Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
Formation of an acetyl derivative. (Stedman, 25th ed)
A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.
Enzymes that catalyze the transfer of an acetyl group, usually from ACETYL COENZYME A, to the N-terminus of a peptide chain.
An enzyme that catalyzes the formation of O-acetylcarnitine from acetyl-CoA plus carnitine. EC 2.3.1.7.
A member of the p300-CBP transcription factor family that was initially identified as a binding partner for CAMP RESPONSE ELEMENT-BINDING PROTEIN. Mutations in CREB-binding protein are associated with RUBINSTEIN-TAYBI SYNDROME.
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS.
An N-terminal acetyltransferase subtype that consists of the Naa50p catalytic subunit, and the Naa10p and Naa15p auxiliary subunits. It has specificity for the N-terminal METHIONINE of peptides where the next amino acid in the chain is hydrophobic.
Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.
Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
An essential amino acid. It is often added to animal feed.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
An N-terminal acetyltransferase subtype that consists of the Naa10p catalytic subunit and the Naa15p auxiliary subunit. The structure of this enzyme is conserved between lower and higher eukaryotes. It has specificity for N-terminal SERINE; ALANINE; THREONINE; GLYCINE; VALINE; and CYSTINE residues and acts on nascent peptide chains after the removal of the initiator METHIONINE by METHIONYL AMINOPEPTIDASES.
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
A group of 6-alkyl SALICYLIC ACIDS that are found in ANACARDIUM and known for causing CONTACT DERMATITIS.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
An enzyme that catalyzes the transfer of acetyl groups from ACETYL-COA to arylamines. It can also catalyze acetyl transfer between arylamines without COENZYME A and has a wide specificity for aromatic amines, including SEROTONIN. However, arylamine N-acetyltransferase should not be confused with the enzyme ARYLALKYLAMINE N-ACETYLTRANSFERASE which is also referred to as SEROTONIN ACETYLTRANSFERASE.
Compounds that inhibit HISTONE DEACETYLASES. This class of drugs may influence gene expression by increasing the level of acetylated HISTONES in specific CHROMATIN domains.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
A mitochondrial matrix enzyme that catalyzes the synthesis of L-GLUTAMATE to N-acetyl-L-glutamate in the presence of ACETYL-COA.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
A class of weak acids with the general formula R-CONHOH.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 2; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The generic name for the group of aliphatic hydrocarbons Cn-H2n+2. They are denoted by the suffix -ane. (Grant & Hackh's Chemical Dictionary, 5th ed)
The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.
Proteins involved in the assembly and disassembly of HISTONES into NUCLEOSOMES.
A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 1; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA.
A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.
Proteins transcribed from the E1A genome region of ADENOVIRUSES which are involved in positive regulation of transcription of the early genes of host infection.
A transcription factor that partners with ligand bound GLUCOCORTICOID RECEPTORS and ESTROGEN RECEPTORS to stimulate GENETIC TRANSCRIPTION. It plays an important role in FERTILITY as well as in METABOLISM of LIPIDS.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Established cell cultures that have the potential to propagate indefinitely.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The facilitation of biochemical reactions with the aid of naturally occurring catalysts such as ENZYMES.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
Proteins found in any species of fungus.
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Enzymes that catalyze the methylation of arginine residues of proteins to yield N-mono- and N,N-dimethylarginine. This enzyme is found in many organs, primarily brain and spleen.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Trans-acting transcription factors produced by retroviruses such as HIV. They are nuclear proteins whose expression is required for viral replication. The tat protein stimulates LONG TERMINAL REPEAT-driven RNA synthesis for both viral regulatory and viral structural proteins. tat stands for trans-activation of transcription.
Proteins prepared by recombinant DNA technology.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS.
Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.
Interruption or suppression of the expression of a gene at transcriptional or translational levels.
Proteins encoded by the TAT GENES of the HUMAN IMMUNODEFICIENCY VIRUS.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
The rate dynamics in chemical or physical systems.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A cell line derived from cultured tumor cells.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
Proteins found in any species of bacterium.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Deletion of sequences of nucleic acids from the genetic material of an individual.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.
Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.
The functional hereditary units of FUNGI.

Prodigious substrate specificity of AAC(6')-APH(2"), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. (1/3280)

