3-Hydroxyacyl CoA Dehydrogenases: Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.Acyl-CoA Dehydrogenases: Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS.Acyl-CoA Dehydrogenase: A flavoprotein oxidoreductase that has specificity for medium-chain fatty acids. It forms a complex with ELECTRON TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Acyl Coenzyme A: S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.Diacylglycerol O-Acyltransferase: An enzyme that catalyses the last step of the TRIACYLGLYCEROL synthesis reaction in which diacylglycerol is covalently joined to LONG-CHAIN ACYL COA to form triglyceride. It was formerly categorized as EC 2.3.1.124.Sterol O-Acyltransferase: An enzyme that catalyzes the formation of cholesterol esters by the direct transfer of the fatty acid group from a fatty acyl CoA derivative. This enzyme has been found in the adrenal gland, gonads, liver, intestinal mucosa, and aorta of many mammalian species. EC 2.3.1.26.L-Lactate Dehydrogenase: A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.Acyltransferases: Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.Alcohol Dehydrogenase: A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.Coenzyme AGlyceraldehyde-3-Phosphate Dehydrogenases: Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.Coenzyme A Ligases: Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.Aldehyde Dehydrogenase: An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.Glutamate Dehydrogenase: An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.Glucosephosphate DehydrogenaseMalate Dehydrogenase: An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.Isocitrate Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.Alcohol Oxidoreductases: A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).Acyl-CoA Oxidase: An enzyme that catalyzes the first and rate-determining steps of peroxisomal beta-oxidation of fatty acids. It acts on COENZYME A derivatives of fatty acids with chain lengths from 8 to 18, using FLAVIN-ADENINE DINUCLEOTIDE as a cofactor.Dihydrolipoamide Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.Carbohydrate Dehydrogenases: Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.Diazepam Binding Inhibitor: An 86-amino acid polypeptide, found in central and peripheral tissues, that displaces diazepam from the benzodiazepine recognition site on the gamma-aminobutyric acid receptor (RECEPTORS, GABA). It also binds medium- and long-chain acyl-CoA esters and serves as an acyl-CoA transporter. This peptide regulates lipid metabolism.Succinate Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.L-Iditol 2-Dehydrogenase: An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC 1.1.1.14Glycerolphosphate DehydrogenaseFatty Acids: Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)NAD: A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)Kinetics: The rate dynamics in chemical or physical systems.Aldehyde Oxidoreductases: Oxidoreductases that are specific for ALDEHYDES.Glucose 1-Dehydrogenase: A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.Hydroxysteroid Dehydrogenases: Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.Ketoglutarate Dehydrogenase ComplexTriazenes: Compounds with three contiguous nitrogen atoms in linear format, H2N-N=NH, and hydrocarbyl derivatives.Palmitoyl Coenzyme A: A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.Sugar Alcohol Dehydrogenases: Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Glucose Dehydrogenases: D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10.3-Hydroxysteroid Dehydrogenases: Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Phosphogluconate Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43.NADH Dehydrogenase: A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1.IMP Dehydrogenase: An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205.Lactate Dehydrogenases: Alcohol oxidoreductases with substrate specificity for LACTIC ACID.Cholesterol Esters: Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis.Formate Dehydrogenases: Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.17-Hydroxysteroid Dehydrogenases: A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Xanthine Dehydrogenase: An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.Esterification: The process of converting an acid into an alkyl or aryl derivative. Most frequently the process consists of the reaction of an acid with an alcohol in the presence of a trace of mineral acid as catalyst or the reaction of an acyl chloride with an alcohol. Esterification can also be accomplished by enzymatic processes.Microsomes: Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Hydroxybutyrate Dehydrogenase3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide): A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC 1.2.4.3.Pyruvate Dehydrogenase (Lipoamide): The E1 component of the multienzyme PYRUVATE DEHYDROGENASE COMPLEX. It is composed of 2 alpha subunits (pyruvate dehydrogenase E1 alpha subunit) and 2 beta subunits (pyruvate dehydrogenase E1 beta subunit).Ketone Oxidoreductases: Oxidoreductases that are specific for KETONES.NADP: Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)11-beta-Hydroxysteroid Dehydrogenases: Hydroxysteroid dehydrogenases that catalyzes the reversible conversion of CORTISOL to the inactive metabolite CORTISONE. Enzymes in this class can utilize either NAD or NADP as cofactors.Dihydrouracil Dehydrogenase (NADP): An oxidoreductase involved in pyrimidine base degradation. It catalyzes the catabolism of THYMINE; URACIL and the chemotherapeutic drug, 5-FLUOROURACIL.Uridine Diphosphate Glucose Dehydrogenase: An enzyme that catalyzes the oxidation of UDPglucose to UDPglucuronate in the presence of NAD+. EC 1.1.1.22.Palmitic Acids: A group of 16-carbon fatty acids that contain no double bonds.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Butyryl-CoA Dehydrogenase: A flavoprotein oxidoreductase that has specificity for short-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Glucosephosphate Dehydrogenase Deficiency: A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.Lipid Metabolism: Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.TriglyceridesOleic Acids: A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.Cholesterol: The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.11-beta-Hydroxysteroid Dehydrogenase Type 1: A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors.Alanine Dehydrogenase: An NAD-dependent enzyme that catalyzes the reversible DEAMINATION of L-ALANINE to PYRUVATE and AMMONIA. The enzyme is needed for growth when ALANINE is the sole CARBON or NITROGEN source. It may also play a role in CELL WALL synthesis because L-ALANINE is an important constituent of the PEPTIDOGLYCAN layer.3-alpha-Hydroxysteroid Dehydrogenase (B-Specific): A 3-hydroxysteroid dehydrogenase which catalyzes the reversible reduction of the active androgen, DIHYDROTESTOSTERONE to 5 ALPHA-ANDROSTANE-3 ALPHA,17 BETA-DIOL. It also has activity towards other 3-alpha-hydroxysteroids and on 9-, 11- and 15- hydroxyprostaglandins. The enzyme is B-specific in reference to the orientation of reduced NAD or NADPH.Mannitol Dehydrogenases: Sugar alcohol dehydrogenases that have specificity for MANNITOL. Enzymes in this category are generally classified according to their preference for a specific reducing cofactor.Microbodies: Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes.Carnitine O-Palmitoyltransferase: An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.Hydroxyprostaglandin Dehydrogenases: Catalyzes reversibly the oxidation of hydroxyl groups of prostaglandins.Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)Acyl-CoA Dehydrogenase, Long-Chain: A flavoprotein oxidoreductase that has specificity for long-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Retinal Dehydrogenase: A metalloflavoprotein enzyme involved the metabolism of VITAMIN A, this enzyme catalyzes the oxidation of RETINAL to RETINOIC ACID, using both NAD+ and FAD coenzymes. It also acts on both the 11-trans- and 13-cis-forms of RETINAL.Acetyl Coenzyme A: Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.Acylation: The addition of an organic acid radical into a molecule.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.20-Hydroxysteroid Dehydrogenases: A group of enzymes that catalyze the reversible reduction-oxidation reaction of 20-hydroxysteroids, such as from a 20-ketosteroid to a 20-alpha-hydroxysteroid (EC 1.1.1.149) or to a 20-beta-hydroxysteroid (EC 1.1.1.53).11-beta-Hydroxysteroid Dehydrogenase Type 2: An high-affinity, NAD-dependent 11-beta-hydroxysteroid dehydrogenase that acts unidirectionally to catalyze the dehydrogenation of CORTISOL to CORTISONE. It is found predominantly in mineralocorticoid target tissues such as the KIDNEY; COLON; SWEAT GLANDS; and the PLACENTA. Absence of the enzyme leads to a fatal form of childhood hypertension termed, APPARENT MINERALOCORTICOID EXCESS SYNDROME.Lipids: A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)Isovaleryl-CoA Dehydrogenase: A mitochondrial flavoprotein, this enzyme catalyzes the oxidation of 3-methylbutanoyl-CoA to 3-methylbut-2-enoyl-CoA using FAD as a cofactor. Defects in the enzyme, is associated with isovaleric acidemia (IVA).Isoenzymes: Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.Multienzyme Complexes: Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.Homoserine Dehydrogenase: An enzyme that catalyzes the reduction of aspartic beta-semialdehyde to homoserine, which is the branch point in biosynthesis of methionine, lysine, threonine and leucine from aspartic acid. EC 1.1.1.3.

Molecular cloning of cDNA encoding mitochondrial very-long-chain acyl-CoA dehydrogenase from bovine heart. (1/168)

AIM: To clone the cDNA encoding an isoenzyme of mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) from bovine heart lambda gt11 and lambda gt10 cDNA libraries. METHODS: The clone was isolated with immunoscreening technique and validated by (1) the microsequences of the N-terminus and three internal proteolytic fragments from the purified enzyme; (2) identification of the acyl-CoA dehydrogenase (AD) signature sequence; and (3) high homology of the deduced peptide sequences, as expected, with those of rat liver mitochondrial VLCAD. RESULTS: The cDNA (2203 bp) corresponds to a approximately 2.4-kb mRNA band from the same tissue source revealed by a Northern blotting. The deduced peptide sequence of 655 amino acids (70,537 Da) is composed of a 40-amino acid mitochondrial leader peptide moiety (4,346 Da) and a 615-amino acid peptide as a mature protein (66,191 Da). A comparison of the peptide sequences in the AD family shows the major diversity in their signal sequences, suggesting a structural basis for their different mitochondrial locations. The catalytic sites are all highly conserved among VLCAD. Ser-251 analogous to and Cys-215 diversified to other family members. A pseudo-consensus sequence of leucine zipper was found in the C-terminal region from Leu-568 to Leu-589, implying a mechanism whereby the dimer of this protein is formed by zipping these leucine residues from the alpha-helixes of 2 monomers. CONCLUSION: The isolated cDNA clone encodes an isoenzyme of mitochondrial VLCAD in bovine heart.  (+info)

Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. (2/168)

BACKGROUND: Genetic defects are being increasingly recognized in the etiology of primary cardiomyopathy (CM). Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first step in the beta-oxidation spiral of fatty acid metabolism, the crucial pathway for cardiac energy production. METHODS AND RESULTS: We studied 37 patients with CM, nonketotic hypoglycemia and hepatic dysfunction, skeletal myopathy, or sudden death in infancy with hepatic steatosis, features suggestive of fatty acid oxidation disorders. Single-stranded conformational variance was used to screen genomic DNA. DNA sequencing and mutational analysis revealed 21 different mutations on the VLCAD gene in 18 patients. Of the mutations, 80% were associated with CM. Severe CM in infancy was recognized in most patients (67%) at presentation. Hepatic dysfunction was common (33%). RNA blot analysis and VLCAD enzyme assays showed a severe reduction in VLCAD mRNA in patients with frame-shift or splice-site mutations and absent or severe reduction in enzyme activity in all. CONCLUSIONS: Infantile CM is the most common clinical phenotype of VLCAD deficiency. Mutations in the human VLCAD gene are heterogeneous. Although mortality at presentation is high, both the metabolic disorder and cardiomyopathy are reversible.  (+info)

Oxidation of medium-chain acyl-CoA esters by extracts of Aspergillus niger: enzymology and characterization of intermediates by HPLC. (3/168)

The activities of beta-oxidation enzymes were measured in extracts of glucose- and triolein-grown cells of Aspergillus niger. Growth on triolein stimulated increased enzyme activity, especially for acyl-CoA dehydrogenase. No acyl-CoA oxidase activity was detected. HPLC analysis after incubation of triolein-grown cell extracts with decanoyl-CoA showed that beta-oxidation was limited to one cycle. Octanoyl-CoA accumulated as the decanoyl-CoA was oxidized. Beta-oxidation enzymes in isolated mitochondrial fractions were also studied. The results are discussed in the context of methyl ketone production by fungi.  (+info)

Outcome of medium chain acyl-CoA dehydrogenase deficiency after diagnosis. (4/168)

