Posidonia oceanica meadow: a low nutrient high chlorophyll (LNHC) system? (1/38)
BACKGROUND: In spite of very low nutrient concentrations in its vicinity - both column and pore waters-, the Posidonia oceanica of the Revellata Bay displays high biomass and productivity. We measured the nutrient fluxes from the sediment into the water enclosed among the leaf shoots ("canopy water") to determine if it is possible source of nutrients for P. oceanica leaves. RESULTS: During the summer, the canopy water appears to act as a nutrient reservoir for the plant. During that period, the canopy water layer displays both a temperature 0.5 degrees C cooler than the upper water column, and a much higher nutrient content, as shown in this work using a very simple original technique permitting to sample water with a minimal disturbance of the water column's vertical structure. Despite low nutrient concentrations in pore water, mean net fluxes were measured from the sediment to the canopy water. These fluxes are sufficient to provide 20% of the mean daily nitrogen and phosphorus requirement of the P. oceanica shoots. CONCLUSION: An internal cycling of nutrients from P. oceanica senescent leaves was previously noted as an efficient strategy to help face low nutrient availability. The present study points out a second strategy which consists in holding back, in the canopy, the nutrients released at the water-sediment interface. This process occurs when long leaves, during poor nutrient periods in the water column, providing, to P. oceanica, the possibility to develop, high biomass, high chlorophyll quantities in low nutrient environment (a Low Nutrients High Chlorophyll system). (+info)Occurrence of sulfated galactans in marine angiosperms: evolutionary implications. (2/38)
We report for the first time that marine angiosperms (seagrasses) possess sulfated polysaccharides, which are absent in terrestrial and freshwater plants. The structure of the sulfated polysaccharide from the seagrass Ruppia maritima was determined. It is a sulfated D-galactan composed of the following regular tetrasaccharide repeating unit: [3-beta-D-Gal-2(OSO3)-1-->4-alpha-D-Gal-1-->4-alpha-D-Gal-1-->3-beta-D-Gal-4(OSO3 )-1-->]. Sulfated galactans have been described previously in red algae and in marine invertebrates (ascidians and sea urchins). The sulfated galactan from the marine angiosperm has an intermediate structure when compared with the polysaccharides from these two other groups of organisms. Like marine invertebrate galactan, it expresses a regular repeating unit with a homogenous sulfation pattern. However, seagrass galactan contains the D-enantiomer of galactose instead of the L-isomer found in marine invertebrates. Like red algae, the marine angiosperm polysaccharide contains both alpha and beta units of D-galactose; however, these units are not distributed in an alternating order, as in algal galactan. Sulfated galactan is localized in the plant cell walls, mostly in rhizomes and roots, indicative of a relationship with the absorption of nutrients and of a possible structural function. The occurrence of sulfated galactans in marine organisms may be the result of physiological adaptations, which are not correlated with phylogenetic proximity. We suggest that convergent adaptation, due to environment pressure, may explain the occurrence of sulfated galactans in many marine organisms. (+info)Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. (3/38)
The increasing use of molecular tools to study populations of clonal organisms leads us to question whether the low polymorphism found in many studies reflects limited genetic diversity in populations or the limitations of the markers used. Here we used microsatellite datasets for two sea grass species to provide a combinatory statistic, combined with a likelihood approach to estimate the probability of identical multilocus genotypes (MLGs) to be shared by distinct individuals, in order to ascertain the efficiency of the markers used and to optimize cost-efficiently the choice of markers to use for deriving unbiased estimates of genetic diversity. These results strongly indicate that conclusions from studies on clonal organisms derived using markers showing low polymorphism, including microsatellites, should be reassessed using appropriate polymorphic markers. (+info)An accurate fluorescent assay for quantifying the extent of RNA editing. (4/38)