BACKGROUND: High-level gentamicin resistance in enterococci and staphylococci is conferred by AAC(6')-APH(2"), an enzyme with 6'-N-acetyltransferase and 2"-O-phosphotransferase activities. The presence of this enzyme in pathogenic gram-positive bacteria prevents the successful use of gentamicin C and most other aminoglycosides as therapeutic agents. RESULTS: In an effort to understand the mechanism of aminoglycoside modification, we expressed AAC(6')-APH(2") in Bacillus subtilis. The purified enzyme is monomeric with a molecular mass of 57 kDa and displays both the expected aminoglycoside N-acetyltransferase and O-phosphotransferase activities. Structure-function analysis with various aminoglycosides substrates reveals an enzyme with broad specificity in both enzymatic activities, accounting for AAC(6')-APH(2")'s dramatic negative impact on clinical aminoglycoside therapy. Both lividomycin A and paromomycin, aminoglycosides lacking a 6'-amino group, were acetylated by AAC(6')-APH(2"). The infrared spectrum of the product of paromomycin acetylation yielded a signal consistent with O-acetylation. Mass spectral and nuclear magnetic resonance analysis of the products of neomycin phosphorylation indicated that phosphoryl transfer occurred primarily at the 3'-OH of the 6-aminohexose ring A, and that some diphosphorylated material was also present with phosphates at the 3'-OH and the 3"'-OH of ring D, both unprecedented observations for this enzyme. Furthermore, the phosphorylation site of lividomycin A was determined to be the 5"-OH of the pentose ring C. CONCLUSIONS: The bifunctional AAC(6')-APH(2") has the capacity to inactivate virtually all clinically important aminoglycosides through N- and O-acetylation and phosphorylation of hydroxyl groups. The extremely broad substrate specificity of this enzyme will impact on future development of aminoglycosides and presents a significant challenge for antibiotic design.  (+info)

The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. (2/3280)

Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.  (+info)

The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. (3/3280)

Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-alpha-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-alpha-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness.  (+info)

A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. (4/3280)

Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be approximately 80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena.  (+info)

In vivo and in vitro processing of the Bacillus subtilis transcript coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase. (5/3280)

In Bacillus subtilis, the adjacent genes gltX, cysE, and cysS encoding respectively glutamyl-tRNA synthetase, serine acetyl-transferase, and cysteinyl-tRNA synthetase, are transcribed as an operon but a gltX probe reveals only the presence of a monocistronic gltX mRNA (Gagnon et al., 1994, J Biol Chem 269:7473-7482). The transcript of the gltX-cysE intergenic region contains putative alternative secondary structures forming a p-independent terminator or an antiterminator, and a conserved sequence (T-box) found in the leader of most aminoacyl-tRNA synthetase and many amino acid biosynthesis genes in B. subtilis and in other Gram-positive eubacteria. The transcription of these genes is initiated 45 nt upstream from the first codon of gltX and is under the control of a sigmaA-type promoter. Analysis of the in vivo transcript of this operon revealed a cleavage site immediately downstream from the p-independent terminator structure. In vitro transcription analysis, using RNA polymerases from Escherichia coli, B. subtilis, and that encoded by the T7 phage, in the presence of various RNase inhibitors, shows the same cleavage. This processing generates mRNAs whose 5'-end half-lives differ by a factor of 2 in rich medium, and leaves putative secondary structures at the 3' end of the gltX transcript and at the 5' end of the cysE/S mRNA, which may be involved in the stabilization of these mRNAs. By its mechanism and its position, this cleavage differs from that of the other known transcripts encoding aminoacyl-tRNA synthetases in B. subtilis.  (+info)

Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue. (6/3280)

We recently generated a transgenic mouse line overexpressing spermidine/spermine N1-acetyltransferase (SSAT) gene under its own promoter. The tissue polyamine pools of these animals were profoundly affected and the mice were hairless from early age. We have now generated another transgenic-mouse line overexpressing the SSAT gene under the control of a heavy-metal-inducible mouse metallothionein I (MT) promoter. Even in the absence of heavy metals, changes in the tissue polyamine pools indicated that a marked activation of polyamine catabolism had occurred in the transgenic animals. As with the SSAT transgenic mice generated previously, the mice of the new line (MT-SSAT) suffered permanent hair loss, but this occurred considerably later than in the previous SSAT transgenic animals. Liver was the most affected tissue in the MT-SSAT transgenic animals, revealed by putrescine overaccumulation, significant decrease in spermidine concentration and >90% reduction in the spermine pool. Even though hepatic SSAT mRNA accumulated to massive levels in non-induced transgenic animals, SSAT activity was only moderately elevated. Administration of ZnSO4 further elevated the level of hepatic SSAT message and induced enzyme activity, but not more than 2- to 3-fold. Treatment of the transgenic animals with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) resulted in an immense induction, more than 40000-fold, of enzyme activity in the liver of transgenic animals, and minor changes in the SSAT mRNA level. Liver spermidine and spermine pools were virtually depleted within 1-2 days in response to the treatment with the analogue. The treatment also resulted in a marked mortality (up to 60%) among the transgenic animals which showed ultrastructural changes in the liver, most notably mitochondrial swelling, one of the earliest signs of cell injury. These results indicated that, even without its own promoter, SSAT is powerfully induced by the polyamine analogue through a mechanism that appears to involve a direct translational and/or heterogenous nuclear RNA processing control. It is likewise significant that overexpression of SSAT renders the animals extremely sensitive to polyamine analogues.  (+info)

Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter. (7/3280)

