One of the two types of ACTIVIN RECEPTORS. They are membrane protein kinases belonging to the family of PROTEIN-SERINE-THREONINE KINASES. The major type II activin receptors are ActR-IIA and ActR-IIB.
Receptors for ACTIVINS are membrane protein kinases belonging to the family of PROTEIN-SERINE-THREONINE KINASES, thus also named activin receptor-like kinases (ALK's). Activin receptors also bind TRANSFORMING GROWTH FACTOR BETA. As those transmembrane receptors of the TGF-beta superfamily (RECEPTORS, TRANSFORMING GROWTH FACTOR BETA), ALK's consist of two different but related protein kinases, Type I and Type II. Activins initiate cellular signal transduction by first binding to the type II receptors (ACTIVIN RECEPTORS, TYPE II ) which then recruit and phosphorylate the type I receptors (ACTIVIN RECEPTORS, TYPE I ) with subsequent activation of the type I kinase activity.
Activins are produced in the pituitary, gonads, and other tissues. By acting locally, they stimulate pituitary FSH secretion and have diverse effects on cell differentiation and embryonic development. Activins are glycoproteins that are hetero- or homodimers of INHIBIN-BETA SUBUNITS.
One of the two types of ACTIVIN RECEPTORS or activin receptor-like kinases (ALK'S). There are several type I activin receptors. The major active ones are ALK-2 (ActR-IA) and ALK-4 (ActR-IB).
A growth differentiation factor that is a potent inhibitor of SKELETAL MUSCLE growth. It may play a role in the regulation of MYOGENESIS and in muscle maintenance during adulthood.
Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively
They are glycopeptides and subunits in INHIBINS and ACTIVINS. Inhibins and activins belong to the transforming growth factor beta superfamily.
A broadly distributed protein that binds directly to ACTIVINS. It functions as an activin antagonist, inhibits FOLLICLE STIMULATING HORMONE secretion, regulates CELL DIFFERENTIATION, and plays an important role in embryogenesis. Follistatin is a single glycosylated polypeptide chain of approximately 37-kDa and is not a member of the inhibin family (INHIBINS). Follistatin also binds and neutralizes many members of the TRANSFORMING GROWTH FACTOR BETA family.
An interleukin-1 receptor subtype that is involved in signaling cellular responses to INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The binding of this receptor to its ligand causes its favorable interaction with INTERLEUKIN-1 RECEPTOR ACCESSORY PROTEIN and the formation of an activated receptor complex.
Cell-surface proteins that bind transforming growth factor beta and trigger changes influencing the behavior of cells. Two types of transforming growth factor receptors have been recognized. They differ in affinity for different members of the transforming growth factor beta family and in cellular mechanisms of action.
Cell surface receptors that bind growth or trophic factors with high affinity, triggering intracellular responses which influence the growth, differentiation, or survival of cells.
A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. It regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.
Cell surface receptors that are specific for INTERLEUKIN-1. Included under this heading are signaling receptors, non-signaling receptors and accessory proteins required for receptor signaling. Signaling from interleukin-1 receptors occurs via interaction with SIGNAL TRANSDUCING ADAPTOR PROTEINS such as MYELOID DIFFERENTIATION FACTOR 88.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A tumor necrosis factor receptor subtype that has specificity for TUMOR NECROSIS FACTOR ALPHA and LYMPHOTOXIN ALPHA. It is constitutively expressed in most tissues and is a key mediator of tumor necrosis factor signaling in the vast majority of cells. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
An interleukin-1 receptor subtype that competes with the INTERLEUKIN-1 RECEPTOR TYPE I for binding to INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The interleukin-1 type II receptor appears to lack signal transduction capability. Therefore it may act as a "decoy" receptor that modulates the activity of its ligands. Both membrane-bound and soluble forms of the receptor have been identified.
The founding member of the nodal signaling ligand family of proteins. Nodal protein was originally discovered in the region of the mouse embryo primitive streak referred to as HENSEN'S NODE. It is expressed asymmetrically on the left side in chordates and plays a critical role in the genesis of left-right asymmetry during vertebrate development.
Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.
A protein that takes part in the formation of active interleukin-1 receptor complex. It binds specifically to INTERLEUKIN-1 and the INTERLEUKIN-1 RECEPTOR TYPE I at the cell surface to form a heterotrimeric complex that brings its cytoplasmic domain into contact with the cytoplasm domain of the TYPE-I INTERLEUKIN-1 RECEPTOR. Activation of intracellular signal transduction pathways from the receptor is believed to be driven by this form of cytoplasmic interaction.
A family of proteins that are involved in the translocation of signals from TGF-BETA RECEPTORS; BONE MORPHOGENETIC PROTEIN RECEPTORS; and other surface receptors to the CELL NUCLEUS. They were originally identified as a class of proteins that are related to the mothers against decapentaplegic protein, Drosophila and sma proteins from CAENORHABDITIS ELEGANS.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.
A ligand that binds to but fails to activate the INTERLEUKIN 1 RECEPTOR. It plays an inhibitory role in the regulation of INFLAMMATION and FEVER. Several isoforms of the protein exist due to multiple ALTERNATIVE SPLICING of its mRNA.
Carnivores of genus Mustela of the family MUSTELIDAE. The European mink, which has white upper and lower lips, was widely trapped for commercial purposes and is classified as endangered. The American mink, lacking a white upper lip, is farmed commercially.
A subtype of bone morphogenetic protein receptors with high affinity for BONE MORPHOGENETIC PROTEINS. They can interact with and undergo PHOSPHORYLATION by BONE MORPHOGENETIC PROTEIN RECEPTORS, TYPE II. They signal primarily through RECEPTOR-REGULATED SMAD PROTEINS.
A family of BONE MORPHOGENETIC PROTEIN-related proteins that are primarily involved in regulation of CELL DIFFERENTIATION.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Established cell cultures that have the potential to propagate indefinitely.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A subtype of bone morphogenetic protein receptors with low affinity for BONE MORPHOGENETIC PROTEINS. They are constitutively active PROTEIN-SERINE-THREONINE KINASES that can interact with and phosphorylate TYPE I BONE MORPHOGENETIC PROTEIN RECEPTORS.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. Activated Smad3 can bind directly to DNA, and it regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.
The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.
A signal transducing adaptor protein and tumor suppressor protein. It forms a complex with activated RECEPTOR-REGULATED SMAD PROTEINS. The complex then translocates to the CELL NUCLEUS and regulates GENETIC TRANSCRIPTION of target GENES.
Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities.
Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA).
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A family of scavenger receptors that are predominately localized to CAVEOLAE of the PLASMA MEMBRANE and bind HIGH DENSITY LIPOPROTEINS.
Signal molecules that are involved in the control of cell growth and differentiation.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS).
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
A disease characterized by bony deposits or the ossification of muscle tissue.
A large group of structurally diverse cell surface receptors that mediate endocytic uptake of modified LIPOPROTEINS. Scavenger receptors are expressed by MYELOID CELLS and some ENDOTHELIAL CELLS, and were originally characterized based on their ability to bind acetylated LOW-DENSITY LIPOPROTEINS. They can also bind a variety of other polyanionic ligand. Certain scavenger receptors can internalize micro-organisms as well as apoptotic cells.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH).
Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.

Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. (1/587)

Activation of the type I TGFbeta receptor (TbetaR-I) requires phosphorylation of a regulatory segment known as the GS region, located upstream of the serine/threonine kinase domain in the cytoplasmic portion of the receptor. The crystal structure of a fragment of unphosphorylated TbetaR-I, containing both the GS region and the catalytic domain, has been determined in complex with the FK506-binding protein FKBP12. TbetaR-I adopts an inactive conformation that is maintained by the unphosphorylated GS region. FKBP12 binds to the GS region of the receptor, capping the TbetaR-II phosphorylation sites and further stabilizing the inactive conformation of TbetaR-I. Certain structural features at the catalytic center of TbetaR-I are characteristic of tyrosine kinases rather than Ser/Thr kinases.  (+info)

Transforming growth factor-beta induces formation of a dithiothreitol-resistant type I/Type II receptor complex in live cells. (2/587)

Transforming growth factor-beta (TGF-beta) binds to and signals via two serine-threonine kinase receptors, the type I (TbetaRI) and type II (TbetaRII) receptors. We have used different and complementary techniques to study the physical nature and ligand dependence of the complex formed by TbetaRI and TbetaRII. Velocity centrifugation of endogenous receptors suggests that ligand-bound TbetaRI and TbetaRII form a heteromeric complex that is most likely a heterotetramer. Antibody-mediated immunofluorescence co-patching of epitope-tagged receptors provides the first evidence in live cells that TbetaRI. TbetaRII complex formation occurs at a low but measurable degree in the absence of ligand, increasing significantly after TGF-beta binding. In addition, we demonstrate that pretreatment of cells with dithiothreitol, which inhibits the binding of TGF-beta to TbetaRI, does not prevent formation of the TbetaRI.TbetaRII complex, but increases its sensitivity to detergent and prevents TGF-beta-activated TbetaRI from phosphorylating Smad3 in vitro. This indicates that either a specific conformation of the TbetaRI. TbetaRII complex, disrupted by dithiothreitol, or direct binding of TGF-beta to TbetaRI is required for signaling.  (+info)

Interaction of 5-lipoxygenase with cellular proteins. (3/587)