Recent data suggest that small differences in editing efficiency can have significant functional consequences. Here we present a fluorescent poisoned primer extension assay that is capable of distinguishing editing efficiency differences as low as 5%. For a poison-primer extension assay to be accurate, the extension product must stop at the intended base. Sometimes, however, it runs beyond. We tested the effect of specific enzyme-terminator combinations on the amount of run through. In the worst cases it accounted for 70% of the total signal, and in the best cases <5%. In addition, the specific base can affect run through, with G producing the least. The accuracy of the assay was demonstrated on templates derived from mixed plasmids and then verified on two biological substrates. Using either a K(+) channel mRNA that contains a site for adenosine deamination or an ndhB mRNA that contains a site for cytidine deamination, the editing efficiency predicted by the assay closely matched that predicted by bulk sequencing of individual cDNA clones. This assay should prove useful for analyzing small changes in editing efficiency or for quantifying single nucleotide polymorphisms. (+info)Trace metal concentrations in Posidonia oceanica of North Corsica (northwestern Mediterranean Sea): use as a biological monitor? (5/38)
BACKGROUND: Within semi-closed areas like the Mediterranean Sea, anthropic wastes tend to concentrate in the environment. Metals, in particular, are known to persist in the environment and can affect human health due to accumulation in the food chain. The seagrass Posidonia oceanica, widely found in Mediterranean coastal waters, has been chosen as a "sentinel" to quantify the distribution of such pollutants within the marine environment. Using a technique similar to dendrochronology in trees, it can act as an indicator of pollutant levels over a timeframe of several months to years. In the present study, we measured and compared the levels of eight trace metals (Cr, Ni, Cu, Zn, As, Se, Cd, and Pb) in sheaths dated by lepidochronology and in leaves of shoots sampled from P. oceanica meadows collected from six offshore sites in northern Corsica between 1988 and 2004; in the aim to determine 1) the spatial and 2) temporal variations of these metals in these areas and 3) to compared these two types of tissues. RESULTS: We found low trace metal concentrations with no increase over the last decade, confirming the potential use of Corsican seagrass beds as reference sites for the Mediterranean Sea. Temporal trends of trace metal concentrations in sheaths were not significant for Cr, Ni, Cu, As or Se, but Zn, Cd, and Pb levels decreased, probably due to the reduced anthropic use of these metals. Similar temporal trends between Cu levels in leaves (living tissue) and in sheaths (dead tissue) demonstrated that lepidochronology linked with Cu monitoring is effective for surveying the temporal variability of this metal. CONCLUSION: Leaves of P. oceanica can give an indication of the metal concentration in the environment over a short time period (months) with good accuracy. On the contrary, sheaths, which gave an indication of changes over long time periods (decades), seem to be less sensitive to variations in the metal concentration in the environment. Changes in human consumption of metals (e.g., the reduction of Pb in fuel) are clearly reflected in both organs. These results confirm that P. oceanica is a good bioindicator of metals and a good biomonitor species for assessing Cu in the environment. (+info)Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. (6/38)
Terminal flower-like structures (TFLS) occur in many angiosperms that possess indeterminate inflorescences such as spikes, racemes, or spadices. We describe and review TFLS in early-divergent angiosperms, especially the magnoliid order Piperales and the monocot order Alismatales, in which floral interpretation is controversial. Essentially similar TFLS occur in a wide range of taxa. Among magnoliids, they occur in some Piperales (Saururaceae and a few Piperaceae), but are absent from Chloranthaceae. Among monocots, they occur in some early-divergent families such as Acoraceae, Aponogetonaceae, Juncaginaceae, Potamogetonaceae, and Ruppiaceae. Similar TFLS with obscure organ identity are recorded in mutants of Arabidopsis. TFLS can often be interpreted as pseudanthia (close aggregations of reduced flowers), but in some cases the entire terminal pseudanthium is very similar to a true flower. In some cases, elaborated TFLS could therefore have given rise to what are normally termed 'true' (i.e. euanthial) flowers. Data presented here on terminal pseudanthia in Potamogeton and Ruppia support a pseudanthial evolutionary origin of reproductive units in the alismatid families Zannichelliaceae and Cymodoceaceae. Furthermore, in some alismatid species, either the entire inflorescence apex or an individual primordium at or near the inflorescence tip can be transformed into a filamentous or tubular (or intermediate) structure. A tubular structure enclosing stamens and carpels is described in Piper. This indicates that pseudanthium formation can provoke morphological novelties, perhaps due to new patterns of overlap between expression zones of regulatory genes and/or new spatial constraints. (+info)Spectrum of genetic diversity and networks of clonal organisms. (7/38)