Transcriptional activation of the human interferon-beta (IFN-beta) gene by virus infection requires the assembly of a higher order nucleoprotein complex, the enhanceosome, which consists of the transcriptional activators NF-kappa B (p50/p65), ATF-2/c-jun, IRF-3 and IRF-7, architectural protein HMGI(Y), and the coactivators p300 and CBP. In this report, we show that virus infection of cells results in a dramatic hyperacetylation of histones H3 and H4 that is localized to the IFN-beta promoter. Furthermore, expressing a truncated version of IRF-3, which lacks a p300/CBP interaction domain, suppresses both histone hyperacetylation and activation of the IFN-beta gene. Thus, coactivator-mediated localized hyperacetylation of histones may play a crucial role in inducible gene expression.  (+info)

A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. (8/3280)

Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.  (+info)

Acetyltransferases are a type of enzyme that facilitates the transfer of an acetyl group (a chemical group consisting of an acetyl molecule, which is made up of carbon, hydrogen, and oxygen atoms) from a donor molecule to a recipient molecule. This transfer of an acetyl group can modify the function or activity of the recipient molecule.

In the context of biology and medicine, acetyltransferases are important for various cellular processes, including gene expression, DNA replication, and protein function. For example, histone acetyltransferases (HATs) are a type of acetyltransferase that add an acetyl group to the histone proteins around which DNA is wound. This modification can alter the structure of the chromatin, making certain genes more or less accessible for transcription, and thereby influencing gene expression.

Abnormal regulation of acetyltransferases has been implicated in various diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the function and regulation of these enzymes is an important area of research in biomedicine.

Histone Acetyltransferases (HATs) are a group of enzymes that play a crucial role in the regulation of gene expression. They function by adding acetyl groups to specific lysine residues on the N-terminal tails of histone proteins, which make up the structural core of nucleosomes - the fundamental units of chromatin.

The process of histone acetylation neutralizes the positive charge of lysine residues, reducing their attraction to the negatively charged DNA backbone. This leads to a more open and relaxed chromatin structure, facilitating the access of transcription factors and other regulatory proteins to the DNA, thereby promoting gene transcription.

HATs are classified into two main categories: type A HATs, which are primarily found in the nucleus and associated with transcriptional activation, and type B HATs, which are located in the cytoplasm and participate in chromatin assembly during DNA replication and repair. Dysregulation of HAT activity has been implicated in various human diseases, including cancer, neurodevelopmental disorders, and cardiovascular diseases.

Acetylation is a chemical process that involves the addition of an acetyl group (-COCH3) to a molecule. In the context of medical biochemistry, acetylation often refers to the post-translational modification of proteins, where an acetyl group is added to the amino group of a lysine residue in a protein by an enzyme called acetyltransferase. This modification can alter the function or stability of the protein and plays a crucial role in regulating various cellular processes such as gene expression, DNA repair, and cell signaling. Acetylation can also occur on other types of molecules, including lipids and carbohydrates, and has important implications for drug metabolism and toxicity.

P300 and CREB binding protein (CBP) are both transcriptional coactivators that play crucial roles in regulating gene expression. They function by binding to various transcription factors and modifying the chromatin structure to allow for the recruitment of the transcriptional machinery. The P300-CBP complex is essential for many cellular processes, including development, differentiation, and oncogenesis.

P300-CBP transcription factors refer to a family of proteins that include both p300 and CBP, as well as their various isoforms and splice variants. These proteins share structural and functional similarities and are often referred to together due to their overlapping roles in transcriptional regulation.

The P300-CBP complex plays a key role in the P300-CBP-mediated signal integration, which allows for the coordinated regulation of gene expression in response to various signals and stimuli. Dysregulation of P300-CBP transcription factors has been implicated in several diseases, including cancer, neurodevelopmental disorders, and inflammatory diseases.

In summary, P300-CBP transcription factors are a family of proteins that play crucial roles in regulating gene expression through their ability to bind to various transcription factors and modify the chromatin structure. Dysregulation of these proteins has been implicated in several diseases, making them important targets for therapeutic intervention.

N-terminal acetyltransferases (NATs) are a family of enzymes that catalyze the transfer of an acetyl group from acetyl coenzyme A (acetyl-CoA) to the alpha-amino group of the first residue at the N-terminus of a protein. This post-translational modification, known as N-terminal acetylation, can affect various aspects of protein function, including stability, localization, and interaction with other proteins. NATs are involved in many cellular processes, such as gene expression regulation, DNA damage response, and cell signaling. Defects in NATs have been implicated in several human diseases, including cancer and neurodegenerative disorders.

Carnitine O-acetyltransferase (COAT) is an enzyme that plays a crucial role in the transport and metabolism of fatty acids within cells. It is also known as carnitine palmitoyltransferase I (CPT I).

The primary function of COAT is to catalyze the transfer of an acetyl group from acetyl-CoA to carnitine, forming acetylcarnitine and free CoA. This reaction is essential for the entry of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy in the form of ATP.

COAT is located on the outer membrane of the mitochondria and functions as a rate-limiting enzyme in fatty acid oxidation. Its activity can be inhibited by malonyl-CoA, which is an intermediate in fatty acid synthesis. This inhibition helps regulate the balance between fatty acid oxidation and synthesis, ensuring that cells have enough energy while preventing excessive accumulation of lipids.

