Athletes: Individuals who have developed skills, physical stamina and strength or participants in SPORTS or other physical activities.Sports: Activities or games, usually involving physical effort or skill. Reasons for engagement in sports include pleasure, competition, and/or financial reward.Ventricular Function, Right: The hemodynamic and electrophysiological action of the right HEART VENTRICLE.Athletic Injuries: Injuries incurred during participation in competitive or non-competitive sports.Adaptation, Physiological: The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.Athletic Performance: Carrying out of specific physical routines or procedures by one who is trained or skilled in physical activity. Performance is influenced by a combination of physiological, psychological, and socio-cultural factors.Doping in Sports: Illegitimate use of substances for a desired effect in competitive sports. It includes humans and animals.Research: Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed)Anoxia: Relatively complete absence of oxygen in one or more tissues.Egypt: A country in northern Africa, bordering the Mediterranean Sea, between Libya and the Gaza Strip, and the Red Sea north of Sudan, and includes the Asian Sinai Peninsula Its capital is Cairo.Research Personnel: Those individuals engaged in research.Research Support as Topic: Financial support of research activities.Schistosomiasis: Infection with flukes (trematodes) of the genus SCHISTOSOMA. Three species produce the most frequent clinical diseases: SCHISTOSOMA HAEMATOBIUM (endemic in Africa and the Middle East), SCHISTOSOMA MANSONI (in Egypt, northern and southern Africa, some West Indies islands, northern 2/3 of South America), and SCHISTOSOMA JAPONICUM (in Japan, China, the Philippines, Celebes, Thailand, Laos). S. mansoni is often seen in Puerto Ricans living in the United States.Biomedical Research: Research that involves the application of the natural sciences, especially biology and physiology, to medicine.BooksBreeding: The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants.Birds: Warm-blooded VERTEBRATES possessing FEATHERS and belonging to the class Aves.Acclimatization: Adaptation to a new environment or to a change in the old.Adaptation, Biological: Changes in biological features that help an organism cope with its ENVIRONMENT. These changes include physiological (ADAPTATION, PHYSIOLOGICAL), phenotypic and genetic changes.Altitude: A vertical distance measured from a known level on the surface of a planet or other celestial body.Plants, Genetically Modified: PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.Plant Proteins: Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.Plant Leaves: Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)Plant Roots: The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)Genes, Plant: The functional hereditary units of PLANTS.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.Plant Shoots: New immature growth of a plant including stem, leaves, tips of branches, and SEEDLINGS.Marsileaceae: A plant family of the order Hydropteridales, class Filicopsida, division PTERIDOPHYTA. They are aquatic ferns with quatrifoliate leaves resembling four leaf clover, creeping rhizome, and bean shaped sporocarps.Australia: The smallest continent and an independent country, comprising six states and two territories. Its capital is Canberra.New South Wales: A state in southeastern Australia. Its capital is Sydney. It was discovered by Captain Cook in 1770 and first settled at Botany Bay by marines and convicts in 1788. It was named by Captain Cook who thought its coastline resembled that of South Wales. (From Webster's New Geographical Dictionary, 1988, p840 & Room, Brewer's Dictionary of Names, 1992, p377)Ferns: Seedless nonflowering plants of the class Filicinae. They reproduce by spores that appear as dots on the underside of feathery fronds. In earlier classifications the Pteridophyta included the club mosses, horsetails, ferns, and various fossil groups. In more recent classifications, pteridophytes and spermatophytes (seed-bearing plants) are classified in the Subkingdom Tracheobionta (also known as Tracheophyta).Australian Capital Territory: A territory of Australia consisting of Canberra, the national capital and surrounding land. It lies geographically within NEW SOUTH WALES and was established by law in 1988.Gymnosperms: Gymnosperms are a group of vascular plants whose seeds are not enclosed by a ripened ovary (fruit), in contrast to ANGIOSPERMS whose seeds are surrounded by an ovary wall. The seeds of many gymnosperms (literally, "naked seed") are borne in cones and are not visible. Taxonomists now recognize four distinct divisions of extant gymnospermous plants (CONIFEROPHYTA; CYCADOPHYTA; GINKGOPHYTA; and GNETOPHYTA).Leigh Disease: A group of metabolic disorders primarily of infancy characterized by the subacute onset of psychomotor retardation, hypotonia, ataxia, weakness, vision loss, eye movement abnormalities, seizures, dysphagia, and lactic acidosis. Pathological features include spongy degeneration of the neuropile of the basal ganglia, thalamus, brain stem, and spinal cord. Patterns of inheritance include X-linked recessive, autosomal recessive, and mitochondrial. Leigh disease has been associated with mutations in genes for the PYRUVATE DEHYDROGENASE COMPLEX; CYTOCHROME-C OXIDASE; ATP synthase subunit 6; and subunits of mitochondrial complex I. (From Menkes, Textbook of Child Neurology, 5th ed, p850).Libraries, MedicalGene Library: A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.Library Administration: Planning, organizing, staffing, direction, and control of libraries.Health Level Seven: An American National Standards Institute-accredited organization working on specifications to support development and advancement of clinical and administrative standards for healthcare.Cataloging: Activities performed in the preparation of bibliographic records for CATALOGS. It is carried out according to a set of rules and contains information enabling the user to know what is available and where items can be found.Library Services: Services offered to the library user. They include reference and circulation.Libraries, Hospital: Information centers primarily serving the needs of hospital medical staff and sometimes also providing patient education and other services.Esophagus: The muscular membranous segment between the PHARYNX and the STOMACH in the UPPER GASTROINTESTINAL TRACT.Median Eminence: Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND.Portal Vein: A short thick vein formed by union of the superior mesenteric vein and the splenic vein.Hypothalamus, Middle: Middle portion of the hypothalamus containing the arcuate, dorsomedial, ventromedial nuclei, the TUBER CINEREUM and the PITUITARY GLAND.Portal System: A system of vessels in which blood, after passing through one capillary bed, is conveyed through a second set of capillaries before it returns to the systemic circulation. It pertains especially to the hepatic portal system.Esophageal Sphincter, Lower: The physiologic or functional barrier to GASTROESOPHAGEAL REFLUX at the esophagogastric junction. Sphincteric muscles remain tonically contracted during the resting state and form the high-pressure zone separating the lumen of the ESOPHAGUS from that of the STOMACH. (Haubrich et al, Bockus Gastroenterology, 5th ed., pp399, 415)Alkanes: The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)Rhodococcus: A bacterial genus of the order ACTINOMYCETALES.Alkane 1-Monooxygenase: A P450 oxidoreductase that catalyzes the hydroxylation of the terminal carbon of linear hydrocarbons such as octane and FATTY ACIDS in the omega position. The enzyme may also play a role in the oxidation of a variety of structurally unrelated compounds such as XENOBIOTICS, and STEROIDS.