Clonal reproduction characterizes a wide range of species including clonal plants in terrestrial and aquatic ecosystems, and clonal microbes such as bacteria and parasitic protozoa, with a key role in human health and ecosystem processes. Clonal organisms present a particular challenge in population genetics because, in addition to the possible existence of replicates of the same genotype in a given sample, some of the hypotheses and concepts underlying classical population genetics models are irreconcilable with clonality. The genetic structure and diversity of clonal populations were examined using a combination of new tools to analyse microsatellite data in the marine angiosperm Posidonia oceanica. These tools were based on examination of the frequency distribution of the genetic distance among ramets, termed the spectrum of genetic diversity (GDS), and of networks built on the basis of pairwise genetic distances among genets. Clonal growth and outcrossing are apparently dominant processes, whereas selfing and somatic mutations appear to be marginal, and the contribution of immigration seems to play a small role in adding genetic diversity to populations. The properties and topology of networks based on genetic distances showed a 'small-world' topology, characterized by a high degree of connectivity among nodes, and a substantial amount of substructure, revealing organization in subfamilies of closely related individuals. The combination of GDS and network tools proposed here helped in dissecting the influence of various evolutionary processes in shaping the intra-population genetic structure of the clonal organism investigated; these therefore represent promising analytical tools in population genetics. (+info)Phenols content and 2-D electrophoresis protein pattern: a promising tool to monitor Posidonia meadows health state. (8/38)
BACKGROUND: The endemic seagrass Posidonia oceanica (L.) Delile colonizes soft bottoms producing highly productive meadows that play a crucial role in coastal ecosystems dynamics. Human activities and natural events are responsible for a widespread meadows regression; to date the identification of "diagnostic" tools to monitor conservation status is a critical issue. In this study the feasibility of a novel tool to evaluate ecological impacts on Posidonia meadows has been tested. Quantification of a putative stress indicator, i.e. phenols content, has been coupled to 2-D electrophoretic protein analysis of rhizome samples. RESULTS: The overall expression pattern from Posidonia rhizome was determined using a preliminary proteomic approach, 437 protein spots were characterized by pI and molecular weight. We found that protein expression differs in samples belonging to sites with high or low phenols: 22 unique protein spots are peculiar of "low phenols" and 27 other spots characterize "high phenols" samples. CONCLUSION: Posidonia showed phenols variations within the meadow, that probably reflect the heterogeneity of environmental pressures. In addition, comparison of the 2-D electrophoresis patterns allowed to highlight qualitative protein expression differences in response to these pressures. These differences may account for changes in metabolic/physiological pathways as adaptation to stress. A combined approach, based on phenols content determination and 2-D electrophoresis protein pattern, seems a promising tool to monitor Posidonia meadows health state. (+info)
Re: which are the characteristic structures of Posidonia oceanica?
Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica
Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish-farm-derived stress.
Leaf partitioning of the seagrass Posidonia oceanica between two herbivores: is Sarpa salpa herbivory underestimated because of...
Serval - Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency...
ORBi: Publications list
Seasonal variations of amphipod assemblages in a Posidonia oceanica (Linnaeus) Delile, 1813 meadow from the central Tyrrhenian...
ORBi: Browsing ORBi
Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia...
Subject: Sicily / Subject: coasts - PubAg Search Results
Alismatales
Flora of New York/Acorales & Alismatales - Wikibooks, open books for an open world
This marine seagrass can catch and remove plastic from oceans
Marine Flora and Fauna
Poaceae - Wikipedia
Frontiers | The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N2-Fixing Cyanobacteria Halothece sp., Found in...
