An enzyme that catalyzes reversibly the oxidation of an aldose to an alditol. It possesses broad specificity for many aldoses. EC 1.1.1.21.
Organic compounds containing a carbonyl group in the form -CHO.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.
Glyceraldehyde is a triose sugar, a simple monosaccharide (sugar) that contains three carbon atoms, with the molecular formula C3H6O3, and it exists in two structural forms, namely D-glyceraldehyde and L-glyceraldehyde, which are diastereomers of each other, and it is a key intermediate in several biochemical pathways, including glycolysis and gluconeogenesis.
Oxidoreductases that are specific for ALDEHYDES.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
Antioxidant; also a post-harvest dip to prevent scald on apples and pears.
Alcohol analog of NICOTINIC ACID which is a direct-acting peripheral vasodilator that causes flushing and may decrease blood pressure. It is used in vasospasm and threatened GANGRENE.
Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.
Compounds based on imidazolidine dione. Some derivatives are ANTICONVULSANTS.
A long-acting barbiturate that depresses most metabolic processes at high doses. It is used as a hypnotic and sedative and may induce dependence. Barbital is also used in veterinary practice for central nervous system depression.
Benzaldehydes are aromatic organic compounds consisting of a benzene ring connected to a formyl group (-CHO), which is the simplest and most representative compound being benzaldehyde (C6H5CHO).
A potent hepatotoxic and hepatocarcinogenic mycotoxin produced by the Aspergillus flavus group of fungi. It is also mutagenic, teratogenic, and causes immunosuppression in animals. It is found as a contaminant in peanuts, cottonseed meal, corn, and other grains. The mycotoxin requires epoxidation to aflatoxin B1 2,3-oxide for activation. Microsomal monooxygenases biotransform the toxin to the less toxic metabolites aflatoxin M1 and Q1.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Oxidoreductases that are specific for the reduction of NITRATES.
A group of corticosteroids carrying hydroxy groups, usually in the 11- or 17-positions. They comprise the bulk of the corticosteroids used systemically. As they are relatively insoluble in water, salts of various esterified forms are often used for injections or solutions.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
The rate dynamics in chemical or physical systems.
Ribonucleotide Reductases are enzymes that catalyze the conversion of ribonucleotides to deoxyribonucleotides, which is a crucial step in DNA synthesis and repair, utilizing a radical mechanism for this conversion.
The only family of the buckwheat order (Polygonales) of dicotyledonous flowering plants. It has 40 genera of herbs, shrubs, and trees.
A FLAVOPROTEIN oxidoreductase that occurs both as a soluble enzyme and a membrane-bound enzyme due to ALTERNATIVE SPLICING of a single mRNA. The soluble form is present mainly in ERYTHROCYTES and is involved in the reduction of METHEMOGLOBIN. The membrane-bound form of the enzyme is found primarily in the ENDOPLASMIC RETICULUM and outer mitochondrial membrane, where it participates in the desaturation of FATTY ACIDS; CHOLESTEROL biosynthesis and drug metabolism. A deficiency in the enzyme can result in METHEMOGLOBINEMIA.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Hydroxybutyrate Dehydrogenase is an enzyme involved in the metabolism of certain acids, specifically catalyzing the reversible conversion of D-3-hydroxybutyrate to acetoacetate.
A group of enzymes that oxidize diverse nitrogenous substances to yield nitrite. (Enzyme Nomenclature, 1992) EC 1.
Formaldehyde is a colorless, flammable, strong-smelling chemical compound, primarily used as a preservative in medical laboratories and fungicide, which is also produced naturally in the human body and released during decomposition.
A polyhydric alcohol with about half the sweetness of sucrose. Sorbitol occurs naturally and is also produced synthetically from glucose. It was formerly used as a diuretic and may still be used as a laxative and in irrigating solutions for some surgical procedures. It is also used in many manufacturing processes, as a pharmaceutical aid, and in several research applications.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals.
Compounds based on reduced IMIDAZOLINES which contain no double bonds in the ring.
Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.
The sum of the weight of all the atoms in a molecule.
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5
A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.
Precursors in the biosynthesis of prostaglandins and thromboxanes from arachidonic acid. They are physiologically active compounds, having effect on vascular and airway smooth muscles, platelet aggregation, etc.
3-Carbamoyl-1-beta-D-ribofuranosyl pyridinium hydroxide-5'phosphate, inner salt. A nucleotide in which the nitrogenous base, nicotinamide, is in beta-N-glycosidic linkage with the C-1 position of D-ribose. Synonyms: Nicotinamide Ribonucleotide; NMN.
Catalyzes reversibly the oxidation of hydroxyl groups of prostaglandins.
A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A cyclic endoperoxide intermediate produced by the action of CYCLOOXYGENASE on ARACHIDONIC ACID. It is further converted by a series of specific enzymes to the series 2 prostaglandins.
Cytochrome reductases are enzymes that catalyze the transfer of electrons from donor molecules to cytochromes in electron transport chains, playing a crucial role in cellular respiration and energy production within cells.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Carrier of aroma of butter, vinegar, coffee, and other foods.
A group of physiologically active prostaglandin endoperoxides. They are precursors in the biosynthesis of prostaglandins and thromboxanes. The most frequently encountered member of this group is the prostaglandin H2.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A large and heterogenous group of fungi whose common characteristic is the absence of a sexual state. Many of the pathogenic fungi in humans belong to this group.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
A flavoprotein amine oxidoreductase that catalyzes the reversible conversion of 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate. This enzyme was formerly classified as EC 1.1.1.171.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations.
An NAD-dependent enzyme that catalyzes the oxidation of nitrite to nitrate. It is a FLAVOPROTEIN that contains IRON and MOLYBDENUM and is involved in the first step of nitrate assimilation in PLANTS; FUNGI; and BACTERIA. It was formerly classified as EC 1.6.6.1.
Reductases that catalyze the reaction of peptide-L-methionine -S-oxide + thioredoxin to produce peptide-L-methionine + thioredoxin disulfide + H(2)O.
An enzyme of the oxidoreductase class that catalyzes the formation of 2'-deoxyribonucleotides from the corresponding ribonucleotides using NADPH as the ultimate electron donor. The deoxyribonucleoside diphosphates are used in DNA synthesis. (From Dorland, 27th ed) EC 1.17.4.1.
Compounds that inhibit HMG-CoA reductases. They have been shown to directly lower cholesterol synthesis.
A colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. It has a general narcotic action and also causes irritation of mucous membranes. Large doses may cause death from respiratory paralysis.
NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.
Acrolein is an unsaturated aldehyde (C3H4O), highly reactive, toxic and naturally occurring compound that can be found in certain foods, tobacco smoke and is produced as a result of environmental pollution or industrial processes.
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
F344 rats are an inbred strain of albino laboratory rats (Rattus norvegicus) that have been widely used in biomedical research due to their consistent and reliable genetic background, which facilitates the study of disease mechanisms and therapeutic interventions.
An enzyme that catalyzes the reduction of 6,7-dihydropteridine to 5,6,7,8-tetrahydropteridine in the presence of NADP+. Defects in the enzyme are a cause of PHENYLKETONURIA II. Formerly listed as EC 1.6.99.7.
A subtype of thioredoxin reductase found primarily in the CYTOSOL.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
An NAD-dependent enzyme that catalyzes the oxidation of acyl-[acyl-carrier protein] to trans-2,3-dehydroacyl-[acyl-carrier protein]. It has a preference for acyl groups with a carbon chain length between 4 to 16.
Proteins prepared by recombinant DNA technology.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
'Ketones' are organic compounds with a specific structure, characterized by a carbonyl group (a carbon double-bonded to an oxygen atom) and two carbon atoms, formed as byproducts when the body breaks down fats for energy due to lack of glucose, often seen in diabetes and starvation states.
A carbamate derivative used as an alcohol deterrent. It is a relatively nontoxic substance when administered alone, but markedly alters the intermediary metabolism of alcohol. When alcohol is ingested after administration of disulfiram, blood acetaldehyde concentrations are increased, followed by flushing, systemic vasodilation, respiratory difficulties, nausea, hypotension, and other symptoms (acetaldehyde syndrome). It acts by inhibiting aldehyde dehydrogenase.
The chemical and physical integrity of a pharmaceutical product.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Oxidoreductases with specificity for oxidation or reduction of SULFUR COMPOUNDS.
A metalloflavoprotein enzyme involved the metabolism of VITAMIN A, this enzyme catalyzes the oxidation of RETINAL to RETINOIC ACID, using both NAD+ and FAD coenzymes. It also acts on both the 11-trans- and 13-cis-forms of RETINAL.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Mevalonic acid is a crucial intermediate compound in the HMG-CoA reductase pathway, which is a metabolic route that produces cholesterol, other steroids, and isoprenoids in cells.
A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver.
A 3-oxoacyl reductase that has specificity for ACYL CARRIER PROTEIN-derived FATTY ACIDS.
Oxidoreductases that specifically reduce arsenate ion to arsenite ion. Reduction of arsenate is a critical step for its biotransformation into a form that can be transported by ARSENITE TRANSPORTING ATPASES or complexed by specific sulfhydryl-containing proteins for the purpose of detoxification (METABOLIC DETOXIFICATION, DRUG). Arsenate reductases require reducing equivalents such as GLUTAREDOXIN or AZURIN.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Acyclic branched or unbranched hydrocarbons having two carbon-carbon double bonds.
A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)
A non-heme iron-sulfur protein isolated from Clostridium pasteurianum and other bacteria. It is a component of NITROGENASE along with molybdoferredoxin and is active in nitrogen fixation.
A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.94. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. (From Dorland, 27th ed)
Enzymes catalyzing the dehydrogenation of secondary amines, introducing a C=N double bond as the primary reaction. In some cases this is later hydrolyzed.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
A NADPH-dependent oxidase that reduces hydrogen sulfite to HYDROGEN SULFIDE. It is found in many microoganisms.
A cyanide compound which has been used as a fertilizer, defoliant and in many manufacturing processes. It often occurs as the calcium salt, sometimes also referred to as cyanamide. The citrated calcium salt is used in the treatment of alcoholism.
A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An enzyme found primarily in SULFUR-REDUCING BACTERIA where it plays an important role in the anaerobic carbon oxidation pathway.
Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
Specific hydroxymethylglutaryl CoA reductases that utilize the cofactor NAD. In liver enzymes of this class are involved in cholesterol biosynthesis.
An enzyme that catalyzes the oxidation of D-glycerate to hydroxypyruvate in the presence of NADP.
Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033)
Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE.
An FAD-dependent oxidoreductase found primarily in BACTERIA. It is specific for the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This enzyme was formerly listed as EC 1.1.1.68 and 1.1.99.15.
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
A subtype of thioredoxin reductase found primarily in MITOCHONDRIA.
An iron-sulfur and MOLYBDENUM containing FLAVOPROTEIN that catalyzes the oxidation of nitrite to nitrate. This enzyme can use either NAD or NADP as cofactors. It is a key enzyme that is involved in the first step of nitrate assimilation in PLANTS; FUNGI; and BACTERIA. This enzyme was formerly classified as EC 1.6.6.2.
A group of enzymes that catalyze the reduction of 1-pyrroline carboxylate to proline in the presence of NAD(P)H. Includes both the 2-oxidoreductase (EC 1.5.1.1) and the 5-oxidoreductase (EC 1.5.1.2). The former also reduces 1-piperidine-2-carboxylate to pipecolate and the latter also reduces 1-pyrroline-3-hydroxy-5-carboxylate to hydroxyproline.
Compounds based on pyrazino[2,3-d]pyrimidine which is a pyrimidine fused to a pyrazine, containing four NITROGEN atoms.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A FERREDOXIN-dependent oxidoreductase that is primarily found in PLANTS where it plays an important role in the assimilation of SULFUR atoms for the production of CYSTEINE and METHIONINE.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Tungsten. A metallic element with the atomic symbol W, atomic number 74, and atomic weight 183.85. It is used in many manufacturing applications, including increasing the hardness, toughness, and tensile strength of steel; manufacture of filaments for incandescent light bulbs; and in contact points for automotive and electrical apparatus.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
(5Z)-(15S)-11 alpha-Hydroxy-9,15-dioxoprostanoate:NAD(P)+ delta(13)-oxidoreductase. An enzyme active in prostaglandin E and F catabolism. It catalyzes the reduction of the double bond at the 13-14 position of the 15-ketoprostaglandins and uses NADPH as cofactor. EC 1.3.1.48.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
An IRON-containing protein that uses siroheme and 4Fe-4S iron-sulfur centers as prosthetic groups. It catalyzes the six-electron oxidation of AMMONIA to nitrite.
A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.
A flavoprotein that reversibly catalyzes the oxidation of NADH or NADPH by various quinones and oxidation-reduction dyes. The enzyme is inhibited by dicoumarol, capsaicin, and caffeine.
Proteins found in any species of bacterium.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
An enzyme that catalyzes the reversible oxidation of inosine 5'-phosphate (IMP) to guanosine 5'-phosphate (GMP) in the presence of AMMONIA and NADP+. This enzyme was formerly classified as EC 1.6.6.8.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408)
Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed)
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
An enzyme that catalyzes the oxidation of acyl-[acyl-carrier protein] to trans-2,3-dehydroacyl-[acyl-carrier protein] in the fatty acid biosynthesis pathway. It has a preference for acyl derivatives with carbon chain length from 4 to 16.
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
An enzyme found primarily in BACTERIA and FUNGI that catalyzes the oxidation of ammonium hydroxide to nitrite. It is an iron-sulfur HEME; FLAVOPROTEIN containing siroheme and can utilize both NAD and NADP as cofactors. This enzyme was formerly classified as EC 1.6.6.4.
Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2.
Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M=metal) are all insoluble, except the alkali nitrites. The organic nitrites may be isomeric, but not identical with the corresponding nitro compounds. (Grant & Hackh's Chemical Dictionary, 5th ed)

Screening of Korean forest plants for rat lens aldose reductase inhibition. (1/765)

Naturally occurring substances which can prevent and treat diabetic complications were sought by examining ethanol extracts prepared from Korean forest plants for their inhibitory effects on rat lens aldose reductase activity in vitro. Among the plants examined, Acer ginnala, Illicium religiosum and Cornus macrophylla exerted the most strong inhibitory activity on aldose reductase.  (+info)

Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. (2/765)