5-Lipoxygenase (5LO) plays a pivotal role in cellular leukotriene synthesis. To identify proteins interacting with human 5LO, we used a two-hybrid approach to screen a human lung cDNA library. From a total of 1.5 x 10(7) yeast transformants, nine independent clones representing three different proteins were isolated and found to specifically interact with 5LO. Four 1.7- to 1.8-kb clones represented a 16-kDa protein named coactosin-like protein for its significant homology with coactosin, a protein found to be associated with actin in Dictyostelium discoideum. Coactosin-like protein thus may provide a link between 5LO and the cytoskeleton. Two other yeast clones of 1.5 kb encoded transforming growth factor (TGF) type beta receptor-I-associated protein 1 partial cDNA. TGF type beta receptor-I-associated protein 1 recently has been reported to associate with the activated form of the TGF beta receptor I and may be involved in the TGF beta-induced up-regulation of 5LO expression and activity observed in HL-60 and Mono Mac 6 cells. Finally, three identical 2.1-kb clones contained the partial cDNA of a human protein with high homology to a hypothetical helicase K12H4. 8 from Caenorhabditis elegans and consequently was named DeltaK12H4. 8 homologue. Analysis of the predicted amino acid sequence revealed the presence of a RNase III motif and a double-stranded RNA binding domain, indicative of a protein of nuclear origin. The identification of these 5LO-interacting proteins provides additional approaches to studies of the cellular functions of 5LO.  (+info)

Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus. (4/587)

Smads are central mediators of signal transduction for the TGFbeta superfamily. However, the precise functions of Smad-mediated signaling pathways in early development are unclear. Here we demonstrate a requirement for Smad2 signaling in dorsoanterior axis formation during Xenopus development. Using two point mutations of Smad2 previously identified in colorectal carcinomas, we show that Smad2 ushers Smad4 to the nucleus to form a transcriptional activation complex with the nuclear DNA-binding protein FAST-1 and that the mutant proteins interact normally with FAST-1 but fail to recruit Smad4 into the nucleus. This mechanism of inhibition specifically restricts the dominant-negative activity of these mutants to the activin/Vg1 signaling pathway without inhibiting BMPs. Furthermore, expression of these mutants in Xenopus animal caps inhibits but does not abolish activin and Vg1 induction of mesoderm and in the embryo results in a truncated dorsoanterior axis. These studies define a mechanism through which mutations in Smad2 may block TGFbeta-dependent signaling and suggest a critical role for inductive signaling mediated by the Smad2 pathway in Xenopus organizer function.  (+info)

A short loop on the ALK-2 and ALK-4 activin receptors regulates signaling specificity but cannot account for all their effects on early Xenopus development. (5/587)

Activin, a member of the transforming growth factor beta (TGF-beta) superfamily, signals through a heteromeric complex of type I and type II serine-threonine kinase receptors. The two activin type I receptors previously identified, ALK-2 (ActR-I) and ALK-4 (ActR-IB), have distinct effects on gene expression, differentiation and morphogenesis in the Xenopus animal cap assay. ALK-4 reproduces the effects of activin treatment including the dose-dependent induction of progressively more dorso-anterior mesodermal and endodermal markers, whereas ALK-2 induces only ventral mesodermal markers and counteracts the effects of ALK-4. To identify regions of the receptors that determine signaling specificity we have generated chimeras of the constitutively active ALK-2 and ALK-4 receptors (termed ALK-2* and ALK-4*). The effects of these chimeric receptors on gene expression and morphogenetic movements implicate the loop between kinase subdomains IV and V in mediating the strong dorsal gene-inducing properties of ALK-4*; when the seven amino acids comprising this loop are transferred from ALK-4* to ALK-2*, the resulting chimeric receptor is capable of inducing the expression of dorsal-specific genes. In contrast, when the equivalent region of ALK-2* is transferred to the ALK-4* backbone it cannot effectively counteract the dorsalizing effects of ALK-4*, suggesting that other regions of type I receptors are also involved in determining signal specificity.  (+info)

TAKs, thylakoid membrane protein kinases associated with energy transduction. (6/587)

The phosphorylation of proteins within the eukaryotic photosynthetic membrane is thought to regulate a number of photosynthetic processes in land plants and algae. Both light quality and intensity influence protein kinase activity via the levels of reductants produced by the thylakoid electron transport chain. We have isolated a family of proteins called TAKs, Arabidopsis thylakoid membrane threonine kinases that phosphorylate the light harvesting complex proteins. TAK activity is enhanced by reductant and is associated with the photosynthetic reaction center II and the cytochrome b6f complex. TAKs are encoded by a gene family that has striking similarity to transforming growth factor beta receptors of metazoans. Thus thylakoid protein phosphorylation may be regulated by a cascade of reductant-controlled membrane-bound protein kinases.  (+info)

The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. (7/587)

ActRIA (or ALK2), one of the type I receptors of the transforming growth factor-beta (TGF-beta) superfamily, can bind both activin and bone morphogenetic proteins (BMPs) in conjunction with the activin and BMP type II receptors, respectively. In mice, ActRIA is expressed primarily in the extraembryonic visceral endoderm before gastrulation and later in both embryonic and extraembryonic cells during gastrulation. To elucidate its function in mouse development, we disrupted the transmembrane domain of ActRIA by gene targeting. We showed that embryos homozygous for the mutation were arrested at the early gastrulation stage, displaying abnormal visceral endoderm morphology and severe disruption of mesoderm formation. To determine in which germ layer ActRIA functions during gastrulation, we performed reciprocal chimera analyses. (1) Homozygous mutant ES cells injected into wild-type blastocysts were able to contribute to all three definitive germ layers in chimeric embryos. However, a high contribution of mutant ES cells in chimeras disrupted normal development at the early somite stage. (2) Consistent with ActRIA expression in the extraembryonic cells, wild-type ES cells failed to rescue the gastrulation defect in chimeras in which the extraembryonic ectoderm and visceral endoderm were derived from homozygous mutant blastocysts. Furthermore, expression of HNF4, a key visceral endoderm-specific transcription regulatory factor, was significantly reduced in the mutant embryos. Together, our results indicate that ActRIA in extraembryonic cells plays a major role in early gastrulation, whereas ActRIA function is also required in embryonic tissues during later development in mice.  (+info)

Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. (8/587)

Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  (+info)

Activin receptors, type II, are a subgroup of serine/threonine kinase receptors that play a crucial role in signal transduction pathways involved in various biological processes, including cell growth, differentiation, and apoptosis. There are two types of activin receptors, Type IIA (ACVR2A) and Type IIB (ACVR2B), which are single-pass transmembrane proteins with an extracellular domain that binds to activins and a cytoplasmic domain with kinase activity.

Activins are dimeric proteins that belong to the transforming growth factor-β (TGF-β) superfamily, and they play essential roles in regulating developmental processes, reproduction, and homeostasis. Activin receptors, type II, function as primary binding sites for activins, forming a complex with Type I activin receptors (ALK4, ALK5, or ALK7) to initiate downstream signaling cascades.

Once the activin-receptor complex is formed, the intracellular kinase domain of the Type II receptor phosphorylates and activates the Type I receptor, which in turn propagates the signal by recruiting and phosphorylating downstream effectors such as SMAD proteins. Activated SMADs then form a complex and translocate to the nucleus, where they regulate gene expression.

Dysregulation of activin receptors, type II, has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders. Therefore, understanding their function and regulation is essential for developing novel therapeutic strategies to target these diseases.

Activin receptors are a type of serine/threonine kinase receptor that play a crucial role in various biological processes, including cell growth, differentiation, and apoptosis. They are activated by members of the TGF-β (transforming growth factor-beta) superfamily, particularly activins.

There are two main types of activin receptors: ActR-I and ActR-II. ActR-I exists in two isoforms, ALK2 and ALK4, while ActR-II has two isoforms, ActR-IIA and ActR-IIB. Activation of these receptors leads to the phosphorylation of intracellular signaling molecules, which then translocate to the nucleus and regulate gene expression.

Abnormalities in activin receptor function have been implicated in various diseases, including cancer, fibrosis, and developmental disorders. Therefore, activin receptors are an important target for therapeutic intervention in these conditions.

Activins are a type of protein that belongs to the transforming growth factor-beta (TGF-β) superfamily. They are produced and released by various cells in the body, including those in the ovaries, testes, pituitary gland, and other tissues. Activins play important roles in regulating several biological processes, such as cell growth, differentiation, and apoptosis (programmed cell death).

Activins bind to specific receptors on the surface of cells, leading to the activation of intracellular signaling pathways that control gene expression. They are particularly well-known for their role in reproductive biology, where they help regulate follicle stimulation and hormone production in the ovaries and testes. Activins also have been implicated in various disease processes, including cancer, fibrosis, and inflammation.

There are three main isoforms of activin in humans: activin A, activin B, and inhibin A. While activins and inhibins share similar structures and functions, they have opposite effects on the activity of the pituitary gland. Activins stimulate the production of follicle-stimulating hormone (FSH), while inhibins suppress it. This delicate balance between activins and inhibins helps regulate reproductive function and other physiological processes in the body.

Activin receptors, type I are serine/threonine kinase receptors that play a crucial role in the activin signaling pathway. There are two types of activin receptors, Type I (ALK2, ALK4, and ALK7) and Type II (ActRII and ActRIIB). Activin receptors, type I are transmembrane proteins that bind to activins, which are cytokines belonging to the TGF-β superfamily.

Once activated by binding to activins, activin receptors, type I recruit and phosphorylate type II receptors, leading to the activation of downstream signaling pathways, including SMAD proteins. Activated SMAD proteins then translocate to the nucleus and regulate gene expression, thereby mediating various cellular responses such as proliferation, differentiation, apoptosis, and migration.