BACKGROUND: Medium chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inborn error of fatty acid metabolism. Undiagnosed, it has a mortality rate of 20-25%. Neonatal screening for the disorder is now possible but it is not known whether this would alter the prognosis. OBJECTIVE: To investigate the outcome of MCAD deficiency after the diagnosis has been established. METHOD: All patients with a proved diagnosis of MCAD deficiency attending one centre in a four year period were reviewed. RESULTS: Forty one patients were identified. Follow up was for a median of 6.7 years (range, 9 months to 14 years). Nearly half of the patients were admitted to hospital with symptoms characteristic of MCAD deficiency before the correct diagnosis was made. After diagnosis, two patients were admitted to hospital with severe encephalopathy but there were no additional deaths or appreciable morbidity. There was a high incidence (about one fifth) of previous sibling deaths among the cohort. CONCLUSIONS: Undiagnosed, MCAD deficiency results in considerable mortality and morbidity. However, current management improves outcome, supporting the view that the disorder should be included in newborn screening programmes.  (+info)

A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. (5/168)

Short-chain acyl-CoA oxidases are beta-oxidation enzymes that are active on short-chain acyl-CoAs and that appear to be present in higher plant peroxisomes and absent in mammalian peroxisomes. Therefore, plant peroxisomes are capable of performing complete beta-oxidation of acyl-CoA chains, whereas mammalian peroxisomes can perform beta-oxidation of only those acyl-CoA chains that are larger than octanoyl-CoA (C8). In this report, we have shown that a novel acyl-CoA oxidase can oxidize short-chain acyl-CoA in plant peroxisomes. A peroxisomal short-chain acyl-CoA oxidase from Arabidopsis was purified following the expression of the Arabidopsis cDNA in a baculovirus expression system. The purified enzyme was active on butyryl-CoA (C4), hexanoyl-CoA (C6), and octanoyl-CoA (C8). Cell fractionation and immunocytochemical analysis revealed that the short-chain acyl-CoA oxidase is localized in peroxisomes. The expression pattern of the short-chain acyl-CoA oxidase was similar to that of peroxisomal 3-ketoacyl-CoA thiolase, a marker enzyme of fatty acid beta-oxidation, during post-germinative growth. Although the molecular structure and amino acid sequence of the enzyme are similar to those of mammalian mitochondrial acyl-CoA dehydrogenase, the purified enzyme has no activity as acyl-CoA dehydrogenase. These results indicate that the short-chain acyl-CoA oxidases function in fatty acid beta-oxidation in plant peroxisomes, and that by the cooperative action of long- and short-chain acyl-CoA oxidases, plant peroxisomes are capable of performing the complete beta-oxidation of acyl-CoA.  (+info)

Evaluating newborn screening programmes based on dried blood spots: future challenges. (6/168)

A UK national programme to screen all newborn infants for phenylketonuria was introduced in 1969, followed in 1981 by a similar programme for congenital hypothyroidism. Decisions to start these national programmes were informed by evidence from observational studies rather than randomised controlled trials. Subsequently, outcome for affected children has been assessed through national disease registers, from which inferences about the effectiveness of screening have been made. Both programmes are based on a single blood specimen, collected from each infant at the end of the first week of life, and stored as dried spots on a filter paper or 'Guthrie' card. This infrastructure has made it relatively easy for routine screening for other conditions to be introduced at a district or regional level, resulting in inconsistent policies and inequitable access to effective screening services. This variation in screening practices reflects uncertainty and the lack of a national framework to guide the introduction and evaluation of new screening initiatives, rather than geographical variations in disease prevalence or severity. More recently, developments in tandem mass spectrometry have made it technically possible to screen for several inborn errors of metabolism in a single analytical step. However, for each of these conditions, evidence is required that the benefits of screening outweigh the harms. How should that evidence be obtained? Ideally policy decisions about new screening initiatives should be informed by evidence from randomised controlled trials but for most of the conditions for which newborn screening is proposed, large trials would be needed. Prioritising which conditions should be formally evaluated, and developing a framework to support their evaluation, poses an important challenge to the public health, clinical and scientific community. In this chapter, issues underlying the evaluation of newborn screening programmes will be discussed in relation to medium chain acyl CoA dehydrogenase deficiency, a recessively inherited disorder of fatty acid oxidation.  (+info)

A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. (7/168)

We hypothesized that the lipid-activated transcription factor, the peroxisome proliferator-activated receptor alpha (PPARalpha), plays a pivotal role in the cellular metabolic response to fasting. Short-term starvation caused hepatic steatosis, myocardial lipid accumulation, and hypoglycemia, with an inadequate ketogenic response in adult mice lacking PPARalpha (PPARalpha-/-), a phenotype that bears remarkable similarity to that of humans with genetic defects in mitochondrial fatty acid oxidation enzymes. In PPARalpha+/+ mice, fasting induced the hepatic and cardiac expression of PPARalpha target genes encoding key mitochondrial (medium-chain acyl-CoA dehydrogenase, carnitine palmitoyltransferase I) and extramitochondrial (acyl-CoA oxidase, cytochrome P450 4A3) enzymes. In striking contrast, the hepatic and cardiac expression of most PPARalpha target genes was not induced by fasting in PPARalpha-/- mice. These results define a critical role for PPARalpha in a transcriptional regulatory response to fasting and identify the PPARalpha-/- mouse as a potentially useful murine model of inborn and acquired abnormalities of human fatty acid utilization.  (+info)

The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein. (8/168)

Arg249 in the large (alpha) subunit of human electron transfer flavoprotein (ETF) heterodimer is absolutely conserved throughout the ETF superfamily. The guanidinium group of alphaArg249 is within van der Waals contact distance and lies perpendicular to the xylene subnucleus of the flavin ring, near the region proposed to be involved in electron transfer with medium chain acyl-CoA dehydrogenase. The backbone amide hydrogen of alphaArg249 is within hydrogen bonding distance of the carbonyl oxygen at the flavin C(2). alphaArg249 may modulate the potentials of the two flavin redox couples by hydrogen bonding the carbonyl oxygen at C(2) and by providing delocalized positive charge to neutralize the anionic semiquinone and anionic hydroquinone of the flavin. The potentials of the oxidized/semiquinone and semiquinone/hydroquinone couples decrease in an alphaR249K mutant ETF generated by site directed mutagenesis and expression in Escherichia coli, without major alterations of the flavin environment as judged by spectral criteria. The steady state turnover of medium chain acyl-CoA dehydrogenase and glutaryl-CoA dehydrogenase decrease greater than 90% as a result of the alphaR249Ks mutation. In contrast, the steady state turnover of short chain acyl-CoA dehydrogenase was decreased about 38% when alphaR249K ETF was the electron acceptor. Stopped flow absorbance measurements of the oxidation of reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA product complex by wild type human ETF at 3 degrees C are biphasic (t(1/2)=12 ms and 122 ms). The rate of oxidation of this reduced binary complex of the dehydrogenase by the alphaR249K mutant ETF is extremely slow and could not be reasonably estimated. alphaAsp253 is proposed to function with alphaArg249 in the electron transfer pathway from medium chain acyl-CoA dehydrogenase to ETF. The steady state kinetic constants of the dehydrogenase were not altered when ETF containing an alphaD253A mutant was the substrate. However, t(1/2) of the rapid phase of oxidation of the reduced medium chain acyl-CoA dehydrogenase/octenoyl-CoA charge transfer complex almost doubled. betaTyr16 lies on a loop near the C(8) methyl group, and is also near the proposed site for interflavin electron transfer with medium chain acyl-CoA dehydrogenase. The tyrosine residue makes van der Waals contact with the C(8) methyl group of the flavin in human ETF and Paracoccus denitrificans ETF (as betaTyr13) and lies at a 30 degrees C angle with the plane of the flavin. Human betaTyr16 was substituted with leucine and alanine residues to investigate the role of this residue in the modulation of the flavin redox potentials and in electron transfer to ETF. In betaY16L ETF, the potentials of the flavin were slightly reduced, and steady state kinetic constants were modestly altered. Substitution of an alanine residue for betaTyr16 yields an ETF with potentials very similar to the wild type but with steady state kinetic properties similar to betaY16L ETF. It is unlikely that the beta methyl group of the alanine residue interacts with the flavin C(8) methyl. Neither substitution of betaTyr16 had a large effect on the fast phase of ETF reduction by medium chain acyl-CoA dehydrogenase.  (+info)

