple alkanes". Chemistry Department, Yale ...
B4.820.464.40 Alkane 1-Monooxygenase D8.811.682.690.708.170.35 D8.244.453.450 D8.811.682.690.708.170.300 D12.776.422.220. ...
Alkane 1-Monooxygenase. Cytochrome P-450 CYP4A. Carboxypeptidase U. Carboxypeptidase B2. Receptor, erbB-2. Receptor, ErbB-2. ...
Alkane 1-Monooxygenase. Cytochrome P-450 CYP4A. Carboxypeptidase U. Carboxypeptidase B2. Receptor, erbB-2. Receptor, ErbB-2. ...
Alkane 1-Monooxygenase. Cytochrome P-450 CYP4A. Carboxypeptidase U. Carboxypeptidase B2. Receptor, erbB-2. Receptor, ErbB-2. ...
Lauric Acid Monooxygenase. Myosin-Light-Chain Phosphatase *Smooth Muscle Phosphatase-i. *Smooth Muscle Phosphatase-ii ... Alkane 1-monooxygenase. * ...
Alkane 1-Monooxygenase. Cytochrome P-450 CYP4A. Carboxypeptidase U. Carboxypeptidase B2. Receptor, erbB-2. Receptor, ErbB-2. ...
Alkane 1-monooxygenase. *Lauric Acid Monooxygenase. 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) *2-oxoisocaproate ... 11-beta-Hydroxysteroid Dehydrogenase Type 1 *11-beta-hydroxysteroid Dehydrogenase Type 1 ...
Alkane 1-monooxygenase Current Synonym true false 142324010 Alkane 1-hydroxylase Current Synonym true false ...
In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase ... While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur ...
Monooxygenase N0000169031 beta-Crystallin A Chain N0000169030 beta-Crystallin B Chain N0000169029 beta-Crystallins N0000168523 ... N0000008132 Alkalies N0000178821 Alkaline Ceramidase N0000167654 Alkaline Phosphatase N0000007503 Alkaloids N0000167870 Alkane ... cyclohexane Dihydrochloride N0000169911 Trans-Activators N0000168393 Trans-Cinnamate 4-Monooxygenase N0000168373 Transaldolase ... pyrene N0000167857 Benzoate 4-Monooxygenase N0000005901 Benzoates N0000005906 Benzocaine N0000008139 Benzocycloheptenes ...
strain 13f revealed that the genes that are typically found as part of the isoprene monooxygenase gene cluster in other ... The latter two, and other genes encoding MEOR-related functional proteins such as enoyl-CoA hydratase and alkane 1- ... monooxygenase, were predicted in the bacterial communities residing the reservoirs sandstones. Exposure of these sandstones to ... Herpesvirus Humano 1 , Jasminum , Neoplasias , Oryza , Animais , Antocianinas/farmacologia , Antioxidantes/farmacologia , ...
B4.909.204.671.650.40.50 Alkane 1-Monooxygenase D8.811.682.690.708.170.500 D8.811.682.690.708.170.35 Alkaptonuria C16.320. ... MH DELETED MN ADDED MN --------------------------------------- ---------- -------- 1-Deoxynojirimycin D3.383.621.180 D2.491. ... Type 1 D8.811.913.696.620.682.725.400.24 D8.811.913.696.620.682.725.400.177 D12.776.543.750.60.61 D12.776.543.750.60.440 ... F3.80.931.550 Stromelysin 1 D8.811.277.656.300.480.525.810 D8.811.277.656.300.480.525.700.200 D8.811.277.656.675.374.525.810 ...
B4.820.464.40 Alkane 1-Monooxygenase D8.811.682.690.708.170.35 D8.244.453.450 D8.811.682.690.708.170.300 D12.776.422.220. ...
B4.820.464.40 Alkane 1-Monooxygenase D8.811.682.690.708.170.35 D8.244.453.450 D8.811.682.690.708.170.300 D12.776.422.220. ...
B4.820.464.40 Alkane 1-Monooxygenase D8.811.682.690.708.170.35 D8.244.453.450 D8.811.682.690.708.170.300 D12.776.422.220. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenase. Alcano 1-Monooxigenasa. Angiostatins. Angiostatinas. Angiostatinas. ... Receptor Tipo 1 de Galanina. Receptor de Galanina Tipo 1. Receptor, Galanin, Type 2. Receptor Tipo 2 de Galanina. Receptor de ... Glucano 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucan 1,4-beta-Glucosidase. Glucano 1,4-beta-Glucosidase. Glucano ... Celulose 1,4-beta-Celobiosidase. Celulosa 1,4-beta-Celobiosidasa. Cholestenone 5 alpha-Reductase. Colestenona 5 alfa-Redutase. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenase. Alcano 1-Monooxigenasa. Angiostatins. Angiostatinas. Angiostatinas. ... Receptor Tipo 1 de Galanina. Receptor de Galanina Tipo 1. Receptor, Galanin, Type 2. Receptor Tipo 2 de Galanina. Receptor de ... Glucano 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucan 1,4-beta-Glucosidase. Glucano 1,4-beta-Glucosidase. Glucano ... Celulose 1,4-beta-Celobiosidase. Celulosa 1,4-beta-Celobiosidasa. Cholestenone 5 alpha-Reductase. Colestenona 5 alfa-Redutase. ...
