S-adenosylmethionine synthetase is overexpressed in murine neuroblastoma cells resistant to nucleoside analogue inhibitors of S-adenosylhomocysteine hydrolase: a novel mechanism of drug resistance. (1/196)
S-Adenosylmethionine (AdoMet) synthetase (EC 2.5.1.6), which catalyzes the synthesis of AdoMet from methionine and ATP, is the major methyl donor for transmethylation reactions and propylamino donor for the biosynthesis of polyamines in biological systems. We have reported previously that wild-type C-1300 murine neuroblastoma (wMNB) cells, made resistant to the nucleoside analogue (Z)-5'-fluoro-4',5'-didehydro-5'-deoxyadenosine (MDL 28,842), an irreversible inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase (EC 3.3.1.1), express increased AdoMet synthetase activity (M. R. Hamre et al., Oncol. Res., 7: 487-492, 1995). In the present study, immunoblot analyses of AdoMet Synthetase with isoform-specific (MATII) antibodies demonstrated an elevation in the AdoMet synthetase immunoprotein in nucleoside analogue-resistant MNB cells (rMNB-MDL) when compared to wild-type, nonresistant MNB cells. An increase of 2.1-fold was observed in the alpha2/alpha2' catalytic subunit, which differed significantly from the much smaller increment in the noncatalytic beta-subunit of AdoMet synthetase. Densitometric analyses revealed that an increased expression of AdoMet synthetase in rMNB-MDL cells was due to overexpression of the alpha2 (Mr 53,000; 2.6-fold) and alpha2' (Mr 51,000; 1.8-fold) subunits. AdoMet synthetase mRNA expression in rMNB-MDL cells was remarkably greater than wMNB cells, as determined by quantitative competitive reverse transcription-PCR (QC-PCR) analysis. DNA (cytosine) methyl transferase expression, measured by reverse transcription-PCR analysis, was also elevated significantly in rMNB-MDL cells. In contrast, Western blot analyses demonstrated down-regulation (1.6-fold) of AdoMet synthetase in doxorubicin-resistant human leukemia cells (HL-60-R) expressing multidrug resistance protein when compared with wild-type, nonresistant HL-60 cells. The resistance of rMNB-MDL cells to nucleoside analogue inhibitors of S-adenosylhomocysteine hydrolase correlates directly with overexpression of the alpha2/alpha2' subunits of AdoMet synthetase. Cellular adaptation allows sufficient AdoMet to be synthesized, so that viability of the MNB cells can be maintained even in the presence of high AdoHcy concentrations. This novel mechanism of drug resistance does not appear to require multidrug resistance protein (P-glycoprotein) overexpression. (+info)3-deazaadenosine, a S-adenosylhomocysteine hydrolase inhibitor, has dual effects on NF-kappaB regulation. Inhibition of NF-kappaB transcriptional activity and promotion of IkappaBalpha degradation. (2/196)
Previously we reported that 3-deazaadenosine (DZA), a potent inhibitor and substrate for S-adenosylhomocysteine hydrolase inhibits bacterial lipopolysaccharide-induced transcription of tumor necrosis factor-alpha and interleukin-1beta in mouse macrophage RAW 264.7 cells. In this study, we demonstrate the effects of DZA on nuclear factor-kappaB (NF-kappaB) regulation. DZA inhibits the transcriptional activity of NF-kappaB through the hindrance of p65 (Rel-A) phosphorylation without reduction of its nuclear translocation and DNA binding activity. The inhibitory effect of DZA on NF-kappaB transcriptional activity is potentiated by the addition of homocysteine. Taken together, DZA promotes the proteolytic degradation of IkappaBalpha, but not IkappaBbeta, resulting in an increase of DNA binding activity of NF-kappaB in the nucleus in the absence of its transcriptional activity in RAW 264.7 cells. The reduction of IkappaBalpha by DZA is neither involved in IkappaB kinase complex activation nor modulated by the addition of homocysteine. This study strongly suggests that DZA may be a potent drug for the treatment of diseases in which NF-kappaB plays a central pathogenic role, as well as a useful tool for studying the regulation and physiological functions of NF-kappaB. (+info)Nuclear accumulation of S-adenosylhomocysteine hydrolase in transcriptionally active cells during development of Xenopus laevis. (3/196)
The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)(+) RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH. (+info)UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. (4/196)