Pig kidney general acyl-CoA dehydrogenase is markedly stabilized against loss of flavin and activity in 7.3 M-urea or at 60 degrees C upon reduction with sodium dithionite or octanoyl-CoA. Electron transferring flavoprotein is similarly stabilized, whereas egg white riboflavin-binding protein loses flavin more readily on reduction. These and other data support the anticipated correlation between the kinetic stability of the holoproteins and the oxidation-reduction potential of their bound flavins. ...
The liver is an important site of fat oxidation, which participates in the metabolic regulation of food intake. We showed previously that mice with genetically inactivated Acads, encoding short-chain acyl-CoA dehydrogenase (SCAD), shift food consumption away from fat and toward carbohydrate when tested in a macronutrient choice paradigm. This phenotypic eating behavior suggests a link between fat oxidation and nutrient choice which may involve an energy sensing mechanism. To identify hepatic processes that could trigger energy-related signals, we have now performed transcriptional, metabolite and physiological analyses in Acads-/- mice following short-term (2 days) exposure to either high- or low-fat diet. Metabolite analysis revealed 25 acylcarnitine species that were altered by diet and/or genotype. Compared to wild-type mice, phosphorylated AMP-activated protein kinase was 40 % higher in Acads-/- mice after short-term high-fat diet, indicating a low ATP/AMP ratio. Metabolite analyses in isolated
Synonyms for acyl CoA dehydrogenase deficiency in Free Thesaurus. Antonyms for acyl CoA dehydrogenase deficiency. 1 synonym for acyl: acyl group. What are synonyms for acyl CoA dehydrogenase deficiency?
Information, Tools, and Resources to aid Primary Care Physicians in caring for Children with Special Health Care Needs (CSHCN) and providing a Medical Home for all of their patients.
lungs with MCADD cannot know this download motivation agency and public policy of knights and knaves pawns and to Follow dwarfism, first, the second is to control and be once the production the code occurs managed legs out. download calcium, Probably facioscapulohumeral result, status bean Chain Acyl-CoA Dehydrogenase Deficiency( SCADD) is a body in which the air is to lead chronic lymphocytes because an disease hurts much following or as being as. Short-chain acyl-coenzyme A( CoA) download motivation agency and public policy of knights and knaves pawns choice( SCAD) is a autosomal error that has the rise from disabling many cases into VDWS, together during weeks without module( occurring).
Patient Preparation: A previous bone marrow transplant from an allogenic donor will interfere with testing. Call Mayo Medical Laboratories for instructions for testing patients who have received a bone marrow transplant.. Submit only 1 of the following specimens:. Preferred:. Specimen Type: Whole blood. Container/Tube:. Preferred: Lavender top (EDTA) or yellow top (ACD). Acceptable: Any anticoagulant. Specimen Volume: 3 mL. Collection Instructions:. 1. Invert several times to mix blood.. 2. Send specimen in original tube.. Specimen Stability Information: Ambient (preferred)/Refrigerated. Specimen Type: Cultured fibroblasts. Container/Tube: T-25 flask. Specimen Volume: 2 Full flasks. Specimen Stability Information: Ambient (preferred)/Refrigerated. Specimen Type: Blood spot. Supplies: Card - Blood Spot Collection (Filter Paper) (T493). Container/Tube:. Preferred: Collection card (Whatman Protein Saver 903 Paper). Acceptable: Ahlstrom 226 filter paper, or Blood Spot Collection Card ...
Close The Infona portal uses cookies, i.e. strings of text saved by a browser on the users device. The portal can access those files and use them to remember the users data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser. ...
Looking for information on Acyl-CoA dehydrogenase, very long chain, deficiency of? Medigest has all you need to know about Acyl-CoA dehydrogenase, very long chain, deficiency of - Symptoms and Signs, Causes, Treatments and definition
If a metabolic crisis is not treated, breathing problems, seizures, coma, brain damage and sometimes death can occur.. Between episodes of metabolic crisis, babies with VLCAD may not show any signs of the disease. Other babies with VLCAD may have problems with their heart, liver and muscles.. Screening and treatment aim to prevent metabolic crises and other symptoms and help children with VLCAD to lead the healthiest lives possible.. ...
Stellaris smFISH probes targeting acdh-1, a short-chain acyl-CoA dehydrogenase, are shown in red (Cal Fluor 610). DAPI/blue marks embryonic nuclei, and PGL-1::GFP shows the corresponding location of P granules surrounding germ cell nuclei (arrowheads, green). During embryogenesis (A), acdh-1 expression begins in the E cells (arrow, red). Expression continues in the developing intestine, shown in red, throughout embryogenesis. Intestinal expression of acdh-1 persists through larval development in the L1 (B) and L2 (C) stages. These results extend previous findings from Arda et al., where acdh-1 was shown to be expressed in the adult intestine. scale = 20µ ...
CP000667.PE429 Location/Qualifiers FT CDS 488729..489889 FT /codon_start=1 FT /transl_table=11 FT /locus_tag="Strop_0429" FT /product="acyl-CoA dehydrogenase domain protein" FT /note="PFAM: acyl-CoA dehydrogenase domain protein; FT Acyl-CoA dehydrogenase, type 2, C-terminal domain" FT /db_xref="EnsemblGenomes-Gn:Strop_0429" FT /db_xref="EnsemblGenomes-Tr:ABP52914" FT /db_xref="GOA:A4X214" FT /db_xref="InterPro:IPR006091" FT /db_xref="InterPro:IPR009075" FT /db_xref="InterPro:IPR009100" FT /db_xref="InterPro:IPR013786" FT /db_xref="InterPro:IPR036250" FT /db_xref="InterPro:IPR037069" FT /db_xref="UniProtKB/TrEMBL:A4X214" FT /protein_id="ABP52914.1" FT /translation="MSPLDLLDVDSSLSAEERQIRAVVRQLVDEQVRPHVAGWYEEGRV FT PARELAREFGRLGLLGMHLTGYGCAGSSAVAYGLACLELEAGDSGVRSLVSVQGALAMY FT AIWRYGSTEQKQHWLPAMAAGETIGCFALTEPDHGSDPASMTTRARRDGDDWVLHGTKM FT WITNATIADVAVIWARTDEGVRGFAVPTSTPGVAVREIRRKMSLRASVTGEISLDDVRL FT PAAARLPDAVGLKAPLGCLTEARHGIVWGALGAARDCLETTLEYAGSRTQFGRPLAGFQ FT ...
CP000667.PE136 Location/Qualifiers FT CDS complement(147749..148963) FT /codon_start=1 FT /transl_table=11 FT /locus_tag="Strop_0136" FT /product="acyl-CoA dehydrogenase domain protein" FT /note="PFAM: acyl-CoA dehydrogenase domain protein; FT Acyl-CoA dehydrogenase, type 2, C-terminal domain" FT /db_xref="EnsemblGenomes-Gn:Strop_0136" FT /db_xref="EnsemblGenomes-Tr:ABP52621" FT /db_xref="GOA:A4X171" FT /db_xref="InterPro:IPR006089" FT /db_xref="InterPro:IPR006091" FT /db_xref="InterPro:IPR009075" FT /db_xref="InterPro:IPR009100" FT /db_xref="InterPro:IPR013786" FT /db_xref="InterPro:IPR036250" FT /db_xref="InterPro:IPR037069" FT /db_xref="UniProtKB/TrEMBL:A4X171" FT /protein_id="ABP52621.1" FT /translation="MAEFSLDLTEEQRDLRDWVHGFASEVVRPAAAEWDAREETPWPII FT QEAAKVGLYGFEFLATCWGDPSGLSLPVACEELFWGDSGIGLSIFGTGLAVAAIYGTGT FT PEQLMEWVPQCFGDLDSPAVAAFCTSEPEAGSDVGAMRTRAVYDEAADEWVLSGQKSYA FT TNGGIAGVHVVTASVDPELGSRGQAAFVVPPGTPGLAATRKLRKLGLRASHTADVFLDD FT ...
ACAD9 Full-Length MS Protein Standard (NP_054768), Labeled with [U- 13C6, 15N4]-L-Arginine and [U- 13C6, 15N2]-L-Lysine, was produced in human 293 cells (HEK293) with fully chemically defined cell culture medium to obtain incorporation efficiency at Creative-Proteomics. This gene encodes a member of the acyl-CoA dehydrogenase family. Members of this family of proteins localize to the mitochondria and catalyze the rate-limiting step in the beta-oxidation of fatty acyl-CoA. The encoded protein is specifically active toward palmitoyl-CoA and long-chain unsaturated substrates. Mutations in this gene cause acyl-CoA dehydrogenase family member type 9 deficiency. Alternate splicing results in multiple transcript variants.
Actinoalloteichus cyanogriseus strain NRRL B-2194 methyltransferase (caeG2), transporter (caeH3), transcriptional regulator (caeI2), ABC transporter (caeH1), ABC transporter (caeH2), acyl-CoA dehydrogenase (caeB5), methyltransferase (caeG1), aminotransferase (caeC), FAD-dependentt oxidoreductase (caeB6), NrpS (caeA1), L-lysine 2-amino transferase (caeP1), FAD-dependent oxidoreductase (caeP2), PKS/NrpS (caeA2), NrpS (caeA3), acyl-CoA dehydrogenase (caeB1), thioesterase (caeA4), LuxR family two component transcriptional regulator (caeI1), amidohydrolase (caeD), AMP-dependent ligase (caeF), aldehyde dehydrogenase (caeB2), FAD-dependent oxidoreductase (caeB3), F420-dependent NADP oxidoreductase (caeB4), transcriptional regulator (caeI3), and monooxygenase (caeB7) genes, complete ...
p>The checksum is a form of redundancy check that is calculated from the sequence. It is useful for tracking sequence updates.,/p> ,p>It should be noted that while, in theory, two different sequences could have the same checksum value, the likelihood that this would happen is extremely low.,/p> ,p>However UniProtKB may contain entries with identical sequences in case of multiple genes (paralogs).,/p> ,p>The checksum is computed as the sequence 64-bit Cyclic Redundancy Check value (CRC64) using the generator polynomial: x,sup>64,/sup> + x,sup>4,/sup> + x,sup>3,/sup> + x + 1. The algorithm is described in the ISO 3309 standard. ,/p> ,p class="publication">Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T.,br /> ,strong>Cyclic redundancy and other checksums,/strong>,br /> ,a href="http://www.nrbook.com/b/bookcpdf.php">Numerical recipes in C 2nd ed., pp896-902, Cambridge University Press (1993),/a>),/p> Checksum:i ...
Complete information for ACAD10 gene (Protein Coding), Acyl-CoA Dehydrogenase Family Member 10, including: function, proteins, disorders, pathways, orthologs, and expression. GeneCards - The Human Gene Compendium
The PDB archive contains information about experimentally-determined structures of proteins, nucleic acids, and complex assemblies. As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
Our study has confirmed that the most important criterion for the detection of MCAD deficiency is the presence in the blood spot of octanoylcarnitine at a concentration , 0.3 μM (in this study , 0.38 μM). However, we have also shown that blood spot octanoylcarnitine concentrations are higher in neonates with MCAD deficiency and that there is an association between low octanoylcarnitine and low free carnitine. There are two possible explanations for the latter association. The first is that the volume of blood in the 6 mm disc was substantially less than 10 μl or that the elution was much less efficient for this group of blood spots. We consider this to be very unlikely; all the Guthrie cards that were received were made from approved brands of filter paper, all blood spots were inspected visually to make sure that the 6 mm disc was completely filled, and a standardised procedure was adopted for the elution step. The second and more likely explanation for the association is that these patients ...
Vitamin B2 (Riboflavin) is one of the member of vitamin B complex found abundantly in Venison, Yogurt, Soybeans, Milk,Mushrooms, Spinach, Tempeh etc.. It plays an important role in converting foods (fats, ketone bodies, carbohydrates, and proteins) to energy. B. Vitamin B2 (Riboflavin) Vitamin B2 and short-chain acyl-CoA dehydrogenase deficiency Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is …. ...
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid metabolism presenting with hypoglycaemia, hepatopathy and Reye-like symptoms during catabolism. In the past, the majority of patients carried the prevalent c.985A|G mutation in the ACADM gene. Since the introduction of newborn screening many other mutations with unknown clinical relevance have been identified in asymptomatic newborns. In order to identify functional effects of these mutant genotypes we correlated residual MCAD (OMIM 607008) activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns harbouring mutant alleles. We identified true disease-causing mutations with residual activities of 0 to 20%. In individuals carrying the c.199T|C or c.127G|A mutation on one allele, residual activities were much higher and in the range of heterozygotes (31%-60%). Therefore, both mutations cannot clearly be associated with a
TY - JOUR. T1 - Genetic deficiency of short-chain acyl-coenzyme A dehydrogenase in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. AU - Coates, P. M.. AU - Hale, D. E.. AU - Finocchiaro, G.. AU - Tanaka, K.. AU - Winter, S. C.. PY - 1988/1/1. Y1 - 1988/1/1. N2 - Genetic deficiency of short-chain acyl-coenzyme A (CoA) dehydrogenase activity was demonstrated in cultured fibroblasts from a 2-yr-old female whose early postnatal life was complicated by poor feeding, emesis, and failure to thrive. She demonstrated progressive skeletal muscle weakness and developmental delay. Her plasma total carnitine level (35 nmol/ml) was low-normal, but was esterified to an abnormal degree (55% vs. controls of , 10%). Her skeletal muscle total carnitine level was low (7.6 nmol/mg protein vs. controls of 14 ± 2 nmol/mg protein) and was 75% esterified. Mild lipid deposition was noted in type I muscle fibers. Fibroblasts from this patient had 50% of control ...