Mutations in activin receptors, type I have been implicated in several human diseases, including cancer, fibrosis, and developmental disorders. Therefore, understanding the structure and function of activin receptors, type I is essential for developing novel therapeutic strategies to treat these diseases.

Myostatin is a protein that is primarily known for its role in regulating muscle growth. It's also called "growth differentiation factor 8" or GDF-8. Produced by muscle cells, myostatin inhibits the process of muscle growth by preventing the transformation of stem cells into muscle fibers and promoting the breakdown of existing muscle proteins.

In essence, myostatin acts as a negative regulator of muscle mass, keeping it in check to prevent excessive growth. Mutations leading to reduced myostatin activity or expression have been associated with increased muscle mass and strength in both animals and humans, making it a potential target for therapeutic interventions in muscle-wasting conditions such as muscular dystrophy and age-related sarcopenia.

Inhibins are a group of protein hormones that play a crucial role in regulating the function of the reproductive system, specifically by inhibiting the production of follicle-stimulating hormone (FSH) in the pituitary gland. They are produced and secreted primarily by the granulosa cells in the ovaries of females and Sertoli cells in the testes of males.

Inhibins consist of two subunits, an alpha subunit, and a beta subunit, which can be further divided into two types: inhibin A and inhibin B. Inhibin A is primarily produced by the granulosa cells of developing follicles in the ovary, while inhibin B is mainly produced by the Sertoli cells in the testes.

By regulating FSH production, inhibins help control the development and maturation of ovarian follicles in females and spermatogenesis in males. Abnormal levels of inhibins have been associated with various reproductive disorders, including polycystic ovary syndrome (PCOS) and certain types of cancer.

Inhibin-β subunits are proteins that combine to form inhibins, which are hormones that play a role in regulating the function of the reproductive system. Specifically, inhibins help to regulate the production of follicle-stimulating hormone (FSH) by the pituitary gland.

There are two main types of Inhibin-β subunits, Inhibin-β A and Inhibin-β B, which combine with a common α subunit to form the inhibins. Inhibin-β A is produced primarily in the granulosa cells of the ovaries, while Inhibin-beta B is produced primarily in the testicular Sertoli cells.

Abnormal levels of Inhibin-β subunits have been associated with various reproductive disorders, such as polycystic ovary syndrome (PCOS) and certain types of cancer. Measurement of Inhibin-β subunits can be used as a biomarker for ovarian function, ovarian reserve and ovarian cancer detection.

Follistatin is a glycoprotein that is naturally produced in various tissues, including the ovaries, pituitary gland, and skeletal muscle. It plays an essential role in regulating the activity of members of the transforming growth factor-β (TGF-β) superfamily, particularly the bone morphogenetic proteins (BMPs) and activins.

Follistatin binds to these signaling molecules with high affinity, preventing them from interacting with their receptors and thereby inhibiting their downstream signaling pathways. By doing so, follistatin helps regulate processes such as follicle stimulation in the ovaries, neurogenesis, muscle growth, and inflammation.

Increased levels of follistatin have been associated with muscle hypertrophy, while its deficiency can lead to impaired fertility and developmental abnormalities.

Interleukin-1 Type I receptors (IL-1R1) are cell surface receptors that bind to and mediate the effects of interleukin-1 (IL-1), which is a cytokine involved in the inflammatory response. IL-1R1 is a transmembrane protein with an extracellular domain that binds to IL-1, and an intracellular domain that activates signaling pathways leading to the expression of genes involved in immune and inflammatory responses.

IL-1R1 is widely expressed on various cell types including hematopoietic cells (e.g., monocytes, macrophages, dendritic cells) and non-hematopoietic cells (e.g., endothelial cells, fibroblasts, epithelial cells). The binding of IL-1 to IL-1R1 triggers the recruitment of the accessory protein, IL-1 receptor accessory protein (IL-1RAcP), which is necessary for signal transduction.

The activation of IL-1R1 leads to the activation of several signaling pathways including NF-κB, MAPKs, and PI3K/Akt, resulting in the production of proinflammatory cytokines, chemokines, adhesion molecules, and other mediators involved in inflammation. Dysregulation of IL-1 signaling has been implicated in various pathological conditions such as autoimmune diseases, chronic inflammation, and cancer.

Transforming Growth Factor beta (TGF-β) receptors are a group of cell surface receptors that bind to TGF-β ligands and transduce signals into the cell. These receptors play crucial roles in regulating various cellular processes, including cell growth, differentiation, apoptosis, and extracellular matrix production.

There are two types of TGF-β receptors: type I and type II. Type I receptors, also known as activin receptor-like kinases (ALKs), have serine/threonine kinase activity and include ALK1, ALK2, ALK3, ALK4, ALK5, and ALK6. Type II receptors are constitutively active serine/threonine kinases and include TGF-β RII, ActRII, and ActRIIB.

When a TGF-β ligand binds to a type II receptor, it recruits and phosphorylates a type I receptor, which in turn phosphorylates downstream signaling molecules called Smads. Phosphorylated Smads form complexes with co-Smad proteins and translocate to the nucleus, where they regulate gene expression.

Abnormalities in TGF-β signaling have been implicated in various human diseases, including fibrosis, cancer, and autoimmune disorders. Therefore, understanding the mechanisms of TGF-β receptor function is essential for developing therapeutic strategies to target these conditions.

Growth factor receptors are a type of cell surface receptor that bind to specific growth factors, which are signaling molecules that play crucial roles in regulating various cellular processes such as growth, differentiation, and survival. These receptors have an extracellular domain that can recognize and bind to the growth factor and an intracellular domain that can transduce the signal into the cell through a series of biochemical reactions.

There are several types of growth factors, including fibroblast growth factors (FGFs), epidermal growth factors (EGFs), vascular endothelial growth factors (VEGFs), and transforming growth factors (TGFs). Each type of growth factor has its own specific receptor or family of receptors.

Once a growth factor binds to its receptor, it triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression, protein synthesis, and other cellular responses. These responses can include the activation of enzymes, the regulation of ion channels, and the modulation of cytoskeletal dynamics.

Abnormalities in growth factor receptor signaling have been implicated in various diseases, including cancer, developmental disorders, and autoimmune diseases. For example, mutations in growth factor receptors can lead to uncontrolled cell growth and division, which is a hallmark of cancer. Therefore, understanding the structure and function of growth factor receptors has important implications for the development of new therapies for these diseases.

Smad2 protein is a transcription factor that plays a critical role in the TGF-β (transforming growth factor-beta) signaling pathway, which regulates various cellular processes such as proliferation, differentiation, and apoptosis. Smad2 is primarily localized in the cytoplasm and becomes phosphorylated upon TGF-β receptor activation. Once phosphorylated, it forms a complex with Smad4 and translocates to the nucleus where it regulates the transcription of target genes. Mutations in the Smad2 gene have been associated with various human diseases, including cancer and fibrotic disorders.

Interleukin-1 (IL-1) receptors are a type of cell surface receptor that bind to and mediate the effects of interleukin-1 cytokines, which are involved in the regulation of inflammatory and immune responses. There are two main types of IL-1 receptors:

1. Type I IL-1 receptor (IL-1R1): This is a transmembrane protein that consists of three domains - an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains the binding site for IL-1 cytokines, while the intracellular domain is involved in signal transduction and activation of downstream signaling pathways.
2. Type II IL-1 receptor (IL-1R2): This is a decoy receptor that lacks an intracellular signaling domain and functions to regulate IL-1 activity by preventing its interaction with IL-1R1.

IL-1 receptors are widely expressed in various tissues and cell types, including immune cells, endothelial cells, and nervous system cells. Activation of IL-1 receptors leads to the induction of a variety of biological responses, such as fever, production of acute phase proteins, activation of immune cells, and modulation of pain sensitivity. Dysregulation of IL-1 signaling has been implicated in various pathological conditions, including autoimmune diseases, chronic inflammation, and neurodegenerative disorders.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Tumor Necrosis Factor Receptor 1 (TNFR1), also known as p55 or CD120a, is a type I transmembrane protein that belongs to the tumor necrosis factor receptor superfamily. It is widely expressed in various tissues and cells, including immune cells, endothelial cells, and fibroblasts. TNFR1 plays a crucial role in regulating inflammation, immunity, cell survival, differentiation, and apoptosis (programmed cell death).

TNFR1 is activated by its ligand, Tumor Necrosis Factor-alpha (TNF-α), which is a potent proinflammatory cytokine produced mainly by activated macrophages and monocytes. Upon binding of TNF-α to TNFR1, a series of intracellular signaling events are initiated through the recruitment of adaptor proteins, such as TNF receptor-associated death domain (TRADD), receptor-interacting protein kinase 1 (RIPK1), and TNF receptor-associated factor 2 (TRAF2). These interactions lead to the activation of several downstream signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), which ultimately regulate gene expression and cellular responses.

TNFR1 has been implicated in various physiological and pathological processes, such as inflammation, infection, autoimmunity, cancer, and neurodegenerative disorders. Dysregulation of TNFR1 signaling can contribute to the development and progression of several diseases, making it an attractive target for therapeutic interventions.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Interleukin-1 type II receptors (IL-1RII), also known as IL-1 receptor type 2 or CD121b, are membrane-bound receptors that belong to the interleukin-1 receptor family. They are encoded by the IL1R2 gene in humans. These receptors have a similar structure to the Interleukin-1 type I receptors (IL-1RI) but do not transmit signals upon IL-1 binding. Instead, IL-1RII acts as a decoy receptor, preventing IL-1 from interacting with its signaling receptor, IL-1RI. This interaction helps regulate the inflammatory response and limits the potential for excessive or inappropriate immune activation.