The UV light-induced synthesis of UV-protective flavonoids diverts substantial amounts of substrates from primary metabolism into secondary product formation and thus causes major perturbations of the cellular homeostasis. Results from this study show that the mRNAs encoding representative enzymes from various supply pathways are coinduced in UV-irradiated parsley cells (Petroselinum crispum) with two mRNAs of flavonoid glycoside biosynthesis, encoding phenylalanine ammonia-lyase and chalcone synthase. Strong induction was observed for mRNAs encoding glucose 6-phosphate dehydrogenase (carbohydrate metabolism, providing substrates for the shikimate pathway), 3-deoxyarabinoheptulosonate 7-phosphate synthase (shikimate pathway, yielding phenylalanine), and acyl-CoA oxidase (fatty acid degradation, yielding acetyl-CoA), and moderate induction for an mRNA encoding S-adenosyl-homocysteine hydrolase (activated methyl cycle, yielding S-adenosyl-methionine for B-ring methylation). Ten arbitrarily selected mRNAs representing various unrelated metabolic activities remained unaffected. Comparative analysis of acyl-CoA oxidase and chalcone synthase with respect to mRNA expression modes and gene promoter structure and function revealed close similarities. These results indicate a fine-tuned regulatory network integrating those functionally related pathways of primary and secondary metabolism that are specifically required for protective adaptation to UV irradiation. Although the response of parsley cells to UV light is considerably broader than previously assumed, it contrasts greatly with the extensive metabolic reprogramming observed previously in elicitor-treated or fungus-infected cells. (+info)Simple and sensitive binding assay for measurement of adenosine using reduced S-adenosylhomocysteine hydrolase. (5/196)
BACKGROUND: Adenosine has been suggested to play an important role in the regulation of renal function. We developed a simple and sensitive binding assay for the detection of adenosine based on the displacement of [(3)H]adenosine from S-adenosylhomocysteine (SAH) hydrolase in its reduced form. METHODS: SAH hydrolase was purified to apparent homogeneity from bovine kidney by standard chromatographic methods. SAH hydrolase was converted in its reduced form, which had the advantage that the SAH hydrolase is enzymatically inactive. This reduced enzyme retains its ability to bind adenosine with high affinity. To determine adenosine in urine or tissues, samples must be deproteinized (e.g., with 10 g/L sulfosalicylic acid or 0.6 mol/L perchloric acid). RESULTS: The reduced SAH hydrolase bound adenosine with a dissociation constant of 33.0 +/- 2 nmol/L. Displacement of adenosine binding by the adenine 5'-nucleotides, adenine and hypoxanthine, required >1000-fold higher concentrations than adenosine itself. The intra- and interassay imprecision (CV) was <3.9% and 7.8%, respectively, and the values obtained showed acceptable correlation with those by HPLC. CONCLUSIONS: The highly sensitive adenosine-binding protein assay is a simple test that allows detection of adenosine in samples with small volumes without purification, and is in this respect superior to HPLC. (+info)Synthesis of S-adenosyl-L-homocysteine hydrolase inhibitors and their biological activities. (6/196)
Several nucleosides have been prepared as a possible inhibitor of human S-adenosyl-L-homocysteine (SAH) hydrolase for the development of anti-viral agents. Recently, SAH hydrolase has been considered as an attractive target for parasite chemotherapy for malaria. We report synthesis of several nucleosides including carbocyclic nucleosides and their inhibitory activities against recombinant malaria and human SAH hydrolases. (+info)Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense. (7/196)