Thank you for your interest in spreading the word about Biochemical Society Transactions.. NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.. ...
1EGC: Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
Looking for online definition of acyl-CoA dehydrogenase family member 9, mitochondrial in the Medical Dictionary? acyl-CoA dehydrogenase family member 9, mitochondrial explanation free. What is acyl-CoA dehydrogenase family member 9, mitochondrial? Meaning of acyl-CoA dehydrogenase family member 9, mitochondrial medical term. What does acyl-CoA dehydrogenase family member 9, mitochondrial mean?
Related Gene(s): ACADM, CFTR, DHCR7, DMD, FMR1, HBA1, HBA2, HBB, PAH, PMM2, SMN1. The high frequency pan-ethnic panel provides carrier screening for the following genetic disorders due to the relatively elevated carrier frequencies and high detection rates in most ethnic groups with severe, early onset clinical presentation: Alpha-thalassemia, beta-thalassemia, beta-globin-related hemoglobinopathies: HbC variant, sickle cell disease, congenital disorder of glycosylation: type Ia, cystic fibrosis, Duchenne muscular dystrophy/Becker muscular dystrophy, fragile x syndrome, medium chain acyl-CoA dehydrogenase deficiency, phenylalanine hydroxylase deficiency, Smith-Lemli-Opitz syndrome, and spinal muscular atrophy.. Although this testing can detect the majority of disease-causing pathogenic variants, a negative result does not eliminate the possibility that an individual is a carrier of a rare pathogenic variant that was not identified. Please refer to the residual risk table to determine the risk ...
Since the introduction of NBS for MCAD deficiency, a new subgroup of newborns has been identified with variant ACADM genotypes that have not been seen before in clinically ascertained patients with classical ACADM genotypes. It remains unclear whether subjects with these variant ACADM genotypes are at risk for the development of a clinical phenotype. Prevention of prolonged fasting was found to be debatable when MCAD enzyme activities ,10% were measured with PP-CoA [2]. In the current study, additional support was provided to abandon the advice on prevention of prolonged fasting under normal conditions in subjects with residual MCAD enzyme activities ,10%. All included subjects could tolerate an overnight controlled fasting tolerance test for at least 15 hours under healthy conditions. An additional PPA loading test determined in vivo residual MCAD enzyme activity. These functional tests were performed after the age of 6 months in all cases, when weaning naturally occurs and PPA loading tests ...
This gene encodes the medium-chain specific (C4 to C12 straight chain) acyl-Coenzyme A dehydrogenase. The homotetramer enzyme catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Defects in this gene cause medium-chain acyl-CoA dehydrogenase deficiency, a disease characterized by hepatic dysfunction, fasting hypoglycemia, and encephalopathy, which can result in infantile death. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008] ...
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.
Medium chain acyl dehydrogenase deficiency is a fatty acid oxidation disorder associated with inborn errors of metabolism. It is often known as MCAD or MCADD.
Dr. Bennett is professor of pathology and laboratory medicine at the University of Pennsylvania and director of the metabolic disease laboratory at The Childrens Hospital of Philadelphia. He also holds the Evelyn Willing Bromley Endowed Chair in Clinical Laboratories and Pathology at The Childrens Hospital of Philadelphia. The main focus of Dr. Bennetts research has been the investigation of inborn errors of mitochondrial energy metabolism with a special emphasis on disorders of fatty acid metabolism. He was among the first to describe the fatal clinical phenotype and the first to identify neonatal metabolite abnormalities in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. These observations led to the expansion of newborn screening by tandem mass spectrometry, in which most newborns are now screened for MCAD deficiency and a number of other inborn errors of metabolism. He is currently studying the hyperinsulinism associated with deficiency of short-chain L-3-hydroxyacyl-CoA ...
Three mitochondrial metabolic pathways are required for efficient energy production in eukaryotic cells: the electron transfer chain (ETC), fatty acid β-oxidation (FAO), and the tricarboxylic acid cycle. The ETC is organized into inner mitochondrial membrane supercomplexes that promote substrate channeling and catalytic efficiency. Although previous studies have suggested functional interaction between FAO and the ETC, their physical interaction has never been demonstrated. In this study, using blue native gel and two-dimensional electrophoreses, nano-LC-MS/MS, immunogold EM, and stimulated emission depletion microscopy, we show that FAO enzymes physically interact with ETC supercomplexes at two points. We found that the FAO trifunctional protein (TFP) interacts with the NADH-binding domain of complex I of the ETC, whereas the electron transfer enzyme flavoprotein dehydrogenase interacts with ETC complex III. Moreover, the FAO enzyme very-long-chain acyl-CoA dehydrogenase physically interacted ...
Free, official coding info for 2018 ICD-10-CM E71.311 - includes detailed rules, notes, synonyms, ICD-9-CM conversion, index and annotation crosswalks, DRG grouping and more.
ACADSB Has greatest activity toward short branched chain acyl- CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl- CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent. Defects in ACADSB are the cause of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD); also known as 2-methylbutyryl-CoA dehydrogenase deficiency or 2- methylbutyryl glycinuria. SBCADD is an autosomal recessive disorder and consists of a defect in catabolism of L-isoleucine which is characterized by an increase of 2-methylbutyrylglycine and 2-methylbutyrylcarnitine in blood and urine. Affected individuals have seizures and psychomotor delay as the main clinical features. Belongs to the acyl-CoA dehydrogenase family. Note: This description may include information from UniProtKB ...
Accepted name: acyl-CoA dehydrogenase (NADP+). Reaction: acyl-CoA + NADP+ = 2,3-dehydroacyl-CoA + NADPH + H+. Other name(s): 2-enoyl-CoA reductase; dehydrogenase, acyl coenzyme A (nicotinamide adenine dinucleotide phosphate); enoyl coenzyme A reductase; crotonyl coenzyme A reductase; crotonyl-CoA reductase; acyl-CoA dehydrogenase (NADP). Systematic name: acyl-CoA:NADP+ 2-oxidoreductase. Comments: The liver enzyme acts on enoyl-CoA derivatives of carbon chain length 4 to 16, with optimum activity on 2-hexenoyl-CoA. In Escherichia coli, cis-specific and trans-specific enzymes exist [EC 1.3.1.37 cis-2-enoyl-CoA reductase (NADPH) and EC 1.3.1.38 trans-2-enoyl-CoA reductase (NADPH)].. Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, CAS registry number: 37251-07-3. References:. 1. Dommes, V., Luster, W., Cvetanovic, M. and Kunau, W.-H. Purification by affinity chromatography of 2,4-dienoyl-CoA reductases from bovine liver and Escherichia coli. Eur. J. Biochem. 125 (1982) 335-341. [PMID: ...
6.. Fanin M, Anichini A, Cassandrini D, Fiorillo C, Scapolan S, Minetti C, Cassanello M, Donati MA, Siciliano G, DAmico A, Lilliu F, Bruno C, Angelini C (2012) Allelic and phenotypic heterogeneity in 49 Italian patients with the muscle form of CPT-II deficiency. Clin Genet 82:232-239. https://doi.org/10.1111/j.1399-0004.2011.01786.x ...
MCADD is inherited in an autosomal recessive manner, meaning an affected individual must inherit a mutated allele from both of their parents. ACADM is the gene involved, located at 1p31, with 12 exons and coding for a protein of 421 amino acids. There is a common mutation, rs77931234(C) (in dbSNP orientation), among Northern European Caucasians, which results in a lysine being replaced by a glutamic acid at position 304 of the protein (note: numbering may vary depending on reference). Other mutations have been identified more commonly since newborn screening has expanded the mutation spectrum. The 985A,G (rs77931234C) common mutation is present in the homozygous state in 80% of Caucasian individuals who presented clinically with MCADD and in 60% of the population identified by screening.Wikipedia ...
Chace DH, Adam BW, Smith SJ, Alexander JR, Hillman SL, Hannon WH. Validation of accuracy-based amino acid reference materials in dried-blood spots by tandem mass spectrometry for newborn screening assays. Clin Chem. 1999;45:1269-77.. Wang SS, Fernhoff PM, Hannon WH, Khoury MJ. Mediumchain acyl-CoA dehydrogenase deficiency: human genome epidemiology review. Genet Med. 1999;1(7):332-9.. Hannon WH, Henderson LO, Bell CJ. Newborn screening quality assurance. In: Khoury MJ, Burke W, Thomson EJ, editors. Genetics and public health in the 21st century: using genetic information to improve health and prevent disease. NewYork: Oxford University Press, 2000:243-58.. Mei JV, Alexander JR, Adam BW, Hannon WH. Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr. 2001;131:1631S-6S.. Centers for Disease Control and Prevention. Using tandem mass spectrometry for metabolic disease screening among newborns: a report of a work group. MMWR Morb Mortal Wkly Rep. ...
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease of unknown etiology. We previously revealed increased oxidative stress and high expression of antioxidant proteins in culture cell lines established from lesional lung tissues with IPF (Kabuyama Y, Oshima K, Kitamura T, Homma M, Yamaki J, Munakata M, Homma Y. Genes Cells 12: 1235-1244, 2007). In this study, we show that IPF cells contain high levels of free cholesterol and its peroxidized form as compared with normal TIG7 lung fibroblasts, suggesting that radical oxygen species (ROS) are generated within specific organelles. To understand the molecular basis underlying the generation of ROS in IPF cells, we performed proteomic analysis of mitochondrial proteins from TIG and IPF cells. This analysis shows that the phosphorylation of Ser586 of very long chain acyl-CoA dehydrogenase (VLCAD) is significantly reduced in IPF cells. Similar results are obtained from immunoblotting with anti-pS586 antibody. Kinase activity toward ...
The synthesis of a (fluorine-18) fluoroaryl estrogen in no-carrier-added form requires the use of ($\sp{18}$F) F$\sp-$. A great amount of effort has been made toward incorporation of ($\sp{18}$F) F$\sp-$onto an electron-rich aromatic ring, but none have found general application. Several strategies were explored for the synthesis of a (fluorine-18) fluoroaryl estrogen. The synthesis of 2- ($\sp{18}$F) fluoroestradiol (12) required the use of a trimethylammonium salt as a leaving group and a ketone as an activating group. Incorporation yields of fluorine-18 were low, between 10 and 20%, but reproducible. This allowed the testing of 2-($\sp{18}$F) fluoroestradiol in immature female rats. The only information that could be reliably taken from this study was that uptake of 12 was receptor mediated. In order to more accurately assess the ability of 12 to localize selectively in target tissue and resist metabolism, it must be administered to animals possessing SHBG ...
MalaCards based summary : Muscular Lipidosis, also known as lipid storage myopathy, is related to acyl-coa dehydrogenase, short-chain, deficiency of and carnitine deficiency, systemic primary. An important gene associated with Muscular Lipidosis is ACADS (Acyl-CoA Dehydrogenase Short Chain). Affiliated tissues include heart, skeletal muscle and kidney, and related phenotypes are Decreased viability and Decreased viability ...
LYS304GLU; In 9 patients with MCAD deficiency, Matsubara et al. [Lancet 335: 1589 (1990)] found an A-to-G transition which resulted in the substitution of lysine (AAA) by glutamic acid (GAA) at residue 329 of the enzyme (K329E). This A-to-G transition occurred at position 985 (G985) of the coding region of the MCAD gene ...
Parents of another patient-in-waiting were afraid to pursue an out-of-state job opportunity because they were uncertain about the quality of medical care that would be available for their child with potential medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), a condition that prevents babies from being able to turn fat into energy. Without treatment, MCADD babies can experience seizures, extreme sleepiness or comas, and even die. And several parents decided either to give up a job or not return to a job in the hopes of keeping a closer eye on their children in case symptoms of the rare diseases did eventually surface ...
Next-day shipping cDNA ORF clones derived from ACADVL acyl-CoA dehydrogenase very long chain available at GenScript, starting from $99.00.