PURPOSE: Dogs fed a diet containing 30% galactose experience retinal vascular changes similar to those in human diabetic retinopathy, with selective pericyte loss as an initial lesion. In the present study the relationship among reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductases, polyol formation, and flux through the polyol pathway in cultured dog retinal capillary cells were investigated. METHODS: Pericytes and endothelial cells were cultured from retina of beagle dogs. NADPH-dependent reductases were characterized by chromatofocusing after gel filtration. Sugars in cultured cells were analyzed by gas chromatography, and flux through the polyol pathway was investigated by 19F nuclear magnetic resonance (NMR) with 3-fluoro-3-deoxy-D-glucose (3FG) as a substrate. The presence of aldose reductase and sorbitol dehydrogenase in these cells was examined by northern blot analysis. RESULTS: Two distinct peaks corresponding to aldose reductase and aldehyde reductase, the latter being dominant, were observed in pericytes by chromatofocusing. Culture in medium containing either 10 mM D-galactose or 30 mM D-glucose resulted in the accumulation of sugar alcohol in pericytes that was markedly reduced by aldose reductase inhibitors. 19F NMR spectra obtained from pericytes cultured for 5 days in medium containing 2 mM 3FG displayed the marked accumulation of 3-fluoro-deoxysorbitol but not 3-fluoro-deoxyfructose. No 3FG metabolism was observed in similarly cultured endothelial cells. With northern blot analysis, aldose reductase was detected in pericytes but not in endothelial cells. Sorbitol dehydrogenase was below the detectable limit in pericytes and endothelial cells. CONCLUSIONS: Aldose, aldehyde, and glyceraldehyde reductases are present in dog retinal capillary pericytes, with aldehyde reductase being the major reductase present. Polyol accumulation easily occurs in pericytes but not in endothelial cells.  (+info)

Functional consensus for mammalian osmotic response elements. (3/765)

The molecular mechanisms underlying adaptation to hyperosmotic stress through the accumulation of organic osmolytes are largely unknown. Yet, among organisms, this is an almost universal phenomenon. In mammals, the cells of the renal medulla are uniquely exposed to high and variable salt concentrations; in response, renal cells accumulate the osmolyte sorbitol through increased transcription of the aldose reductase (AR) gene. In cloning the rabbit AR gene, we found the first evidence of an osmotic response region in a eukaryotic gene. More recently, we functionally defined a minimal essential osmotic response element (ORE) having the sequence CGGAAAATCAC(C) (bp -1105 to -1094). In the present study, we systematically replaced each base with every other possible nucleotide and tested the resulting sequences individually in reporter gene constructs. Additionally, we categorized hyperosmotic response by electrophoretic mobility shift assays of a 17-bp sequence (-1108 to -1092) containing the native ORE as a probe against which the test constructs would compete for binding. In this manner, binding activity was assessed for the full range of osmotic responses obtained. Thus we have arrived at a functional consensus for the mammalian ORE, NGGAAAWDHMC(N). This finding should accelerate the discovery of genes previously unrecognized as being osmotically regulated.  (+info)

Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion. (4/765)

Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunteers for its stimulatory action on gastric acid output and gastrin release. Five substances were detected by high-performance liquid chromatography and were analyzed by mass spectrometry and 1H-13C nuclear magnetic resonance spectroscopy. At the end of the separation process of the five identified substances, only the two dicarboxylic acids, maleic acid and succinic acid, had a significant (P < 0.05) stimulatory action on gastric acid output (76% and 70% of fermented glucose, respectively), but not on gastrin release. When given together, they increased gastric acid output by 100% of fermented glucose and by 95% of maximal acid output. We therefore conclude that maleic acid and succinic acid are the powerful stimulants of gastric acid output in fermented glucose and alcoholic beverages produced by fermentation, and that gastrin is not their mediator of action.  (+info)

Osmotic response element is required for the induction of aldose reductase by tumor necrosis factor-alpha. (5/765)

Induction of aldose reductase (AR) was observed in human cells treated with tumor necrosis factor-alpha (TNF-alpha). AR protein expression increased severalfold in human liver cells after 1 day of exposure to 100 units/ml TNF-alpha. An increase in AR transcripts was also observed in human liver cells after 3 h of TNF-alpha treatment, reaching a maximum level of 11-fold at 48 h. Among the three inflammatory cytokines: TNF-alpha, interleukin-1, and interferon-gamma, TNF-alpha (100 units/ml) gave the most induction of AR. Differences in the pattern of AR induction were observed in human liver, lens, and retinal pigment epithelial cells with increasing concentrations of TNF-alpha. A similar pattern of AR promoter response was observed between TNF-alpha and osmotically stressed human liver cells. The deletion of the osmotic response element (ORE) abolished the induction by TNF-alpha and osmotic stress. A point mutation that converts ORE to a nuclear factor-kappaB (NF-kappaB) sequence abolished the osmotic response but maintained the TNF-alpha response. Electrophoretic gel mobility shift assays showed two NF-kappaB proteins, p50 and p52, capable of binding ORE sequence, and gel shift Western assay detected NF-kappaB proteins p50 and p65 in the ORE complex. Inhibitors of NF-kappaB signaling, lactacystin, and MG132 abolished the AR promoter response to TNF-alpha.  (+info)

Comparisons of genomic structures and chromosomal locations of the mouse aldose reductase and aldose reductase-like genes. (6/765)

Aldose reductase (AR), best known as the first enzyme in the polyol pathway of sugar metabolism, has been implicated in a wide variety of physiological functions and in the etiology of diabetic complications. We have determined the structures and chromosomal locations of the mouse AR gene (Aldor1) and of two genes highly homologous to Aldor1: the fibroblast growth factor regulated protein gene (Fgfrp) and the androgen regulated vas deferens protein gene (Avdp). The number of introns and their locations in the mouse Aldor1 gene are identical to those of rat and human AR genes and also to those of Fgfrp and Avdp. Mouse Aldor1 gene was found to be located near the Cald1 (Caldesmon) and Ptn (Pleiotropin) loci at the proximal end of chromosome 6. The closely related genes Fgfrp and Avdp were also mapped in this region of the chromosome, suggesting that these three genes may have arisen by a gene duplication event.  (+info)

Aldose reductase functions as a detoxification system for lipid peroxidation products in vasculitis. (7/765)

Giant cell arteritis (GCA) is a systemic vasculitis preferentially affecting large and medium-sized arteries. Inflammatory infiltrates in the arterial wall induce luminal occlusion with subsequent ischemia and degradation of the elastic membranes, allowing aneurysm formation. To identify pathways relevant to the disease process, differential display-PCR was used. The enzyme aldose reductase (AR), which is implicated in the regulation of tissue osmolarity, was found to be upregulated in the arteritic lesions. Upregulated AR expression was limited to areas of tissue destruction in inflamed arteries, where it was detected in T cells, macrophages, and smooth muscle cells. The production of AR was highly correlated with the presence of 4-hydroxynonenal (HNE), a toxic aldehyde and downstream product of lipid peroxidation. In vitro exposure of mononuclear cells to HNE was sufficient to induce AR production. The in vivo relationship of AR and HNE was explored by treating human GCA temporal artery-severe combined immunodeficiency (SCID) mouse chimeras with the AR inhibitors Sorbinil and Zopolrestat. Inhibition of AR increased HNE adducts twofold and the number of apoptotic cells in the arterial wall threefold. These data demonstrate that AR has a tissue-protective function by preventing damage from lipid peroxidation. We propose that AR is an oxidative defense mechanism able to neutralize the toxic effects of lipid peroxidation and has a role in limiting the arterial wall injury mediated by reactive oxygen species.  (+info)

Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells. (8/765)

BACKGROUND: Medullary cells of the concentrating kidney are exposed to high extracellular solute concentrations. It is well established that epithelial cells in this kidney region adapt osmotically to hypertonic stress by accumulating organic osmolytes. Little is known, however, of the adaptive mechanisms of a further medullary cell type, the papillary interstitial cell [renal papillary fibroblast (RPF)]. We therefore compared the responses of primary cultures of RPFs and papillary collecting duct (PCD) cells exposed to hypertonic medium. METHODS: In RPFs and PCD cells, organic osmolytes were determined by high-performance liquid chromatography; mRNA expression for organic osmolyte transporters [Na+/Cl(-)-dependent betaine transporter (BGT), Na(+)-dependent myo-inositol transporter (SMIT)], and the sorbitol synthetic and degrading enzymes [aldose reductase (AR) and sorbitol dehydrogenase (SDH), respectively] was determined by Northern blot analysis. RESULTS: Exposure to hypertonic medium (600 mOsm/kg by NaCl addition) caused intracellular contents of glycerophosphorylcholine, betaine, myo-inositol, and sorbitol, but not free amino acids, to increase significantly in both RPFs and PCD cells. The rise in intracellular contents of these organic osmolytes was accompanied by enhanced expression of mRNAs coding for BGT, SMIT, and AR in both RPFs and PCD cells. SDH mRNA abundance, however, was unchanged. Nonradioactive in situ hybridization studies on sections from formalin-fixed and paraffin-embedded, normally concentrating kidneys showed strong expression of BGT, SMIT, and AR mRNAs in interstitial and collecting duct cells of the papilla, whereas expression of SDH mRNA was much weaker in both cell types. CONCLUSIONS: These results suggest that both RPFs and PCD cells use similar strategies to adapt osmotically to the high interstitial NaCl concentrations characteristic for the inner medulla and papilla of the concentrating kidney.  (+info)

Aldehyde reductase is an enzyme that belongs to the family of alcohol dehydrogenases. Its primary function is to catalyze the reduction of a wide variety of aldehydes into their corresponding alcohols, using NADPH as a cofactor. This enzyme plays a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. It is widely distributed in different tissues, including the liver, kidney, and brain. In addition to its detoxifying function, aldehyde reductase has been implicated in several physiological and pathophysiological processes, such as neuroprotection, cancer, and diabetes.

Aldehydes are a class of organic compounds characterized by the presence of a functional group consisting of a carbon atom bonded to a hydrogen atom and a double bonded oxygen atom, also known as a formyl or aldehyde group. The general chemical structure of an aldehyde is R-CHO, where R represents a hydrocarbon chain.

Aldehydes are important in biochemistry and medicine as they are involved in various metabolic processes and are found in many biological molecules. For example, glucose is converted to pyruvate through a series of reactions that involve aldehyde intermediates. Additionally, some aldehydes have been identified as toxicants or environmental pollutants, such as formaldehyde, which is a known carcinogen and respiratory irritant.

Formaldehyde is also commonly used in medical and laboratory settings for its disinfectant properties and as a fixative for tissue samples. However, exposure to high levels of formaldehyde can be harmful to human health, causing symptoms such as coughing, wheezing, and irritation of the eyes, nose, and throat. Therefore, appropriate safety measures must be taken when handling aldehydes in medical and laboratory settings.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Aldehyde dehydrogenase (ALDH) is a class of enzymes that play a crucial role in the metabolism of alcohol and other aldehydes in the body. These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using nicotinamide adenine dinucleotide (NAD+) as a cofactor.

There are several isoforms of ALDH found in different tissues throughout the body, with varying substrate specificities and kinetic properties. The most well-known function of ALDH is its role in alcohol metabolism, where it converts the toxic aldehyde intermediate acetaldehyde to acetate, which can then be further metabolized or excreted.

Deficiencies in ALDH activity have been linked to a number of clinical conditions, including alcohol flush reaction, alcohol-induced liver disease, and certain types of cancer. Additionally, increased ALDH activity has been associated with chemotherapy resistance in some cancer cells.

Glyceraldehyde is a triose, a simple sugar consisting of three carbon atoms. It is a clear, colorless, sweet-tasting liquid that is used as a sweetener and preservative in the food industry. In the medical field, glyceraldehyde is used in research and diagnostics, particularly in the study of carbohydrate metabolism and enzyme function.

Glyceraldehyde is also an important intermediate in the glycolytic pathway, which is a series of reactions that convert glucose into pyruvate, producing ATP and NADH as energy-rich compounds. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an enzyme that catalyzes the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate in this pathway.

In addition, glyceraldehyde has been studied for its potential role in the development of diabetic complications and other diseases associated with carbohydrate metabolism disorders.

Aldehyde oxidoreductases are a class of enzymes that catalyze the oxidation of aldehydes to carboxylic acids using NAD+ or FAD as cofactors. They play a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. These enzymes are widely distributed in nature and have been identified in bacteria, yeast, plants, and animals.

The oxidation reaction catalyzed by aldehyde oxidoreductases involves the transfer of electrons from the aldehyde substrate to the cofactor, resulting in the formation of a carboxylic acid and reduced NAD+ or FAD. The enzymes are classified into several families based on their sequence similarity and cofactor specificity.

One of the most well-known members of this family is alcohol dehydrogenase (ADH), which catalyzes the oxidation of alcohols to aldehydes or ketones as part of the alcohol metabolism pathway. Another important member is aldehyde dehydrogenase (ALDH), which further oxidizes the aldehydes generated by ADH to carboxylic acids, thereby preventing the accumulation of toxic aldehydes in the body.

Deficiencies in ALDH enzymes have been linked to several human diseases, including alcoholism and certain types of cancer. Therefore, understanding the structure and function of aldehyde oxidoreductases is essential for developing new therapeutic strategies to treat these conditions.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

Ethoxyquin is a synthetic antioxidant preservative, primarily used in the preservation of animal feed to prevent spoilage and maintain nutritional value. It functions by inhibiting the oxidation process that leads to rancidity in fats and oils. In addition to its use in animal feed, ethoxyquin has also been used as a preservative in some human foods, such as spices and certain fruits, to prevent spoilage and color change. However, due to health concerns, its use in human food is highly regulated and restricted to specific applications and concentrations.

Ethoxyquin is not commonly used in pharmaceutical or medical contexts, but it may be mentioned in the context of food safety, animal nutrition, or potential exposure through consumption of contaminated food products. It's essential to consult a reliable medical source for up-to-date and accurate information regarding specific substances and their potential health implications.

I'm sorry for any confusion, but "Nicotinyl Alcohol" is not a recognized or established medical term or concept in physiology, pharmacology, or pathology. It may be a chemical compound used in research or industry, but it does not have a specific medical definition.

Nicotinyl, however, is sometimes used to describe compounds that are related to nicotine, such as nicotinamide (also known as niacin or vitamin B3). Nicotinamide alcohol, if that's what you meant, is a chemical compound that can be formed from the reaction of nicotinamide with an aldehyde. But again, it does not have a specific medical definition or use.

If you had something different in mind, could you please provide more context or clarify your question? I'll do my best to provide a helpful and accurate response.

Sugar alcohol dehydrogenases (SADHs) are a group of enzymes that catalyze the interconversion between sugar alcohols and sugars, which involves the gain or loss of a pair of electrons, typically in the form of NAD(P)+/NAD(P)H. These enzymes play a crucial role in the metabolism of sugar alcohols, which are commonly found in various plants and some microorganisms.

Sugar alcohols, also known as polyols, are reduced forms of sugars that contain one or more hydroxyl groups instead of aldehyde or ketone groups. Examples of sugar alcohols include sorbitol, mannitol, xylitol, and erythritol. SADHs can interconvert these sugar alcohols to their corresponding sugars through a redox reaction that involves the transfer of hydrogen atoms.

The reaction catalyzed by SADHs is typically represented as follows:

R-CH(OH)-CH2OH + NAD(P)+ ↔ R-CO-CH2OH + NAD(P)H + H+

where R represents a carbon chain, and CH(OH)-CH2OH and CO-CH2OH represent the sugar alcohol and sugar forms, respectively.