Deficiencies or mutations in COAT can lead to various metabolic disorders, such as carnitine palmitoyltransferase I deficiency (CPT I deficiency), which may cause symptoms like muscle weakness, hypoglycemia, and cardiomyopathy. Proper diagnosis and management of these conditions often involve dietary modifications, supplementation with carnitine, and avoidance of fasting to prevent metabolic crises.

CREB-binding protein (CBP) is a transcription coactivator that plays a crucial role in regulating gene expression. It is called a "coactivator" because it works together with other proteins, such as transcription factors, to enhance the process of gene transcription. CBP is so named because it can bind to the cAMP response element-binding (CREB) protein, which is a transcription factor that regulates the expression of various genes in response to different signals within cells.

CBP has intrinsic histone acetyltransferase (HAT) activity, which means it can add acetyl groups to histone proteins around which DNA is wound. This modification loosens the chromatin structure, making it more accessible for transcription factors and other proteins involved in gene expression. As a result, CBP acts as a global regulator of gene expression, influencing various cellular processes such as development, differentiation, and homeostasis.

Mutations in the CBP gene have been associated with several human diseases, including Rubinstein-Taybi syndrome, a rare genetic disorder characterized by growth retardation, mental deficiency, and distinct facial features. Additionally, CBP has been implicated in cancer, as its dysregulation can lead to uncontrolled cell growth and malignant transformation.

Histones are highly alkaline proteins found in the chromatin of eukaryotic cells. They are rich in basic amino acid residues, such as arginine and lysine, which give them their positive charge. Histones play a crucial role in packaging DNA into a more compact structure within the nucleus by forming a complex with it called a nucleosome. Each nucleosome contains about 146 base pairs of DNA wrapped around an octamer of eight histone proteins (two each of H2A, H2B, H3, and H4). The N-terminal tails of these histones are subject to various post-translational modifications, such as methylation, acetylation, and phosphorylation, which can influence chromatin structure and gene expression. Histone variants also exist, which can contribute to the regulation of specific genes and other nuclear processes.

E1A-associated protein, also known as p300, is a transcriptional coactivator that plays a crucial role in the regulation of gene expression. It was initially identified as a protein that interacts with the E1A protein of adenovirus.

The p300 protein contains several functional domains, including a histone acetyltransferase (HAT) domain, which can modify histone proteins and alter chromatin structure to promote gene transcription. It also has a bromodomain that recognizes acetylated lysine residues on histones and other proteins, further enhancing its ability to regulate gene expression.

In addition to its role in transcriptional regulation, p300 is involved in various cellular processes such as DNA repair, differentiation, and apoptosis. Dysregulation of p300 function has been implicated in several human diseases, including cancer, neurodevelopmental disorders, and cardiovascular disease.

N-Terminal acetyltransferase E, also known as NatE, is a type of enzyme that belongs to the N-terminal acetyltransferase (NAT) family. NATs are responsible for the co-translational modification of proteins by transferring an acetyl group from acetyl-CoA to the alpha-amino group of the first residue in a polypeptide chain. This process, known as N-terminal acetylation, is one of the most common post-translational modifications and plays a crucial role in regulating various cellular processes such as protein stability, localization, and interaction with other proteins.

NatE is a heterodimeric enzyme composed of two subunits: Nat5 and Mam33. It specifically recognizes and acetylates proteins that have a serine, threonine, or cysteine as the second residue in their N-terminus. The activity of NatE is essential for the survival of yeast cells and has been implicated in various cellular processes such as DNA replication, repair, and transcription.

Defects in NatE have been associated with several human diseases, including cancer and neurodegenerative disorders. Therefore, understanding the function and regulation of NatE is important for developing new therapeutic strategies to treat these conditions.

Histone deacetylases (HDACs) are a group of enzymes that play a crucial role in the regulation of gene expression. They work by removing acetyl groups from histone proteins, which are the structural components around which DNA is wound to form chromatin, the material that makes up chromosomes.

Histone acetylation is a modification that generally results in an "open" chromatin structure, allowing for the transcription of genes into proteins. When HDACs remove these acetyl groups, the chromatin becomes more compact and gene expression is reduced or silenced.

HDACs are involved in various cellular processes, including development, differentiation, and survival. Dysregulation of HDAC activity has been implicated in several diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. As a result, HDAC inhibitors have emerged as promising therapeutic agents for these conditions.

Acetyl Coenzyme A, often abbreviated as Acetyl-CoA, is a key molecule in metabolism, particularly in the breakdown and oxidation of carbohydrates, fats, and proteins to produce energy. It is a coenzyme that plays a central role in the cellular process of transforming the energy stored in the chemical bonds of nutrients into a form that the cell can use.