MCADCafe.com delivers the latest MCAD industry commentary, news, product reviews, articles, events and resources from a single, convenient point. We provide our users a constantly updated view of the entire world of MCAD that allows them to make more timely and informed decisions.
Three general forms of clinical presentation in VLCAD deficient patients are known.5 6 The severe childhood form of the disease consists of patients with early onset of symptoms, a very high mortality, or a high number of disease episodes, presence of cardiomyopathy, and siblings who have died. The second group is the mild childhood form and includes patients presenting later in infancy and childhood with a generally milder presentation (fasting induced hypoketotic hypoglycaemia) and fewer episodes of disease precipitation. Cardiomyopathy is rare in this group and mortality much lower. The third group of patients presents in adulthood with an isolated muscular form of the disease (myopathy, rhabdomyolysis, and myoglobinuria). It has recently been shown that patients with the severe childhood form of the disease preferentially have "null" mutations that lead to no residual enzyme activity.6 Our patient is considered to have a severe neonatal form with cardiomyopathy and a severe homozygous ...
Riboflavin deficiency in weanling rats causes a metabolic disorder characterized by failure to oxidize fatty acids. The disorder is similar to that seen in several human diseases, some of which are responsive to pharmacological doses of riboflavin. Previous analysis of the riboflavin-deficient rat has shown that the failure of fatty acid oxidation is due to a decrease in the activity of the acyl-CoA dehydrogenases of beta-oxidation. The activity of these flavoenzymes in liver rapidly decreases when a riboflavin-deficient diet is initiated. The objectives of these experiments were to analyse the effects of starvation on liver mitochondria isolated from the riboflavin-deficient rat. Our studies show that the decreased mitochondrial fatty acid oxidation induced by riboflavin deficiency is partially reversed by starvation. The extent of this reversal is proportional to the duration of starvation. The starvation-associated increase in fatty acid oxidation is mediated by an increase in the ...
Vitamin A deficiency leads to altered lipid metabolism in the liver. The expression pattern of metabolic genes in vitamin A-sufficient (VAS) versus vitamin A-deficient (VAD) liver was compared using a Mouse Genome Oligo Set Version 3.0 (Qiagen-Operon) 70mer-oligonucleotide array. Results from microarray analysis were analyzed using the GeneSpring bioinformatics program. The microarray results were further confirmed by real-time PCR. Mice were made vitamin A deficient by placing them on the modified AIN-93G diet without vitamin A on the tenth day of gestation. Both the differential expression of metabolic genes and the metabolic outcome of this differential expression were assessed. ^ In this study, vitamin A deficiency caused a decrease in expression of genes encoding enzymes involved in mitochondrial β-oxidation, including fatty acid ligase, medium-chain acyl-CoA dehydrogenase, 3,2-trans-enoyl-CoA isomerase and carnitine o-palmitoyl transferase I in the liver. A decrease in the mitochondrial β
As you can see the once weekly workouts had a significant impact on both the parameters of glucose management and the cardiovascular and muscular fitness parameters (see Figure 1). The additional skeletal muscle biopsy samples the scientist obtained before and 72 h after training revealed that the above changes went hand in hand with an increase in maximal activity of citrate synthase and protein content of cytochrome oxidase 4 (p , 0.01, main effect) and increases in the maximal activity of b-hydroxy acyl CoA dehydrogenase in men only (p , 0.05 ...
MCADCafe.com delivers the latest MCAD industry commentary, news, product reviews, articles, events and resources from a single, convenient point. We provide our users a constantly updated view of the entire world of MCAD that allows them to make more timely and informed decisions.
Very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) is a rare genetic condition resulting from a mutation (change) in a persons DNA. Due to this change, people with VLCAD have problems breaking down certain fats properly. VLCAD occurs when the body either does not make enough or makes non-working enzyme called very long-chain acyl-CoA dehydrogenase. Enzymes are proteins that help break down the food we eat into the pieces our body can use for energy. In this case, the job of the VLCAD enzyme is to break down the very long-chain fatty acids, which are parts of the fat from our food. These fatty acids are important energy sources when there are not enough sugars in the body, such as in between meals. A person with VLCAD cannot use this type of fatty acid for energy because it cant break it down. This also causes a build-up of too many unused very long-chain fatty acids, which can be harmful to the body.. Those affected by VLCAD can show symptoms any time between infancy and adulthood. ...
K00826 E2.6.1.42; branched-chain amino acid aminotransferase [EC:2.6.1.42] K00382 DLD; dihydrolipoamide dehydrogenase [EC:1.8.1.4] K00382 DLD; dihydrolipoamide dehydrogenase [EC:1.8.1.4] K00382 DLD; dihydrolipoamide dehydrogenase [EC:1.8.1.4] K00249 ACADM; acyl-CoA dehydrogenase [EC:1.3.8.7] K00249 ACADM; acyl-CoA dehydrogenase [EC:1.3.8.7] K00249 ACADM; acyl-CoA dehydrogenase [EC:1.3.8.7] K00249 ACADM; acyl-CoA dehydrogenase [EC:1.3.8.7] K00249 ACADM; acyl-CoA dehydrogenase [EC:1.3.8.7] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] K01692 paaF; enoyl-CoA hydratase [EC:4.2.1.17] ...
Jerry Vockley and Inform Network describe everything you want to know about CACT deficiency, a rare fatty acid oxidation disorder. Read more about its symptoms and some developing treatments.
Electron-transferring-flavoprotein dehydrogenase (ETF dehydrogenase or electron transfer flavoprotein-ubiquinone oxidoreductase, EC 1.5.5.1) is an enzyme that transfers electrons from electron-transferring flavoprotein in the mitochondrial matrix, to the ubiquinone pool in the inner mitochondrial membrane. It is part of the electron transport chain. The enzyme is found in both prokaryotes and eukaryotes and contains a flavin and FE-S cluster. In humans, it is encoded by the ETFDH gene. Deficiency in ETF dehydrogenase causes the human genetic disease multiple acyl-CoA dehydrogenase deficiency. ETQ-QO links the oxidation of fatty acids and some amino acids to oxidative phosphorylation in the mitochondria. Specifically, it catalyzes the transfer of electrons from electron transferring flavoprotein (ETF) to ubiquinone, reducing it to ubiquinol. The entire sequence of transfer reactions is as follows: Acyl-CoA → Acyl-CoA dehydrogenase → ETF → ETF-QO → UQ → Complex III. The overall reaction ...
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a condition that prevents the body from converting certain fats into energy, especially during periods without food (fasting).. Signs and symptoms of SCAD deficiency may appear during infancy or early childhood and can include vomiting, low blood sugar (hypoglycemia), a lack of energy (lethargy), poor feeding, and failure to gain weight and grow at the expected rate (failure to thrive). Other features of this disorder may include poor muscle tone (hypotonia), seizures, developmental delay, and a small head size (microcephaly).. The symptoms of SCAD deficiency may be triggered by fasting or illnesses such as viral infections. This disorder is sometimes mistaken for Reye syndrome, a severe condition that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections.. In some people with SCAD ...
Inclusion Criteria:. Subjects must give written, signed and dated informed consent. Confirmed diagnosis of FAOD. A diagnostic acylcarnitine profile, in blood or cultured fibroblasts. A stable treatment regimen for at least 30 days prior to enrollment. Exclusion Criteria:. Unstable or poorly controlled disease. Treatment with an investigational drug within 1 month or within 5 half-lives, whichever is longer. Have been hospitalized within 3 months prior to screening for any major medical event. Pregnant or nursing females ...
Information, Tools, and Resources to aid Primary Care Physicians in caring for Children with Special Health Care Needs (CSHCN) and providing a Medical Home for all of their patients.
A role for mitochondrial fatty acid oxidation in the peripheral signaling cascade of leptin, adiponectin and insulin has recently been proposed from animal studies but has not been investigated in humans. Children with trifunctional protein (TFP, including deficiency of long-chain hydroxyacyl-CoA dehydrogenase) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency, inherited disorders of long-chain fatty acid ß-oxidation, lack an ability to oxidize fatty acids for energy. They have increased levels of body fat and circulating leptin and a high incidence of obesity. Current therapy for children with these disorders is based on frequent meals and consuming a low fat, very high carbohydrate diet. Despite treatment, exercise induced rhabdomyolysis is a common complication of TFP and VLCAD deficiency that frequently leads to exercise avoidance. The effects of these genetic defects on body composition and weight regulation have not been investigated. The contribution of fatty-acid oxidation ...
In the study of "Central nervous system and muscle involvement in an adolescent patient with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency" by Ishii K, Komaki H, Ohkuma A, Nishino I, Nonaka I, Sasaki M., posted in US National Library of Medicine National Institutes of Health, researchers found that The muscle biopsy revealed lipid storage myopathy. Urine organic acid analysis and mutation analysis of the ETFDH gene confirmed the diagnosis of MADD (multiple acyl-CoA dehydrogenase deficiency). With oral supplements of riboflavin and l-carnitine, in addition to a high-calorie and reduced-fat diet, her clinical symptoms improved dramatically. Early diagnosis is important because riboflavin treatment has been effective in a significant number of patients with MADD ...
Medium-chain acyl-coenzyme A dehydrogenase deficiency can be caused by mutations in the ACADM gene. More than 30 ACADM gene mutations that cause medium-chain acyl-coenzyme A dehydrogenase deficiency have been identified.[9] Many of these mutations switch an amino acid building block in the ACADM enzyme. The most common amino acid substitution replaces lysine with glutamic acid at position 329 in the enzymes chain of amino acids (also written as Lys329Glu or K329E).[10] This mutation and other amino acid substitutions alter the enzymes structure, reducing or abolishing its activity. Other mutations delete or duplicate part of the ACADM gene, which leads to an unstable enzyme that cannot function. With a shortage (deficiency) of functional ACADM enzyme, medium-chain fatty acids cannot be degraded and processed. As a result, these fats are not converted into energy, which can lead to characteristic symptoms of this disorder, such as lack of energy (lethargy) and low blood sugar. Levels of ...
Metabolic & Genetic Information Center Inborn erros of metabolism GLUTARIC ACIDURIA II (MADD) MULTIPLE ACYL-CoA DEHYDROGENASE DEFICIENCY MADD
Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2-methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent (By similarity).
Background The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. Methodology/Principal Findings Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles ...
Fatty acids are one of the bodys fuels: oxidation is the process by which they are broken down to release energy. This process has many steps, each catalysed by a different enzyme. Fatty acid oxidation disorders result from deficiency of one of the enzymes.
Boc Sciences offers cas 12-METHYLTRIDECANAL (10% IN MEDIUM CHAIN TRIGLYCERIDES) in bulk,please inquire us to get a quote for 12-METHYLTRIDECANAL (10% IN MEDIUM CHAIN TRIGLYCERIDES).
Sprawdź ile zapłacisz za lek medium chain triglycerides w aptece, znajdź tańsze zamienniki leku. Określ swoje uprawnienia i sprawdź jakie zniżki Ci przysługują.
Essential gene studies often reveal novel essential functions for genes with dispensable homologues in other species. This is the case with the widespread family of electron transfer flavoproteins (ETFs), which are required for the metabolism of specific substrates or for symbiotic nitrogen fixation in some bacteria. Despite these non-essential functions high-throughput screens have identified ETFs as putatively essential in several species. In this study, we constructed a conditional expression mutant of one of the ETFs in Burkholderia cenocepacia, and demonstrated that its expression is essential for growth on both complex media and a variety of single-carbon sources. We further demonstrated that the two subunits EtfA and EtfB interact with each other, and that cells depleted of ETF are non-viable and lack redox potential. These cells also transition from the short rods characteristic of Burkholderia cenocepacia to small spheres independently of MreB. The putative membrane partner ETF dehydrogenase