On the neural correlates of visual perception. (1/12330)

Neurological findings suggest that the human striate cortex (V1) is an indispensable component of a neural substratum subserving static achromatic form perception in its own right and not simply as a central distributor of retinally derived information to extrastriate visual areas. This view is further supported by physiological evidence in primates that the finest-grained conjoined representation of spatial detail and retinotopic localization that underlies phenomenal visual experience for local brightness discriminations is selectively represented at cortical levels by the activity of certain neurons in V1. However, at first glance, support for these ideas would appear to be undermined by incontrovertible neurological evidence (visual hemineglect and the simultanagnosias) and recent psychophysical results on 'crowding' that confirm that activation of neurons in V1 may, at times, be insufficient to generate a percept. Moreover, a recent proposal suggests that neural correlates of visual awareness must project directly to those in executive space, thus automatically excluding V1 from a related perceptual space because V1 lacks such direct projections. Both sets of concerns are, however, resolved within the context of adaptive resonance theories. Recursive loops, linking the dorsal lateral geniculate nucleus (LGN) through successive cortical visual areas to the temporal lobe by means of a series of ascending and descending pathways, provide a neuronal substratum at each level within a modular framework for mutually consistent descriptions of sensory data. At steady state, such networks obviate the necessity that neural correlates of visual experience project directly to those in executive space because a neural phenomenal perceptual space subserving form vision is continuously updated by information from an object recognition space equivalent to that destined to reach executive space. Within this framework, activity in V1 may engender percepts that accompany figure-ground segregations only when dynamic incongruities are resolved both within and between ascending and descending streams. Synchronous neuronal activity on a short timescale within and across cortical areas, proposed and sometimes observed as perceptual correlates, may also serve as a marker that a steady state has been achieved, which, in turn, may be a requirement for the longer time constants that accompany the emergence and stability of perceptual states compared to the faster dynamics of adapting networks and the still faster dynamics of individual action potentials. Finally, the same consensus of neuronal activity across ascending and descending pathways linking multiple cortical areas that in anatomic sequence subserve phenomenal visual experiences and object recognition may underlie the normal unity of conscious experience.  (+info)