Acetyl-CoA consists of an acetyl group (two carbon atoms) linked to coenzyme A, a complex organic molecule. This linkage is facilitated by an enzyme called acetyltransferase. Once formed, Acetyl-CoA can enter various metabolic pathways. In the citric acid cycle (also known as the Krebs cycle), Acetyl-CoA is further oxidized to release energy in the form of ATP, NADH, and FADH2, which are used in other cellular processes. Additionally, Acetyl-CoA is involved in the biosynthesis of fatty acids, cholesterol, and certain amino acids.

In summary, Acetyl Coenzyme A is a vital molecule in metabolism that connects various biochemical pathways for energy production and biosynthesis.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

N-Terminal Acetyltransferase A, also known as NAT A or NAA10, is an enzyme that is responsible for the co-translational acetylation of the N-terminus of newly synthesized proteins. This enzyme is a member of the NatB/Naa10-Naa15 complex and plays a crucial role in various cellular processes such as protein stability, localization, and function.

The NatB/Naa10-Naa15 complex specifically recognizes and acetylates proteins that have certain amino acid residues at their N-terminus, including methionine followed by a hydrophobic or aromatic residue. This modification can affect the protein's susceptibility to degradation, interaction with other proteins, and subcellular localization.

Mutations in the gene encoding N-Terminal Acetyltransferase A have been associated with various human diseases, including cancer, developmental disorders, and neurological conditions. Therefore, understanding the function and regulation of this enzyme is important for developing therapeutic strategies to target these diseases.

Chromatin is the complex of DNA, RNA, and proteins that make up the chromosomes in the nucleus of a cell. It is responsible for packaging the long DNA molecules into a more compact form that fits within the nucleus. Chromatin is made up of repeating units called nucleosomes, which consist of a histone protein octamer wrapped tightly by DNA. The structure of chromatin can be altered through chemical modifications to the histone proteins and DNA, which can influence gene expression and other cellular processes.

Anacardic acids are a type of organic compounds that are found in the sap, bark, and fruits of the Anacardium occidentale tree, also known as the cashew tree. These compounds are primarily phenolic lipids, which means they have both alcohol and acid components. They are known for their anti-inflammatory, antioxidant, and antimicrobial properties.

Anacardic acids are of interest in medical research due to their potential health benefits. Some studies suggest that they may help to prevent or treat conditions such as cancer, cardiovascular disease, and diabetes. However, more research is needed to confirm these effects and to determine the optimal doses and methods for using anacardic acids as therapeutic agents.

It's worth noting that some people may experience allergic reactions to anacardic acids or other compounds found in cashew nuts or other parts of the cashew tree. These reactions can range from mild skin irritation to severe anaphylaxis, so it's important to use caution when handling or consuming these substances.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Arylamine N-acetyltransferase (NAT) is a group of enzymes involved in the metabolism of aromatic amines, which are found in a variety of substances including tobacco smoke, certain drugs, and environmental contaminants. NAT catalyzes the transfer of an acetyl group from acetyl coenzyme A to the aromatic amine, which can help to detoxify these compounds and make them more water-soluble for excretion. There are two main forms of NAT in humans, known as NAT1 and NAT2, which have different tissue distributions and substrate specificities. Variations in NAT activity due to genetic polymorphisms can affect individual susceptibility to certain chemical exposures and diseases, including cancer.

Histone Deacetylase Inhibitors (HDACIs) are a class of pharmaceutical compounds that inhibit the function of histone deacetylases (HDACs), enzymes that remove acetyl groups from histone proteins. Histones are alkaline proteins around which DNA is wound to form chromatin, the structure of which can be modified by the addition or removal of acetyl groups.

Histone acetylation generally results in a more "open" chromatin structure, making genes more accessible for transcription and leading to increased gene expression. Conversely, histone deacetylation typically results in a more "closed" chromatin structure, which can suppress gene expression. HDACIs block the activity of HDACs, resulting in an accumulation of acetylated histones and other proteins, and ultimately leading to changes in gene expression profiles.

HDACIs have been shown to exhibit anticancer properties by modulating the expression of genes involved in cell cycle regulation, apoptosis, and angiogenesis. As a result, HDACIs are being investigated as potential therapeutic agents for various types of cancer, including hematological malignancies and solid tumors. Some HDACIs have already been approved by regulatory authorities for the treatment of specific cancers, while others are still in clinical trials or preclinical development.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

Amino-acid N-acetyltransferases are a group of enzymes that catalyze the transfer of an acetyl group from acetyl coenzyme A to the amino group of an amino acid. This modification can have various effects on the function and stability of the modified amino acid, and plays a role in several cellular processes, including protein synthesis, degradation, and post-translational modification.

The systematic name for this enzyme class is "acetyl-CoA:amino-acid N-acetyltransferase". They are classified under the EC number 2.3.1. acetyltransferases. There are several subtypes of amino-acid N-acetyltransferases, each with specificity for certain amino acids or groups of amino acids.

These enzymes play a role in various biological processes such as:

* Protein synthesis and folding
* Degradation of amino acids and proteins
* Regulation of gene expression
* Detoxification of xenobiotics (foreign substances)

Defects or mutations in genes encoding for these enzymes can lead to various diseases, such as neurological disorders and cancer.