IL-1RII can be found on various cell types, including B cells, monocytes, and fibroblasts. In addition to its membrane-bound form, a soluble form of IL-1RII (sIL-1RII) is generated through alternative splicing or proteolytic cleavage. The soluble receptor can also bind to IL-1 and inhibit its activity, contributing to the regulation of the immune response.

In summary, Interleukin-1 type II receptors (IL-1RII) are decoy receptors that downregulate the inflammatory response by preventing the interaction between interleukin-1 and its signaling receptor, IL-1RI. They exist in both membrane-bound and soluble forms and can be found on various cell types.

A nodal protein, in the context of molecular biology and genetics, refers to a protein that plays a role in signal transmission within a cell at a node or junction point of a signaling pathway. These proteins are often involved in regulatory processes, such as activating or inhibiting downstream effectors in response to specific signals received by the cell. Nodal proteins can be activated or deactivated through various mechanisms, including phosphorylation, ubiquitination, and interactions with other signaling molecules.

In a more specific context, nodal proteins are also known as nodal factors, which are members of the transforming growth factor-beta (TGF-β) superfamily of signaling molecules that play critical roles in embryonic development and tissue homeostasis. Nodal is a secreted protein that acts as a morphogen, inducing different cellular responses depending on its concentration gradient. It is involved in establishing left-right asymmetry during embryonic development and regulates various processes such as cell proliferation, differentiation, and apoptosis.

In summary, nodal proteins can refer to any protein that functions at a node or junction point of a signaling pathway, but they are also specifically known as nodal factors, which are TGF-β superfamily members involved in embryonic development and tissue homeostasis.

Bone Morphogenetic Proteins (BMPs) are a group of growth factors that play crucial roles in the development, growth, and repair of bones and other tissues. They belong to the Transforming Growth Factor-β (TGF-β) superfamily and were first discovered when researchers found that certain proteins extracted from demineralized bone matrix had the ability to induce new bone formation.

BMPs stimulate the differentiation of mesenchymal stem cells into osteoblasts, which are the cells responsible for bone formation. They also promote the recruitment and proliferation of these cells, enhancing the overall process of bone regeneration. In addition to their role in bone biology, BMPs have been implicated in various other biological processes, including embryonic development, wound healing, and the regulation of fat metabolism.

There are several types of BMPs (BMP-2, BMP-4, BMP-7, etc.) that exhibit distinct functions and expression patterns. Due to their ability to stimulate bone formation, recombinant human BMPs have been used in clinical applications, such as spinal fusion surgery and non-healing fracture treatment. However, the use of BMPs in medicine has been associated with certain risks and complications, including uncontrolled bone growth, inflammation, and cancer development, which necessitates further research to optimize their therapeutic potential.

Interleukin-1 Receptor Accessory Protein (IL-1RAP) is not a medical condition, but rather a protein involved in the immune system. It is a crucial component of the Interleukin-1 receptor complex, which plays a significant role in inflammatory responses and innate immunity. IL-1RAP does not bind to ligands directly; instead, it enhances the signaling of Interleukin-1 (IL-1) by interacting with IL-1 receptors I (IL-1RI) and IL-1 receptor type II (IL-1RII). This interaction leads to the activation of various intracellular signaling pathways, ultimately influencing cellular responses such as cytokine production, fever, and cell proliferation.

Genetic variations or mutations in the IL-1RAP gene have been associated with certain medical conditions, including:

1. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome - a rare inflammatory disorder characterized by recurrent fever episodes, mouth ulcers, throat inflammation, and swollen lymph nodes.
2. Deficiency of the IL-1 receptor antagonist (DIRA) - an autoinflammatory disease caused by mutations in the IL1RN gene, which encodes for the IL-1 receptor antagonist protein. In DIRA, dysregulated IL-1 signaling leads to multisystem inflammation and bone abnormalities.
3. Other autoinflammatory diseases - alterations in the IL-1 signaling pathway, including IL-1RAP, have been implicated in several other rare autoinflammatory conditions such as cryopyrin-associated periodic syndromes (CAPS) and tumor necrosis factor receptor-associated periodic syndrome (TRAPS).

Smad proteins are a family of intracellular signaling molecules that play a crucial role in the transmission of signals from the cell surface to the nucleus in response to transforming growth factor β (TGF-β) superfamily ligands. These ligands include TGF-βs, bone morphogenetic proteins (BMPs), activins, and inhibins.

There are eight mammalian Smad proteins, which are categorized into three classes based on their function: receptor-regulated Smads (R-Smads), common mediator Smads (Co-Smads), and inhibitory Smads (I-Smads). R-Smads include Smad1, Smad2, Smad3, Smad5, and Smad8/9, while Smad4 is the only Co-Smad. The I-Smads consist of Smad6 and Smad7.

Upon TGF-β superfamily ligand binding to their transmembrane serine/threonine kinase receptors, R-Smads are phosphorylated and form complexes with Co-Smad4. These complexes then translocate into the nucleus, where they regulate the transcription of target genes involved in various cellular processes, such as proliferation, differentiation, apoptosis, migration, and extracellular matrix production. I-Smads act as negative regulators of TGF-β signaling by competing with R-Smads for receptor binding or promoting the degradation of receptors and R-Smads.

Dysregulation of Smad protein function has been implicated in various human diseases, including fibrosis, cancer, and developmental disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Tumor Necrosis Factor (TNF) Receptors are cell surface receptors that bind to tumor necrosis factor cytokines. They play crucial roles in the regulation of a variety of immune cell functions, including inflammation, immunity, and cell survival or death (apoptosis).

There are two major types of TNF receptors: TNFR1 (also known as p55 or CD120a) and TNFR2 (also known as p75 or CD120b). TNFR1 is widely expressed in most tissues, while TNFR2 has a more restricted expression pattern and is mainly found on immune cells.

TNF receptors have an intracellular domain called the death domain, which can trigger signaling pathways leading to apoptosis when activated by TNF ligands. However, they can also activate other signaling pathways that promote cell survival, differentiation, and inflammation. Dysregulation of TNF receptor signaling has been implicated in various diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.

Interleukin-1 Receptor Antagonist Protein (IL-1Ra) is a naturally occurring protein that acts as a competitive inhibitor of the interleukin-1 (IL-1) receptor. IL-1 is a pro-inflammatory cytokine involved in various physiological processes, including the immune response and inflammation. The binding of IL-1 to its receptor triggers a signaling cascade that leads to the activation of inflammatory genes and cellular responses.

IL-1Ra shares structural similarities with IL-1 but does not initiate the downstream signaling pathway. Instead, it binds to the same receptor site as IL-1, preventing IL-1 from interacting with its receptor and thus inhibiting the inflammatory response.

Increased levels of IL-1Ra have been found in various inflammatory conditions, such as rheumatoid arthritis, inflammatory bowel disease, and sepsis, where it acts to counterbalance the pro-inflammatory effects of IL-1. Recombinant IL-1Ra (Anakinra) is used clinically as a therapeutic agent for the treatment of rheumatoid arthritis and other inflammatory diseases.

I'm sorry for any confusion, but "Mink" is not a medical term. It refers to a species of small, semiaquatic carnivorous mammals that are known for their sleek fur. They belong to the family Mustelidae, which also includes otters, weasels, and ferrets. If you have any questions about medical terminology or health-related topics, I'd be happy to help!

Bone morphogenetic protein receptors (BMPRs) are a group of transmembrane serine/threonine kinase receptors that play a crucial role in the signaling pathway of bone morphogenetic proteins (BMPs), which are growth factors involved in various biological processes including cell proliferation, differentiation, and apoptosis.

Type I BMPRs include three subtypes: activin receptor-like kinase 2 (ALK2), ALK3 (also known as BMPR-IA), and ALK6 (also known as BMPR-IB). These receptors form a complex with type II BMPRs upon binding of BMP ligands to their extracellular domains. The activation of the receptor complex leads to the phosphorylation of intracellular signaling molecules, such as SMAD proteins, which then translocate to the nucleus and regulate gene expression.

Mutations in type I BMPRs have been associated with several genetic disorders, including hereditary hemorrhagic telangiectasia (HHT), a vascular dysplasia disorder characterized by the formation of abnormal blood vessels. Additionally, alterations in BMP signaling pathways have been implicated in various human diseases, such as cancer, fibrosis, and bone disorders.

Growth differentiation factors (GDFs) are a subfamily of the transforming growth factor-beta (TGF-β) superfamily of cytokines. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. Specifically, GDFs are involved in the development and maintenance of the skeletal, reproductive, and nervous systems. Some members of this family include GDF5, GDF6, and GDF7, which are essential for normal joint formation and cartilage development; GDF8 (also known as myostatin) is a negative regulator of muscle growth; and GDF11 has been implicated in the regulation of neurogenesis and age-related changes.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Bone morphogenetic protein receptors, type II (BMPR2) are a type of cell surface receptor that bind to bone morphogenetic proteins (BMPs), which are growth factors involved in the regulation of various cellular processes such as cell proliferation, differentiation, and apoptosis. BMPR2 is a serine/threonine kinase receptor and forms a complex with type I BMP receptors upon BMP binding. This complex activation leads to the phosphorylation and activation of downstream signaling molecules, including SMAD proteins, which ultimately regulate gene transcription.