SADHs are widely distributed in nature and have been found in various organisms, including bacteria, fungi, plants, and animals. These enzymes have attracted significant interest in biotechnology due to their potential applications in the production of sugar alcohols and other value-added products. Additionally, SADHs have been studied as targets for developing novel antimicrobial agents, as inhibiting these enzymes can disrupt the metabolism of certain pathogens that rely on sugar alcohols for growth and survival.

Hydantoins are a class of chemical compounds that contain a five-membered ring containing two nitrogen atoms, with one of the nitrogens being part of a urea group. They are important in medicine as a specific group of anticonvulsant drugs used to treat seizures, known as hydantoin derivatives or hydantoins proper. The most well-known example is phenytoin (diphenylhydantoin), which has been widely used for this purpose since the 1930s.

The structure of hydantoins allows them to interact with and stabilize voltage-gated sodium channels in the brain, reducing their excitability and thus the likelihood of seizures. However, long-term use of hydantoin derivatives can lead to several side effects, including dizziness, unsteady gait, tremors, and behavioral changes. Regular monitoring of blood levels is necessary to ensure safe and effective treatment with these medications.

Barbital is a type of barbiturate drug that was commonly used as a sedative and sleep aid in the past. Its chemical name is sodium 5,5-diethylbarbituric acid, and it is also known by its brand name, Veronal. Barbital has a long duration of action, typically lasting between 6 to 10 hours, and was used for the treatment of insomnia, anxiety, and seizure disorders.

Barbital works by enhancing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits the activity of nerve cells in the brain. This results in a sedative effect, reducing anxiety and promoting sleep. However, barbital also has a high potential for abuse and dependence, and its use has declined significantly due to the development of safer and more effective alternative medications.

It is important to note that barbital is a controlled substance, and its possession and use are regulated by law in many countries. It should only be used under the supervision of a licensed healthcare professional, and its use should be avoided in individuals with a history of addiction or substance abuse.

Benzaldehyde is an organic compound with the formula C6H5CHO. It is the simplest aromatic aldehyde, and it consists of a benzene ring attached to a formyl group. Benzaldehyde is a colorless liquid with a characteristic almond-like odor.

Benzaldehyde occurs naturally in various plants, including bitter almonds, cherries, peaches, and apricots. It is used in many industrial applications, such as in the production of perfumes, flavorings, and dyes. In addition, benzaldehyde has been used in medical research for its potential therapeutic effects, such as its anti-inflammatory and antimicrobial properties.

However, it is important to note that benzaldehyde can be toxic in high concentrations and may cause irritation to the skin, eyes, and respiratory system. Therefore, it should be handled with care and used in accordance with appropriate safety guidelines.

Aflatoxin B1 is a toxic metabolite produced by certain strains of the fungus Aspergillus flavus and Aspergillus parasiticus. It is a potent carcinogen and is classified as a Group 1 carcinogen by the International Agency for Research on Cancer (IARC). Aflatoxin B1 contamination can occur in a variety of agricultural products, including grains, nuts, spices, and dried fruits, and is a particular concern in regions with hot and humid climates. Exposure to aflatoxin B1 can occur through the consumption of contaminated food and has been linked to various health effects, including liver cancer, immune suppression, and stunted growth in children.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Nitrate reductases are a group of enzymes that catalyze the reduction of nitrate (NO3-) to nitrite (NO2-). This process is an essential part of the nitrogen cycle, where nitrate serves as a terminal electron acceptor in anaerobic respiration for many bacteria and archaea. In plants, this enzyme plays a crucial role in nitrogen assimilation by reducing nitrate to ammonium (NH4+), which can then be incorporated into organic compounds. Nitrate reductases require various cofactors, such as molybdenum, heme, and/or FAD, for their activity. There are three main types of nitrate reductases: membrane-bound (which use menaquinol as an electron donor), cytoplasmic (which use NADH or NADPH as an electron donor), and assimilatory (which also use NADH or NADPH as an electron donor).

Hydroxycorticosteroids are a class of corticosteroid hormones that contain a hydroxyl group at the 11-beta position. They include naturally occurring hormones such as cortisol and artificially produced drugs used to treat various conditions like inflammation, autoimmune diseases, and allergies. These medications work by mimicking the effects of hormones produced in the adrenal gland, reducing inflammation and suppressing the immune system. Examples of hydroxycorticosteroids include cortisone, prednisone, and dexamethasone.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Ribonucleotide Reductases (RNRs) are enzymes that play a crucial role in DNA synthesis and repair. They catalyze the conversion of ribonucleotides to deoxyribonucleotides, which are the building blocks of DNA. This process involves the reduction of the 2'-hydroxyl group of the ribose sugar to a hydrogen, resulting in the formation of deoxyribose.

RNRs are highly regulated and exist in various forms across different species. They are divided into three classes (I, II, and III) based on their structure, mechanism, and cofactor requirements. Class I RNRs are further divided into two subclasses (Ia and Ib), which differ in their active site architecture and regulation.

Class Ia RNRs, found in eukaryotes and some bacteria, contain a stable tyrosyl radical that acts as the catalytic center for hydrogen abstraction. Class Ib RNRs, found in many bacteria, use a pair of iron centers to perform the same function. Class II RNRs are present in some bacteria and archaea and utilize adenosine triphosphate (ATP) as a cofactor for reduction. Class III RNRs, found in anaerobic bacteria and archaea, use a unique mechanism involving a radical S-adenosylmethionine (SAM) cofactor to facilitate the reduction reaction.

RNRs are essential for DNA replication and repair, and their dysregulation has been linked to various diseases, including cancer and neurodegenerative disorders. Therefore, understanding the structure, function, and regulation of RNRs is of great interest in biochemistry, molecular biology, and medicine.

I'm sorry for any confusion, but "Polygonaceae" is not a medical term. It is a botanical term that refers to a family of flowering plants, also known as the buckwheat family. This family includes various genera such as Polygonum, Rumex, and Reynoutria, among others. Many members of this family are important sources of food, medicine, and ornamental plants.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Succinic semialdehyde dehydrogenase, also known as hydroxybutyrate dehydrogenase (EC 1.2.1.16), is an enzyme involved in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). This enzyme catalyzes the oxidation of succinic semialdehyde to succinate, which is a key step in the GABA degradation pathway.

Deficiency in this enzyme can lead to an accumulation of succinic semialdehyde and its downstream metabolite, gamma-hydroxybutyric acid (GHB), resulting in neurological symptoms such as developmental delay, hypotonia, seizures, and movement disorders. GHB is a naturally occurring neurotransmitter and also a recreational drug known as "Grievous Bodily Harm" or "Liquid Ecstasy."

The gene that encodes for succinic semialdehyde dehydrogenase is located on chromosome 6 (6p22.3) and has been identified as ALDH5A1. Mutations in this gene can lead to succinic semialdehyde dehydrogenase deficiency, which is an autosomal recessive disorder.

Nitrite reductases are a group of enzymes that catalyze the reduction of nitrite (NO2-) to nitric oxide (NO). This reaction is an important part of the nitrogen cycle, particularly in denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes. Nitrite reductases can be classified into two main types based on their metal co-factors: copper-containing nitrite reductases (CuNiRs) and cytochrome cd1 nitrite reductases. CuNiRs are typically found in bacteria and fungi, while cytochrome cd1 nitrite reductases are primarily found in bacteria. These enzymes play a crucial role in the global nitrogen cycle and have potential implications for environmental and medical research.

Formaldehyde is not a medication or a term commonly used in human medicine. It is a chemical compound with the formula CH2O, which is commonly used in industry for various purposes such as a preservative, disinfectant, and embalming agent. Formaldehyde is also found naturally in the environment and is produced in small amounts by certain animals, plants, and humans.

Exposure to formaldehyde can cause irritation of the eyes, nose, throat, and skin, and prolonged exposure has been linked to cancer, particularly nasopharyngeal cancer and leukemia. Therefore, it is important to limit exposure to this chemical and use appropriate protective equipment when handling it.

Sorbitol is a type of sugar alcohol used as a sweetener in food and drinks, with about half the calories of table sugar. In a medical context, sorbitol is often used as a laxative to treat constipation, or as a sugar substitute for people with diabetes. It's also used as a bulk sweetener and humectant (a substance that helps retain moisture) in various pharmaceutical and cosmetic products.

When consumed in large amounts, sorbitol can have a laxative effect because it's not fully absorbed by the body and draws water into the intestines, which can lead to diarrhea. It's important for people with certain digestive disorders, such as irritable bowel syndrome or fructose intolerance, to avoid sorbitol and other sugar alcohols, as they can cause gastrointestinal symptoms like bloating, gas, and diarrhea.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

I'm sorry for any confusion, but "Pyruvaldehyde" is not a recognized term in medical or clinical sciences. It is, however, a chemical compound with the formula CH3COCHO, which is sometimes used in laboratory research. It might be referred to in the context of biochemistry or pathophysiology of certain diseases, but it's not a term commonly used in medical diagnosis or treatment. Always consult with a healthcare professional or trusted medical source for information related to health and medicine.

Imidazolidines are a class of heterocyclic organic compounds that contain a four-membered ring with two nitrogen atoms and two carbon atoms. The nitrogen atoms are adjacent to each other in the ring structure. These compounds have various applications, including as building blocks for pharmaceuticals and other organic materials. However, I couldn't find a specific medical definition related to disease or pathology for "imidazolidines." If you have any further questions or need information about a specific imidazolidine derivative with medicinal properties, please let me know!

In chemistry, an alcohol is a broad term that refers to any organic compound characterized by the presence of a hydroxyl (-OH) functional group attached to a carbon atom. This means that alcohols are essentially hydrocarbons with a hydroxyl group. The simplest alcohol is methanol (CH3OH), and ethanol (C2H5OH), also known as ethyl alcohol, is the type of alcohol found in alcoholic beverages.

In the context of medical definitions, alcohol primarily refers to ethanol, which has significant effects on the human body when consumed. Ethanol can act as a central nervous system depressant, leading to various physiological and psychological changes depending on the dose and frequency of consumption. Excessive or prolonged use of ethanol can result in various health issues, including addiction, liver disease, neurological damage, and increased risk of injuries due to impaired judgment and motor skills.

It is important to note that there are other types of alcohols (e.g., methanol, isopropyl alcohol) with different chemical structures and properties, but they are not typically consumed by humans and can be toxic or even lethal in high concentrations.

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC 1.8.1.7) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

Flavin Mononucleotide (FMN) Reductase is an enzyme that catalyzes the reduction of FMN to FMNH2 using NADH or NADPH as an electron donor. This enzyme plays a crucial role in the electron transport chain and is involved in various redox reactions within the cell. It is found in many organisms, including bacteria, fungi, plants, and animals. In humans, FMN Reductase is encoded by the RIBFLR gene and is primarily located in the mitochondria. Defects in this enzyme can lead to various metabolic disorders.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Thioredoxin-disulfide reductase (Txnrd, TrxR) is an enzyme that belongs to the pyridine nucleotide-disulfide oxidoreductase family. It plays a crucial role in maintaining the intracellular redox balance by reducing disulfide bonds in proteins and keeping them in their reduced state. This enzyme utilizes NADPH as an electron donor to reduce thioredoxin (Trx), which then transfers its electrons to various target proteins, thereby regulating their activity, protein folding, and antioxidant defense mechanisms.

Txnrd is essential for several cellular processes, including DNA synthesis, gene expression, signal transduction, and protection against oxidative stress. Dysregulation of Txnrd has been implicated in various pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the function and regulation of this enzyme is of great interest for developing novel therapeutic strategies.

NADPH-ferrihemoprotein reductase, also known as diaphorase or NO synthase reductase, is an enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing cofactor. This reaction plays a crucial role in various biological processes such as the detoxification of certain compounds and the regulation of cellular signaling pathways.

The systematic name for this enzyme is NADPH:ferrihemoprotein oxidoreductase, and it belongs to the family of oxidoreductases that use NADH or NADPH as electron donors. The reaction catalyzed by this enzyme can be represented as follows:

NADPH + H+ + ferrihemoprotein ↔ NADP+ + ferrohemoprotein

In this reaction, the ferric (FeIII) form of hemoproteins is reduced to its ferrous (FeII) form by accepting electrons from NADPH. This enzyme is widely distributed in various tissues and organisms, including bacteria, fungi, plants, and animals. It has been identified as a component of several multi-enzyme complexes involved in different metabolic pathways, such as nitric oxide synthase (NOS) and cytochrome P450 reductase.

In summary, NADPH-ferrihemoprotein reductase is an essential enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing agent, playing a critical role in various biological processes and metabolic pathways.

Prostaglandin endoperoxides are short-lived, biologically active lipid compounds derived from the metabolism of arachidonic acid, an omega-6 fatty acid. They are intermediate products in the conversion of arachidonic acid to various prostaglandins and thromboxanes, which are crucial regulators of numerous physiological processes, including inflammation, blood clotting, and vascular constriction or dilation.

The two major prostaglandin endoperoxides are PGG2 (prostaglandin G2) and PGH2 (prostaglandin H2). They are synthesized from arachidonic acid by the action of an enzyme called cyclooxygenase (COX), which has two isoforms: COX-1 and COX-2. These endoperoxides can then be further metabolized into various prostaglandins and thromboxanes by specific synthases.

Prostaglandin endoperoxides are highly reactive and unstable, with a half-life of only a few seconds to minutes. Due to their instability, they cannot accumulate in tissues and must be rapidly converted into more stable downstream products for biological activity. Despite their short lifespan, prostaglandin endoperoxides play essential roles in mediating various physiological responses and are also implicated in several pathological conditions, such as pain, fever, and inflammation.

Nicotinamide mononucleotide (NMN) is a bioactive nucleotide that is found in various cells and tissues within the human body. It is a crucial intermediate in the biosynthetic pathway of nicotinamide adenine dinucleotide (NAD+), which is an essential coenzyme involved in numerous cellular processes, including energy metabolism, DNA repair, and gene expression.

NMN can be synthesized within the body from nicotinamide or niacin, and it can also be obtained through dietary sources such as milk, fruits, and vegetables. In recent years, NMN has gained attention in the scientific community for its potential anti-aging effects, as studies have suggested that supplementation with NMN may help to restore NAD+ levels and improve various age-related physiological declines. However, more research is needed to fully understand the therapeutic potential of NMN and its mechanisms of action in humans.

Hydroxyprostaglandin Dehydrogenases (HPGDs) are a group of enzymes that catalyze the oxidation of prostaglandins, which are hormone-like lipid compounds with various physiological effects in the body. The oxidation reaction catalyzed by HPGDs involves the removal of hydrogen atoms from the prostaglandin molecule and the addition of a ketone group in its place.

The HPGD family includes several isoforms, each with distinct tissue distributions and substrate specificities. The most well-known isoform is 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which preferentially oxidizes PGE2 and PGF2α at the 15-hydroxyl position, thereby inactivating these prostaglandins.