Post-translational protein processing refers to the modifications and changes that proteins undergo after their synthesis on ribosomes, which are complex molecular machines responsible for protein synthesis. These modifications occur through various biochemical processes and play a crucial role in determining the final structure, function, and stability of the protein.

The process begins with the translation of messenger RNA (mRNA) into a linear polypeptide chain, which is then subjected to several post-translational modifications. These modifications can include:

1. Proteolytic cleavage: The removal of specific segments or domains from the polypeptide chain by proteases, resulting in the formation of mature, functional protein subunits.
2. Chemical modifications: Addition or modification of chemical groups to the side chains of amino acids, such as phosphorylation (addition of a phosphate group), glycosylation (addition of sugar moieties), methylation (addition of a methyl group), acetylation (addition of an acetyl group), and ubiquitination (addition of a ubiquitin protein).
3. Disulfide bond formation: The oxidation of specific cysteine residues within the polypeptide chain, leading to the formation of disulfide bonds between them. This process helps stabilize the three-dimensional structure of proteins, particularly in extracellular environments.
4. Folding and assembly: The acquisition of a specific three-dimensional conformation by the polypeptide chain, which is essential for its function. Chaperone proteins assist in this process to ensure proper folding and prevent aggregation.
5. Protein targeting: The directed transport of proteins to their appropriate cellular locations, such as the nucleus, mitochondria, endoplasmic reticulum, or plasma membrane. This is often facilitated by specific signal sequences within the protein that are recognized and bound by transport machinery.

Collectively, these post-translational modifications contribute to the functional diversity of proteins in living organisms, allowing them to perform a wide range of cellular processes, including signaling, catalysis, regulation, and structural support.

Hydroxamic acids are organic compounds containing the functional group -CONHOH. They are derivatives of hydroxylamine, where the hydroxyl group is bound to a carbonyl (C=O) carbon atom. Hydroxamic acids can be found in various natural and synthetic sources and play significant roles in different biological processes.

In medicine and biochemistry, hydroxamic acids are often used as metal-chelating agents or siderophore mimics to treat iron overload disorders like hemochromatosis. They form stable complexes with iron ions, preventing them from participating in harmful reactions that can damage cells and tissues.

Furthermore, hydroxamic acids are also known for their ability to inhibit histone deacetylases (HDACs), enzymes involved in the regulation of gene expression. This property has been exploited in the development of anti-cancer drugs, as HDAC inhibition can lead to cell cycle arrest and apoptosis in cancer cells.

Some examples of hydroxamic acid-based drugs include:

1. Deferasirox (Exjade, Jadenu) - an iron chelator used to treat chronic iron overload in patients with blood disorders like thalassemia and sickle cell disease.
2. Panobinostat (Farydak) - an HDAC inhibitor approved for the treatment of multiple myeloma, a type of blood cancer.
3. Vorinostat (Zolinza) - another HDAC inhibitor used in the treatment of cutaneous T-cell lymphoma, a rare form of skin cancer.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Histone Deacetylase 1 (HDAC1) is a type of enzyme that plays a role in the regulation of gene expression. It works by removing acetyl groups from histone proteins, which are part of the chromatin structure in the cell's nucleus. This changes the chromatin structure and makes it more difficult for transcription factors to access DNA, thereby repressing gene transcription.

HDAC1 is a member of the class I HDAC family and is widely expressed in various tissues. It is involved in many cellular processes, including cell cycle progression, differentiation, and survival. Dysregulation of HDAC1 has been implicated in several diseases, such as cancer, neurodegenerative disorders, and heart disease. As a result, HDAC1 is a potential target for therapeutic intervention in these conditions.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Alkanes are a group of saturated hydrocarbons, which are characterized by the presence of single bonds between carbon atoms in their molecular structure. The general formula for alkanes is CnH2n+2, where n represents the number of carbon atoms in the molecule.

The simplest and shortest alkane is methane (CH4), which contains one carbon atom and four hydrogen atoms. As the number of carbon atoms increases, the length and complexity of the alkane chain also increase. For example, ethane (C2H6) contains two carbon atoms and six hydrogen atoms, while propane (C3H8) contains three carbon atoms and eight hydrogen atoms.

Alkanes are important components of fossil fuels such as natural gas, crude oil, and coal. They are also used as starting materials in the production of various chemicals and materials, including plastics, fertilizers, and pharmaceuticals. In the medical field, alkanes may be used as anesthetics or as solvents for various medical applications.

A nucleosome is a basic unit of DNA packaging in eukaryotic cells, consisting of a segment of DNA coiled around an octamer of histone proteins. This structure forms a repeating pattern along the length of the DNA molecule, with each nucleosome resembling a "bead on a string" when viewed under an electron microscope. The histone octamer is composed of two each of the histones H2A, H2B, H3, and H4, and the DNA wraps around it approximately 1.65 times. Nucleosomes play a crucial role in compacting the large DNA molecule within the nucleus and regulating access to the DNA for processes such as transcription, replication, and repair.