Posidonia seagrass organic compost | Compost Ηellas
blessedoccurrence: Review Derma e Glycolic Facial Cleanser with Marine Plant Extracts, 8 fl oz (220 ml) (Pack of 2)
Turkish Journal of Fisheries and Aquatic Sciences
Ecosystems
Cephalaspidea - OPK Opistobranquis
Metal-injected carbonate fossil in Posidonia Shale - MaP
Aponogeton distachyos Waterblommetjie; Wateruintjies Cape Pondweed
Edwards Lab: 2003
Bambus 2: Scaffolding Metagenomes | CBCB
Biology-Online • View topic - Recombination in RNA viruses,Ruzic,Kovac
Biology-Online • View topic - Recombination in RNA viruses,Ruzic,Kovac
Bay Mouth Bar: Seagrass Bed Species | In the Grass, On the Reef | PBS LearningMedia
Basal monocot phylogeny
high quality pollen linear vibrating screen sieve machine
Jayakars seahorse photo - Hippocampus jayakari - G39995 | Arkive
WoRMS - World Register of Marine Species - Haloguignardia oceanica (Ferd. & Winge) Kohlm., 1971
Which type of aponogeton is this? | The Planted Tank Forum
Sea Grass Hope Spot, China - Ocean Recovery Alliance
The Oceans Hidden Fertilizer - Marine Plants Play Major Role in Phosphorus Cycling | NextBigFuture.com
Hydrocharitales | Article about Hydrocharitales by The Free Dictionary
Chemical Assisted Thermal Hydrolysis
Oceanica
Odyssey Marine Provides Update on Oceanica Resources
heartcareweb - Page 2
DIGITAL.CSIC: Carbon and nitrogen translocation between seagrass ramets
Aquatic and Palustrine Angiosperms of Viruá National Park, Brazilian Amazon-Nymphaeales, Alismatales, Dioscoreales, and Arecales
Botany & Plant Biology 2007 - Abstract Search
Journal: Botany / Publication Year: 2018 / Source: 2018 v.96 no.4 / Subject: cysteine proteinases / Text Availability: Citation...
Publications | Genomics Core Facility
Publications | Genomics Core Facility
Ecology of the seagrass meadows of the west coast of Florida: a community profile :: Documents
Ecology of the seagrass meadows of the west coast of Florida: a community profile :: Documents
Evolution of seahorses upright posture was linked to Oligocene expansion of seagrass habitats | Biology Letters
Remote Sensing | Free Full-Text | Change Detection of Submerged Seagrass Biomass in Shallow Coastal Water
Endangered seagrasses focus of PhD research | University of Technology Sydney
Seagrass - Wikipedia
Plant Life: Marine Plants
Category:Potamogeton spirillus - Wikimedia Commons
Bangla Lace manufactures exclusive and trendy lace varieties in Surat - Venture Company News
Last reviewed 17 Jul 2020
Seagrass - Wikipedia
Publications: Huisman, John - Murdoch Research Repository
Recreational fisheries pose threat to skittish sea turtles - BIOENGINEER.ORG
Seagrasses of Australia
Florida
Inter Research » MEPS » v164 » p221-228
Marine Plants | ScubaBoard
Kasper Elgetti Brodersen - Staff
Seagrass Publications | Virginia Institute of Marine Science
Seagrasses Can Store Twice as Much Carbon as Fo...
MEDLINE - Results of the search |page 1|
WoRMS - World Register of Marine Species - Purpura oceanica Locard, 1886
အိုရှန်းနီးယား
Community tank - Photos and Videos - Kokos Goldfish Forum
Publications | - CCMAR
Twist Scalloped Lace Bralette | Scalloped lace, Lace bralette and Final sale
Zosteraceae | plant family | Britannica
Condition+ Restore Vegan Conditioner | 165ml from LØRE Originals
B12 is also an essential vitamin for marine life | EurekAlert! Science News
Introduction to Aquaculture
Womens Lace Teddy Long Sleeve Bodysuit Lingerie - HughDeal4Less
Browsing by Author Muasya, A Muthama
About · Adopt A Shark
· Causes
Fayreform Olive Lace Underwire Bra - Black/Nude - Curvy
Hoodie/Sweatshirt - Survival Lace - Deluxe - Wasatch Outdoors
Le Mystere Natural Comfort Lace Underwire Bra 5157
Vanessa Top Super Lace Front Wig TOPS C SIDE ALI
Lace (Blue)
3 Pieces Womens Lace Bralettes Lace Removable Pads Daily Cami Bra, £9.99 at Amazon | LatestDeals.co.uk
Ornate Medallion Lace Sheet Set | Frette
Cuprinol Garden Shades Seagrass 2.5L
- Homevalue-Hardware
Alismatidae
... is a botanical name at the rank of subclass. Circumscription of the subclass will vary with the taxonomic system ... see Alismatidae info). The APG II system does not use formal botanical names above the rank of order; it assigns most of the ... subclass Alismatidae order Alismatales order Hydrocharitales order Najadales order Triuridales This subclass comprises less ... subclass Alismatidae superorder Alismatanae order Butomales order Hydrocharitales order Najadales order Alismatales order ...