Mutations in the BMPR2 gene have been associated with several genetic disorders, most notably pulmonary arterial hypertension (PAH), a rare but life-threatening condition characterized by increased pressure in the pulmonary arteries that supply blood to the lungs. In addition, BMPR2 mutations have also been linked to Marfan syndrome, a genetic disorder that affects connective tissue and can cause skeletal, cardiovascular, and ocular abnormalities.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Smad3 protein is a transcription factor that plays a crucial role in the TGF-β (transforming growth factor-beta) signaling pathway. When TGF-β binds to its receptor, it activates Smad3 through phosphorylation. Activated Smad3 then forms a complex with other Smad proteins and translocates into the nucleus where it regulates the transcription of target genes involved in various cellular processes such as proliferation, differentiation, apoptosis, and migration.

Mutations in the SMAD3 gene or dysregulation of the TGF-β/Smad3 signaling pathway have been implicated in several human diseases, including fibrotic disorders, cancer, and Marfan syndrome. Therefore, Smad3 protein is an important target for therapeutic interventions in these conditions.

In medical and embryological terms, the mesoderm is one of the three primary germ layers in the very early stages of embryonic development. It forms between the ectoderm and endoderm during gastrulation, and it gives rise to a wide variety of cell types, tissues, and organs in the developing embryo.

The mesoderm contributes to the formation of structures such as:

1. The connective tissues (including tendons, ligaments, and most of the bones)
2. Muscular system (skeletal, smooth, and cardiac muscles)
3. Circulatory system (heart, blood vessels, and blood cells)
4. Excretory system (kidneys and associated structures)
5. Reproductive system (gonads, including ovaries and testes)
6. Dermis of the skin
7. Parts of the eye and inner ear
8. Several organs in the urogenital system

Dysfunctions or abnormalities in mesoderm development can lead to various congenital disorders and birth defects, highlighting its importance during embryogenesis.

Smad4 protein is a transcription factor that plays a crucial role in the signaling pathways of transforming growth factor-beta (TGF-β), bone morphogenetic proteins (BMPs), and activins. These signaling pathways are involved in various cellular processes, including cell proliferation, differentiation, apoptosis, and migration.

Smad4 is the common mediator of these pathways and forms a complex with Smad2 or Smad3 upon TGF-β/activin stimulation or with Smad1, Smad5, or Smad8 upon BMP stimulation. The resulting complex then translocates to the nucleus, where it regulates gene expression by binding to specific DNA sequences and interacting with other transcription factors.

Smad4 also plays a role in negative feedback regulation of TGF-β signaling by promoting the expression of inhibitory Smads (Smad6 and Smad7), which compete for receptor binding and prevent further signal transduction. Mutations in the Smad4 gene have been associated with various human diseases, including cancer and vascular disorders.

Sialglycoproteins are a type of glycoprotein that have sialic acid as the terminal sugar in their oligosaccharide chains. These complex molecules are abundant on the surface of many cell types and play important roles in various biological processes, including cell recognition, cell-cell interactions, and protection against proteolytic degradation.

The presence of sialic acid on the outermost part of these glycoproteins makes them negatively charged, which can affect their interaction with other molecules such as lectins, antibodies, and enzymes. Sialglycoproteins are also involved in the regulation of various physiological functions, including blood coagulation, inflammation, and immune response.

Abnormalities in sialglycoprotein expression or structure have been implicated in several diseases, such as cancer, autoimmune disorders, and neurodegenerative conditions. Therefore, understanding the biology of sialoglycoproteins is important for developing new diagnostic and therapeutic strategies for these diseases.

Interferon type I is a class of signaling proteins, also known as cytokines, that are produced and released by cells in response to the presence of pathogens such as viruses, bacteria, and parasites. These interferons play a crucial role in the body's innate immune system and help to establish an antiviral state in surrounding cells to prevent the spread of infection.

Interferon type I includes several subtypes, such as interferon-alpha (IFN-α), interferon-beta (IFN-β), and interferon-omega (IFN-ω). When produced, these interferons bind to specific receptors on the surface of nearby cells, triggering a cascade of intracellular signaling events that lead to the activation of genes involved in the antiviral response.

The activation of these genes results in the production of enzymes that inhibit viral replication and promote the destruction of infected cells. Interferon type I also enhances the adaptive immune response by promoting the activation and proliferation of immune cells such as T-cells and natural killer (NK) cells, which can directly target and eliminate infected cells.

Overall, interferon type I plays a critical role in the body's defense against viral infections and is an important component of the immune response to many different types of pathogens.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Scavenger receptors, class B (SR-B) are a type of scavenger receptors that play a crucial role in the cellular uptake and metabolism of lipids, particularly modified low-density lipoproteins (LDL), high-density lipoproteins (HDL), and other lipid-soluble molecules. They are membrane-bound glycoproteins that contain an extracellular domain with a characteristic structure, including cysteine-rich repeats and transmembrane domains.

The best-characterized member of this class is SR-B1 (also known as CD36b, SCARB1), which is widely expressed in various tissues, such as the liver, steroidogenic organs, macrophages, and endothelial cells. SR-B1 selectively binds to HDL and facilitates the transfer of cholesteryl esters from HDL particles into cells while allowing HDL to maintain its structural integrity and continue its function in reverse cholesterol transport.

SR-B1 has also been implicated in the uptake and degradation of oxidized LDL, contributing to the development of atherosclerosis. Additionally, SR-B1 is involved in several other cellular processes, including innate immunity, inflammation, and angiogenesis.

Other members of class B scavenger receptors include SR-BI, SR-B2 (also known as CLA-1 or LIMPII), SR-B3 (also known as CD36c or SCARB2), and SR-B4 (also known as CXorf24). These receptors have distinct expression patterns and functions but share structural similarities with SR-BI.

In summary, scavenger receptors, class B, are a group of membrane-bound glycoproteins that facilitate the cellular uptake and metabolism of lipids, particularly modified LDL and HDL particles. They play essential roles in maintaining lipid homeostasis and have implications in various pathological conditions, such as atherosclerosis and inflammation.

Growth substances, in the context of medical terminology, typically refer to natural hormones or chemically synthesized agents that play crucial roles in controlling and regulating cell growth, differentiation, and division. They are also known as "growth factors" or "mitogens." These substances include:

1. Proteins: Examples include insulin-like growth factors (IGFs), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). They bind to specific receptors on the cell surface, activating intracellular signaling pathways that promote cell proliferation, differentiation, and survival.

2. Steroids: Certain steroid hormones, such as androgens and estrogens, can also act as growth substances by binding to nuclear receptors and influencing gene expression related to cell growth and division.

3. Cytokines: Some cytokines, like interleukins (ILs) and hematopoietic growth factors (HGFs), contribute to the regulation of hematopoiesis, immune responses, and inflammation, thus indirectly affecting cell growth and differentiation.

These growth substances have essential roles in various physiological processes, such as embryonic development, tissue repair, and wound healing. However, abnormal or excessive production or response to these growth substances can lead to pathological conditions, including cancer, benign tumors, and other proliferative disorders.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Embryonic induction is a process that occurs during the development of a multicellular organism, where one group of cells in the embryo signals and influences the developmental fate of another group of cells. This interaction leads to the formation of specific structures or organs in the developing embryo. The signaling cells that initiate the process are called organizers, and they release signaling molecules known as morphogens that bind to receptors on the target cells and trigger a cascade of intracellular signals that ultimately lead to changes in gene expression and cell fate. Embryonic induction is a crucial step in the development of complex organisms and plays a key role in establishing the body plan and organizing the different tissues and organs in the developing embryo.

"Xenopus proteins" refer to the proteins that are expressed or isolated from the Xenopus species, which are primarily used as model organisms in biological and biomedical research. The most commonly used Xenopus species for research are the African clawed frogs, Xenopus laevis and Xenopus tropicalis. These proteins play crucial roles in various cellular processes and functions, and they serve as valuable tools to study different aspects of molecular biology, developmental biology, genetics, and biochemistry.

Some examples of Xenopus proteins that are widely studied include:

1. Xenopus Histones: These are the proteins that package DNA into nucleosomes, which are the fundamental units of chromatin in eukaryotic cells. They play a significant role in gene regulation and epigenetic modifications.
2. Xenopus Cyclins and Cyclin-dependent kinases (CDKs): These proteins regulate the cell cycle and control cell division, differentiation, and apoptosis.
3. Xenopus Transcription factors: These proteins bind to specific DNA sequences and regulate gene expression during development and in response to various stimuli.
4. Xenopus Signaling molecules: These proteins are involved in intracellular signaling pathways that control various cellular processes, such as cell growth, differentiation, migration, and survival.
5. Xenopus Cytoskeletal proteins: These proteins provide structural support to the cells and regulate their shape, motility, and organization.
6. Xenopus Enzymes: These proteins catalyze various biochemical reactions in the cell, such as metabolic pathways, DNA replication, transcription, and translation.

Overall, Xenopus proteins are essential tools for understanding fundamental biological processes and have contributed significantly to our current knowledge of molecular biology, genetics, and developmental biology.

Collagen Type I is the most abundant form of collagen in the human body, found in various connective tissues such as tendons, ligaments, skin, and bones. It is a structural protein that provides strength and integrity to these tissues. Collagen Type I is composed of three alpha chains, two alpha-1(I) chains, and one alpha-2(I) chain, arranged in a triple helix structure. This type of collagen is often used in medical research and clinical applications, such as tissue engineering and regenerative medicine, due to its excellent mechanical properties and biocompatibility.