monooxygenase activity. 25 Select filter option. aromatase activity. 12 Select filter option. metal ion binding. 9 Select ... alkane 1-monooxygenase activity. 4 Select filter option. enzyme binding. 4 Select filter option. estrogen 16-alpha-hydroxylase ... N,N-dimethylaniline monooxygenase activity. 6 Select filter option. NADP binding. 6 Select filter option. oxidoreductase ... Cholesterol 7-alpha-monooxygenase. 1 Select filter option. Collagen triple helix repeat-containing protein 1. 1 Select filter ...
monooxygenase activity. 25 Select filter option. aromatase activity. 12 Select filter option. metal ion binding. 9 Select ... alkane 1-monooxygenase activity. 4 Select filter option. enzyme binding. 4 Select filter option. estrogen 16-alpha-hydroxylase ... N,N-dimethylaniline monooxygenase activity. 6 Select filter option. NADP binding. 6 Select filter option. oxidoreductase ... leukotriene-B4 20-monooxygenase activity. 4 Select filter option. oxidoreductase activity, acting on paired donors, with ...
The BzOPhase mediated release of resorufin was inhibited by the straight chain alkanes with 6 to 11 carbons. This inhibition ... was directed at the cytochrome-P450 dependent monooxygenase activity. Up to concentrations of 10 millimolar (mM) the straight ... The in vitro effects of alkanes, alcohols, and ketones on rat lung cytochrome P450-dependent alkoxyphenoxazone dealkylase ... Alkanes; Author Keywords: Cytochrome P450; Lung; Hydrocarbons; Alcohols; Ketones ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenasa. Aldeído Oxidase. Aldehyde Oxidase. Aldehído Oxidasa. ... Glucan 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucano 1,4-beta-Glucosidase. Glucan 1,4-beta-Glucosidase. Glucano 1 ... Receptor, Angiotensin, Type 1. Receptor de Angiotensina Tipo 1. Receptor Tipo 1 de Galanina. Receptor, Galanin, Type 1. ... Cellulose 1,4-beta-Cellobiosidase. Celulosa 1,4-beta-Celobiosidasa. Citocromo-B(5) Redutase. Cytochrome-B(5) Reductase. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenasa. Aldeído Oxidase. Aldehyde Oxidase. Aldehído Oxidasa. ... Glucan 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucano 1,4-beta-Glucosidase. Glucan 1,4-beta-Glucosidase. Glucano 1 ... Receptor, Angiotensin, Type 1. Receptor de Angiotensina Tipo 1. Receptor Tipo 1 de Galanina. Receptor, Galanin, Type 1. ... Cellulose 1,4-beta-Cellobiosidase. Celulosa 1,4-beta-Celobiosidasa. Citocromo-B(5) Redutase. Cytochrome-B(5) Reductase. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenasa. Aldeído Oxidase. Aldehyde Oxidase. Aldehído Oxidasa. ... Glucan 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucano 1,4-beta-Glucosidase. Glucan 1,4-beta-Glucosidase. Glucano 1 ... Receptor, Angiotensin, Type 1. Receptor de Angiotensina Tipo 1. Receptor Tipo 1 de Galanina. Receptor, Galanin, Type 1. ... Cellulose 1,4-beta-Cellobiosidase. Celulosa 1,4-beta-Celobiosidasa. Citocromo-B(5) Redutase. Cytochrome-B(5) Reductase. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenasa. Aldeído Oxidase. Aldehyde Oxidase. Aldehído Oxidasa. ... Glucan 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucano 1,4-beta-Glucosidase. Glucan 1,4-beta-Glucosidase. Glucano 1 ... Receptor, Angiotensin, Type 1. Receptor de Angiotensina Tipo 1. Receptor Tipo 1 de Galanina. Receptor, Galanin, Type 1. ... Cellulose 1,4-beta-Cellobiosidase. Celulosa 1,4-beta-Celobiosidasa. Citocromo-B(5) Redutase. Cytochrome-B(5) Reductase. ...