Genes showing differential expression related to the early G(1) phase of the cell cycle during synchronized circadian growth of the toxic dinoflagellate Alexandrium fundyense were identified and characterized by differential display (DD). The determination in our previous work that toxin production in Alexandrium is relegated to a narrow time frame in early G(1) led to the hypothesis that transcriptionally up- or downregulated genes during this subphase of the cell cycle might be related to toxin biosynthesis. Three genes, encoding S-adenosylhomocysteine hydrolase (Sahh), methionine aminopeptidase (Map), and a histone-like protein (HAf), were isolated. Sahh was downregulated, while Map and HAf were upregulated, during the early G(1) phase of the cell cycle. Sahh and Map encoded amino acid sequences with about 90 and 70% similarity to those encoded by several eukaryotic and prokaryotic Sahh and Map genes, respectively. The partial Map sequence also contained three cobalt binding motifs characteristic of all Map genes. HAf encoded an amino acid sequence with 60% similarity to those of two histone-like proteins from the dinoflagellate Crypthecodinium cohnii Biecheler. This study documents the potential of applying DD to the identification of genes that are related to physiological processes or cell cycle events in phytoplankton under conditions where small sample volumes represent an experimental constraint. The identification of an additional 21 genes with various cell cycle-related DD patterns also provides evidence for the importance of pretranslational or transcriptional regulation in dinoflagellates, contrary to previous reports suggesting the possibility that translational mechanisms are the primary means of circadian regulation in this group of organisms. (+info)The use of enzyme therapy to regulate the metabolic and phenotypic consequences of adenosine deaminase deficiency in mice. Differential impact on pulmonary and immunologic abnormalities. (8/196)
Adenosine deaminase (ADA) deficiency results in a combined immunodeficiency brought about by the immunotoxic properties of elevated ADA substrates. Additional non-lymphoid abnormalities are associated with ADA deficiency, however, little is known about how these relate to the metabolic consequences of ADA deficiency. ADA-deficient mice develop a combined immunodeficiency as well as severe pulmonary insufficiency. ADA enzyme therapy was used to examine the relative impact of ADA substrate elevations on these phenotypes. A "low-dose" enzyme therapy protocol prevented the pulmonary phenotype seen in ADA-deficient mice, but did little to improve their immune status. This treatment protocol reduced metabolic disturbances in the circulation and lung, but not in the thymus and spleen. A "high-dose" enzyme therapy protocol resulted in decreased metabolic disturbances in the thymus and spleen and was associated with improvement in immune status. These findings suggest that the pulmonary and immune phenotypes are separable and are related to the severity of metabolic disturbances in these tissues. This model will be useful in examining the efficacy of ADA enzyme therapy and studying the mechanisms underlying the immunodeficiency and pulmonary phenotypes associated with ADA deficiency. (+info)
S-adenosylhomocysteine hydrolase deficiency | definition of S-adenosylhomocysteine hydrolase deficiency by Medical dictionary
EC 3.3.1.1
S-Adenosyl Homocysteine Hydrolase Is Required for Myc-Induced mRNA Cap Methylation, Protein Synthesis, and Cell Proliferation |...
RCSB PDB - 3D64: Crystal structure of S-adenosyl-L-homocysteine hydrolase from Burkholderia pseudomallei
107 Targeting sahh as a potential therapeutic strategy for autoimmune diseases | Lupus Science & Medicine
Design, synthesis, and molecular modeling studies of 5′-deoxy-5′-ureidoadenosine: 5′-ureido group as multiple hydrogen bonding...
Schedule | 32nd Steenbock Symposium | Biochemistry | UW-Madison
Plus it
O-GlcNAcylation regulates the methionine cycle to promote pluripotency of stem cells | PNAS
Mutagenetix > Incidental...
Ahcy - Model 8032 | GEM Collection | Mouse Models | Taconic Biosciences
DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation |...
Biofyzikální ústav AV ČR
Search
EMBL: CP000529.PE483
Plus it
TumorPortal
Lund University Publications
Takako Fujioka | CCRMA
ENZYME entry 2.1.1.358
KEGG REACTION: R08468
SACOL RS06105 - AureoWiki
SAUSA300 0466 - AureoWiki
AHCYL1 (Human) Recombinant Protein (P01) - (H00010768-P01) - Products - Abnova
Table of Contents - July 01, 1998, 333 (1) | Biochemical Journal
Table of Contents - December 15, 2004, 24 (50) | Journal of Neuroscience
Eye cancer | Eyeball removal (enucleation). Ophthalmology: Treatment in Germany, Marburg hospitals on BookingHealth.com
S-adenosylhomocysteine deaminase - Biology-Online Dictionary
S-adenosylhomocysteine - Biology-Online Dictionary
Uridine 5-Prime Monophosphate Hydrolase Deficiency, Hemolytic Anemia Due to disease: Malacards - Research Articles, Drugs,...