Myositis ossificans is a medical condition characterized by the formation of bone tissue within the soft tissues, particularly in the muscles. It is also known as heterotopic ossification, which means "bone formation in an abnormal location." This condition usually occurs after trauma or injury to the muscle, such as a severe contusion (bruise) or a muscle strain or tear.

In myositis ossificans, the body's repair process goes awry, and instead of healing the muscle with normal scar tissue, bone tissue forms within the muscle. This can cause pain, stiffness, and limited mobility in the affected area. In some cases, the bone tissue may continue to grow and harden over time, leading to further complications.

Myositis ossificans is typically diagnosed through imaging tests such as X-rays, CT scans, or MRI scans, which can show the presence of bone tissue within the muscle. Treatment may include physical therapy, pain management, and in some cases, surgery to remove the excess bone tissue. Preventive measures such as early mobilization and protection of the affected area may help reduce the risk of developing myositis ossificans after an injury.

Scavenger receptors are a class of cell surface receptors that play a crucial role in the recognition and clearance of various biomolecules, including modified self-molecules, pathogens, and apoptotic cells. These receptors are expressed mainly by phagocytic cells such as macrophages and dendritic cells, but they can also be found on other cell types, including endothelial cells and smooth muscle cells.

Scavenger receptors have broad specificity and can bind to a wide range of ligands, including oxidized low-density lipoprotein (oxLDL), polyanionic molecules, advanced glycation end products (AGEs), and pathogen-associated molecular patterns (PAMPs). The binding of ligands to scavenger receptors triggers various cellular responses, such as phagocytosis, endocytosis, signaling cascades, and the production of cytokines and chemokines.

Scavenger receptors are classified into several families based on their structural features and ligand specificity, including:

1. Class A (SR-A): This family includes SR-AI, SR-AII, and MARCO, which bind to oxLDL, bacteria, and apoptotic cells.
2. Class B (SR-B): This family includes SR-BI, CD36, and LIMPII, which bind to lipoproteins, phospholipids, and pathogens.
3. Class C (SR-C): This family includes DEC-205, MRC1, and LOX-1, which bind to various ligands, including apoptotic cells, bacteria, and oxLDL.
4. Class D (SR-D): This family includes SCARF1, which binds to PAMPs and damage-associated molecular patterns (DAMPs).
5. Class E (SR-E): This family includes CXCL16, which binds to chemokine CXCR6 and phosphatidylserine.

Scavenger receptors play a critical role in maintaining tissue homeostasis by removing damaged or altered molecules and cells, modulating immune responses, and regulating lipid metabolism. Dysregulation of scavenger receptor function has been implicated in various pathological conditions, including atherosclerosis, inflammation, infection, and cancer.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

"Xenopus" is not a medical term, but it is a genus of highly invasive aquatic frogs native to sub-Saharan Africa. They are often used in scientific research, particularly in developmental biology and genetics. The most commonly studied species is Xenopus laevis, also known as the African clawed frog.

In a medical context, Xenopus might be mentioned when discussing their use in research or as a model organism to study various biological processes or diseases.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Granulosa cells are specialized cells that surround and enclose the developing egg cells (oocytes) in the ovaries. They play a crucial role in the growth, development, and maturation of the follicles (the fluid-filled sacs containing the oocytes) by providing essential nutrients and hormones.

Granulosa cells are responsible for producing estrogen, which supports the development of the endometrium during the menstrual cycle in preparation for a potential pregnancy. They also produce inhibin and activin, two hormones that regulate the function of the pituitary gland and its secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH).

These cells are critical for female reproductive health and fertility. Abnormalities in granulosa cell function can lead to various reproductive disorders, such as polycystic ovary syndrome (PCOS), premature ovarian failure, and infertility.

CD36 is a type of protein found on the surface of certain cells in the human body, including platelets, white blood cells (monocytes and macrophages), and fat (adipose) cells. It is a type of scavenger receptor that plays a role in various biological processes, such as:

1. Fatty acid uptake and metabolism: CD36 helps facilitate the transport of long-chain fatty acids into cells for energy production and storage.
2. Inflammation and immune response: CD36 is involved in the recognition and clearance of foreign substances (pathogens) and damaged or dying cells, which can trigger an immune response.
3. Angiogenesis: CD36 has been implicated in the regulation of blood vessel formation (angiogenesis), particularly during wound healing and tumor growth.
4. Atherosclerosis: CD36 has been associated with the development and progression of atherosclerosis, a condition characterized by the buildup of fats, cholesterol, and other substances in and on the artery walls. This is due to its role in the uptake of oxidized low-density lipoprotein (oxLDL) by macrophages, leading to the formation of foam cells and the development of fatty streaks in the arterial wall.
5. Infectious diseases: CD36 has been identified as a receptor for various pathogens, including malaria parasites, HIV, and some bacteria, which can use this protein to gain entry into host cells.

As an antigen, CD36 is a molecule that can be targeted by the immune system to produce an immune response. Antibodies against CD36 have been found in various diseases, such as autoimmune disorders and certain infections. Modulation of CD36 activity has been suggested as a potential therapeutic strategy for several conditions, including atherosclerosis, diabetes, and infectious diseases.