Alkane 1-Monooxygenase. Alcano 1-Monooxigenasa. Aldeído Oxidase. Aldehyde Oxidase. Aldehído Oxidasa. ... Glucan 1,3-beta-Glucosidase. Glucano 1,3-beta-Glucosidasa. Glucano 1,4-beta-Glucosidase. Glucan 1,4-beta-Glucosidase. Glucano 1 ... Receptor, Angiotensin, Type 1. Receptor de Angiotensina Tipo 1. Receptor Tipo 1 de Galanina. Receptor, Galanin, Type 1. ... Cellulose 1,4-beta-Cellobiosidase. Celulosa 1,4-beta-Celobiosidasa. Citocromo-B(5) Redutase. Cytochrome-B(5) Reductase. ...
Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA ... Organisms capable of utilizing benzene, toluene, ethylbenzene, xylenes, alkanes, and polycyclic aromatic hydrocarbons have been ... Striped mullet were first exposed to sublethal densities of K. brevis (~ 250,000 cells/L) for 1, 4, 8, 12, and 24 hr. No ... The geometric mean serum cotinine level was 0.23 ng/mL (range, 0.035-15 ng/mL); 80% of subjects had levels , 1 ng/mL. After ...
strain ENVPC5 by chlorinated solvents and alkanes. McClay K, Streger SH, Steffan RJ. McClay K, et al. Appl Environ Microbiol. ... strains expressing toluene monooxygenases (Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1 ... in which we found that TCE activates transcription from the PKO1 3-monooxygenase operon promoter. ... 2004 Feb;15(1):19-28. doi: 10.1023/b:biod.0000009947.09125.35. Biodegradation. 2004. PMID: 14971854 ...
  • We use genomics, enzymology and metabolomics-based technologies to determine the roles for specific genes, enzymes and metabolites in different conditions such as (1) bioplastic-precursor synthesis from waste carbon sources, (2) degradation of recalcitrant plastics in the environment, and (3) the ecology of the interactions between microplastics and Harmful Algal Blooms. (wisc.edu)
  • In general, cometabolism of chlorinated ethenes is mediated by monooxygenase enzymes with "relaxed" specificity that oxidize a primary, growth supporting substrate such as methane and co-oxidize the chlorinated compound. (microbe.com)
  • This constitutes the first example of an entirely artificial metalloenzyme with inducible peroxidase and monooxygenase activities, reminiscent of allosteric regulation of natural enzymatic pathways. (ward-lab.ch)
  • Chlorinated Ethene Biodegradation Packages 1 and 2 answer the key questions impacting the feasibility and performance of bioremediation as a treatment strategy: (1) What are the concentrations of contaminant degrading microorganisms and (2) Has contaminant degradation occurred? (microbe.com)
  • Chlorinated Ethene MNA Packages 1 and 2 provide multiple lines of evidence to evaluate the contributions of aerobic cometabolism and abiotic degradation to MNA of chlorinated ethenes. (microbe.com)
  • In enzymology, an alkane 1-monooxygenase (EC 1.14.15.3) is an enzyme that catalyzes the chemical reactions an alkane + reduced rubredoxin + O2 ⇌ {\displaystyle \rightleftharpoons } a primary alcohol + oxidized rubredoxin + H2O. (wikipedia.org)
  • We achieve this by investigating 1) Organismal response to perturbations in its environment, 2) Gene and metabolite function in situ, 3) Environmental applications of novel microbial chemistries. (wisc.edu)
  • While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. (nih.gov)
  • while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. (nih.gov)
  • The in vitro effects of alkanes, alcohols, and ketones on rat lung cytochrome P450-dependent alkoxyphenoxazone dealkylase activities. (cdc.gov)
  • This inhibition was directed at the cytochrome-P450 dependent monooxygenase activity. (cdc.gov)
  • Structure and mechanism of the alkane-oxidizing enzyme AlkB. (nih.gov)
  • These bacteria oxidise methane through a unique enzyme system known as methane monooxygenase (MMO), thus reducing of the amount of methane released to the Earth's atmosphere. (jcmurrell.co.uk)
  • Aerobic Utilization of Hydrocarbons, Oils and Lipids, Handbook of Hydrocarbon and Lipid Microbiology, 1-17. (jcmurrell.co.uk)
  • 1 Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA. (nih.gov)
  • Up to concentrations of 10 millimolar (mM) the straight chain alkanes did not affect EtOPhase activity. (cdc.gov)
  • Studies on kidney function in subjects exposed to organic solvents: 1. (cdc.gov)
  • 1,3-Hexachlorobutadiene was assigned a final priority of `high' carcinogenicity concern and placed on the Final Candidate list of chemicals for Committee review on August 6, 1999. (nih.gov)