S-Adenosyl-L-homocysteine United States Pharmacopeia (USP) Reference Standard | 979-92-0 | Sigma-Aldrich
Nucleotide Sequence and Transcriptional Analysis of the Flanking Region of the Gene (spb) for the trans-Acting Factor That...
Plus it
AID 98939 - Tested for the ability to traverse cell membranes and to alter ratio of AdoMet to S-adenosyl-homocysteine (AdoHcy)...
On the Mechanism of Action of Urocanase Observation of the Enzyme-Bound NAD+ -Inhibitor
Adduct by 13C NMR Spectroscopy.
Rhea - Annotated reactions database
Rhea - Annotated reactions database
Rhea - Annotated reactions database
Human methyltransferase tRNA complex - Stock Image C035/6264 - Science Photo Library
KEGG PATHWAY: map01040
CiNii 論文 - Increases in Pulmonary Artery Pressure and Cardiac Output Due to the Inhibition of...
GINMU: 2012年度
Ahcyl1 - PrimePCR Assay and Template | Life Science | Bio-Rad
DECREPIT BIRTH - Diminishing Between The Worlds | Metalirium - Vaše metalové delírium!
W.A.S.P. - Babylon | Metalirium - Vaše metalové delírium!
PUNKGEN
Praktyczne | Pearltrees
PRIME PubMed | S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in predementia syndromes and Alzheimers diseas
Plus it
The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid...
SWISS-MODEL Repository | A1TUG3
protein-L-isoaspartate (D-aspartate) O-methyltransferase activity QuickView - Correlation Engine
3-Deazaneplanocin A (DZNep) hydrochloride|SAHH and ENZ2 inhibitor|CAS# 120964-45-6
post by ThoughtForms
坂口光洋記念講座 - 研究成果 - Keio University
Úrad varuje pred nebezpečnou kozmetikou: Môže sa nachádzať aj na Slovensku | Dnes24.sk
Crea Cage: Kto je vrah a kto je sluha? - GREGI.NET | Multikultúrny portál
RVR: Aká je vízia o fungovaní licenčnej rady jednotlivými uchádzačmi? | Diskusia k článkom | Diskusia | Radia.sk - slovenský...
VLASOVÁ KOZMETIKA: Bioaquanol U 250ml
Rádio Dychovka | Radia.sk - slovenský éter online
Poskytujeme | Gynkomed
Adenosylhomocysteinase
... at the US National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (Genes on human ... Palmer JL, Abeles RH (February 1979). "The mechanism of action of S-adenosylhomocysteinase". The Journal of Biological ... Adenosylhomocysteinase (EC 3.3.1.1, S-adenosylhomocysteine synthase, S-adenosylhomocysteine hydrolase, adenosylhomocysteine ... hydrolase, S-adenosylhomocysteinase, SAHase, AdoHcyase) is an enzyme that converts S-adenosylhomocysteine to homocysteine and ...
Methionine
Adenosylhomocysteinase cysteine. Methionine can be regenerated from homocysteine via (4) methionine synthase in a reaction that ...
Morpheein
Guranowski, Andrzej; Pawelkiewicz, Jerzy (1977). "Adenosylhomocysteinase from Yellow Lupin Seeds. Purification and Properties ...
S-Adenosyl-L-homocysteine
Adenosylhomocysteinase converts SAH into homocysteine and adenosine. DNA methyltransferases are inhibited by SAH. Two S- ...
AHCYL1
Putative adenosylhomocysteinase 2 is an enzyme that in humans is encoded by the AHCYL1 gene. AHCYL1 has been shown to interact ...
S-adenosylhomocysteine hydrolase
... may refer to: Adenosylhomocysteinase, an enzyme Adenosylhomocysteine nucleosidase, an enzyme ...
List of EC numbers (EC 3)
... adenosylhomocysteinase EC 3.3.1.2: S-adenosyl-L-methionine hydrolase (L-homoserine-forming) EC 3.3.1.3: The activity is most ...
MedlinePlus: Genes
Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation
Recombinant Saccharomyces cerevisiae Alpha-galactosidase 1 (MEL1) | CSB-YP356371SAC | Cusabio
Frontiers | Functional Characterization of SlSAHH2 in Tomato Fruit Ripening
SCOPe 2.08: Domain d1xwfb1: 1xwf B:190-352
Paolo SASSONE-CORSI | Managing Director | Doctor of Philosophy | University of California, Irvine, CA | UCI | Center for...