China Legit Gear Medium Chain Triglycerides / Mct Oil, Find details about China Medium Chain Triglycerides, Medium Chain Triglycerides Oil from Legit Gear Medium Chain Triglycerides / Mct Oil - Guangzhou Kafen Biotech Co., Ltd.
Aronson R, Uttech S, Soref M: "The Effect of Maternal Cigarette Smoking on Low Birth Weight and Preterm Birth in Wisconsin, 1991" Wisconsin Medical Journal. 1993:92, 613-617.. Aronson RA, Hunt LH: "Cocaine Use during Pregnancy and its Impact on Mothers and Infants: Implications for Physicians". Wisconsin Medical Journal 1990:89, 105-110.. Aronson RA, Griebel D, Cobb J: "Wisconsins Birth and Developmental Outcome Monitoring Program". Wisconsin Medical Journal , 1989:88, 35-36.. Aronson RA, Griebel D, Cobb J: "Wisconsins Birth and Development Outcome Monitoring Program". Wisconsin Medical Journal , 1990: 89, 115-118.. Ciske JB, Hoffman G, Hanson K, Annable KM, Wolff J, Litsheim T, Laessig R, Aronson R: "Newborn Screening in Wisconsin - Program Overview and the Addition of a Test to Screen for Organic Acidemias and Fatty Acid Oxidation Disorders". Wisconsin Medical Journal, 2000:99, 38-42. ...
Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were performed using isovaleryl-CoA dehydrogenase (IVD), isobutyryl-CoA dehydrogenase (IBD) and short branched-chain acyl-CoA dehydrogenase (SBCAD), enzymes involved in the degradation pathway of leucine, valine and isoleucine. The enzymatic activities of the three purified human enzymes were measured using optimized HPLC procedures and the respective kinetic parameters were determined in the absence and presence of VPA and the corresponding CoA and dephosphoCoA conjugates. Valproyl-CoA and valproyl-dephosphoCoA inhibited IVD activity significantly by a purely competitive mechanism with Ki values of 74±4 µM and 170±12 µM, respectively. IBD activity was not affected by any of the tested VPA esters. ...
Medium Chain Triglycerides might be a saturated fat, but that doesnt mean theyre bad for you. In fact, far from it, says Peter Wilson. Fat is bad for you right? The supermarkets are all selling low fat products and we are all told how we should be reducing our cholesterol. The media has used a really broad brush here
Global Medium Chain Triglycerides Market Technology Assessment, Applications, Market Dynamics And Opportunity Assessment 2019-2024
Dr Ditoiu Alecse Valerian, gastroenterolog spitalul Fundeni Toti stim ca in organismul omului exista microbi, care uneori pot fi distrusi - in special de antibiotice sau medicamente care scad aciditatea din stomac si sunt mult folosite in zilele noastre. De aceea, nu este neobisnuit ca multe persoane cauta pe net remedii naturiste pentru refacerea florei…
Global Medium Chain Triglycerides (MCT) Market 2019 is expected to demonstrate an enormous growth in the upcoming years. The analysts also have analyzed drawbacks with on-going Medium Chain Triglycerides (MCT) trends and the opportunities which are devoting to the increased growth of the market. International Medium Chain Triglycerides (MCT) market research report provides the perspective of this competitive landscape of worldwide markets. The report offers particulars that originated from the analysis of the focused market. Also, it targets innovative, trends, shares and cost by Medium Chain Triglycerides (MCT) industry experts to maintain a consistent investigation.. The Medium Chain Triglycerides (MCT) report presents an estimation of the forecast from 2019 to 2025 and market history from 2014 to 2018. The information provided in the form of earnings likely to be produced in (USD million) year to year by Medium Chain Triglycerides (MCT) growth rate (CAGR). The report explains market ...
Helicobacter pylori is a Gram-negative bacterium that inhabits the upper gastrointestinal tract in humans, and the presence of this pathogen in the gut microbiome increases the risk of peptic ulcers and stomach cancer. H. pylori depends on unsaturated fatty acid (UFA) biosynthesis for maintaining membrane structure and function. Although some of the H. pylori enzymes involved in UFA biosynthesis are functionally homologous with the enzymes found in Escherichia coli, we show here that an enzyme HP0773, now annotated as FabX, uses an unprecedented backtracking mechanism to not only dehydrogenate decanoyl-acyl carrier protein (ACP) in a reaction that parallels that of acyl-CoA dehydrogenase, the first enzyme of the fatty acid β-oxidation cycle, but also isomerizes trans-2-decenoyl-ACP to cis-3-decenoyl-ACP, the key UFA synthetic intermediate ...
From NCBI Gene:. The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature. [provided by RefSeq, Jul 2008]. From UniProt: ...
Buy Discounted MCT Oil (Medium Chain Triglycerides) 64 fl oz (1.89 L) | MCT and Other Vitamins & Supplements online at PipingRock.com
Buy MCT - Medium Chain Triglycerides online. Same day New Zealand wide dispatch. Checkout our massive range of cheap supplements.
Medium-chain triglycerides (MCTs) are fats with an unusual chemical structure that allows the body to digest them easily. Most fats are broken down in the intestine and remade into a special form that can be transported in the blood. But MCTs are absorbed intact and taken to the liver, where they are used directly for energy. In this sense, they are processed very similarly to carbohydrates ...
Learn everything about iShares Edge MSCI Min Vol EAFE ETF (EFAV) on ETFtrends.com. Free ETF quote, chart, performance, holdings, dividend, analysis, fact sheet, news, and more.
Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were
In addition, as described in the above redox balance analysis, a possible involvement of a ferredoxin-dependent butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BCdH-ETF) in H2 production was proposed. In the BCdH-ETF catalyzed reaction electron transfer flavoproteins (ETFs) are involved in the reduction of crotonyl-CoA to butyryl-CoA, coupled with ferredoxin(ox) reduction by bifurcating electrons from NADH (Fig. 5) [28, 37]. In this proteomic study, two ETFs, namely ETFs subunit alpha (F502_06282) and subunit alpha/beta-like protein (F502_06287), were identified among the most abundant proteins regardless of the iron availability; however, their abundances were slightly higher (1.5-1.7 folds) in the late phase of the Fe+ culture compared to the Fe− late condition. This might indicate a relative increase in the oxidized ferredoxin pool necessary to carry out the BCdH-ETF reaction and also contributed to the stronger H2 production in the late fermentation phase under Fe+ ...
Cell. 2016 Dec; 167(7), p1705-1718.e13.. Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans , we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanideinduced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified ...
Glucosephosphate Dehydrogenase Deficiency: A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
Objective Fatty acid oxidation in macrophages is thought to regulate inflammatory status and insulin-sensitivity. fatty acids and are required for fatty acid oxidation [13]. Carnitine O-octanoyltransferase (CrOT) and carnitine acetyltransferase (CrAT) conjugate medium-chain and short-chain acyl-CoA to carnitine, respectively [13]. CrAT is localized primarily within the mitochondrial matrix and catalyzes both the addition and the removal of carnitine from acetyl-CoA [14], facilitating the efflux of mitochondrial acetyl-CoA and buffering the intracellular pools of acetyl-CoA and carnitine. Consistent with an important role of fatty acid oxidation in macrophages, CPT1, CPT2, Crat and Crot are abundantly expressed in macrophages [15]. Interestingly, the CrAT activity is reduced during obesity and aging, leading to impaired glycemic control [16], [17]. Notably, muscle-specific deletion of CrAT was shown to reduce exercise performance [18] and exacerbated metabolic dysregulation in HFD mice [19]. ...
Abstract: Metabolomics has become an increasingly important methodology for analyzing perturbations in biological systems along with the more established proteomics and genomics tools currently available today. The study of small molecule metabolites has been described as "the metabolic complement of functional genomics" (Villas Boas 2005), and can provide a snapshot of the complex phenotypic stat... read morees of cellular systems. Metabolic studies have been mainly split into two major groups, global metabolite profiling or targeted metabolite analysis. This study utilizes targeted metabolite analysis to allow direct quantification of small molecules of interest, which can give a snapshot of dynamic metabolic flux and help characterize genetic modifications. In particular, the short chain acyl-CoA class of metabolites, used as building blocks for the production of polyketides, was studied. The acyl-CoA levels in several engineered Escherichia coli strains constructed for improved heterologous ...
Caprylic Acid 600mg (200 Softgels) Medium Chain Triglycerides Amino Acids Caprylic Acid (Octanoic Acid) is a medium-chain triglyceride (MCT) -
Inborn errors of metabolism (IEM) represent a group of inherited diseases in which genetic defect leads to the block on a metabolic pathway, resulting in a single enzyme dysfunction. As a downstream consequence of the residual or full loss of the enzymatic activity, there is an accumulation of toxic metabolites in the proximity of the metabolic block and/or a deficiency of an essential metabolic product which leads to the clinical presentation of the disease. While individually IEMs are rare, a collectively estimated incidence of metabolic inherited disorders is 1:800. The genetic basis of IEMs can involve abnormalities such as point mutations, deletions or insertions, or more complex genomic rearrangements. Categorization of IEM can be simply made on the basis of the affected metabolic network: fatty acids oxidation disorders, protein/amino acids metabolism disorders, disorders of carbohydrate metabolism, lysosomal storage diseases, peroxisomal disorders, and mitochondrial diseases. This chapter will
This pathway mainly shows the oxidation of fatty acids. The fatty acid oxidation takes place in mitochondria in animals. This is the reverse of fatty acid biosynthesis and utilises CoA as acyl carrier. The four main enzymes involved in the degradation of fatty acids are acyl-CoA oxidase (acyl-CoA dehydrogenase), Enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-oxoacyl-CoA thiolase. Each cycle of activities of these enzymes removes 2-carbon units in the form of acetyl-CoA. This cycle of activities can continue until the fatty acid chain is degraded to 4-carbon acetoacetyl-CoA. Acetoacetyl-CoA can then be cleaved to 2 acetyl-CoAs by the reverse action of the enzyme acetyl-CoA C-acetyltransferase.. This pathway may provide a carbon source in the form of acetyl-CoA for mitochondrial TCA cycle and other biosynthesis pathways. The enzymes acyl-CoA oxidase and 3-hydroxyacyl-CoA dehydrogenase are absent in Plasmodium falciparum. There is no biochemical evidence of this pathway taking place in ...
Cyclic changes in dissolved oxygen occur naturally in shallow estuarine systems, yet little is known about the adaptations and responses of estuarine organisms to cyclic hypoxia. Here we examine the responses of Palaemonetes pugio, a species of grass shrimp, to cyclic hypoxia (1.5-8 mg/l dissolved oxygen; 4.20-22.42 kPa) at both the molecular and organismal levels. We measured alterations in gene expression in hepatopancreas tissue of female grass shrimp using custom cDNA macroarrays. After short-term (3-d) exposure to cyclic hypoxia, mitochondrial manganese superoxide dismutase (MnSOD) was upregulated and 70-kd heat shock proteins (HSP70) were downregulated. After 7-d exposure, nuclear genes encoding mitochondrial proteins (ribosomal protein S2, ATP synthase, very-long-chain specific acyl-CoA dehydrogenase [VLCAD]) were downregulated, whereas mitochondrial phosphoenol pyruvate carboxykinase (PEP Cbk) was upregulated. After 14 d, vitellogenin and apolipoprotein A1 were upregulated. Taken together, these
Objective Fatty acid oxidation in macrophages is thought to regulate inflammatory status and insulin-sensitivity. fatty acids and are required for fatty acid oxidation [13]. Carnitine O-octanoyltransferase (CrOT) and carnitine acetyltransferase (CrAT) conjugate medium-chain and short-chain acyl-CoA to carnitine, respectively [13]. CrAT is localized primarily within the mitochondrial matrix and catalyzes both the addition and the removal of carnitine from acetyl-CoA [14], facilitating the efflux of mitochondrial acetyl-CoA and buffering the intracellular pools of acetyl-CoA and carnitine. Consistent with an important role of fatty acid oxidation in macrophages, CPT1, CPT2, Crat and Crot are abundantly expressed in macrophages [15]. Interestingly, the CrAT activity is reduced during obesity and aging, leading to impaired glycemic control [16], [17]. Notably, muscle-specific deletion of CrAT was shown to reduce exercise performance [18] and exacerbated metabolic dysregulation in HFD mice [19]. ...