Thorne system
Alismatidae 4. Liliidae - 3 superorders Pandananae Dioscoreanae Lilianae - 3 orders Liliales - 12 families Corsiaceae Becc., ...
Reveal system
Alismatidae superorder 1. Butomanae order 1. Butomales family 1. Butomaceae superorder 2. Alismatanae order 1. Alismatales ...
Liliopsida
... subclass Alismatidae order Cyclanthales order Arales subclass Commelinidae order Commelinales order Eriocaulales order ... Alismatidae superorder 1. Butomanae superorder 2. Alismatanae subclass 2. Triurididae subclass 3. Aridae superorder 1. Acoranae ... superorder Hydatellanae superorder Juncanae superorder Poanae subclass Arecidae superorder Arecanae subclass Alismatidae ...
Takhtajan system
1967) Subclass Alismatidae Takht. (1967) Subclass Triurididae Takht. ex Reveal (1992) Subclass Aridae Takht. (1997) As ... 1760) (Monocotyledons) p. 595 Subclass I: Alismatidae p. 589 Subclass II: Liliidae Takht. (1966) p. 625 Superorder Lilianae ...
Najas guadalupensis
New combinations in North American Alismatidae. Novon 6(4): 370-371 Jepson Manual Treatment Photo gallery v t e (CS1 errors: ...
Canna indica
Magnoliophyta: Alismatidae, Arecidae, Commelinidae (in part), and Zingiberidae. Fl. N. Amer. 22: i-xxiii, 1-352. Hokche, O., PE ...
Juncus
Alismatidae, Arecidae, Commelinidae (in part), and Zingiberidae. Flora of North America. Vol. 22. Oxford University Press. ISBN ...
Seagrass meadow
Les, Donald H.; Cleland, Maryke A.; Waycott, Michelle (1997). "Phylogenetic Studies in Alismatidae, II: Evolution of Marine ...
Potamogeton diversifolius
Alismatidae, Arecidae, Commelinidae(in Part), and Zingiberidae. Oxford University Press, USA. ISBN 978-0-19-513729-3. "New ...
Washingtonia filifera
Flora of North America: North of Mexico Volume 22: Magnoliophyta: Alismatidae, Arecidae, Commelinidae (in Part), and ...
Tradescantia crassula
Alismatidae, Arecidae, Commelinidae(in Part), and Zingiberidae. Oxford University Press, USA. p. 186. ISBN 9780195137293. v t e ...
Butomus
However, Cronquist assumed a much smaller order and assigned the order to subclass Alismatidae, in class Liliopsida [= ...
Stebbins system
Flowering plants Dicotyledons Magnoliidae Hamamelidae Caryophyllidae Dilleniidae Rosidae Asteridae Monocotyledons Alismatidae ...
Robert Folger Thorne
Thorne, R. F. The classification and geography of the monocotyledon subclasses Alismatidae, Liliidae and Commelinidae, pp. 75- ...
Seagrass
Les, D.H., Cleland, M.A. and Waycott, M. (1997) "Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms ( ...
Ruppia
The Cronquist system of 1981 placed the family in order Najadales of subclass Alismatidae in class Liliopsida [=monocotyledons ...
Hydrocharitaceae
"Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily", Systematic Botany, 22 (3 ... Alismatidae)", Aliso, 22: 211-230, doi:10.5642/aliso.20062201.18 Tanaka, Norio; Setoguchi, Hiroaki; Murata, Jin (1997), " ...
Najas minor
22, Magnoliophyta: Alismatidae, Arecidae, Commelinidae (in part), and Zingiberidae. Oxford University Press, New York, NY, USA ...