SMART: AdoHcyase NAD domain annotation
HOMD :: SEQF2096
Adenosine turnover | Enzymes | IUPHAR/BPS Guide to PHARMACOLOGY
GSE37301 COMMON LYMPHOID PROGENITOR VS CD4 TCELL UP
A genomic approach to investigate developmental cell death in woody tissues of Populustrees | Genome Biology | Full Text
In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine in adenosine deaminase-deficient...
GAL4 typu dzikiego wiąże się wspólnie z GAL1-10 UASG in vitro. - Mat2Tab, Ogólnopolski konkurs na badania laboratoryjne
DeCS
2004; ADENOSYLHOMOCYSTEINASE was indexed under HYDROLASES 1976-2003. History Note:. 2004; use ADENOSYLHOMOCYSTEINASE (NM) 1980- ... Adenosylhomocysteinase - Preferred Concept UI. M0072172. Scope note. An enzyme which catalyzes the catabolism of S- ... Adenosylhomocysteinase Entry term(s). Hydrolase, S-adenosylhomocysteine S adenosylhomocysteine Hydrolase S adenosylhomocysteine ... Adenosylhomocysteinase Entry term(s):. Hydrolase, S-adenosylhomocysteine. S adenosylhomocysteine Hydrolase. S ...
Code System Concept
IMP: Integrative Multi-species Prediction
Words in 22 letters without X
SAH1 synthetic lethal interactions - Slorth
Steven C. Almo - Publications
- Albert Einstein College of Medicine
Sampathkumar, P., Lu, F., Zhao, X., Li, Z., Gilmore, J., Bain, K., Rutter, M. E., Gheyi, T., Schwinn, K. D., Bonanno, J. B., Pieper, U., Fajardo, J. E., Fiser, A., Almo, S. C., Swaminathan, S., Chance, M. R., Baker, D., Atwell, S., Thompson, D. A., Emtage, J. S., & 4 othersWasserman, S. R., Sali, A., Sauder, J. M. & Burley, S. K., Nov 1 2010, In: Proteins: Structure, Function and Bioinformatics. 78, 14, p. 3056-3062 7 p.. Research output: Contribution to journal › Article › peer-review ...
Model Search | BioModels
MMTB
AHCYL1 and HEXIM2 - Wiki-MPM
Methionine Knowpia
Phosphoproteome
TomoSeq data search
DeCS 2004 - Novos termos
Search: protein class:Congenital disorders of amino acid metabolism AND with antibodies:Yes - The Human Protein Atlas
FC876217 | Citrus Genome Database
Adenosylhomocysteinase OS=Catharanthus roseus GN=S... [more]. SAHH_MEDSA. 3.582e-87. 82.26. Adenosylhomocysteinase OS=Medicago ... Adenosylhomocysteinase OS=Lupinus luteus GN=SAHH P... [more]. SAHH_MESCR. 8.824e-86. 81.72. Adenosylhomocysteinase OS= ... Adenosylhomocysteinase OS=Phalaenopsis sp. GN=SAHH... [more]. SAHH_NICSY. 1.152e-85. 81.72. Adenosylhomocysteinase OS=Nicotiana ... Adenosylhomocysteinase 1 OS=Arabidopsis thaliana G... [more]. SAHH_PETCR. 2.322e-86. 81.28. Adenosylhomocysteinase OS= ...
AHCY1
- Adenosylhomocysteinase( AHCY) is a pleiotropic, enzymatic, phosphorylate ubiquitin that encodes all nucleus( AdoMet) high genes by varying the precursor target complex( AdoHcy) to chart( HCYS) and fibrosis( Ade-Rib). (familie-vos.de)
Metabolism1
- We will focus on two enzymes of the C1 metabolism, the Drosophila SAM-Synthetase, SAM-S and the Adenosylhomocysteinase AHCY13, which are most strongly affected by proteasome inhibition. (uni-muenchen.de)
Ahcy1
- Adenosylhomocysteinase (AHCY) Anti. (antibody-antibodies.com)
Hydrolase1
- S-adenosylhomocysteine hydrolase belongs to the adenosylhomocysteinase family. (nih.gov)
Source1
- adenosylhomocysteinase [Source:HGNC Sy. (gsea-msigdb.org)