Trans-synaptically induced bursts in regular spiking non-pyramidal cells in deep layers of the cat motor cortex. (2/12330)

In deep layers of the cat motor cortex, we have investigated the properties of neurons displaying trans-synaptically induced bursts. In in vivo experiments, extracellularly recorded burst neurons were separated into two subtypes based on their dependence on stimulation sites, the medullary pyramid or the ventrolateral (VL) thalamic nucleus, from which bursts of 10-20 spikes were triggered. The spike amplitude attenuation and frequency adaptation during a burst were more prominent in pyramid-dependent burst neurons than in VL-dependent burst neurons. Intracellular recordings in in vivo experiments revealed that pyramid-dependent bursts emerged from a long-lasting depolarization, while each spike during a VL-dependent burst was narrow in half-width and was followed by a fast AHP, similar to fast spiking neurons. In in vitro slice experiments, intracellular recordings were obtained from neurons that displayed a burst of attenuated spikes emerging from a long-lasting depolarization, and were also obtained from fast spiking neurons. They were morphologically recovered to be multipolar cells with sparsely spiny dendrites and local axonal networks, suggesting that they are inhibitory interneurons. The multipolar neurons displaying bursts of attenuated spikes may mediate the recurrent inhibition of pyramidal tract cells.  (+info)

Lysine deficiency alters diet selection without depressing food intake in rats. (3/12330)

Under states of protein deficiency, the dietary limiting amino acid, rather than protein content, can act as the dietary stimulus to control diet selection. If fact, threonine-deficient rats will alter their diet selection patterns solely on the basis of very small changes (0.009 g/100 g) in the dietary threonine concentration. In these studies, we assessed whether lysine-deficient rats will also alter their diet selection patterns on the basis of small changes in dietary Lys concentration. In all experiments, growing rats were adapted to diets in which the protein fraction (purified amino acids or wheat gluten) was limiting in Lys. They were then given a choice between the adaptation diet (AD) diet and a slightly more deficient diet. Rats that were adapted to a Lys-deficient diet (0.25 g Lys/100 g) selected their AD over diets containing as little as 0.01% less Lys (P < 0.01) within 5 d. To determine how deficient rats must be before they alter their selection patterns, rats were adapted to diets containing various levels of Lys, i.e., 2 levels below the requirement for growth and 2 levels above the requirement for growth, but below the requirement for maximal nitrogen retention. Only rats adapted to diets containing Lys below their requirement for growth selected their AD over a diet containing 0.05% less Lys (P < 0.005). Finally, to determine whether rats will alter their selection to whole protein-based diets, rats were adapted to 25% wheat gluten diets supplemented with 0.03-0.21% Lys. Rats selected the AD over a diet containing as little as 0.09% less supplemental Lys by d 4 of the trial (P < 0.05). We conclude that rats are sensitive to changes as small as 0.01% in dietary Lys concentration, but that sensitivity requires prior adaptation to Lys-deficient diets.  (+info)

Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. (4/12330)