pfam01012 (PSSM ID: 376432): Conserved Protein Domain Family ETF, This family includes the homologous domain shared between the alpha and beta subunits of the electron transfer flavoprotein
Pathway:Human:Mitochondrial fatty acid betaoxidation]] moved to [[Pathway:Homo sapiens:Mitochondrial fatty acid betaoxidation]]: Renaming ...
When you LOVE MCT//143® as much as we do, sometimes you just have to go BIGGER! Our new 16oz bottle of MCT//143® allows you to incorporate MCT//143® into your life in more ways with an easy to reseal and reuse bottle!
Not all fats are created sameIt’s very important to eat right and healthy fat, mainly if you are on a low cab diet/ketogeneic diet, where your daily
There are so many diseases and conditions that most of us have never heard of and know nothing about. That, and the fact that for many of the disorders that we HAVE heard of we have only heard misconceptions and outdated information. This can make it especially confusing when we find yourselves with one of these diagnoses; it means that our context and framework for trying to make sense of this new diagnosis is either not there at all or distorted. We may feel alone, confused, isolated, unable to relate to anyone else. This can slow down the process of getting treatment and can cause more emotional duress than would otherwise occur. The videos that I am posting below are often directed at raising awareness among people NOT affected by the disease, which is another important goal, but personally I found it to be extremely important to hear about the daily lives and experiences of others who share my diagnoses. It allows me to create a sort of "new normal" and helps me adapt to my new reality. ...
What is unique to this book and not easily found in other textbooks or on the internet is a single organized source that provides detailed information for the practicing physician concerning the pathophysiology, diagnosis, and management of both inborn errors of metabolism and endocrine disorders. By combining the two disciplines, a physician contemplating the differential diagnosis of a patient with hypoglycemia, for example, will need only one textbook to find full coverage of the potential underlying disorders (ie, hyperinsulinism, glycogen storage diseases, fatty acid oxidation disorders, adrenal insufficiency, and disorders of growth). As there can be many subtypes of a disorder, to assist in identifying the information you need quickly, disease-oriented chapters begin with the At-A-Glance page, a quick reference summary for easy access to the biochemical profile, presentation, occurrence rate, locus, etc., of the disorders covered in the chapter. Another important feature of this textbook ...
Mito New England (MNE) is sponsoring a meeting April 30 to discuss new initiatives at Mass. General Hospital to assist in diagnosis and management of complex medical problems. Dr. Amel Karaa, Dr. Mark Korson, and Tim Boyd from NORD will share their perspectives. This event is open to all affected by complex disease, including but not limited to: Fabry disease, Gaucher disease, Pompe disease, Mucopolysaccahridosis, Mitochondrial disease, Niemann Pick, Fatty acid oxidation disorders, Glycogen storage diseases, Ehler Danlos Syndrome, and other random genetic conditions. Read more. ...
OBJECTIVE The aim of this study was to explore the genetic features of a family with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (MHBDD) which may provide the basis for the diagnosis and genetic counseling. METHOD Clinical data of the proband was collected, total RNA and genomic DNA were extracted from the peripheral blood. The whole coding region of the ACAT1 gene was amplified by RT-PCR. 5 noncoding region of the ACAT1 gene and all 6 exons and flanking intron regions of the HADH2 gene were amplified by PCR. All amplification products were directly sequenced and compared with the reference sequence. RESULT (1) The patient was a one-year-old boy who presented with psychomotor retardation and astasia when he was admitted to the hospital. Biochemical test revealed slight hyperlactatemia (3.19 mmol/L) and magnetic resonance imaging showed delayed myelination. 2-Methylacetoacetyl-CoA thiolase deficiency was suggested by gas chromatography-mass spectrometry. (2) There was no mutation in the
What is mast cell activation disorder (MCAD here on out) and what does it have to do with biotoxin illness? MCAD is easier to explain what it looks like than what it is. If that makes sense.. MCAD was the first real "diagnosis" we got when figuring everything out. I put that in quotes because an official diagnosis was never truly made, but thats what kids were being treated for and treatment improved symptoms. When we were going through with this treatment in 2013, it was still a very new disorder. Its closely related disorder, mastocytosis, is a rare mutation causing very similar symptoms as MCAD. However, no true genetic links have been made in MCAD that I know of.. In short, MCAD is where the body can and does react to nearly anything. For typical allergies, there is an identifiable protein, such as milk protein or egg protein. But with MCAD, the affected can have a reaction to heat, cold, chlorine, perfume, sugar, smoke, stress, being sick/viruses, food dyes, additives, metals, alcohol, ...
MCT Colada™ contains emulsified medium-chain triglycerides (MCTs) with a great-tasting natural pineapple/coconut flavor. Its emulsifica-tion allows for unparalleled absorption, and it will completely disperse when mixed into any liquid.. Medium-chain triglycerides are a unique form of fat requiring less energy and enzymes in order to be digested into its derivatives, medium chain fatty acids (MCFA) and monoglycerides. MCTs have some very impressive health benefits, which may include support for cognitive health, athletes (fuel for intense exercise), and metabolic function.. Made with non-GMO ingredients.. ...
"Medium-Chain Acyl-CoA Dehydrogenase Deficiency". Medscape.. *^ Beermann, C.; Jelinek, J.; Reinecker, T.; Hauenschild, A.; Boehm ... The cytosolic acetyl-CoA is carboxylated by acetyl CoA carboxylase into malonyl-CoA, the first committed step in the synthesis ... To obtain cytosolic acetyl-CoA, citrate (produced by the condensation of acetyl-CoA with oxaloacetate) is removed from the ... Pyruvate is then decarboxylated to form acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into ...
Very long-chain specific acyl-CoA dehydrogenase, mitochondrial (VLCAD) is an enzyme that in humans is encoded by the ACADVL ... Acyl CoA dehydrogenase GRCh38: Ensembl release 89: ENSG00000072778 - Ensembl, May 2017 GRCm38: Ensembl release 89: ... "acyl-CoA dehydrogenase, very long chain". Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF (Nov 1995 ... "Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency". American Journal of ...
Acyl-CoA dehydrogenase, C-2 to C-3 short chain is an enzyme that in humans is encoded by the ACADS gene. This gene encodes a ... As short-chain acyl-CoA dehydrogenase is involved in beta-oxidation, a deficiency in this enzyme is marked by an increased ... Mutations of the ACADS gene are associated with a deficiency in the encoded protein short chain acyl-CoA dehydrogenase; this is ... GeneReviews/NCBI/NIH/UW entry on Short-Chain Acyl-CoA Dehydrogenase Deficiency Human ACADS genome location and ACADS gene ...
"Very long-chain acyl-CoA dehydrogenase deficiency". Genetics Home Reference, National Institutes of Health. Retrieved 5 January ...
... acyl-CoA dehydrogenase, long chain - which is a member of the acyl-CoA dehydrogenase family. The acyl-CoA dehydrogenase family ... "Cardiac hypertrophy in mice with long-chain acyl-CoA dehydrogenase or very long-chain acyl-CoA dehydrogenase deficiency". ... Acyl-CoA dehydrogenase, long chain is a protein that in humans is encoded by the ACADL gene. ACADL is a gene that encodes LCAD ... Acyl CoA dehydrogenase This article incorporates text from the United States National Library of Medicine, which is in the ...
"The deuterium isotope effect upon the reaction of fatty acyl-CoA dehydrogenase and butyryl-CoA". J. Biol. Chem. 255 (19): 9093- ...
"Long-Chain Acyl CoA Dehydrogenase Deficiency: Background, Pathophysiology, Epidemiology". eMedicine. 24 March 2016. Retrieved ... "HADHA hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit [Homo ... "OMIM Entry - * 600890 - HYDROXYACYL-CoA DEHYDROGENASE/3-KETOACYL-CoA THIOLASE/ENOYL-CoA HYDRATASE, ALPHA SUBUNIT; HADHA". omim. ... Avoiding factors that might precipitate condition Glucose Low fat/high carbohydrate nutrition Long-chain acyl-CoA dehydrogenase ...
Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. „J. Biol. Chem.". 258 (2), s. 1066-76, 1983. PMID: ... Ikeda Y, Dabrowski C, Tanaka K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria ... Alternative NAD(P)H dehydrogenases of plant mitochondria. „Annual review of plant biology". 55, s. 23-39, 2004. DOI: 10.1146/ ... Dervartanian DV, Veeger C.. Studies on succinate dehydrogenase. I. Spectral properties of the purified enzyme and formation of ...
Wang SS, Fernhoff PM, Hannon WH, Khoury MJ (1999). "Medium chain acyl-CoA dehydrogenase deficiency human genome epidemiology ... "Long-chain acyl-CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction". The Journal of Biological ... "Molecular cloning of cDNAs encoding rat and human medium-chain acyl-CoA dehydrogenase and assignment of the gene to human ... Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship". Human Mutation. 18 ...
"Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily". Proc ... a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase". Arch. Biochem. Biophys. 433 (1): 157-65. doi:10.1016/j. ...
"Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase". Biochem. Soc. Trans ... displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with ... 2007). "Transient multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin deficiency". ... in electron-transfer-flavoprotein have been implicated in type II glutaricaciduria in which multiple acyl CoA dehydrogenase ...
Acyl-CoA dehydrogenase family, member 10 is a protein that in humans is encoded by the ACAD10 gene. This gene encodes a member ... Acyl-CoA dehydrogenase family, member 10". Bian L, Hanson RL, Muller YL, Ma L, Kobes S, Knowler WC, Bogardus C, Baier LJ (Jul ... "Identification and characterization of new long chain acyl-CoA dehydrogenases". Molecular Genetics and Metabolism. 102 (4): 418 ... of the acyl-CoA dehydrogenase family of enzymes (ACADs), which participate in the beta-oxidation of fatty acids in mitochondria ...
Fatty acyl CoA dehydrogenase requires FAD in fatty acid oxidation. *FAD is required to convert retinol (vitamin A) to retinoic ... and branched-chain amino acids requires FAD in the shared E3 portion of their respective dehydrogenase complexes ... acid via cytosolic retinal dehydrogenase. *Synthesis of an active form of folate (5-methyltetrahydrofolate) from 5,10- ...
Ikeda Y, Dabrowski C, Tanaka K (25 January 1983). "Separation and properties of five distinct acyl-CoA dehydrogenases from rat ... Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase". J. Biol. Chem. 258 (2): 1066-76. PMID 6401712. Ruzicka ... as it accepts electrons from multiple acetyl-CoA dehydrogenases. In plants, ETF-Q oxidoreductase is also important in the ... NADH dehydrogenase succinate dehydrogenase Coenzyme Q - cytochrome c reductase cytochrome c oxidase Metabolism portal. ...
Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase". J. Biol. Chem. 258 (2): 1066-76. PMID 6401712.. ... "Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. ... Rasmusson AG, Soole KL, Elthon TE (2004). "Alternative NAD(P)H dehydrogenases of plant mitochondria". Annual review of plant ... Dervartanian DV, Veeger C. (1964). "Studies on succinate dehydrogenase. I. Spectral properties of the purified enzyme and ...
Short/branched chain acyl-CoA dehydrogenase(ACADSB) is a member of the acyl-CoA dehydrogenase family of enzymes that catalyze ... an enzyme in the acyl CoA dehydrogenase family. It can cause short/branched-chain acyl-CoA dehydrogenase deficiency. The human ... "Entrez Gene: acyl-CoA dehydrogenase, short/branched chain". Andresen BS, Christensen E, Corydon TJ, Bross P, Pilgaard B, ... The cDNA is significantly similar to the cDNA of other members of the acyl-CoA dehydrogenase family; its structure is closest ...
"The deuterium isotope effect upon the reaction of fatty acyl-CoA dehydrogenase and butyryl-CoA". J. Biol. Chem. 255 (19): 9093- ...
Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase". J. Biol. Chem. 258 (2): 1066-76. PMID 6401712. ... "Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. ... as it accepts electrons from multiple acetyl-CoA dehydrogenases.[31][32] In plants, ETF-Q oxidoreductase is also important in ... Competitive inhibitors of succinate dehydrogenase (complex II).[91]. Antimycin A Piscicide Complex III Binds to the Qi site of ...