A ligand binds to a type 2 receptor, which recruits and trans-phosphorylates a type I receptor. The type I receptor recruits a ... The activin type 2 receptors belong to a larger TGF-beta receptor family and modulate signals for transforming growth factor ... inhibin/activin betaA and betaB and the activin type II and inhibin beta-glycan receptors in the developing human testis". ... There are two activin type two receptors: ACVR2A and ACVR2B. Despite the large amount of processes that these ligands regulate ...
A ligand binds to a Type two receptor, which recruits and trans-phosphorylate a type I receptor. The type I receptor recruits a ... There are three type I Activin receptors: ACVR1, ACVR1B, and ACVR1C. Each bind to a specific type II receptor-ligand complex. ... The Activin type I receptors transduce signals for a variety of members of the Transforming growth factor beta superfamily of ... This family of cytokines and hormones include activin, Anti-müllerian hormone (AMH), bone morphogenetic proteins (BMPs), and ...
An Activin receptor is a receptor which binds activin. These proteins are receptor-type kinases of Ser/Thr type, which have a ... Types include: Activin type 1 receptors Activin type 2 receptors ACVR1; ACVR1B; ACVR1C; ACVR2A; ACVR2B; ACVRL1; BMPR1A; BMPR1B ... Activin+receptors at the U.S. National Library of Medicine Medical Subject Headings (MeSH) This article incorporates text from ... Wrana JL, Attisano L, Wieser R, Ventura F, Massague J (1994). "Mechanism of activation of the TGF-beta receptor". Nature. 370 ( ...
It binds to and inhibits activin receptor type-2B. On August 20, 2013, it was announced that bimagrumab had received a ... an activin receptor type II inhibitor, on pituitary neurohormonal axes". Clinical Endocrinology. 88 (6): 908-919. doi:10.1111/ ... is safe and effective for treating excess adiposity and metabolic disturbances of adult patients with obesity and type 2 ...
Activin receptor type-2B is a protein that in humans is encoded by the ACVR2B gene. ACVR2B is an activin type 2 receptor. ... and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a ... This gene encodes activin A type IIB receptor, which displays a 3- to 4-fold higher affinity for the ligand than activin A type ... resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively ...
... is an activin type 2 receptor. This gene encodes activin A type II receptor. Activins are dimeric growth and ... and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a ... resulting in phosphorylation of type I receptors by type II receptors. Type II receptors are considered to be constitutively ... "Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. ...
"Characterization of type I receptors for transforming growth factor-beta and activin". Science. 264 (5155): 101-4. Bibcode: ... kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in ... the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors ... Bone morphogenetic protein receptor type-1B also known as CDw293 (cluster of differentiation w293) is a protein that in humans ...
"Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors". ... It is also known as activin receptor-like kinase 1, or ALK1. This gene encodes a type I cell-surface receptor for the TGF-beta ... "Entrez Gene: ACVRL1 activin A receptor type II-like 1". Olivieri C, Mira E, Delù G, Pagella F, Zambelli A, Malvezzi L, ... "Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2". Nature Genetics. 13 (2 ...
... resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type I receptor which ... and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a ... Activin A receptor, type I (ACVR1) is a protein which in humans is encoded by the ACVR1 gene; also known as ALK-2 (activin ... Activins signal through a heteromeric complex of receptor serine kinases which include at least two type I ( I and IB) and two ...
2020 scientists reported that suppressing activin type 2 receptors-signalling proteins myostatin and activin A via activin A/ ... A two-week treatment of normal mice with soluble activin type IIB receptor, a molecule that is normally attached to cells and ... Myostatin binds to the activin type II receptor, resulting in a recruitment of either coreceptor Alk-3 or Alk-4. This ... Treating progeric mice with soluble activin receptor type IIB before the onset of premature ageing signs appear to protects ...
Activin A receptor type 2A (ACVR2A) is a transmembrane receptor that is involved in ligand-binding and mediates the functions ... "ACVR2A activin A receptor type 2A [Homo sapiens (human)] - Gene - NCBI". Gene. Bock, J B; Klumperman, J; Davanger, S; Scheller ... Bone morphogenetic protein receptor type 1A(BMPR1A) is expressed almost exclusively in skeletal muscle and is a transcriptional ... Fibroblast growth factor receptor 2 (FGFR2) plays an essential role in the regulation of osteoblast differentiation, ...
Normally, the ACVR1 gene encodes the activin receptor type-1 transmembrane kinase that bind BMP receptors (Type I BMPR and Type ... ACVR1 encodes activin receptor type-1, a BMP type-1 receptor. The mutation causes substitution of codon 206 from arginine to ... Lin, Shuxian; Svoboda, Kathy K. H.; Feng, Jian Q.; Jiang, Xinquan (5 April 2016). "The biological function of type I receptors ... Fibro/adipogenic progenitors (FAPs) may be the disease-causing cell type responsible for activin A dependent ectopic bone ...
"Identification and characterization of a PDZ protein that interacts with activin type II receptors". J Biol Chem. 275 (8): 5485 ... 2003). "PKC regulates the delta2 glutamate receptor interaction with S-SCAM/MAGI-2 protein". Biochem. Biophys. Res. Commun. 301 ... 2001). "beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase ... inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95". J. Biol. Chem. 276 (44): 41310- ...
2004). "Activin isoforms signal through type I receptor serine/threonine kinase ALK7". Mol. Cell. Endocrinol. 220 (1-2): 59-65 ... 2001). "The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate ... "SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase ... The activin A receptor also known as ACVR1C or ALK-7 is a protein that in humans is encoded by the ACVR1C gene. ACVR1C is a ...
January 2008). "MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4". Blood. 111 (2): 588-95. doi ...
... and BMPR1B and the type II receptor BMPR2. These receptors are also closely related to the activin receptors, ACVR1 and ACVR2. ... kinase receptors: type I receptors of about 50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in ... the absence of type I receptors, but they require their respective type I receptors for signaling, whereas type I receptors ... "Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs". Mol. Cell ...
"Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135): 900-2. ... Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (March 2000). "Activin receptor ... Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts ... It can also decrease the expression levels of cytokine receptors, such as the IL-2 receptor to down-regulate the activity of ...
... activin A receptor type II-like kinase, 53kDa) is a membrane-bound TGF beta receptor protein of the TGF-beta receptor family ... "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135): 900-2. ... "Entrez Gene: TGFBR1 transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kDa)". Razani B, ... a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-beta receptor ...
... resulting in phosphorylation of type I receptors by type II receptors. This gene encodes activin A type IB receptor, composed ... and type II receptors are required for binding ligands and for expression of type I receptors. Type I and II receptors form a ... "Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. ... "Truncated activin type II receptors inhibit bioactivity by the formation of heteromeric complexes with activin type I. ...
... such as the activin type 2 receptor; and bone morphogenetic protein receptor, type IA. Other LU domain proteins are small ... "Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase". Nature ... Ploug M, Ellis V (August 1994). "Structure-function relationships in the receptor for urokinase-type plasminogen activator. ... Other receptors with LU domains include members of the transforming growth factor beta receptor (TGF-beta) superfamily, ...
... such as the activin type 2 receptor; and bone morphogenetic protein receptor, type IA. Other LU domain proteins are small ... "Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase". Nature ... Besides uPAR, other receptors with LU domains include members of the transforming growth factor beta receptor (TGF-beta) ... "Localization of the disulfide bonds in the NH2-terminal domain of the cellular receptor for human urokinase-type plasminogen ...
"Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent ... involvement of the Ral pathway in receptor endocytosis" (PDF). J. Cell Sci. 113 (16): 2837-44. doi:10.1242/jcs.113.16.2837. ...
"Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent ... "Novel factors in regulation of activin signaling". Molecular and Cellular Endocrinology. 225 (1-2): 1-8. doi:10.1016/j.mce. ... "Novel factors in regulation of activin signaling". Molecular and Cellular Endocrinology. 225 (1-2): 1-8. doi:10.1016/j.mce. ... "Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse ...
"Regulation of endocytosis of activin type II receptors by a novel PDZ protein through Ral/Ral-binding protein 1-dependent ... The product of this gene is part of a protein complex that regulates the endocytosis of growth factor receptors. The encoded ... Its expression can negatively affect receptor internalization and inhibit growth factor signaling. Multiple transcript variants ... "Epsin binds to the EH domain of POB1 and regulates receptor-mediated endocytosis". Oncogene. 18 (43): 5915-22. doi:10.1038/sj. ...
The cause of the disease was traced to a single mutation in the activin A receptor, type I gene. Once the cause of the disease ... "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". ... "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". ... "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". ...
This protein can also be phosphorylated by activin type 1 receptor kinase, and mediates the signal from the activin. ... Lebrun JJ, Takabe K, Chen Y, Vale W (January 1999). "Roles of pathway-specific and inhibitory Smads in activin receptor ... This protein is recruited to the TGF-beta receptors through its interaction with the SMAD anchor for receptor activation (SARA ... O'Neill TJ, Zhu Y, Gustafson TA (April 1997). "Interaction of MAD2 with the carboxyl terminus of the insulin receptor but not ...
The cause of the disease was traced to a single mutation in the activin A receptor, type I gene. After the discovery, Kaplan ... "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". ... "A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva". ...
... activin complex reveals antagonism of both type I and type II receptor binding". Developmental Cell. 9 (4): 535-543. doi: ... Walsh S, Metter EJ, Ferrucci L, Roth SM (June 2007). "Activin-type II receptor B (ACVR2B) and follistatin haplotype ... Lambert-Messerlian G, Eklund E, Pinar H, Tantravahi U, Schneyer AL (2007). "Activin subunit and receptor expression in normal ... In the blood, activin and follistatin are both known to be involved in the inflammatory response following tissue injury or ...
ACE-011 was a chimeric protein, created by fusing the binding portion of the activin type 2 receptors to part of an antibody; ... a protein therapeutic that was an activin type 2 receptor antagonist intended to treat bone loss. ... the resulting protein binds to activin and prevents it from acting. Knopf took over as CEO in 2007. He became known for showing ...
It is a TGFβ type 1 receptor antagonist. It blocks TGFβ1 and activin associating with the receptor, blocking access to SMAD2. ... By occupying type I receptors for Activin and bone morphogenetic protein (BMP), it also plays a role in negative feedback of ... "Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation". J. Biol ... Lebrun JJ, Takabe K, Chen Y, Vale W (January 1999). "Roles of pathway-specific and inhibitory Smads in activin receptor ...