The regulation of HPGD activity is critical for maintaining prostaglandin homeostasis, as imbalances in prostaglandin levels have been linked to various pathological conditions, including inflammation, cancer, and cardiovascular disease. For example, decreased 15-PGDH expression has been observed in several types of cancer, leading to increased PGE2 levels and promoting tumor growth and progression.

Overall, Hydroxyprostaglandin Dehydrogenases play a crucial role in regulating prostaglandin signaling and have important implications for human health and disease.

Alcohol dehydrogenase (ADH) is a group of enzymes responsible for catalyzing the oxidation of alcohols to aldehydes or ketones, and reducing equivalents such as NAD+ to NADH. In humans, ADH plays a crucial role in the metabolism of ethanol, converting it into acetaldehyde, which is then further metabolized by aldehyde dehydrogenase (ALDH) into acetate. This process helps to detoxify and eliminate ethanol from the body. Additionally, ADH enzymes are also involved in the metabolism of other alcohols, such as methanol and ethylene glycol, which can be toxic if allowed to accumulate in the body.

Ferredoxin-NADP Reductase (FDNR) is an enzyme that catalyzes the electron transfer from ferredoxin to NADP+, reducing it to NADPH. This reaction plays a crucial role in several metabolic pathways, including photosynthesis and nitrogen fixation.

In photosynthesis, FDNR is located in the stroma of chloroplasts and receives electrons from ferredoxin, which is reduced by photosystem I. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the Calvin cycle for carbon fixation.

In nitrogen fixation, FDNR is found in the nitrogen-fixing bacteria and receives electrons from ferredoxin, which is reduced by nitrogenase. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the reduction of nitrogen gas (N2) to ammonia (NH3).

FDNR is a flavoprotein that contains a FAD cofactor and an iron-sulfur cluster. The enzyme catalyzes the electron transfer through a series of conformational changes that bring ferredoxin and NADP+ in close proximity, allowing for efficient electron transfer.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Prostaglandin H2 (PGH2) is not a medical condition, but rather a chemical compound that acts as a precursor in the synthesis of other prostaglandins and thromboxanes. It is produced from arachidonic acid by the action of the enzyme cyclooxygenase (COX). PGH2 is then converted into various downstream prostanoids, such as PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and TXA2 (thromboxane A2), by specific synthases. These prostanoids have diverse biological activities, including regulation of inflammation, pain, fever, blood flow, and platelet aggregation.

Cytochrome reductases are a group of enzymes that play a crucial role in the electron transport chain, a process that occurs in the mitochondria of cells and is responsible for generating energy in the form of ATP (adenosine triphosphate). Specifically, cytochrome reductases are responsible for transferring electrons from one component of the electron transport chain to another, specifically to cytochromes.

There are several types of cytochrome reductases, including NADH dehydrogenase (also known as Complex I), succinate dehydrogenase (also known as Complex II), and ubiquinone-cytochrome c reductase (also known as Complex III). These enzymes help to facilitate the flow of electrons through the electron transport chain, which is essential for the production of ATP and the maintenance of cellular homeostasis.

Defects in cytochrome reductases can lead to a variety of mitochondrial diseases, which can affect multiple organ systems and may be associated with symptoms such as muscle weakness, developmental delays, and cardiac dysfunction.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

The crystalline lens is a biconvex transparent structure in the eye that helps to refract (bend) light rays and focus them onto the retina. It is located behind the iris and pupil and is suspended by small fibers called zonules that connect it to the ciliary body. The lens can change its shape to accommodate and focus on objects at different distances, a process known as accommodation. With age, the lens may become cloudy or opaque, leading to cataracts.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Coenzymes are small organic molecules that assist enzymes in catalyzing chemical reactions within cells. They typically act as carriers of specific atoms or groups of atoms during enzymatic reactions, facilitating the conversion of substrates into products. Coenzymes often bind temporarily to enzymes at the active site, forming an enzyme-coenzyme complex.

Coenzymes are usually derived from vitamins or minerals and are essential for maintaining proper metabolic functions in the body. Examples of coenzymes include nicotinamide adenine dinucleotide (NAD+), flavin adenine dinucleotide (FAD), and coenzyme A (CoA). When a coenzyme is used up in a reaction, it must be regenerated or replaced for the enzyme to continue functioning.

In summary, coenzymes are vital organic compounds that work closely with enzymes to facilitate biochemical reactions, ensuring the smooth operation of various metabolic processes within living organisms.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Diacetyl is a volatile, yellow-green liquid that is a byproduct of fermentation and is used as a butter flavoring in foods. The chemical formula for diacetyl is CH3COCH3. It has a buttery or creamy taste and is often added to microwave popcorn, margarine, and other processed foods to give them a buttery flavor.

Diacetyl can also be found in some alcoholic beverages, such as beer and wine, where it is produced naturally during fermentation. In high concentrations, diacetyl can have a strong, unpleasant odor and taste.

There has been concern about the potential health effects of diacetyl, particularly for workers in factories that manufacture artificial butter flavorings. Some studies have suggested that exposure to diacetyl may increase the risk of developing lung disease, including bronchiolitis obliterans, a serious and sometimes fatal condition characterized by scarring and narrowing of the airways in the lungs. However, more research is needed to fully understand the health effects of diacetyl and to determine safe levels of exposure.

I'm sorry for any confusion, but "Prostaglandins H" is not a widely recognized or established medical term. Prostaglandins are a group of lipid compounds that are synthesized in the body from fatty acids and have diverse hormone-like effects in the body. They play roles in various physiological processes, including inflammation, blood flow regulation, and labor induction, among others.

Prostaglandin H is an intermediate in the conversion of arachidonic acid to prostaglandins through the cyclooxygenase pathway. However, it's not a final product or a commonly used term in medical definitions. If you have any specific questions about prostaglandins or their role in the body, I would be happy to help further clarify those topics for you!

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Mitosporic fungi, also known as asexual fungi or anamorphic fungi, are a group of fungi that produce mitospores (also called conidia) during their asexual reproduction. Mitospores are produced from the tip of specialized hyphae called conidiophores and are used for dispersal and survival of the fungi in various environments. These fungi do not have a sexual reproductive stage or it has not been observed, making their taxonomic classification challenging. They are commonly found in soil, decaying organic matter, and water, and some of them can cause diseases in humans, animals, and plants. Examples of mitosporic fungi include Aspergillus, Penicillium, and Fusarium species.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Tetrahydrofolate dehydrogenase (EC 1.5.1.20) is an enzyme involved in folate metabolism. The enzyme catalyzes the oxidation of tetrahydrofolate (THF) to dihydrofolate (DHF), while simultaneously reducing NADP+ to NADPH.

The reaction can be summarized as follows:

THF + NADP+ -> DHF + NADPH + H+

This enzyme plays a crucial role in the synthesis of purines and thymidylate, which are essential components of DNA and RNA. Therefore, any defects or deficiencies in tetrahydrofolate dehydrogenase can lead to various medical conditions, including megaloblastic anemia and neural tube defects during fetal development.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

The isoelectric point (pI) is a term used in biochemistry and molecular biology to describe the pH at which a molecule, such as a protein or peptide, carries no net electrical charge. At this pH, the positive and negative charges on the molecule are equal and balanced. The pI of a protein can be calculated based on its amino acid sequence and is an important property that affects its behavior in various chemical and biological environments. Proteins with different pIs may have different solubilities, stabilities, and interactions with other molecules, which can impact their function and role in the body.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Phenobarbital is a barbiturate medication that is primarily used for the treatment of seizures and convulsions. It works by suppressing the abnormal electrical activity in the brain that leads to seizures. In addition to its anticonvulsant properties, phenobarbital also has sedative and hypnotic effects, which can be useful for treating anxiety, insomnia, and agitation.

Phenobarbital is available in various forms, including tablets, capsules, and elixirs, and it is typically taken orally. The medication works by binding to specific receptors in the brain called gamma-aminobutyric acid (GABA) receptors, which help to regulate nerve impulses in the brain. By increasing the activity of GABA, phenobarbital can help to reduce excessive neural activity and prevent seizures.

While phenobarbital is an effective medication for treating seizures and other conditions, it can also be habit-forming and carries a risk of dependence and addiction. Long-term use of the medication can lead to tolerance, meaning that higher doses may be needed to achieve the same effects. Abruptly stopping the medication can also lead to withdrawal symptoms, such as anxiety, restlessness, and seizures.

Like all medications, phenobarbital can have side effects, including dizziness, drowsiness, and impaired coordination. It can also interact with other medications, such as certain antidepressants and sedatives, so it is important to inform your healthcare provider of all medications you are taking before starting phenobarbital.

In summary, phenobarbital is a barbiturate medication used primarily for the treatment of seizures and convulsions. It works by binding to GABA receptors in the brain and increasing their activity, which helps to reduce excessive neural activity and prevent seizures. While phenobarbital can be effective, it carries a risk of dependence and addiction and can have side effects and drug interactions.

Methionine sulfoxide reductases (MSRs) are a group of enzymes that catalyze the reduction of methionine sulfoxides back to methionine in proteins. Methionine residues in proteins can be oxidized by reactive oxygen species (ROS) or other oxidizing agents, leading to the formation of methionine sulfoxide. This modification can affect protein function and stability. MSRs play a crucial role in protecting proteins from oxidative damage and maintaining their proper function.

There are two types of MSRs, designated as MSRA and MSRB. MSRA reduces methionine-S-sulfoxides, while MSRB reduces methionine-R-sulfoxides. Both enzymes require the cofactor thioredoxin to reduce the methionine sulfoxide back to methionine. The activity of MSRs is important in various biological processes, including protein folding, stress response, and aging. Defects in MSRs have been implicated in several diseases, such as Alzheimer's disease, Parkinson's disease, and cancer.

Ribonucleoside Diphosphate Reductase (RNR) is an enzyme that plays a crucial role in the regulation of DNA synthesis and repair. It catalyzes the conversion of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs), which are the building blocks of DNA. This reaction is essential for the synthesis of new DNA strands during replication and repair processes. The enzyme's activity is tightly regulated, as it must be carefully controlled to prevent errors in DNA synthesis that could lead to mutations and genomic instability. RNR is a target for chemotherapeutic agents due to its essential role in DNA synthesis.

Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, are a class of cholesterol-lowering medications. They work by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. By blocking this enzyme, the liver is stimulated to take up more low-density lipoprotein (LDL) cholesterol from the bloodstream, leading to a decrease in LDL cholesterol levels and a reduced risk of cardiovascular disease.

Examples of HMG-CoA reductase inhibitors include atorvastatin, simvastatin, pravastatin, rosuvastatin, and fluvastatin. These medications are commonly prescribed to individuals with high cholesterol levels, particularly those who are at risk for or have established cardiovascular disease.

It's important to note that while HMG-CoA reductase inhibitors can be effective in reducing LDL cholesterol levels and the risk of cardiovascular events, they should be used as part of a comprehensive approach to managing high cholesterol, which may also include lifestyle modifications such as dietary changes, exercise, and weight management.

Acetaldehyde is a colorless, volatile, and flammable liquid with a pungent odor. It is the simplest aldehyde, with the formula CH3CHO. Acetaldehyde is an important intermediate in the metabolism of alcohol and is produced by the oxidation of ethanol by alcohol dehydrogenase. It is also a naturally occurring compound that is found in small amounts in various foods and beverages, such as fruits, vegetables, and coffee.

Acetaldehyde is a toxic substance that can cause a range of adverse health effects, including irritation of the eyes, nose, and throat, nausea, vomiting, and headaches. It has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC). Long-term exposure to acetaldehyde has been linked to an increased risk of certain types of cancer, including cancers of the oral cavity, esophagus, and liver.

Quinone reductases are a group of enzymes that catalyze the reduction of quinones to hydroquinones, using NADH or NADPH as an electron donor. This reaction is important in the detoxification of quinones, which are potentially toxic compounds produced during the metabolism of certain drugs, chemicals, and endogenous substances.

There are two main types of quinone reductases: NQO1 (NAD(P)H:quinone oxidoreductase 1) and NQO2 (NAD(P)H:quinone oxidoreductase 2). NQO1 is a cytosolic enzyme that can reduce a wide range of quinones, while NQO2 is a mitochondrial enzyme with a narrower substrate specificity.

Quinone reductases have been studied for their potential role in cancer prevention and treatment, as they may help to protect cells from oxidative stress and DNA damage caused by quinones and other toxic compounds. Additionally, some quinone reductase inhibitors have been developed as chemotherapeutic agents, as they can enhance the cytotoxicity of certain drugs that require quinone reduction for activation.

Acrolein is an unsaturated aldehyde with the chemical formula CH2CHCHO. It is a colorless liquid that has a distinct unpleasant odor and is highly reactive. Acrolein is produced by the partial oxidation of certain organic compounds, such as glycerol and fatty acids, and it is also found in small amounts in some foods, such as coffee and bread.

Acrolein is a potent irritant to the eyes, nose, and throat, and exposure to high levels can cause coughing, wheezing, and shortness of breath. It has been shown to have toxic effects on the lungs, heart, and nervous system, and prolonged exposure has been linked to an increased risk of cancer.

In the medical field, acrolein is sometimes used as a laboratory reagent or as a preservative for biological specimens. However, due to its potential health hazards, it must be handled with care and appropriate safety precautions should be taken when working with this compound.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

F344 is a strain code used to designate an outbred stock of rats that has been inbreeded for over 100 generations. The F344 rats, also known as Fischer 344 rats, were originally developed at the National Institutes of Health (NIH) and are now widely used in biomedical research due to their consistent and reliable genetic background.

Inbred strains, like the F344, are created by mating genetically identical individuals (siblings or parents and offspring) for many generations until a state of complete homozygosity is reached, meaning that all members of the strain have identical genomes. This genetic uniformity makes inbred strains ideal for use in studies where consistent and reproducible results are important.

F344 rats are known for their longevity, with a median lifespan of around 27-31 months, making them useful for aging research. They also have a relatively low incidence of spontaneous tumors compared to other rat strains. However, they may be more susceptible to certain types of cancer and other diseases due to their inbred status.

It's important to note that while F344 rats are often used as a standard laboratory rat strain, there can still be some genetic variation between individual animals within the same strain, particularly if they come from different suppliers or breeding colonies. Therefore, it's always important to consider the source and history of any animal model when designing experiments and interpreting results.

Dihydropteridine reductase is an enzyme that plays a crucial role in the metabolism of certain amino acids, specifically phenylalanine and tyrosine. This enzyme is responsible for reducing dihydropteridines to tetrahydropteridines, which is a necessary step in the regeneration of tetrahydrobiopterin (BH4), an essential cofactor for the enzymes phenylalanine hydroxylase and tyrosine hydroxylase.