Histone chaperones are a group of proteins that play a crucial role in the process of nucleosome assembly and disassembly. They facilitate the transfer of histones, the protein components of nucleosomes, to and from DNA during various cellular processes such as DNA replication, repair, transcription, and chromatin remodeling.

Histone chaperones bind to histones and prevent their nonspecific aggregation or association with DNA. They help in the ordered deposition of histone proteins onto DNA, forming nucleosomes, which are the fundamental units of chromatin structure. Additionally, they assist in the removal of histones from DNA during transcription, DNA repair, and replication. Histone chaperones contribute to the dynamic regulation of chromatin structure and function, thereby playing an essential role in epigenetic regulation and gene expression.

Histone Deacetylase 2 (HDAC2) is a type of enzyme that is involved in the regulation of gene expression. It works by removing acetyl groups from histone proteins, which are part of the chromatin structure in the cell's nucleus. When histones are acetylated, they are more relaxed and allow for the transcription of genes into proteins. However, when HDAC2 removes these acetyl groups, the histones become more condensed and tight, which can prevent gene transcription and lead to the repression of gene expression.

HDAC2 has been found to play a role in various cellular processes, including development, differentiation, and survival. Dysregulation of HDAC2 has been implicated in several diseases, such as cancer, neurodegenerative disorders, and cardiovascular disease. Therefore, HDAC2 is an important target for therapeutic interventions in these conditions.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Chromatin assembly and disassembly refer to the processes by which chromatin, the complex of DNA, histone proteins, and other molecules that make up chromosomes, is organized within the nucleus of a eukaryotic cell.

Chromatin assembly refers to the process by which DNA wraps around histone proteins to form nucleosomes, which are then packed together to form higher-order structures. This process is essential for compacting the vast amount of genetic material contained within the cell nucleus and for regulating gene expression. Chromatin assembly is mediated by a variety of protein complexes, including the histone chaperones and ATP-dependent chromatin remodeling enzymes.

Chromatin disassembly, on the other hand, refers to the process by which these higher-order structures are disassembled during cell division, allowing for the equal distribution of genetic material to daughter cells. This process is mediated by phosphorylation of histone proteins by kinases, which leads to the dissociation of nucleosomes and the decondensation of chromatin.

Both Chromatin assembly and disassembly are dynamic and highly regulated processes that play crucial roles in the maintenance of genome stability and the regulation of gene expression.

Chromatin Immunoprecipitation (ChIP) is a molecular biology technique used to analyze the interaction between proteins and DNA in the cell. It is a powerful tool for studying protein-DNA binding, such as transcription factor binding to specific DNA sequences, histone modification, and chromatin structure.

In ChIP assays, cells are first crosslinked with formaldehyde to preserve protein-DNA interactions. The chromatin is then fragmented into small pieces using sonication or other methods. Specific antibodies against the protein of interest are added to precipitate the protein-DNA complexes. After reversing the crosslinking, the DNA associated with the protein is purified and analyzed using PCR, sequencing, or microarray technologies.

ChIP assays can provide valuable information about the regulation of gene expression, epigenetic modifications, and chromatin structure in various biological processes and diseases, including cancer, development, and differentiation.

Adenovirus E1A proteins are the early region 1A proteins encoded by adenoviruses, a group of viruses that commonly cause respiratory infections in humans. The E1A proteins play a crucial role in the regulation of the viral life cycle and host cell response. They function as transcriptional regulators, interacting with various cellular proteins to modulate gene expression and promote viral replication.

There are two major E1A protein isoforms, 289R and 243R, which differ in their amino-terminal regions due to alternative splicing of the E1A mRNA. The 289R isoform contains an additional 46 amino acids at its N-terminus compared to the 243R isoform. Both isoforms share conserved regions, including a strong transcriptional activation domain and a binding domain for cellular proteins involved in transcriptional regulation, such as retinoblastoma protein (pRb) and p300/CBP.

The interaction between E1A proteins and pRb is particularly important because it leads to the release of E2F transcription factors, which are essential for the initiation of viral DNA replication. By binding and inactivating pRb, E1A proteins promote the expression of cell cycle-regulated genes that facilitate viral replication in dividing cells.

In summary, adenovirus E1A proteins are multifunctional regulatory proteins involved in the control of viral gene expression and host cell response during adenovirus infection. They manipulate cellular transcription factors and pathways to create a favorable environment for viral replication.

Nuclear Receptor Coactivator 2 (NCoA-2, also known as SRC-2 or TIF2) is a protein that functions as a transcriptional coactivator. It plays an essential role in the regulation of gene expression by interacting with nuclear receptors, which are transcription factors that bind to specific DNA sequences and control the expression of target genes.

NCoA-2 contains several functional domains, including an intrinsic histone acetyltransferase (HAT) domain, which can acetylate histone proteins and modify chromatin structure, leading to the activation of gene transcription. NCoA-2 also has a bromodomain, which recognizes and binds to acetylated lysine residues on histones, further contributing to its ability to modulate chromatin structure and function.