Alismatales
The Cronquist system (1981) places the Alismatales in subclass Alismatidae, class Liliopsida [= monocotyledons] and includes ... to the Subclass Alismatidae. Araceae in Tahktajan 1997 is assigned to the Arales and placed in the Subclass Aridae; ... only three families as shown: Alismataceae Butomaceae Limnocharitaceae Cronquist's subclass Alismatidae conformed fairly ...
Lilianae
Subclassis Alismatidae Subclassis Liliidae Superordo Lilianae Ordo Liliales Ordo Bromeliales Ordo Iridales Ordo Dioscoreales ...
Najadales
... which used this name for an order in subclass Alismatidae with this circumscription: order Najadales family Aponogetonaceae ...
Triuridales
... was an order of flower plants that was used in the Cronquist system, in the subclass Alismatidae, with this ...
List of MeSH codes (B06)
... alismatidae MeSH B06.388.100.025.033 - alismataceae MeSH B06.388.100.025.033.044 - alisma MeSH B06.388.100.025.033.777 - ...
Hydrocharitales
A well-known system that used this name is the Cronquist system (1981), for an order in subclass Alismatidae, with this ...
Najas
"Phylogenetic studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily", Systematic Botany, 22 (3 ...
Cronquist system
Class Liliatae (Monocotyledoneae) Subclass Alismatidae (4 orders) Order Alismatales Order Hydrocharitales Order Najadales Order ... Subclass Alismatidae Order Alismatales Butomaceae Limnocharitaceae Alismataceae Order Hydrocharitales Hydrocharitaceae Order ...
Cronquistov sistem - Wikipedia
Flora of North America - Oxford University Press
Wp/qug/Chulla putuna pankayuk - Wikimedia Incubator
Alpinia zerumbet (Pers.) B.L.Burtt & R.M.Sm.
E-Flora BC: Vascular Plant References
flight rising
Banann - Boarische Wikipedia
References - FSUS
DeCS 2018 - Changed terms
DeCS
Alismatidae Najas Posidonia Ruppia Scope note:. Subclase de plantas de la clase Liliopsida (monocotiledones) del sistema de ... A plant genus of the family Posidoniaceae, subclass ALISMATIDAE, class Liliopsida (monocotyledons). ... A plant genus of the family Najadaceae, subclass ALISMATIDAE, class Liliopsida (monocotyledons). ... A plant genus of the family Ruppiaceae, subclass ALISMATIDAE, class Liliopsida (monocotyledons). ...
DeCS 2018 - Changed terms
DeCS 2018 - Changed terms
Publications
In: Die Farn-und Blütenpflanzen Baden-Württembergs - Band 7: Spezieller Teil (Spermatophyta, Unterklassen Alismatidae, Liliidae ... In: Die Farn-und Blütenpflanzen Baden-Württembergs - Band 7: Spezieller Teil (Spermatophyta, Unterklassen Alismatidae, Liliidae ... In: Die Farn-und Blütenpflanzen Baden-Württembergs - Band 7: Spezieller Teil (Spermatophyta, Unterklassen Alismatidae, Liliidae ...
Liliopsida
-
Encyclopedia of Life
Pesquisa | Portal Regional da BVS
The dynamic history of plastome structure across aquatic subclass Alismatidae. Li, Zhi-Zhong; Lehtonen, Samuli; Chen, Jin-Ming ... CONCLUSION: In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also ... Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation ... Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an ...
Tropaeolaceae | Harvard Catalyst Profiles | Harvard Catalyst
Roald Bradstock | Bio
Portable bidet • Top 7 Produkte im Test!
Research papers on social networking º NCC Dept. of MAT/CSC/ITE
Washingtonia filifera
Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in...
subclass Asteridae- WordWeb dictionary definition
DeCS 2017 - July 04, 2017 version
Subclass2
- A plant genus of the family Posidoniaceae, subclass ALISMATIDAE, class Liliopsida (monocotyledons). (bvsalud.org)
- A plant genus of the family Ruppiaceae, subclass ALISMATIDAE, class Liliopsida (monocotyledons). (bvsalud.org)
Ruppia1
- 2018. Pollen ontogeny in Ruppia (Alismatidae). (creighton.edu)