Phenylalanine hydroxylase and tyrosine hydroxylase are involved in the conversion of the amino acids phenylalanine and tyrosine to tyrosine and dopa, respectively. Without sufficient BH4, these enzymes cannot function properly, leading to an accumulation of phenylalanine and a decrease in the levels of important neurotransmitters such as dopamine, norepinephrine, and serotonin.

Deficiency in dihydropteridine reductase can lead to a rare genetic disorder known as dihydropteridine reductase deficiency (DPRD), which is characterized by elevated levels of phenylalanine and neurotransmitter imbalances, resulting in neurological symptoms such as developmental delay, seizures, and hypotonia. Treatment typically involves a low-phenylalanine diet and supplementation with BH4.

Thioredoxin Reductase 1 (TXNRD1) is an enzyme that belongs to the thioredoxin reductase family. It is a homodimeric flavoprotein that contains a selenocysteine residue at its active site, which is essential for its catalytic activity.

The primary function of TXNRD1 is to reduce and regenerate the oxidized form of thioredoxin (TXN) by using NADPH as an electron donor. Thioredoxin is a small protein that plays a crucial role in maintaining the redox balance within the cell by regulating various cellular processes, such as DNA synthesis, gene expression, and apoptosis.

TXNRD1 is widely expressed in various tissues and is localized in the cytosol of the cell. It has been implicated in several physiological and pathological processes, including inflammation, oxidative stress, cancer, and neurodegenerative diseases. Inhibition of TXNRD1 has been shown to have potential therapeutic benefits in various disease models, making it an attractive target for drug development.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Ketones are organic compounds that contain a carbon atom bound to two oxygen atoms and a central carbon atom bonded to two additional carbon groups through single bonds. In the context of human physiology, ketones are primarily produced as byproducts when the body breaks down fat for energy in a process called ketosis.

Specifically, under conditions of low carbohydrate availability or prolonged fasting, the liver converts fatty acids into ketone bodies, which can then be used as an alternative fuel source for the brain and other organs. The three main types of ketones produced in the human body are acetoacetate, beta-hydroxybutyrate, and acetone.

Elevated levels of ketones in the blood, known as ketonemia, can occur in various medical conditions such as diabetes, starvation, alcoholism, and high-fat/low-carbohydrate diets. While moderate levels of ketosis are generally considered safe, severe ketosis can lead to a life-threatening condition called diabetic ketoacidosis (DKA) in people with diabetes.

Disulfiram is a medication used to treat chronic alcoholism. It works by inhibiting the enzyme acetaldehyde dehydrogenase, which is responsible for breaking down acetaldehyde, a toxic metabolite produced when alcohol is consumed. When a person taking disulfiram consumes alcohol, the buildup of acetaldehyde causes unpleasant symptoms such as flushing, nausea, palpitations, and shortness of breath, which can help discourage further alcohol use.

The medical definition of Disulfiram is:

A medication used in the treatment of chronic alcoholism, which works by inhibiting the enzyme acetaldehyde dehydrogenase, leading to an accumulation of acetaldehyde when alcohol is consumed, causing unpleasant symptoms that discourage further alcohol use. Disulfiram is available as a tablet for oral administration and is typically prescribed under medical supervision due to its potential for serious interactions with alcohol and other substances.

Drug stability refers to the ability of a pharmaceutical drug product to maintain its physical, chemical, and biological properties during storage and use, under specified conditions. A stable drug product retains its desired quality, purity, strength, and performance throughout its shelf life. Factors that can affect drug stability include temperature, humidity, light exposure, and container compatibility. Maintaining drug stability is crucial to ensure the safety and efficacy of medications for patients.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Oxidoreductases acting on sulfur group donors are a class of enzymes that catalyze redox reactions involving sulfur group donors. These enzymes play a crucial role in various biological processes, such as the metabolism of sulfur-containing compounds and the detoxification of xenobiotics.

The term "oxidoreductase" refers to any enzyme that catalyzes an oxidation-reduction reaction, where one molecule is oxidized (loses electrons) and another is reduced (gains electrons). In the case of oxidoreductases acting on sulfur group donors, the sulfur atom in the substrate serves as the electron donor.

The systematic name for this class of enzymes follows a specific format: "donor:acceptor oxidoreductase." The donor is the sulfur-containing compound that donates electrons, and the acceptor is the molecule that accepts the electrons. For example, the enzyme that catalyzes the reaction between glutathione (GSH) and a variety of electrophiles is called glutathione transferase, or GST (donor:acceptor oxidoreductase).

These enzymes are further classified into subclasses based on the type of acceptor involved in the reaction. Examples include:

* EC 1.8.1: Oxidoreductases acting on CH-NH2 group donors
* EC 1.8.3: Oxidoreductases acting on CH or CH2 groups
* EC 1.8.4: Oxidoreductases acting on the CH-CH group of donors
* EC 1.8.5: Oxidoreductases acting on a sulfur group of donors
* EC 1.8.6: Oxidoreductases acting on NADH or NADPH

The subclass EC 1.8.5, oxidoreductases acting on a sulfur group of donors, includes enzymes that catalyze redox reactions involving sulfur-containing compounds such as thiols (compounds containing -SH groups), disulfides (-S-S- bonds), and other sulfur-containing functional groups. These enzymes play crucial roles in various biological processes, including detoxification, antioxidant defense, and redox regulation.

Retinal dehydrogenase, also known as Aldehyde Dehydrogenase 2 (ALDH2), is an enzyme involved in the metabolism of alcohol and other aldehydes in the body. In the eye, retinal dehydrogenase plays a specific role in the conversion of retinaldehyde to retinoic acid, which is an important molecule for the maintenance and regulation of the visual cycle and overall eye health.

Retinoic acid is involved in various physiological processes such as cell differentiation, growth, and survival, and has been shown to have a protective effect against oxidative stress in the retina. Therefore, retinal dehydrogenase deficiency or dysfunction may lead to impaired visual function and increased susceptibility to eye diseases such as age-related macular degeneration and diabetic retinopathy.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Mevalonic acid is not a term that is typically used in medical definitions, but rather it is a biochemical concept. Mevalonic acid is a key intermediate in the biosynthetic pathway for cholesterol and other isoprenoids. It is formed from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) by the enzyme HMG-CoA reductase, which is the target of cholesterol-lowering drugs known as statins.

In a medical context, mevalonic acid may be mentioned in relation to certain rare genetic disorders, such as mevalonate kinase deficiency (MKD) or hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), which are caused by mutations in the gene encoding mevalonate kinase, an enzyme involved in the metabolism of mevalonic acid. These conditions can cause recurrent fevers, rashes, joint pain, and other symptoms.

Lovastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a crucial role in the production of cholesterol in the body. By reducing the amount of cholesterol produced in the liver, lovastatin helps to decrease the levels of low-density lipoprotein (LDL) or "bad" cholesterol and triglycerides in the blood, while increasing the levels of high-density lipoprotein (HDL) or "good" cholesterol.

Lovastatin is available in both immediate-release and extended-release forms, and it is typically taken orally once or twice a day, depending on the dosage prescribed by a healthcare provider. Common side effects of lovastatin include headache, nausea, diarrhea, and muscle pain, although more serious side effects such as liver damage and muscle weakness are possible, particularly at higher doses.

It is important to note that lovastatin should not be taken by individuals with active liver disease or by those who are pregnant or breastfeeding. Additionally, it may interact with certain other medications, so it is essential to inform a healthcare provider of all medications being taken before starting lovastatin therapy.

Arsenate reductases are enzymes that catalyze the reduction of arsenate (As(V)) to arsenite (As(III)). This reaction is a critical step in the detoxification process of arsenic compounds in many organisms, including bacteria, fungi, and plants. The enzyme typically uses thioredoxin or glutaredoxin as an electron donor to reduce arsenate.

The medical significance of arsenate reductases lies in their role in arsenic detoxification and resistance. Exposure to high levels of arsenic can lead to a variety of health issues, including skin lesions, cancer, and neurological disorders. Understanding the mechanisms of arsenate reduction and detoxification may provide insights into new strategies for treating arsenic poisoning and developing environmental remediation technologies.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Alkadienes are organic compounds that contain two carbon-carbon double bonds in their molecular structure. The term "alka" refers to the presence of hydrocarbons, while "diene" indicates the presence of two double bonds. These compounds can be classified as either conjugated or non-conjugated dienes based on the arrangement of the double bonds.

Conjugated dienes have their double bonds adjacent to each other, separated by a single bond, while non-conjugated dienes have at least one methylene group (-CH2-) separating the double bonds. The presence and positioning of these double bonds can significantly affect the chemical and physical properties of alkadienes, including their reactivity, stability, and spectral characteristics.

Alkadienes are important intermediates in various chemical reactions and have applications in the production of polymers, pharmaceuticals, and other industrial products. However, they can also be produced naturally by some plants and microorganisms as part of their metabolic processes.

Flavin-Adenine Dinucleotide (FAD) is a coenzyme that plays a crucial role in various metabolic processes, particularly in the electron transport chain where it functions as an electron carrier in oxidation-reduction reactions. FAD is composed of a flavin moiety, riboflavin or vitamin B2, and adenine dinucleotide. It can exist in two forms: an oxidized form (FAD) and a reduced form (FADH2). The reduction of FAD to FADH2 involves the gain of two electrons and two protons, which is accompanied by a significant conformational change that allows FADH2 to donate its electrons to subsequent components in the electron transport chain, ultimately leading to the production of ATP, the main energy currency of the cell.

Dinitrogenase reductase is a protein involved in the process of nitrogen fixation in certain bacteria and archaea. It is responsible for delivering electrons to the enzyme dinitrogenase, which converts atmospheric nitrogen (N2) into ammonia (NH3), making it available for use by living organisms. Dinitrogenase reductase contains a cluster of iron and sulfur atoms that facilitate the transfer of electrons. The combined action of dinitrogenase reductase and dinitrogenase allows these microorganisms to utilize nitrogen from the atmosphere as a source of nitrogen for growth, making them important contributors to the global nitrogen cycle.

I'm sorry for any confusion, but "Molybdenum" is not a medical term. It is an element with the symbol Mo and atomic number 42 on the periodic table. Molybdenum is used in various industries, including medicine, for example in the production of surgical instruments and some prosthetics due to its strength and resistance to corrosion. However, it is not a term used to describe a medical condition or bodily process. If you have any questions related to elements and their uses in medicine, I'd be happy to help with those!

Oxidoreductases acting on CH-NH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts on CH-NH group donors, where the CH-NH group is a chemical functional group consisting of a carbon atom (C) bonded to a nitrogen atom (N) via a single covalent bond.

These enzymes play a crucial role in various biological processes by transferring electrons from the CH-NH group donor to an acceptor molecule, which results in the oxidation of the donor and reduction of the acceptor. This process can lead to the formation or breakdown of chemical bonds, and plays a key role in metabolic pathways such as amino acid degradation and nitrogen fixation.

Examples of enzymes that fall within this class include:

* Amino oxidases, which catalyze the oxidative deamination of amino acids to produce alpha-keto acids, ammonia, and hydrogen peroxide.
* Transaminases, which transfer an amino group from one molecule to another, often in the process of amino acid biosynthesis or degradation.
* Amine oxidoreductases, which catalyze the oxidation of primary amines to aldehydes and secondary amines to ketones, with the concomitant reduction of molecular oxygen to hydrogen peroxide.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

Cyanamide is a chemical compound with the formula NH2CN. It is a colorless, crystalline solid that is highly soluble in water and has an ammonia-like odor. Cyanamide is used as a reagent in organic synthesis and as a fertilizer.

In a medical context, cyanamide may be used as a drug to treat certain conditions. For example, it has been used as a muscle relaxant and to reduce muscle spasms in people with multiple sclerosis. It is also being studied as a potential treatment for alcohol dependence, as it may help to reduce cravings and withdrawal symptoms.

It is important to note that cyanamide can be toxic in high doses, and it should only be used under the supervision of a healthcare professional.

Flavin Mononucleotide (FMN) is a coenzyme that plays a crucial role in biological oxidation-reduction reactions. It is derived from the vitamin riboflavin (also known as vitamin B2) and is composed of a flavin molecule bonded to a nucleotide. FMN functions as an electron carrier, accepting and donating electrons in various metabolic pathways, including the citric acid cycle and the electron transport chain, which are essential for energy production in cells. It also participates in the detoxification of harmful substances and contributes to the maintenance of cellular redox homeostasis. FMN can exist in two forms: the oxidized form (FMN) and the reduced form (FMNH2), depending on its involvement in redox reactions.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Hydrogensulfite reductase is an enzyme found in certain bacteria and archaea that catalyzes the reduction of hydrogen sulfite (bisulfite) to sulfide, using NADPH or NADH as an electron donor. This reaction is a part of the microbial dissimilatory sulfate reduction pathway, where sulfate is reduced to sulfide and ultimately used as an electron sink for energy conservation.

The overall reaction catalyzed by hydrogensulfite reductase can be represented as follows:

HSiO3- (hydrogen sulfite) + 2H+ + 2e- → H2S (sulfide) + H2O

There are two main types of hydrogensulfite reductases, which differ in their cofactor requirements and subunit composition:

1. NADPH-dependent membrane-bound (type I) hydrogensulfite reductase: This enzyme is composed of multiple subunits and contains FAD, iron-sulfur clusters, and siroheme as cofactors. It catalyzes the reduction of hydrogen sulfite to sulfide using NADPH as an electron donor, and it is typically found in bacteria that grow under chemolithotrophic conditions (e.g., utilizing sulfur compounds or hydrogen as energy sources).
2. NADH-dependent cytoplasmic (type II) hydrogensulfite reductase: This enzyme consists of a single subunit and contains siroheme and iron-sulfur clusters as cofactors. It catalyzes the reduction of hydrogen sulfite to sulfide using NADH as an electron donor, and it is commonly found in bacteria that grow under heterotrophic conditions (e.g., utilizing organic compounds as energy sources).

In both cases, hydrogensulfite reductase plays a crucial role in the microbial sulfur cycle, contributing to the transformation of various sulfur species and their incorporation into or release from biomolecules.

Nitrates are chemical compounds that consist of a nitrogen atom bonded to three oxygen atoms (NO3-). In the context of medical science, nitrates are often discussed in relation to their use as medications or their presence in food and water.

As medications, nitrates are commonly used to treat angina (chest pain) caused by coronary artery disease. Nitrates work by relaxing and widening blood vessels, which improves blood flow and reduces the workload on the heart. Some examples of nitrate medications include nitroglycerin, isosorbide dinitrate, and isosorbide mononitrate.

In food and water, nitrates are naturally occurring compounds that can be found in a variety of vegetables, such as spinach, beets, and lettuce. They can also be present in fertilizers and industrial waste, which can contaminate groundwater and surface water sources. While nitrates themselves are not harmful, they can be converted into potentially harmful compounds called nitrites under certain conditions, particularly in the digestive system of young children or in the presence of bacteria such as those found in unpasteurized foods. Excessive levels of nitrites can react with hemoglobin in the blood to form methemoglobin, which cannot transport oxygen effectively and can lead to a condition called methemoglobinemia.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

Hydroxymethylglutaryl-CoA-Reductases (NADP-dependent) are a group of enzymes that play a crucial role in the metabolic pathway known as cholesterol biosynthesis. The NADP-dependent hydroxymethylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme in this pathway, and it catalyzes the conversion of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonic acid using nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor.