A ligand binds to a type 2 receptor, which recruits and trans-phosphorylates a type I receptor. The type I receptor recruits a ... The activin type 2 receptors belong to a larger TGF-beta receptor family and modulate signals for transforming growth factor ... inhibin/activin betaA and betaB and the activin type II and inhibin beta-glycan receptors in the developing human testis". ... There are two activin type two receptors: ACVR2A and ACVR2B. Despite the large amount of processes that these ligands regulate ...
activin receptor type-1C. Names. ACTR-IC. ALK-7. activin A receptor, type IC. activin receptor type IC. activin receptor-like ... ACVR1C activin A receptor type 1C [Homo sapiens] ACVR1C activin A receptor type 1C [Homo sapiens]. Gene ID:130399 ... Transforming Growth Factor beta Type I Receptor and Activin Type IB/IC Receptors. pfam01064. Location:1 → 45. Activin_recp; ... Transforming Growth Factor beta Type I Receptor and Activin Type IB/IC Receptors. pfam01064. Location:26 → 100. Activin_recp; ...
Bovine activin receptor type IIB messenger ribonucleic acid displays alternative splicing involving a sequence homologous to ... Bovine activin receptor type IIB messenger ribonucleic acid displays alternative splicing involving a sequence homologous to ...
Activin is growth suppressive and enhances migration similar to transforming growth factor beta in colon cancer, indic … ... ACVR2-complemented MSI-H colon cancers restore activin-SMAD signaling, decrease growth, and slow their cell cycle following ... Activin type 2 receptor restoration in MSI-H colon cancer suppresses growth and enhances migration with activin ... Complemented ACVR2 protein complexed with ACVR1 with activin treatment, generating nuclear phosphoSMAD2 and activin-specific ...
Activin proteins have a wide range of biological activities, including mesoderm induction, neural cell differentiation, bone ... Corticotropin Releasing Hormone Receptor 1. P41006. 100 ug Blocking Peptide. Delta Opioid Receptor 3-17. P10100. 100 ug ... Neurotensin Receptor 1 (NTS1). P14020. 100 ug Blocking Peptide. Nicotinic acetylcholine receptor alpha7. P41009. 100 ug ... Activin RIA Blocking Peptide, specific to GT41003. Activins are dimeric growth and differentiation factors which belong to the ...
... and activin-receptor inhibitors the next upcoming drug class, highly effective treatments for obesity are in sight. ... Bimagrumab. This drug is a monoclonal antibody activin receptor inhibitor that binds to activin type II receptors. In a phase 2 ... She then briefly touched on activin receptor inhibitors -"the next [medication] class that I think will be up and coming," she ... With nutrient-stimulated hormone therapies for obesity in phase 3 trials, and activin-receptor inhibitors the next upcoming ...
Type II Activin Receptor (ActRII/ACVR2) phosphorylates Type I Activin Receptor (ActRIB/ACVR1B) in response to NODAL Stable ... Type II Activin Receptor (ActRII/ACVR2) phosphorylates Type I Activin Receptor (ActRIB/ACVR1B) in response to NODAL (Homo ... As inferred from the response of the activin receptor to activin, the type II component of the NODAL receptor phosphorylates ... ACVR2A,B (ActRIIA,B) phosphorylates ACVR1B (ActRIB, ALK4) in response to Activin (Homo sapiens) ...
An atypical mutation in the activin a receptor, type 1 gene (ACVR1) in a severely affected Fibrodysplasia Ossificans ... An atypical mutation in the activin a receptor, type 1 gene (ACVR1) in a severely affected Fibrodysplasia Ossificans ...
Human ACVR2A(Activin A Receptor Type II A) ELISA Kit To Order : [email protected]. Human Activin A Receptor Type II A (ACVR2A) ... Description: A sandwich ELISA kit for detection of Activin A Receptor Type II A from Human in samples from blood, serum, plasma ... Human ACVR2A(Activin A Receptor Type II A) ELISA Kit. ... Activin A Receptor Type I) ELISA Kit. *Human ACVR2A(Activin A ... Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Human Activin A Receptor Type ...
Activin Receptors, Type I, Alleles, Carrier Proteins, Chromosome Mapping, Chromosomes, Human, Pair 2, DNA Mutational Analysis, ... Response to "Mutations of the NOGGIN and of the activin A type I receptor genes in fibrodysplasia ossificans progressiva (FOP ... Response to "Mutations of the NOGGIN and of the activin A type I receptor genes in fibrodysplasia ossificans progressiva (FOP ...
... and the immunoglobulin G1-Fc (IgG1-Fc). ACE-031 1mg is ... ACE-031 1mg is a synthetic protein made up of activin receptor type IIB and the immunoglobulin G1-Fc (IgG1-Fc). ACE-031 1mg is ... ACE-031 1mg is a synthetic protein made up of activin receptor type IIB and the immunoglobulin G1-Fc (IgG1-Fc). It binds to ... ACE-031 is a synthetic protein made up of activin receptor type IIB and the immunoglobulin G1-Fc (IgG1-Fc). It binds to ...
... type I receptors. Learn about this gene and related health conditions. ... The ACVR1 gene provides instructions for making the activin receptor type-1 (ACVR1) protein, which is a member of a protein ... The ACVR1 gene provides instructions for making the activin receptor type-1 (ACVR1) protein, which is a member of a protein ... type I receptors. BMP receptors span the cell membrane, so that one end of the protein remains inside the cell and the other ...
... bone morphogenetic protein receptor 2, BMPR2; activin A receptor-like type 1, ACVRL1; and endoglin, ENG) and their ligands play ... NEDD9 targets collagen type 3 A1 and promotes endothelial fibrosis in experimental PAH21. Moreover, NEDD9 interacts with P- ... scRNA-seq data analysis was performed using the Seurat R package (version 4.0.2). Two types of scRNA-seq analysis were ... DNA types HLA-2: DRB1*07, DRB1*11, DRB3*pos., DRB4*pos., DQB1*02, DQB1*03 ...
Effect of IN-1130, a Small Molecule Inhibitor of Transforming Growth Factor-beta Type I Receptor/Activin Receptor-Like Kinase-5 ... Effect of IN-1130, a Small Molecule Inhibitor of Transforming Growth Factor-beta Type I Receptor/Activin Receptor-Like Kinase-5 ... Document Type. Article. DOI. 10.1016/j.juro.2008.08.008. Appears in Collections:. 약학대학 , 약학과 , Journal papers. Files in This ...
CRYSTAL STRUCTURE OF THE ACTIVIN RECEPTOR TYPE-2A LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV - 5NH3 , canSARS ... CRYSTAL STRUCTURE OF THE ACTIVIN RECEPTOR TYPE-2A LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV ... CRYSTAL STRUCTURE OF THE ACTIVIN RECEPTOR TYPE-2A LIGAND BINDING DOMAIN IN COMPLEX WITH BIMAGRUMAB FV ...
Current research is focused on the mechanisms that regulate SMAD activity to evoke cell-type-specific and context-dependent ... superfamily of growth factors initiate signal transduction through a bewildering complexity of ligand-receptor interactions. ... activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9, 535-543 (2005). ... Insights into constraints for receptor assembly gained through a structure of a ternary ligand-type II-type I receptor complex. ...
... activin receptor type-2B; TG, triglyceride; RBC, red blood cell; Hgb, hemoglobin; S6K1, ribosomal protein S6 kinase beta-1; ... Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and ... well-being type (interested in looking and feeling good with low risk-taking); and 4) YOLO "You Only Live Once" type (is ... A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol. 1996;120(1):51-7.. * ...
Generation of activin receptor type IIB isoform-specific hypomorphic alleles. Genesis (2006) 44(10): 487-94. Seki T, Hong KH, ... Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular ... Isolation of a regulatory region of activin receptor-like kinase 1 gene sufficient for arterial endothelium-specific expression ... Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer. ...
Compound: Activin receptor type-1. Species: Homo sapiens [TaxId:9606]. Gene: ACVR1, ACVRLK2. Database cross-references and ... Experiment type: XRAY. Resolution: 2.17 Å. R-factor: N/A. AEROSPACI score: 0.27 (click here for full SPACI score report) Chains ...
... on the Activin Receptor type IIA (ActRIIA). Activin receptor signaling by TGF-β inhibits osteoblast activity and induces ... Sotatercept is soluble fusion protein consisting of the extracellular domain of activin receptor type IIA (ActRIIA) linked to ... By blocking Activin receptor signaling, bone loss is inhibited; this has the effect of reducing marrow crowding, which results ... Activin (TGF-β) Receptor ActRIIA Antagonists for Myelodysplastic Syndrome & β-Thalassemia. Two experimental drugs, luspatercept ...
Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun. 13( ... Endoglin gene mutations lead to the clinical subtype of HHT-1, and mutations in the activin A receptor type II-like 1 gene ( ... All types of chronic liver disease may give rise to this syndrome. Approximately 80% of affected patients have signs and ... Approximately 80% of pulmonary arteriovenous malformations are of the simple type; [9] most of the associated aneurysms are ...
Ojjaara (momelotinib) is a JAK1/JAK2 and activin A receptor type 1 (ACVR1)... ...
Receptors for Activin, Dpp, Screw and Gbb *baboon - an activin type I receptor *punt - Type II TGF beta receptor functioning in ... BMP and activin pathways *saxophone - type I receptor for Gbb *thick veins - type I receptor of Dpp *wishful thinking - type II ... occurs through a hetero-tetrameric receptor complex comprising of two distinct type one BMP receptors and two type II receptors ... baboon - an activin type I receptor *Daughters against dpp (signal transducer) *glass bottom boat - TGFβ superfamily *mayday * ...
Administration of a soluble Activin type IIb receptor promotes the transplantation of human myoblasts in dystrophic mice. Cell ... Blocking the myostatin signal with a dominant negative receptor improves the success of human myoblast transplantation in ...
Effect of Activin A receptor type II-like kinase 5 (ALK5) inhibitor A83-01 on intracellular CLDN3 localization. hBEpC epithelia ... Two receptor subunits are known, receptor type I and type II subunits. TGF-β1 binding to either subunit initiates their ... TGF-β1-induced redistribution of claudin 3 from tight junctions into cell nuclei is prevented by activin A receptor type II- ... Within this complex, type II subunits phosphorylate type I subunits at their N-terminal domain. Thus, activated, type I ...
There are two predominant types of HHT caused by mutations in endoglin (ENG) and ACVRL1/activin receptor-like kinase 1 (ALK1) ... activin receptor-like kinase 1. FKBP12. FK binding protein 12. Id1. inhibitor differentiation 1. PAI-1. plasminogen activator ... Immunosuppressor FK506 Increases Endoglin and Activin Receptor-Like Kinase 1 Expression and Modulates Transforming Growth ... Immunosuppressor FK506 Increases Endoglin and Activin Receptor-Like Kinase 1 Expression and Modulates Transforming Growth ...
Recombinant Human Activin receptor type-2B (ACVR2B), partial (Active) , CSB-AP005701HU Cusabio Active Proteins ... Recombinant Human Activin receptor type-2B (ACVR2B) ,partial (Active) , CSB-AP005701HU , CusabioProtein Description: ... PartialAlternative Name (s) : Activin Receptor Type-2B; Activin Receptor Type IIB; ACTR-IIB; ACVR2BGene Names: ACVR2BResearch ... Tumor Necrosis Factor Receptor Superfamily Member 10B; Death Receptor 5;... ...
Glutamate Receptor 1 (AMPA subtype) (6). * Glutamate Receptor 1 (AMPA subtype)+BMPR1A+BMPR1B+KA1+Activin Receptor Type IA+ ... Glutamate receptor 3/GluA3+GluA4 (1). * Glutamate Receptor 1 (AMPA subtype)+Ionotropic Glutamate receptor 2+Glutamate receptor ... Glutamate Receptor 1 (AMPA subtype)+Ionotropic Glutamate receptor 2 (1). * Glutamate Receptor 1 (AMPA subtype)+Ionotropic ... Glutamate Receptor 1 (AMPA subtype)+Ionotropic Glutamate receptor 2+Glutamate receptor 3/GluA3+GluK5 (1). ...
... including bone morphogenic protein receptor type II, activin receptor type II A (ActRIIA), and the ActRIIA ligands activin A, ... An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension. Nat Commun ... Opposite effects of activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat Commun ... ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci Transl Med 2020; 12: eaaz5660. doi: ...
Confirmation of FOP diagnosis with documentation of Type I activin A receptor (ACVR1) FOP causing mutation ... Study Type The nature of the investigation or investigational use for which clinical study information is being submitted. ...

No FAQ available that match "activin receptors type i"

No images available that match "activin receptors type i"