A brief period of sublethal cerebral ischemia, followed by several days of recovery, renders the brain resistant to a subsequent lethal ischemic insult, a phenomenon termed ischemic preconditioning or tolerance. Ischemic tolerance was established in the rat two-vessel occlusion model of ischemia, induced by occlusion of both carotid arteries in combination with hypotension. Ischemic preconditioning (3 minutes) provided maximal neuroprotection when induced 2 days prior to a lethal ischemic insult of 9-minute duration. Neuroprotection persisted for at least 8 weeks. Since neurotransmission has been implicated in ischemic cell death, the effect of ischemic preconditioning on tyrosine phosphorylation of proteins and on the levels of glutamate receptor subunits in hippocampus and neocortex was studied. Regional levels of tyrosine phosphorylation of proteins in general and the N-methyl-D-aspartate receptor subunit NR2 in particular are markedly enhanced after ischemia in nonconditioned brains, in both the synaptosomal fraction and the whole-tissue homogenate of rat neocortex and hippocampus, but recover to control levels only in the preconditioned brain. Ischemic preconditioning selectively induces a decrease in the levels of the NR2A and NR2B subunits and a modest decrease in the levels of NR1 subunit proteins in the synaptosomal fraction of the neocortex but not hippocampus after the second lethal ischemia. It was concluded that ischemic preconditioning prevents a persistent change in cell signaling as evidenced by the tyrosine phosphorylation of proteins after the second lethal ischemic insult, which may abrogate the activation of detrimental cellular processes leading to cell death.  (+info)

Fibrocartilage in tendons and ligaments--an adaptation to compressive load. (5/12330)

Where tendons and ligaments are subject to compression, they are frequently fibrocartilaginous. This occurs at 2 principal sites: where tendons (and sometimes ligaments) wrap around bony or fibrous pulleys, and in the region where they attach to bone, i.e. at their entheses. Wrap-around tendons are most characteristic of the limbs and are commonly wider at their point of bony contact so that the pressure is reduced. The most fibrocartilaginous tendons are heavily loaded and permanently bent around their pulleys. There is often pronounced interweaving of collagen fibres that prevents the tendons from splaying apart under compression. The fibrocartilage can be located within fascicles, or in endo- or epitenon (where it may protect blood vessels from compression or allow fascicles to slide). Fibrocartilage cells are commonly packed with intermediate filaments which could be involved in transducing mechanical load. The ECM often contains aggrecan which allows the tendon to imbibe water and withstand compression. Type II collagen may also be present, particularly in tendons that are heavily loaded. Fibrocartilage is a dynamic tissue that disappears when the tendons are rerouted surgically and can be maintained in vitro when discs of tendon are compressed. Finite element analyses provide a good correlation between its distribution and levels of compressive stress, but at some locations fibrocartilage is a sign of pathology. Enthesis fibrocartilage is most typical of tendons or ligaments that attach to the epiphyses of long bones where it may also be accompanied by sesamoid and periosteal fibrocartilages. It is characteristic of sites where the angle of attachment changes throughout the range of joint movement and it reduces wear and tear by dissipating stress concentration at the bony interface. There is a good correlation between the distribution of fibrocartilage within an enthesis and the levels of compressive stress. The complex interlocking between calcified fibrocartilage and bone contributes to the mechanical strength of the enthesis and cartilage-like molecules (e.g. aggrecan and type II collagen) in the ECM contribute to its ability to withstand compression. Pathological changes are common and are known as enthesopathies.  (+info)

Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. (6/12330)

We made a computational model of a single neuron to study the effect of the small conductance (SK) Ca2+-dependent K+ channel on spike frequency adaptation. The model neuron comprised a Na+ conductance, a Ca2+ conductance, and two Ca2+-independent K+ conductances, as well as a small and a large (BK) Ca2+-activated K+ conductance, a Ca2+ pump, and mechanisms for Ca2+ buffering and diffusion. Sustained current injection that simulated synaptic input resulted in a train of action potentials (APs) which in the absence of the SK conductance showed very little adaptation with time. The transfer function of the neuron was nearly linear, i.e., both asymptotic spike rate as well as the intracellular free Ca2+ concentration ([Ca2+]i) were approximately linear functions of the input current. Adding an SK conductance with a steep nonlinear dependence on [Ca2+]i (. Pflugers Arch. 422:223-232; Kohler, Hirschberg, Bond, Kinzie, Marrion, Maylie, and Adelman. 1996. Science. 273:1709-1714) caused a marked time-dependent spike frequency adaptation and changed the transfer function of the neuron from linear to logarithmic. Moreover, the input range the neuron responded to with regular spiking increased by a factor of 2.2. These results can be explained by a shunt of the cell resistance caused by the activation of the SK conductance. It might turn out that the logarithmic relationships between the stimuli of some modalities (e.g., sound or light) and the perception of the stimulus intensity (Fechner's law) have a cellular basis in the involvement of SK conductances in the processing of these stimuli.  (+info)

Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate. (7/12330)

Computer-assisted motion analysis coupled to flash photolysis of caged chemoeffectors provides a means for time-resolved analysis of bacterial chemotaxis. Escherichia coli taxis toward the amino acid attractant L-aspartate is mediated by the Tar receptor. The physiology of this response, as well as Tar structure and biochemistry, has been studied extensively. The beta-2, 6-dinitrobenzyl ester of L-aspartic acid and the 1-(2-nitrophenyl)ethyl ether of 8-hydroxypyrene-1,3,6-tris-sulfonic acid were synthesized. These compounds liberated L-aspartate and the fluorophore 8-hydroxypyrene 1,3,6-tris-sulfonic acid (pyranine) upon irradiation with near-UV light. Photorelease of the fluorophore was used to define the amplitude and temporal stability of the aspartate jumps employed in chemotaxis experiments. The dependence of chemotactic adaptation times on aspartate concentration, determined in mixing experiments, was best fit by two Tar aspartate-binding sites. Signal processing (excitation) times, amplitudes, and adaptive recovery of responses elicited by aspartate jumps producing less than 20% change in receptor occupancy were characterized in photorelease assays. Aspartate concentration jumps in the nanomolar range elicited measurable responses. The response threshold and sensitivity of swimming bacteria matched those of bacteria tethered to glass by a single flagellum. Stimuli of similar magnitude, delivered either by rapid mixing or photorelease, evoked responses of similar strength, as assessed by recovery time measurements. These times remained proportional to change in receptor occupancy close to threshold, irrespective of prior occupancy. Motor excitation responses decayed exponentially with time. Rates of excitation responses near threshold ranged from 2 to 7 s-1. These values are consistent with control of excitation signaling by decay of phosphorylated pools of the response regulator protein, CheY. Excitation response rates increased slightly with stimulus size up to values limited by the instrumentation; the most rapid was measured to be 16 +/- 3 (SE) s-1. This increase may reflect simultaneous activation of CheY dephosphorylation, together with inhibition of its phosphorylation.  (+info)

Impact of vascular adaptation to chronic aortic regurgitation on left ventricular performance. (8/12330)

BACKGROUND: This investigation was designed to test the hypothesis that vascular adaptation occurs in patients with chronic aortic regurgitation to maintain left ventricular (LV) performance. METHODS AND RESULTS: Forty-five patients with chronic aortic regurgitation (mean age 50+/-14 years) were studied using a micromanometer LV catheter to obtain LV pressures and radionuclide ventriculography to obtain LV volumes during multiple loading conditions and right atrial pacing. These 45 patients were subgrouped according to their LV contractility (Ees) and ejection fraction values. Group I consisted of 24 patients with a normal Ees. Group IIa consisted of 10 patients with impaired Ees values (Ees <1.00 mm Hg/mL) but normal LV ejection fractions; Group IIb consisted of 11 patients with impaired contractility and reduced LV ejection fractions. The left ventricular-arterial coupling ratio, Ees/Ea, where Ea was calculated by dividing the LV end-systolic pressure by LV stroke volume, averaged 1.60+/-0.91 in Group I. It decreased to 0.91+/-0.27 in Group IIa (P<0.05 versus Group I), and it decreased further in Group IIb to 0.43+/-0.24 (P<0.001 versus Groups I and IIa). The LV ejection fractions were inversely related to the Ea values in both the normal and impaired contractility groups (r=-0.48, P<0.05 and r=-0.56, P<0.01, respectively), although the slopes of these relationships differed (P<0.05). The average LV work was maximal in Group IIa when the left ventricular-arterial coupling ratio was near 1.0 because of a significant decrease in total arterial elastance (P<0.01 versus Group I). In contrast, the decrease in the left ventricular-arterial coupling ratio in Group IIb was caused by an increase in total arterial elastance, effectively double loading the LV, contributing to a decrease in LV pump efficiency (P<0.01 versus Group IIa and P<0.001 versus Group I). CONCLUSIONS: Vascular adaptation may be heterogeneous in patients with chronic aortic regurgitation. In some, total arterial elastance decreases to maximize LV work and maintain LV performance, whereas in others, it increases, thereby double loading the LV, contributing to afterload excess and a deterioration in LV performance that is most prominent in those with impaired contractility.  (+info)