Mevalonic acid is a key intermediate in the biosynthesis of cholesterol and other isoprenoids, making HMGCR an important target for cholesterol-lowering drugs such as statins. Mutations in the gene encoding HMGCR can lead to several genetic disorders, including megacephaly-capillary malformation syndrome and cerebrotendinous xanthomatosis.

Hydroxypyruvate Reductase is an enzyme involved in the metabolism of carbohydrates. Specifically, it catalyzes the conversion of hydroxypyruvate to glycerate during the photorespiratory cycle in plants and some bacteria. This reaction is a part of the process that recovers carbon from the 2-phosphoglycolate generated by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) during photosynthesis.

The enzyme Hydroxypyruvate Reductase belongs to the family of oxidoreductases, more specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is hydroxypyruvate:NAD(P)+ 2-oxidoreductase. Other common names include D-glycerate dehydrogenase, serine glyoxalate transaminase, and L-serine transaminase.

Folic acid antagonists are a class of medications that work by inhibiting the action of folic acid or its metabolic pathways. These drugs are commonly used in the treatment of various types of cancer and certain other conditions, such as rheumatoid arthritis. They include drugs such as methotrexate, pemetrexed, and trimetrexate.

Folic acid is a type of B vitamin that is essential for the production of DNA and RNA, the genetic material found in cells. Folic acid antagonists work by interfering with the enzyme responsible for converting folic acid into its active form, tetrahydrofolate. This interference prevents the formation of new DNA and RNA, which is necessary for cell division and growth. As a result, these drugs can inhibit the proliferation of rapidly dividing cells, such as cancer cells.

It's important to note that folic acid antagonists can also affect normal, non-cancerous cells in the body, particularly those that divide quickly, such as cells in the bone marrow and digestive tract. This can lead to side effects such as anemia, mouth sores, and diarrhea. Therefore, these drugs must be used carefully and under the close supervision of a healthcare provider.

Thioredoxins are a group of small proteins that contain a redox-active disulfide bond and play a crucial role in the redox regulation of cellular processes. They function as electron donors and help to maintain the intracellular reducing environment by reducing disulfide bonds in other proteins, thereby regulating their activity. Thioredoxins also have antioxidant properties and protect cells from oxidative stress by scavenging reactive oxygen species (ROS) and repairing oxidatively damaged proteins. They are widely distributed in various organisms, including bacteria, plants, and animals, and are involved in many physiological processes such as DNA synthesis, protein folding, and apoptosis.

Flavins are a group of naturally occurring organic compounds that contain a characteristic isoalloxazine ring, which is a tricyclic aromatic structure. The most common and well-known flavin is flavin adenine dinucleotide (FAD), which plays a crucial role as a coenzyme in various biological oxidation-reduction reactions. FAD accepts electrons and hydrogens to form the reduced form, flavin adenine dinucleotide hydride (FADH2). Another important flavin is flavin mononucleotide (FMN), which is derived from FAD and functions similarly as a coenzyme. Flavins are yellow in color and can be found in various biological systems, including animals, plants, and microorganisms. They are involved in several metabolic pathways, such as the electron transport chain, where they contribute to energy production.

Thioredoxin Reductase 2 (Txnrd2) is an antioxidant enzyme that plays a crucial role in maintaining the redox balance within cells, particularly in the mitochondria. It is a member of the thioredoxin reductase family, which are selenium-containing proteins that catalyze the reduction of various substrates through the use of NADPH as an electron donor.

Txnrd2 specifically reduces the disulfide bond in mitochondrial thioredoxin 2 (Trx2), regenerating its active form and allowing it to neutralize reactive oxygen species (ROS) and maintain the redox state of proteins within the mitochondria. This enzyme is essential for protecting cells against oxidative stress, which can damage cellular components such as DNA, proteins, and lipids. Dysregulation of Txnrd2 has been implicated in various pathological conditions, including neurodegenerative diseases, cancer, and aging.

Pyrroline-5-carboxylate reductase (PCR) is an enzyme that belongs to the family of oxidoreductases. Specifically, it is a part of the subclass of aldo-keto reductases. This enzyme catalyzes the chemical reaction that converts pyrroline-5-carboxylate to proline, which is an essential step in the biosynthesis of proline, an important proteinogenic amino acid.

The reaction catalyzed by PCR involves the reduction of a keto group to a hydroxyl group, and it requires the cofactor NADPH as a reducing agent. The systematic name for this enzyme is pyrroline-5-carboxylate:NADP+ oxidoreductase (proline-forming).

Deficiencies in PCR have been associated with several human diseases, including hyperprolinemia type II, a rare inherited disorder characterized by an accumulation of pyrroline-5-carboxylate and proline in body fluids.

Pteridines are a class of heterocyclic aromatic organic compounds that are structurally related to pterins, which contain a pyrimidine ring fused to a pyrazine ring. They are naturally occurring substances that can be found in various living organisms such as bacteria, fungi, plants, and animals.

Pteridines have several important biological functions. For instance, they play a crucial role in the synthesis of folate and biotin, which are essential cofactors for various metabolic reactions in the body. Additionally, some pteridines function as chromophores, contributing to the coloration of certain organisms such as butterflies and birds.

In medicine, pteridines have been studied for their potential therapeutic applications. For example, some synthetic pteridine derivatives have shown promising results in preclinical studies as antitumor, antiviral, and antibacterial agents. However, further research is needed to fully understand the medical implications of these compounds.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

I'm sorry for any confusion, but 'Tungsten' is not a medical term. It is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth, and it has many industrial uses due to its hardness, high density, and high melting point.

In the context of medicine or healthcare, tungsten may be encountered in certain medical devices, such as X-ray tubes and electrodes, where its properties are utilized for their durability and heat resistance. However, it is not a term that would typically have a formal medical definition.

Ferredoxins are iron-sulfur proteins that play a crucial role in electron transfer reactions in various biological systems, particularly in photosynthesis and nitrogen fixation. They contain one or more clusters of iron and sulfur atoms (known as the iron-sulfur cluster) that facilitate the movement of electrons between different molecules during metabolic processes.

Ferredoxins have a relatively simple structure, consisting of a polypeptide chain that binds to the iron-sulfur cluster. This simple structure allows ferredoxins to participate in a wide range of redox reactions and makes them versatile electron carriers in biological systems. They can accept electrons from various donors and transfer them to different acceptors, depending on the needs of the cell.

In photosynthesis, ferredoxins play a critical role in the light-dependent reactions by accepting electrons from photosystem I and transferring them to NADP+, forming NADPH. This reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is then used in the Calvin cycle for carbon fixation and the production of glucose.

In nitrogen fixation, ferredoxins help transfer electrons to the nitrogenase enzyme complex, which reduces atmospheric nitrogen gas (N2) into ammonia (NH3), making it available for assimilation by plants and other organisms.

Overall, ferredoxins are essential components of many metabolic pathways, facilitating electron transfer and energy conversion in various biological systems.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

15-Oxoprostaglandin 13-Reductase is an enzyme that catalyzes the reduction of 15-keto prostaglandins to 13,14-dihydro-15-keto prostaglandins. This enzyme plays a role in the metabolism and deactivation of prostaglandins, which are hormone-like substances that are involved in various physiological processes such as inflammation, blood flow regulation, and labor induction. The reduction of 15-keto prostaglandins to 13,14-dihydro-15-keto prostaglandins by 15-Oxoprostaglandin 13-Reductase results in the loss of biological activity of these prostaglandins.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

Ferredoxin-nitrite reductase is an enzyme found in certain bacteria, archaea, and organelles of plants such as chloroplasts. The enzyme plays a crucial role in the nitrogen fixation process, where it catalyzes the reduction of nitrite (NO2-) to ammonia (NH3) using ferredoxin as the electron donor. This reaction is a part of the nitrogen cycle and is essential for the assimilation of nitrogen into organic compounds by plants and microorganisms. The enzyme contains iron-sulfur clusters and siroheme as cofactors, which facilitate the electron transfer process during the reduction of nitrite to ammonia.

Iron-sulfur proteins are a group of metalloproteins that contain iron and sulfur atoms in their active centers. These clusters of iron and sulfur atoms, also known as iron-sulfur clusters, can exist in various forms, including Fe-S, 2Fe-2S, 3Fe-4S, and 4Fe-4S structures. The iron atoms are coordinated to the protein through cysteine residues, while the sulfur atoms can be in the form of sulfide (S2-) or sulfane (-S-).

These proteins play crucial roles in many biological processes, such as electron transfer, redox reactions, and enzyme catalysis. They are found in various organisms, from bacteria to humans, and are involved in a wide range of cellular functions, including energy metabolism, photosynthesis, nitrogen fixation, and DNA repair.

Iron-sulfur proteins can be classified into several categories based on their structure and function, such as ferredoxins, Rieske proteins, high-potential iron-sulfur proteins (HiPIPs), and radical SAM enzymes. Dysregulation or mutations in iron-sulfur protein genes have been linked to various human diseases, including neurodegenerative disorders, cancer, and mitochondrial disorders.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

GMP (guanosine monophosphate) reductase is an enzyme that plays a crucial role in the metabolism of nucleotides, specifically within the purine nucleotide pathway. This enzyme catalyzes the NADH-dependent reduction of GMP to IMP (inosine monophosphate), which is a key step in the de novo biosynthesis of purines and the salvage pathways for purine nucleotides.

GMP reductase is found in various organisms, including bacteria, fungi, and plants. In humans, two isoforms of GMP reductase exist: a cytosolic form (IRI1) and a mitochondrial form (IRI2). The enzyme's activity is tightly regulated, as it is involved in balancing the intracellular pools of purine nucleotides. Dysregulation of GMP reductase has been implicated in several diseases, such as cancer and neurological disorders.

Medical Definition:
GMP reductase (guanosine monophosphate reductase): An enzyme (EC 1.17.1.4) that catalyzes the NADH-dependent reduction of GMP to IMP, with the concomitant formation of hydrogen peroxide (H2O2). This enzyme is involved in the de novo biosynthesis and salvage pathways of purine nucleotides. In humans, two isoforms of GMP reductase exist: a cytosolic form (IRI1) and a mitochondrial form (IRI2).

Glutathione is a tripeptide composed of three amino acids: cysteine, glutamic acid, and glycine. It is a vital antioxidant that plays an essential role in maintaining cellular health and function. Glutathione helps protect cells from oxidative stress by neutralizing free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer, heart disease, and dementia. It also supports the immune system, detoxifies harmful substances, and regulates various cellular processes, including DNA synthesis and repair.

Glutathione is found in every cell of the body, with particularly high concentrations in the liver, lungs, and eyes. The body can produce its own glutathione, but levels may decline with age, illness, or exposure to toxins. As such, maintaining optimal glutathione levels through diet, supplementation, or other means is essential for overall health and well-being.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Alkenes are unsaturated hydrocarbons that contain at least one carbon-carbon double bond in their molecular structure. The general chemical formula for alkenes is CnH2n, where n represents the number of carbon atoms in the molecule.

The double bond in alkenes can undergo various reactions, such as addition reactions, where different types of molecules can add across the double bond to form new compounds. The relative position of the double bond in the carbon chain and the presence of substituents on the carbon atoms can affect the physical and chemical properties of alkenes.

Alkenes are important industrial chemicals and are used as starting materials for the synthesis of a wide range of products, including plastics, resins, fibers, and other chemicals. They are also found in nature, occurring in some plants and animals, and can be produced by certain types of bacteria through fermentation processes.

Metalloproteins are proteins that contain one or more metal ions as a cofactor, which is required for their biological activity. These metal ions play crucial roles in the catalytic function, structural stability, and electron transfer processes of metalloproteins. The types of metals involved can include iron, zinc, copper, magnesium, calcium, or manganese, among others. Examples of metalloproteins are hemoglobin (contains heme-bound iron), cytochrome c (contains heme-bound iron and functions in electron transfer), and carbonic anhydrase (contains zinc and catalyzes the conversion between carbon dioxide and bicarbonate).

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Aldehyde-lyases are a class of enzymes that catalyze the breakdown or synthesis of molecules involving an aldehyde group through a reaction known as lyase cleavage. This type of reaction results in the removal of a molecule, typically water or carbon dioxide, from the substrate.

In the case of aldehyde-lyases, these enzymes specifically catalyze reactions that involve the conversion of an aldehyde into a carboxylic acid or vice versa. These enzymes are important in various metabolic pathways and play a crucial role in the biosynthesis and degradation of several biomolecules, including carbohydrates, amino acids, and lipids.

The systematic name for this class of enzymes is "ald(e)hyde-lyases." They are classified under EC number 4.3.1 in the Enzyme Commission (EC) system.

In a medical context, nitrites are typically referred to as organic compounds that contain a functional group with the formula R-N=O, where R represents an alkyl or aryl group. They are commonly used in medicine as vasodilators, which means they widen and relax blood vessels, improving blood flow and lowering blood pressure.

One example of a nitrite used medically is amyl nitrite, which was previously used to treat angina pectoris, a type of chest pain caused by reduced blood flow to the heart muscle. However, its use has largely been replaced by other medications due to safety concerns and the availability of more effective treatments.

It's worth noting that inorganic nitrites, such as sodium nitrite, are also used in medicine for various purposes, including as a preservative in food and as a medication to treat cyanide poisoning. However, these compounds have different chemical properties and uses than organic nitrites.