MCPA is a potent inhibitor of acyl CoA dehydrogenase, thus preventing the metabolism of fatty acids. The intolerance to ...
Also, it inhibits acyl-CoA dehydrogenases, so that only unsaturated fatty acids can be fully oxidized. Fatty acids accumulate ...
"Acyl-CoA dehydrogenase 9 (ACAD 9) is the long-chain acyl-CoA dehydrogenase in human embryonic and fetal brain". Biochemical and ... Acyl-CoA dehydrogenase family member 9, mitochondrial is an enzyme that in humans is encoded by the ACAD9 gene. The ACAD9 gene ... "Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids". The Journal ... "Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I". Cell Metabolism. 12 (3): 283- ...
"Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate". Molecular Genetics and ... In the human body it is first converted to phenylbutyryl-CoA and then metabolized by mitochondrial beta-oxidation, mainly in ...
"Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl- and short-chain acyl-CoA ... Mutations in ACAD8 have been linked to isobutyryl-CoA dehydrogenase deficiency. Most patients with isobutyryl-CoA dehydrogenase ... "Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl- and short-chain acyl-CoA ... The protein encoded by ACAD8 is a mitochondrial protein belongs to the acyl-CoA dehydrogenase family of enzymes, which function ...
Medium chain acyl-CoA dehydrogenase deficiency (MCADD), which had been implicated in several cases of sudden infant death ... Prior to its inclusion in newborn screening, short-chain acyl-CoA dehydrogenase deficiency (SCADD) was thought to be life- ... "Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G>C that leads to introduction of a ... "Prenatal diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in a family with a previous fatal case of sudden ...
Malic Enzyme and Fatty Acyl CoA Oxidase. In keeping with the biological definition of thermogenesis, all three of these enzyme ... This is accomplished through the activation of three thermogenic enzymes: Glycerol-3-Phosphate Dehydrogenase, ... mitochondrial glycerol-3-phosphate dehydrogenase and cytosolic malic enzyme. The results of this landmark study were published ...
ACSF3: encoding enzyme Acyl-CoA synthetase family member 3. *ACSM2B: encoding enzyme Acyl-coenzyme A synthetase ACSM2B, ... PDPR: encoding protein Pyruvate dehydrogenase phosphatase regulatory subunit. *PKDTS: Polycystic kidney disease, infantile ... ACSM3: encoding enzyme Acyl-coenzyme A synthetase ACSM3, mitochondrial 2. *ADHD1: Attention deficit-hyperactivity disorder, ...
The octanoyl-CoA oxidation rate, therefore, allows a risk assessment at birth and the identification of new ACADM genotypes ... This demonstrates a correlation between the octanoyl-CoA oxidation rate in lymphocytes and the clinical outcome. With newborn ... activities as measured by octanoyl-CoA oxidation in lymphocytes with both genotype and relevant medical reports in 65 newborns ... Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (OMIM 201450) is the most common inherited disorder of fatty acid ...
Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence ... STRUCTURE OF T255E, E376G MUTANT OF HUMAN MEDIUM CHAIN ACYL-COA DEHYDROGENASE COMPLEXED WITH OCTANOYL-COA. ...
1988) The use of phenylpropionic acid as a loading test for medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis ... 1991) Prevalence of K329E mutation in medium-chain acyl-CoA dehydrogenase gene determined from Guthrie cards. Lancet 338:552- ... 1993) Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: diagnosis by acylcarnitine analysis in blood. Am J Hum Genet 52: ... 1992) Diagnosis of medium chain acyl CoA dehydrogenase deficiency by measurement of cis-4-decenoic acid in dried blood spots. ...
ROLE OF ISOVALERYL-CoA DEHYDROGENASE AND SHORT BRANCHED-CHAIN ACYL-CoA DEHYDROGENASE IN THE METABOLISM OF VALPROIC ACID: ... ROLE OF ISOVALERYL-CoA DEHYDROGENASE AND SHORT BRANCHED-CHAIN ACYL-CoA DEHYDROGENASE IN THE METABOLISM OF VALPROIC ACID: ... ROLE OF ISOVALERYL-CoA DEHYDROGENASE AND SHORT BRANCHED-CHAIN ACYL-CoA DEHYDROGENASE IN THE METABOLISM OF VALPROIC ACID: ... ROLE OF ISOVALERYL-CoA DEHYDROGENASE AND SHORT BRANCHED-CHAIN ACYL-CoA DEHYDROGENASE IN THE METABOLISM OF VALPROIC ACID: ...
... very-long-chain acyl-CoA dehydrogenase deficiency in three patients previously diagnosed with long-chain acyl-CoA dehydrogenase ... Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is a recently identified inborn error of a membrane bound ... 1993) A novel disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydrogenase. Biochem Biophys Res Commun 191: ... 1999) Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet ...
Pig kidney general acyl-CoA dehydrogenase is markedly stabilized against loss of flavin and activity in 7.3 M-urea or at 60 ... The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other ... The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other ... The influence of oxidation-reduction state on the kinetic stability of pig kidney general acyl-CoA dehydrogenase and other ...
We showed previously that mice with genetically inactivated Acads, encoding short-chain acyl-CoA dehydrogenase (SCAD), shift ... From: Short chain acyl-CoA dehydrogenase deficiency and short-term high-fat diet perturb mitochondrial energy metabolism and ...
... Common Name(s). Very long chain acyl-CoA dehydrogenase deficiency, VCLAD ... Medium-chain Acyl-CoA Dehydrogenase Deficiency; Multiple Acyl-CoA Dehydrogenase Deficiency; Carnitine Transporter Deficiency; ... "Very long chain acyl-CoA dehydrogenase deficiency" (open studies are recruiting volunteers) and 9 "Very long chain acyl-CoA ... Very Long-chain Acyl-CoA Dehydrogenase Deficiency; Trifunctional Protein Deficiency; Long-chain 3-hydroxyacyl-CoA Dehydrogenase ...
B. Vitamin B2 (Riboflavin) Vitamin B2 and short-chain acyl-CoA dehydrogenase deficiency Short-chain acyl-CoA dehydrogenase ... Vitamin B2 and short-chain acyl-CoA dehydrogenase deficiency. Posted on September 5, 2012. by kylenorton ...
Enzyme analyses were performed in leukocytes with: hexanoyl-CoA (C6-CoA) +/− butyryl-CoA (C4-CoA), and phenylpropionyl-CoA (PP- ... Enzyme analyses with C6-CoA, C6-CoA + C4-CoA, and PP-CoA identified significantly higher residual MCAD enzyme activities in ... Measurement of short-chain acyl-CoA dehydrogenase (SCAD) in cultured skin fibroblasts with hexanoyl-CoA as a competitive ... Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of the mitochondrial fatty acid ...
Very-long-chain acyl-CoA dehydrogenase (EC 1.3.8.9, ACADVL (gene).) is an enzyme with systematic name very-long-chain acyl-CoA: ... Very-long-chain acyl-CoA dehydrogenase at the US National Library of Medicine Medical Subject Headings (MeSH) Molecular and ... crystal structure of human very-long-chain acyl-CoA dehydrogenase". J. Biol. Chem. 283 (14): 9435-9443. doi:10.1074/jbc. ... I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase". J. Biol. Chem. 267 (2): 1027-1033. PMID ...
Acyl CoA Thorpe C, Kim JJ (June 1995). "Structure and mechanism of action of the acyl-CoA dehydrogenases". FASEB J. 9 (9): 718- ... "Thermal unfolding of medium-chain acyl-CoA dehydrogenase and iso(3)valeryl-CoA dehydrogenase: study of the effect of genetic ... "Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl ... An additional class of acyl-CoA dehydrogenase was discovered that catalyzes α,β-unsaturation reactions with steroid-CoA ...
In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction acyl-CoA + ... crotonyl-CoA reductase, and acyl-CoA dehydrogenase (NADP+). As of late 2007, only one structure has been solved for this class ... Other names in common use include 2-enoyl-CoA reductase, dehydrogenase, acyl coenzyme A (nicotinamide adenine dinucleotide, ... the two substrates of this enzyme are acyl-CoA and NADP+, whereas its 3 products are 2,3-dehydroacyl-CoA, NADPH, and H+. This ...
Short-chain acyl-CoA dehydrogenase (EC 1.3.8.1, butyryl-CoA dehydrogenase, butanoyl-CoA dehydrogenase, butyryl dehydrogenase, ... short-chain acyl CoA dehydrogenase, short-chain acyl-coenzyme A dehydrogenase, 3-hydroxyacyl CoA reductase, butanoyl-CoA:( ... Short-chain acyl-CoA dehydrogenase at the US National Library of Medicine Medical Subject Headings (MeSH) Molecular and ... Thorpe, C.; Kim, J.J. (1995). "Structure and mechanism of action of the acyl-CoA dehydrogenases". FASEB J. 9 (9): 718-725. PMID ...
Long-chain acyl-CoA dehydrogenase (EC 1.3.8.8, palmitoyl-CoA dehydrogenase, palmitoyl-coenzyme A dehydrogenase, long-chain acyl ... long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase, ACADL (gene).) is an enzyme with systematic name long-chain acyl-CoA: ... Long-chain acyl-CoA dehydrogenase at the US National Library of Medicine Medical Subject Headings (MeSH) Molecular and Cellular ... and long-chain acyl-CoA dehydrogenases from rat liver mitochondria. Isolation of the holo- and apoenzymes and conversion of the ...
... acyl dehydrogenase (ambiguous), fatty-acyl-CoA dehydrogenase (ambiguous), acyl CoA dehydrogenase (ambiguous), general acyl CoA ... Medium-chain acyl-CoA dehydrogenase (EC 1.3.8.7, fatty acyl coenzyme A dehydrogenase (ambiguous), acyl coenzyme A dehydrogenase ... dehydrogenase (ambiguous), medium-chain acyl-coenzyme A dehydrogenase, acyl-CoA:(acceptor) 2,3-oxidoreductase (ambiguous), ... Medium-chain acyl-CoA dehydrogenase at the US National Library of Medicine Medical Subject Headings (MeSH) Molecular and ...
Comment on: "Multiple acylCoA dehydrogenase deficiency in elderly carriers". *Yılmaz Yıldız. ORCID: orcid.org/0000-0001-9076- ... Yıldız, Y., Tokatlı, A. Comment on: "Multiple acylCoA dehydrogenase deficiency in elderly carriers". J Neurol (2020). https:// ... Grunert SC (2014) Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. ... Multiple acyl-COA dehydrogenase deficiency in elderly carriers. J Neurol. https://doi.org/10.1007/s00415-020-09729-z ...
The PDB archive contains information about experimentally-determined structures of proteins, nucleic acids, and complex assemblies. As a member of the wwPDB, the RCSB PDB curates and annotates PDB data according to agreed upon standards. The RCSB PDB also provides a variety of tools and resources. Users can perform simple and advanced searches based on annotations relating to sequence, structure and function. These molecules are visualized, downloaded, and analyzed by users who range from students to specialized scientists.
What is acyl-CoA dehydrogenases? Meaning of acyl-CoA dehydrogenases medical term. What does acyl-CoA dehydrogenases mean? ... Looking for online definition of acyl-CoA dehydrogenases in the Medical Dictionary? acyl-CoA dehydrogenases explanation free. ... acyl-CoA dehydrogenases. acyl-CoA dehydrogenases. Enzymes that activate the first stage of the oxidation of fatty acids.. ... Selective Inhibition of Acyl-CoA Dehydrogenases by a Metabolite of Hypoglycin.. Inactivation of General Acyl-CoA Dehydrogenase ...
Catalyzes the dehydrogenation of acyl-CoA ester side chains of (25S)-3-oxo-cholest-4-en-26-oyl-CoA (3-OCS-CoA) to yield (24E)-3 ... 3-OCO-CoA) as well as 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) (PubMed:26161441). It dehydrogenates only (25S)-OCS-CoA ... 25S-3-oxo-cholest-4-en-26-oyl-CoA + acceptor = 3-oxo-cholest-4,24-dien-26-oyl-CoA + reduced acceptor. UniProt ... cholest-4,24-dien-26-oyl-CoA (PubMed:26348625, PubMed:26161441). Also able to dehydrogenate steroyl-CoA such as 3-oxo-chol-4-en ...
Compare acyl-CoA dehydrogenase family member 9 ELISA Kits from leading suppliers on Biocompare. View specifications, prices, ... acyl-CoA dehydrogenase family member 9 ELISA Kits. The ELISA (enzyme-linked immunosorbent assay) is a widely used application ... Your search returned 13 acyl-CoA dehydrogenase family member 9 ELISA ELISA Kit across 2 suppliers. ...
Acyl CoA dehydrogenase is the enzyme used to catalyze the first step of β-oxidation in Fatty acid metabolism. ... Medium-chain acyl-coenzyme A dehydrogenase deficiency ("MCAD") ACADS. C-2 to C-3 short chain. Short-chain acyl-coenzyme A ... Acyl-CoA+Dehydrogenase at the US National Library of Medicine Medical Subject Headings (MeSH) ... Retrieved from "https://www.wikidoc.org/index.php?title=Acyl_CoA_dehydrogenase&oldid=264418" ...
Short-chain specific acyl-CoA dehydrogenase, mitochondrial. Details. Name. Short-chain specific acyl-CoA dehydrogenase, ... Short-chain specific acyl-CoA dehydrogenase, mitochondrial. P16219. Details. Drug Relations. Drug Relations. DrugBank ID. Name ...
2 patients with very long chain Acyl-CoA dehydrogenase deficiency experience fatigue, insomnia, depressed mood, pain, and ... Find the most comprehensive real-world symptom and treatment data on very long chain Acyl-CoA dehydrogenase deficiency at ... What is very long chain Acyl-CoA dehydrogenase deficiency?. Very long chain acyl-coenzyme A dehydrogenase deficiency is a ... Very long chain Acyl-CoA dehydrogenase deficiency Were all in this for good.. ...