  • Cross-frequency coupling has since become a common metric used to analyze EEG and MEG and may provide a valuable tool in understanding and developing models of human adaptation. (
  • This paradigm has led to technology solutions that are focused on improving human adaptation by improving the salience of information that the technology provides. (
  • However, recent research has shown that human adaptation is strongly impacted by internal human states such as arousal, social context, and goals. (
  • Most notably, we also found evidence for adaptable characters forming the foundations for a fairly unique physiological phenotype-a low capacity version favored under hypobaric hypoxia and a high capacity one favored for endurance performance. (
  • These data suggest that remaining leptin signals in LeprNkx2.1KO mice mediate physiological adaptations that prevent the escalation of the adiposity phenotype in adult mice. (
  • The mechanisms that underpin coral adaptation to rising temperatures are more complicated than in the other aquatic organisms because of the holobiont nature of corals, wherein in addition to their symbiosis with Symbiodiniaceae, they are also associated with a multitude of other microbes 7 . (
  • As we transition from one Root Race to another, these species factors, such as the physiological functions of the human body, are rapidly responding to the massive alterations that are occurring in the earth body. (
  • However, detailed information about the physiological alterations in P. pastoris accompanying the shift from growth on glycerol to methanol-induced protein production under industrial relevant conditions is missing. (
  • The grasping hands of primates, the sensitive antennae of insects, and the flowers and fruits of plants are all forms of adaptation that promote survival, reproduction, or both. (
  • These data support the notion that Mlip deficient hearts have impaired cardiac adaptation due to deregulated mTOR activity resulting in maladaptive remodeling, and the development of dilated cardiomyopathy. (
  • Hence, I have established cell culture systems (myoblasts, flow-adapted endothelial cells) to study how seal cells respond to different stressors and physiological adjustments associated with fasting and breath-holding. (
  • The text also considers significant concepts of physiological genetics, and then explains asexual and sexual reproduction, the sex hormones of invertebrates, and the use of stimulants for animal production. (
  • Here we show acclimatization and/or adaptation potential of menthol-bleached aposymbiotic coral Platygyra verweyi in terms of respiration breakdown temperature (RBT) and malate dehydrogenase (MDH) enzyme activity in samples collected from two reef sites with contrasting temperature regimes: a site near a nuclear power plant outlet (NPP-OL, with long-term temperature perturbation) and Wanlitong (WLT) in southern Taiwan. (
  • Life Sciences, Centrum voor Wiskunde en Informatica, 1098 XG Amsterdam, The Netherlands (T.R.M. (
  • Curran T.‐I., Cronin O., Coffey F. T., Keohane D. M., McCarthy Y., Dahly D. L., Molloy M. G. and Falvey E. C. (2018) 'Physiological adaptations in ultra‐endurance athletes during a 5‐day multisport Adventure Race: An assessment of serological and inflammatory cytokine profiles', Translational Sports Medicine, In Press. (
  • More important clinically is whether the athlete has any pre-existing pathological conditions, being masked by, or being wrongly attributed to, physiological conditioning. (
  • Physiological RV enlargement is commonly observed in both black and white athletes. (
  • However, a higher prevalence of underlying ECG abnormalities (potentially suggestive of arrhythmogenic RV cardiomyopathy) among black athletes increases the potential for inappropriate disqualification of black athletes based on physiological RV enlargement. (
  • Those awakening now are in the forefront of embodying these Adaptations as they are the consciousness bridge spanning into the future birth cycle of the next root race of the human species. (
  • The general aims of this thesis were to compare physiological aspects between the marine ecotype and the brackish ecotype of F. vesiculosus as well as between the two Bothnian Sea species F. vesiculosus and F. radicans . (
  • Desert birds persist near the edge of their physiological limits, and climate change could cause lethal dehydration and hyperthermia, leading to decline or extirpation of some species. (