... (EC 1.3.1.92, Dbr2) is an enzyme with systematic name artemisinic aldehyde:NADP+ ... Artemisinic+aldehyde+Delta11(13)-reductase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: ... "The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis ... This enzyme catalyses the following chemical reaction (11R)-dihydroartemisinic aldehyde + NADP+ ⇌ {\displaystyle \ ...
3DG inactivates aldehyde reductase. Aldehyde reductase is the cellular enzyme that protects the body from 3DG. Detoxification ... Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N (January 1995). "In vivo glycation of aldehyde reductase, a major 3- ... Suzuki K, Koh YH, Mizuno H, Hamaoka R, Taniguchi N (February 1998). "Overexpression of aldehyde reductase protects PC12 cells ... "Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes". Biochemical Pharmacology. 53 (8): ...
Alcohol dehydrogenase [NADP+] also known as aldehyde reductase or aldo-keto reductase family 1 member A1 is an enzyme that in ... "Entrez Gene: AKR1A1 aldo-keto reductase family 1, member A1 (aldehyde reductase)". Palackal NT, Burczynski ME, Harvey RG, ... by mammalian aldose reductase and aldehyde reductase". Biochimica et Biophysica Acta (BBA) - General Subjects. 1244 (1): 10-6. ... Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N (January 1995). "In vivo glycation of aldehyde reductase, a major 3- ...
In enzymology, aldose reductase (or aldehyde reductase) (EC 1.1.1.21) is a cytosolic NADPH-dependent oxidoreductase that ... The reaction mechanism of aldose reductase in the direction of aldehyde reduction follows a sequential ordered path where NADPH ... Barski OA, Gabbay KH, Bohren KM (September 1999). "Characterization of the human aldehyde reductase gene and promoter". ... AKR1B1 Aldo-keto reductase Petrash JM (April 2004). "All in the family: aldose reductase and closely related aldo-keto ...
Ris, M. M.; Deitrich, R. A.; Von Wartburg, J. P. (1975-10-15). "Inhibition of aldehyde reductase isoenzymes in human and rat ...
Turner, A. J.; Hick, P. E. (15 September 1975). "Inhibition of aldehyde reductase by acidic metabolites of the biogenic amines ...
... such as aldehyde reductase, aldose reductase, prostaglandin F synthase, xylose reductase, rho crystallin, and many others. All ... cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases". J. Biol. Chem. 264 (16): 9547-51. PMID 2498333 ... The aldo-keto reductase family is a family of proteins that are subdivided into 16 categories; these include a number of ... Borhani DW, Harter TM, Petrash JM (December 1992). "The crystal structure of the aldose reductase.NADPH binary complex". J. ...
November 1995). "Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas". Science. 270 (5239 ... McEwan AG, Ridge JP, McDevitt CA, Hugenholtz P (2002). "The DMSO Reductase Family of Microbial Molybdenum Enzymes; Molecular ...
Methylglyoxal reductase and aldehyde dehydrogenase convert methylglyoxal into lactaldehyde and, eventually, L-lactate. If ... Methylglyoxal is, however, a reactive aldehyde that is very toxic to cells, it can inhibit growth in E. coli at milimolar ...
"Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas". Science. 270 (5239): 1170-6. Bibcode ... Other names in common use include aldehyde oxidase, aldehyde oxidoreductase, Mop, and AORDd. As of late 2007, only one ... In enzymology, an aldehyde dehydrogenase (FAD-independent) (EC 1.2.99.7) is an enzyme that catalyzes the chemical reaction an ... This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with ...
The role of aldehyde reductase tyrosine phenol group is to serve as a general acid to provide proton to the reduced aldehyde ... The mechanism involves a tyrosine residue in the active site of aldehyde reductase. The hydrogen atom on NADH is transferred to ... Aldose reductase is the first enzyme in the sorbitol-aldose reductase pathway responsible for the reduction of glucose to ... The reaction requires NADH and is catalyzed by aldose reductase. Glucose reduction is the first step of the polyol pathway of ...
Aflatoxin B1 aldehyde reductase member 2 is an enzyme that in humans is encoded by the AKR7A2 gene. Aldo-keto reductases, such ... "Entrez Gene: AKR7A2 aldo-keto reductase family 7, member A2 (aflatoxin aldehyde reductase)". Human AKR7A2 genome location and ... evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase ... Praml C, Savelyeva L, Perri P, Schwab M (1998). "Cloning of the human aflatoxin B1-aldehyde reductase gene at 1p35-1p36.1 in a ...
AR belongs to the aldehyde-keto reductase superfamily, with a widely expression in human organs including the kidney, lens, ... Aldo-keto reductase family 1, member B1 (AKR1B1), also known as aldose reductase, is an enzyme that is encoded by the AKR1B1 ... Robinson B, Hunsaker LA, Stangebye LA, Vander Jagt DL (December 1993). "Aldose and aldehyde reductases from human kidney cortex ... cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases". The Journal of Biological Chemistry. 264 (16 ...
Other names in common use include aromatic acid reductase, and aryl-aldehyde dehydrogenase (NADP+). Gross GG (1972). "Formation ... This enzyme belongs to the family of oxidoreductases, specifically those acting on the aldehyde or oxo group of donor with NAD+ ... Gross GG, Zenk MH (1969). "[Reduction of aromatic acids to aldehydes and alcohols in the cell-free system. 1. Purification and ... In enzymology, an aryl-aldehyde dehydrogenase (NADP+) (EC 1.2.1.30) is an enzyme that catalyzes the chemical reaction an ...
... aldehyde dehydrogenase and aldehyde reductase. The end product of epinephrine and norepinephrine is vanillylmandelic acid (VMA ...
Within this group are the glutathione S-transferases (GSTs) such as hGSTA4-4 and hGST5.8, aldose reductase, and aldehyde ... 4-HNE has two reactive groups: the conjugated aldehyde and the C=C double-bond, and the hydroxy group at carbon 4. The α,β- ... Although they are the most studied ones, in the same process other oxygenated α,β-unsaturated aldehydes (OαβUAs) are generated ... Increased activity of the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) has been shown to have a protective effect ...
Other names in common use include retinal reductase, aldehyde reductase (NADPH/NADH), and alcohol dehydrogenase [NAD(P)]. This ... an aldehyde + NAD(P)H + H+ The 3 substrates of this enzyme are alcohol, NAD+, and NADP+, whereas its 4 products are aldehyde, ...
The chanoclavine intermediate is then oxidized to chanoclavine-l-aldehyde, catalyzed by the short-chain dehydrogenase/reductase ... in which agroclavine is produced following the formation of chanoclavine-l-aldehyde, catalyzed by EasA through a keto-enol ... tautomerization to facilitate rotation about the C-C bond, followed by tautomerization back to the aldehyde and condensation ...
The short contact between Br and Thr 113 OG explains the selectivity of IDD 594 towards AR, because in aldehyde reductase the ... The molecules fail to bind to each other if similar aldehyde reductase replaces the enzyme, or chlorine replaces the drug ... For example, inhibitor IDD 594 binds to human aldose reductase through a bromine halogen bond, as shown in the figure. ... June 2004). "Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A ...
RASP are metabolized by aldehyde dehydrogenases or aldehyde reductases. Due to the toxicity of RASP, only a small number of ... Reactive aldehyde species (RASP), also known as reactive aldehydes, refer to a class of electrophilic organic aldehyde ... Wood, Paul L.; Khan, M. Amin; Moskal, Joseph R. (2007-05-11). "The concept of "aldehyde load" in neurodegenerative mechanisms: ... Fritz, Kristofer S.; Petersen, Dennis R. (2013-06-01). "An overview of the chemistry and biology of reactive aldehydes". Free ...
... carbonyl reductase, nonspecific NADPH-dependent carbonyl reductase, aldehyde reductase 1, and carbonyl reductase (NADPH). This ... Other names in common use include aldehyde reductase 1, prostaglandin 9-ketoreductase, xenobiotic ketone reductase, NADPH- ... In enzymology, a carbonyl reductase (NADPH) (EC 1.1.1.184) is an enzyme that catalyzes the chemical reaction R-CO-R' + NADPH + ... Wermuth B (1981). "Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to ...
Other names in common use include aldehyde reductase, L-hexonate:NADP dehydrogenase, TPN-L-gulonate dehydrogenase, aldehyde ... reductase II, NADP-L-gulonate dehydrogenase, D-glucuronate dehydrogenase, D-glucuronate reductase, and L-glucuronate reductase ... In enzymology, a glucuronate reductase (EC 1.1.1.19) is an enzyme that catalyzes the chemical reaction L-gulonate + NADP+ ⇌ {\ ...
Aldo-keto reductases, such as AKR7A3, are involved in the detoxification of aldehydes and ketones.[supplied by OMIM, Apr 2004 ... PDBe-KB provides an overview of all the structure information available in the PDB for Human Aflatoxin B1 aldehyde reductase ... Aldo-keto reductase family 7 member A3 is a protein that in humans is encoded by the AKR7A3 gene. ... "Entrez Gene: Aldo-keto reductase family 7 member A3". Retrieved 2018-04-13. ...
... ferredoxin-nitrite reductase MeSH D08.811.682.655.750.500 - nitrite reductase (NAD(P)H) MeSH D08.811.682.657.163 - aldehyde ... aldehyde reductase MeSH D08.811.682.047.150.700.237 - d-xylulose reductase MeSH D08.811.682.047.150.700.400 - glycerolphosphate ... gmp reductase MeSH D08.811.682.655.500 - nitrate reductases MeSH D08.811.682.655.500.124 - nitrate reductase MeSH D08.811. ... testosterone 5-alpha-Reductase MeSH D08.811.682.662.162 - dihydropteridine reductase MeSH D08.811.682.662.171 - FMN reductase ...
... artemisinic aldehyde Δ11(13)-reductase EC 1.3.1.93: very-long-chain enoyl-CoA reductase EC 1.3.1.94: polyprenol reductase EC ... flavin reductase (NADH) EC 1.5.1.37: FAD reductase (NADH) EC 1.5.1.38: FMN reductase (NADPH) EC 1.5.1.39: FMN reductase (NAD(P) ... zeatin reductase EC 1.3.1.70: Δ14-sterol reductase EC 1.3.1.71: Δ24(241)-sterol reductase EC 1.3.1.72: Δ24-sterol reductase EC ... nitrite reductase (NAD(P)H) EC 1.7.1.5: hyponitrite reductase EC 1.7.1.6: azobenzene reductase EC 1.7.1.7: GMP reductase EC 1.7 ...
... respiratory arsenate reductase, carbon monoxide dehydrogenase, aldehyde oxidase. Prosthetic group of: formate dehydrogenase, ... Molybdopterin is a: Cofactor of: xanthine oxidase, DMSO reductase, sulfite oxidase, nitrate reductase, ethylbenzene ... Tungsten-using enzymes typically reduce free carboxylic acids to aldehydes. The first tungsten-requiring enzyme to be ... Enzymes that contain the molybdopterin cofactor include xanthine oxidase, DMSO reductase, sulfite oxidase, and nitrate ...
White H, Strobl G, Feicht R, Simon H (September 1989). "Carboxylic acid reductase: a new tungsten enzyme catalyses the ... In enzymology, an aldehyde ferredoxin oxidoreductase (EC 1.2.7.5) is an enzyme that catalyzes the chemical reaction an aldehyde ... Its primary role is to oxidize aldehyde coming derived from the metabolism of amino acids and glucoses. Aldehyde Ferredoxin ... AOR has been proposed to be the primary enzyme responsible for oxidising the aldehydes that are produced by the 2-keto acid ...
LuxAB codes for luciferase while luxCDE codes for a fatty-acid reductase complex that is responsible for synthesizing aldehydes ... With the exception of the Photorhabdus operon type, all variants of the lux operon contain the flavin reductase-encoding luxG ... Nevertheless, all bio-luminescent bacteria share a common gene sequence: the enzymatic oxidation of Aldehyde and reduced Flavin ... For bacterial bio-luminescence specifically, the biochemical reaction involves the oxidation of an aliphatic aldehyde by a ...
... and then the gamma-glutamyl phosphate is the made into gamma-glutamic semi-aldehyde in the gamma-glutamyl phosphate reductase ... "Entrez Gene: ALDH18A1 aldehyde dehydrogenase 18 family, member A1". Fischer-Zirnsak B, Escande-Beillard N, Ganesh J, Tan YX, Al ... P5CS consists of two domains: gamma-glutamyl kinase and gamma-glutamyl phosphate reductase, each of which are used to complete ... This gene is a member of the aldehyde dehydrogenase family and encodes a bifunctional ATP- and NADPH-dependent mitochondrial ...
... aldehyde oxidase, and mitochondrial amidoxime reductase. People severely deficient in molybdenum have poorly functioning ... Those enzymes include aldehyde oxidase, sulfite oxidase and xanthine oxidase. With one exception, Mo in proteins is bound by ... "Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First ...
Artemisinic aldehyde Delta11(13)-reductase (EC 1.3.1.92, Dbr2) is an enzyme with systematic name artemisinic aldehyde:NADP+ ... Artemisinic+aldehyde+Delta11(13)-reductase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: ... "The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis ... This enzyme catalyses the following chemical reaction (11R)-dihydroartemisinic aldehyde + NADP+ ⇌ {\displaystyle \ ...
PDB Compounds: (B:) Aldehyde reductase II. SCOPe Domain Sequences for d1ujmb_:. Sequence; same for both SEQRES and ATOM records ... Protein Aldehyde reductase II [117413] (1 species). *. Species Sporobolomyces salmonicolor [TaxId:5005] [117414] (3 PDB entries ... PDB Description: Crystal structure of aldehyde reductase 2 from Sporobolomyces salmonicolor AKU4429 ... d1ujmb_ c.2.1.2 (B:) Aldehyde reductase II {Sporobolomyces salmonicolor [TaxId: 5005]} ...
Corneal aldehyde dehydrogenase, glutathione reductase, and glutathione S-transferase in pathologic corneas. Cornea. 1993 Jul. ...
Aldehyde reductase (dehydrogenase), ALDH. Matching Structure (courtesy of the PDB):. Predicted functions:. Term. Confidence. ... aldehyde dehydrogenase (NAD) activity. 2.81851373615334. bayes_pls_golite062009. catalytic activity. 2.80804701752928. bayes_ ... 3-chloroallyl aldehyde dehydrogenase activity. 3.37049090049734. bayes_pls_golite062009. oxidoreductase activity, acting on the ... aldehyde dehydrogenase [NAD(P)+] activity. 2.43250909158896. bayes_pls_golite062009. aminobutyraldehyde dehydrogenase activity ...
Mammalian metalloproteins and enzymes that have nitrate reductase activity include aldehyde oxidase, heme proteins, ... The action of bacterial nitrate reductases on the tongue and mammalian enzymes that have nitrate reductase activity in tissues ... Enterosalivary circulation pathway (nitrate reductase activity of bacteria on the tongue generates nitrite and nitrite which is ... are noted by the number 1. Bacterial nitrate reductases are noted by the number 2. Mammalian enzymes with nitrite reductase ...
We characterized this gene that encodes an aldehyde reductase as a member of the intermediate subfamily of short-chain ... Title: A Novel NADPH-Dependent Aldehyde Reductase Gene from Saccharomyces cerevisiae NRRL Y-12632 Involved in the ... In this study, we report a novel aldehyde reductase gene isolated from ethanologenic yeast Saccharomyces cerevisiae NRRL Y- ... In this study, we report a novel aldehyde reductase gene clone Y63 from ethanologenic yeast Saccharomyces cerevisiae NRRL ...
Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes ... Petrash, J. M. (2004). Allin the family: aldose reductase and closely related aldo-keto reductases. Cell. Mol. Life Sci. 61, ... Aldo-keto reductases mediate constitutive and inducible protection against aldehyde toxicity in human neuroblastoma SH-SY5Y ... AKR1B1 (or aldose reductase) is a member of the AKR superfamily, which comprises multiple enzymes involved in oxidoreduction of ...
aldo-keto reductase family 1, member A4 (aldehyde reductase). Orthologue. G00002491 (Homo sapiens). *Databases (9) ...
Aldehyde Reductase activity of Carboxylic Acid Reductases. Winkler, M., Breuer, H. & Schober, L., 13 Feb 2024, (Accepted/In ... Cell-free reduction of carboxylic acids with secreted carboxylic acid reductase. Goj, D., Ebner, S., Horvat, M., Arhar, S., ...
3-methylbutyraldehyde reductase, aldehyde reductase, bcADH, branched-chain alcohol dehydrogenase, Gre2, GRE2 gene product, ... Gre2p, isoamylaldehyde reductase, isopentanal reductase, isovaleral reductase, isovaleraldehyde reductase, More, protein YIM1, ... 1.1.1.265: 3-methylbutanal reductase. This is an abbreviated version!. For detailed information about 3-methylbutanal reductase ...
Aldose Reductase Inhibitor Chemical Compounds 100% * Aldehyde Reductase Medicine & Life Sciences 87% ... Synthesis and aldose reductase inhibitory activities of novel dibenzocycloheptenone derivatives. Jun Inoue, Ying She Cui, ... Synthesis and aldose reductase inhibitory activities of novel dibenzocycloheptenone derivatives. / Inoue, Jun; Cui, Ying She; ... Synthesis and aldose reductase inhibitory activities of novel dibenzocycloheptenone derivatives. European Journal of Medicinal ...
Turner, A. J., and P. E. Hick, Inhibition of aldehyde reductase by acidic metabolites of the biogenic amines., Biochemical ...
The expression of genes encoding intermediate filament proteins, heat shock proteins, ribosomal proteins, aldehyde reductase ...
We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced ... by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). Additionally, after ... Rodriguez GM, Atsumi S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. ... Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes. ACS ...
... it a very important enzyme for the regulation of not only the cellular redox state by detoxifying the reactive lipid-aldehydes ... title = "Understanding the role of aldose reductase in ocular inflammation",. abstract = "Aldose reductase, although identified ... Yadav, U. C.S. ; Srivastava, S. K. ; Ramana, K. V. / Understanding the role of aldose reductase in ocular inflammation. In: ... N2 - Aldose reductase, although identified initially as a glucose-reducing enzyme via polyol pathway, is believed to be an ...
PREDICTED: NADPH-dependent pterin aldehyde reductase [Jatropha curcas]. 8. Hb_000140_230. 0.1072684758. -. -. PREDICTED: ...
... can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde ... The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings ...
... aldehyde and ketone reductases, and many others.33 15 16 Figure 3.3: Anatomy of the retina Topically delivered drugs diffuse ... s acetal was hydrolyzed to aldehyde, the aldehyde reacted with the PVA, and some acetate groups remaining on the PVA from its ... The 1,3 hydroxyl groups are perfectly positioned to undergo cyclic acetal formation upon reaction with aldehydes, and this is a ...
Inhibition of aldehyde reductase isoenzymes in human and rat brain. Biochem Pharmacol. 1975 Oct 15. 24 (20):1865-9. [QxMD ... Inhibition of aldehyde reductase by acidic metabolites of the biogenic amines. Biochem Pharmacol. 1975 Sep 15. 24 (18):1731-3. ...
Inhibition of aldehyde reductase isoenzymes in human and rat brain. Biochem Pharmacol. 1975 Oct 15. 24 (20):1865-9. [QxMD ... Inhibition of aldehyde reductase by acidic metabolites of the biogenic amines. Biochem Pharmacol. 1975 Sep 15. 24 (18):1731-3. ...
Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp ... Swamp eel aldehyde reductase is involved in response to nitrosative stress via regulating NO/GSH levels. ... The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A ...
Aldehyde Dehydrogenase *Aldehyde Reductase *Aldose Reductase *Aldosterone Receptors *ALK Receptors *Alpha-Glucosidase ...
Suzuki K, Koh YH, Mizuno H, Hamaoka R, Taniguchi N. Overexpression of aldehyde reductase protects PC12 cells from the ... Suzuki K, Koh YH, Mizuno H, Hamaoka R, Taniguchi N. Overexpression of aldehyde reductase protects PC12 cells from the ...
","Gamma-glutamyl phosphate reductase [Ensembl]. Aldehyde dehydrogenase family [Interproscan].","protein_coding" "AKP16135"," ... ","Proline reductase PrdE [Ensembl]. Glycine/sarcosine/betaine reductase component B subunits [Interproscan].","protein_coding ... ","Putative reductase [Ensembl]. NADPH-dependent FMN reductase [Interproscan].","protein_coding" "CCL20266","No alias"," ... ","putative aldehyde dehydrogenase [Ensembl]. Aldehyde dehydrogenase domain [InterProScan].","protein_coding" "AGT24946","N559_ ...
... and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to ... and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to ... and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to ... and human aldehyde reductase (AKR1A1). Such simulations evidenced a different behavior between the reductases with respect to ...
Change in aldo-keto reductases spectrum modulates the role of reductive pathway of endogenous aldehydes scavenging in the ... aldehyde scavengers can be used as well as methods for increasing the rate of gene expression of enzymes catalyzing aldehyde ... In view of this fact, spectrum of aldo-keto reductases in blood serum of rats at different stages of ontogenesis was ... Identical changes in the composition of aldo-keto reductases spectrum of blood in early immature age and in aging have been ...
C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... K1.559.411.768 Progesterone Reductase D8.811.682.47.820.500 Propranolol D2.33.100.624.836 D2.33.755.624.836 Psychoses, ... D27.505.954.329.30.500 D-Xylulose Reductase D8.811.682.47.820.800 Dementia, Vascular C10.228.518.500 Demyelinating Autoimmune ...
C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... K1.559.411.768 Progesterone Reductase D8.811.682.47.820.500 Propranolol D2.33.100.624.836 D2.33.755.624.836 Psychoses, ... D27.505.954.329.30.500 D-Xylulose Reductase D8.811.682.47.820.800 Dementia, Vascular C10.228.518.500 Demyelinating Autoimmune ...
  • Enzymes such as aldo-keto reductases (AKR) and glutathione transferases (GST) metabolize prostaglandins and reactive aldehydes with proinflammatory activity, as well as drugs and/or their reactive metabolites. (frontiersin.org)
  • PREDICTED: aldehyde dehydrogenase 1A1 isoform 6 [Macaca mulatta], g. (yeastrc.org)
  • We characterized this gene that encodes an aldehyde reductase as a member of the 'intermediate' subfamily of short-chain dehydrogenase superfamily. (usda.gov)
  • 1984), stimu- by aldehyde dehydrogenase to acrylic acid (Patel et al. (cdc.gov)
  • Catalytic efficiency declined after switching from ketones to aldehydes. (unimore.it)
  • Artemisinic aldehyde Delta11(13)-reductase (EC 1.3.1.92, Dbr2) is an enzyme with systematic name artemisinic aldehyde:NADP+ oxidoreductase. (wikipedia.org)
  • This enzyme catalyses the following chemical reaction (11R)-dihydroartemisinic aldehyde + NADP+ ⇌ {\displaystyle \rightleftharpoons } artemisinic aldehyde + NADPH + H+ This enzyme i present in Artemisia annua. (wikipedia.org)
  • A number of dibenzocycloheptenone derivatives, a novel series of aldose reductase inhibitors, were synthesized and evaluated in vitro for their ability to inhibit rat lens aldose reductase enzyme. (nebraska.edu)
  • Aldose reductase, although identified initially as a glucose-reducing enzyme via polyol pathway, is believed to be an important component of antioxidant defense system as well as a key mediator of oxidative stress-induced molecular signaling. (utmb.edu)
  • The dual role played by AR has made it a very important enzyme for the regulation of not only the cellular redox state by detoxifying the reactive lipid-aldehydes generated by lipid peroxidation which is crucial in the cellular homeostasis, but also in the regulation of molecular signaling cascade that may regulate oxidative stress-induced cytotoxic events. (utmb.edu)
  • To better understand the individual importance of each enzyme in the reduction and to provide deeper insight into the binding at atomic level we performed molecular docking and dynamics simulations of DAUN and DOX into the active sites of human carbonyl reductase 1 (CBR1) and human aldehyde reductase (AKR1A1). (unicatt.it)
  • Aldose reductase became less sensitive to the four inhibitors as enzyme purification progressed,although the susceptibility to inhibition was partially reversed by incubation with dithiothreitol.In addition,the four compounds slightly affected those enzymes of carbohydrate and glutathione metabolism which were tested.M16209 and M16287 prevented sorbitol accumulation in isolated rat tissues as potently as ONO-2235 and sorbinil. (necrosulfonamideinhibitor.com)
  • Development of tolerant ethanologenic yeast that are able to in situ detoxify aldehyde inhibitors have been demonstrated to be an efficient means to overcome the inhibitor stress. (usda.gov)
  • In this study, we report a novel aldehyde reductase gene isolated from ethanologenic yeast Saccharomyces cerevisiae NRRL Y-50049 that show strong reduction activities toward at least 14 aldehyde substrates among which, many are inhibitors generated from lignocellulosic biomass conversion hydrolysis. (usda.gov)
  • Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and fermentation. (usda.gov)
  • In situ detoxification of the aldehyde inhibitors is possible by the tolerant ethanologenic yeast that involves multiple genes including numerous functional reductases. (usda.gov)
  • M16209 and M16287 were effective in the prevention of galactosemic cataracts and amelioration of diabetic neuropathy with almost the same potency, while ONO-2235 was effective onlyin neuropathy,and sorbinil was effective in galactosemic cataracts and diabetic neuropathy with a different potency.These results indicate that M16209 and M16287 are potent aldose reductase inhibitors,which could be applicable to treatment for diabetic complications. (necrosulfonamideinhibitor.com)
  • Enterosalivary circulation pathway (nitrate reductase activity of bacteria on the tongue generates nitrite and nitrite which is metabolized to NO in the stomach and circulation) [Hord 2011]. (cdc.gov)
  • High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. (unimore.it)
  • ABSTRACT Serum levels of glutathione reductase (GR), glutathione S-transferase- (GST-) and malondialdehyde (MDA) were determined to evaluate their use in diagnosing hepatocellular damage in 75 children with liver disease. (who.int)
  • In this study, we report a novel aldehyde reductase gene clone Y63 from ethanologenic yeast Saccharomyces cerevisiae NRRL Y12632, representing the uncharacterized ORF YGL157W, which demonstrated nicotinamide dinucleotide phosphate (NADPH)-dependent reduction activities toward at least 14 aldehyde substrates. (usda.gov)
  • The anthracycline anticancer agents daunorubicin (DAUN) and doxorubicin (DOX) are reduced by different NADPH-dependent cytosolic reductases into their corresponding alcohol metabolites daunorubicinol (DAUNol) and doxorubicinol (DOXol), which have been implicated in the development of chronic cardiomyopathy. (unicatt.it)
  • Aldose reductase (AR, E.C. 1.1.1.21) catalyzes the re-duction of D-glucose to its corresponding sugar alcohol, sorbitol, and it belongs to a larger family of aldehyde reductases that are monomeric, nicotineamide adenine dinucleotide phosphate (NADPH)-dependent oxidoreduc-tases. (necrosulfonamideinhibitor.com)
  • For this purpose, aldehyde scavengers can be used as well as methods for increasing the rate of gene expression of enzymes catalyzing aldehyde catabolism. (sciencepg.com)
  • We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced sufficient isobutyraldehyde precursors and finally achieved de novo synthesis of propane (91 μg/L) by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). (biomedcentral.com)
  • The butyric acid is converted into butyraldehyde by carboxylic acid reductase (CAR) from Mycobacterium marinum and further directed toward propane synthesis (red part of Fig. 1 ). (biomedcentral.com)
  • unsaturated aldehyde, is used as a water although other metabolites are also produced (Beauchamp et al. (cdc.gov)
  • Ramana, K. V. / Understanding the role of aldose reductase in ocular inflammation . (utmb.edu)
  • ADO is a non-heme diiron oxygenase and can catalyze the conversion of C n fatty aldehydes to formate and corresponding C n-1 alkanes [ 9 ]. (biomedcentral.com)
  • Objective - To determine effects of a topical formulation of an aldose reductase inhibitor (ARI) on the development of sugar cataracts in dogs fed a diet high in galactose. (nebraska.edu)
  • Z^^^Y^^Il ^ relationships between the enzymes aldose reductase and aldehyde ^iP. (nih.gov)
  • Aldose reductase (AR) is known to detoxify aldehydes and prevent oxidative stress. (bvsalud.org)
  • 4-hydroxy-2,3-trans-nonenal induces transcription and expression of aldose reductase. (snaubulletin.com.ua)
  • The aldo-keto reductases (AKRs): Overview. (nih.gov)
  • Aldo-keto reductases, such as AKR7A3, are involved in the detoxification of aldehydes and ketones. (nih.gov)
  • Enterosalivary circulation pathway (nitrate reductase activity of bacteria on the tongue generates nitrite and nitrite which is metabolized to NO in the stomach and circulation) [Hord 2011]. (cdc.gov)
  • Methylenetetrahydrofolate reductase is a key enzyme in folate metabolism, which affects DNA synthesis and methylation and is possibly linked to colorectal carcinogenesis. (nih.gov)
  • Relation of plasma folate and methylenetetrahydrofolate reductase C677T polymorphism to colorectal adenomas. (cdc.gov)
  • There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. (nih.gov)
  • Taken together these results indicate that this enzyme may have a physiological function by protecting the cell against the toxic effect of aldehydes derived from lipid oxidation. (unab.cl)
  • The flavin-dependent alkanesulfonate monooxygenase (SsuD) catalyzes the oxidation of alkanesulfonate to aldehyde and sulfite in the presence of O2 and FMNH2 provided by an FMN reductase (SsuE). (auburn.edu)
  • Blue-green light is emitted from these bacteria with a peak at 490 nm as a result of a heterodimeric luciferase, an enzyme which catalyses the oxidation of reduced flavin mononucleotide (FMNH 2 ) and a long-chain fatty aldehyde (synthesized by a fatty acid reductase complex encoded by luxCDE ). (biomedcentral.com)
  • The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. (port.ac.uk)
  • Increased tolerance was also observed for the lipid peroxidation-derived aldehydes butanaldehyde, propanaldehyde, acrolein, and malondialdehyde and the membrane-peroxidizing compound tert-butylhydroperoxide. (unab.cl)
  • Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. (wakehealth.edu)
  • Wang C, Yan R, Luo D, Watabe K, Liao DF, Cao D. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. (wakehealth.edu)
  • This member catalyzes the reduction of a number of aldehydes, including the aldehyde form of glucose, and is thereby implicated in the development of diabetic complications by catalyzing the reduction of glucose to sorbitol. (nih.gov)
  • The nomenclature system used by the HUGO Gene Nomenclature Committee to define human aldo-keto reductase family members is known to differ from that used by the Mouse Genome Informatics database. (nih.gov)
  • 19. Increased aldehyde reductase expression mediates acquired radioresistance of laryngeal cancer cells via modulating p53. (nih.gov)