NCoA-2 interacts with various nuclear receptors, such as the estrogen receptor (ER), glucocorticoid receptor (GR), progesterone receptor (PR), and androgen receptor (AR). By binding to these receptors, NCoA-2 enhances their transcriptional activity, ultimately influencing various physiological processes, including cell growth, differentiation, and metabolism.

Dysregulation of NCoA-2 has been implicated in several diseases, such as cancer, where its overexpression can contribute to tumor progression and hormone resistance. Therefore, understanding the molecular mechanisms underlying NCoA-2 function is crucial for developing novel therapeutic strategies targeting nuclear receptor signaling pathways.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Chromosomal proteins, non-histone, are a diverse group of proteins that are associated with chromatin, the complex of DNA and histone proteins, but do not have the characteristic structure of histones. These proteins play important roles in various nuclear processes such as DNA replication, transcription, repair, recombination, and chromosome condensation and segregation during cell division. They can be broadly classified into several categories based on their functions, including architectural proteins, enzymes, transcription factors, and structural proteins. Examples of non-histone chromosomal proteins include high mobility group (HMG) proteins, poly(ADP-ribose) polymerases (PARPs), and condensins.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Gene expression regulation in fungi refers to the complex cellular processes that control the production of proteins and other functional gene products in response to various internal and external stimuli. This regulation is crucial for normal growth, development, and adaptation of fungal cells to changing environmental conditions.

In fungi, gene expression is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational modifications. Key regulatory mechanisms include:

1. Transcription factors (TFs): These proteins bind to specific DNA sequences in the promoter regions of target genes and either activate or repress their transcription. Fungi have a diverse array of TFs that respond to various signals, such as nutrient availability, stress, developmental cues, and quorum sensing.
2. Chromatin remodeling: The organization and compaction of DNA into chromatin can influence gene expression. Fungi utilize ATP-dependent chromatin remodeling complexes and histone modifying enzymes to alter chromatin structure, thereby facilitating or inhibiting the access of transcriptional machinery to genes.
3. Non-coding RNAs: Small non-coding RNAs (sncRNAs) play a role in post-transcriptional regulation of gene expression in fungi. These sncRNAs can guide RNA-induced transcriptional silencing (RITS) complexes to specific target loci, leading to the repression of gene expression through histone modifications and DNA methylation.
4. Alternative splicing: Fungi employ alternative splicing mechanisms to generate multiple mRNA isoforms from a single gene, thereby increasing proteome diversity. This process can be regulated by RNA-binding proteins that recognize specific sequence motifs in pre-mRNAs and promote or inhibit splicing events.
5. Protein stability and activity: Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and sumoylation, can influence their stability, localization, and activity. These PTMs play a crucial role in regulating various cellular processes, including signal transduction, stress response, and cell cycle progression.

Understanding the complex interplay between these regulatory mechanisms is essential for elucidating the molecular basis of fungal development, pathogenesis, and drug resistance. This knowledge can be harnessed to develop novel strategies for combating fungal infections and improving agricultural productivity.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Biocatalysis is the use of living organisms or their components, such as enzymes, to accelerate chemical reactions. In other words, it is the process by which biological systems, including cells, tissues, and organs, catalyze chemical transformations. Biocatalysts, such as enzymes, can increase the rate of a reaction by lowering the activation energy required for the reaction to occur. They are highly specific and efficient, making them valuable tools in various industries, including pharmaceuticals, food and beverage, and biofuels.

In medicine, biocatalysis is used in the production of drugs, such as antibiotics and hormones, as well as in diagnostic tests. Enzymes are also used in medical treatments, such as enzyme replacement therapy for genetic disorders that affect enzyme function. Overall, biocatalysis plays a critical role in many areas of medicine and healthcare.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Epigenetics is the study of heritable changes in gene function that occur without a change in the underlying DNA sequence. These changes can be caused by various mechanisms such as DNA methylation, histone modification, and non-coding RNA molecules. Epigenetic changes can be influenced by various factors including age, environment, lifestyle, and disease state.

Genetic epigenesis specifically refers to the study of how genetic factors influence these epigenetic modifications. Genetic variations between individuals can lead to differences in epigenetic patterns, which in turn can contribute to phenotypic variation and susceptibility to diseases. For example, certain genetic variants may predispose an individual to develop cancer, and environmental factors such as smoking or exposure to chemicals can interact with these genetic variants to trigger epigenetic changes that promote tumor growth.

Overall, the field of genetic epigenesis aims to understand how genetic and environmental factors interact to regulate gene expression and contribute to disease susceptibility.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Protein-Arginine N-Methyltransferases (PRMTs) are a group of enzymes that catalyze the transfer of methyl groups from S-adenosylmethionine to specific arginine residues in proteins, leading to the formation of N-methylarginines. This post-translational modification plays a crucial role in various cellular processes such as signal transduction, DNA repair, and RNA processing. There are nine known PRMTs in humans, which can be classified into three types based on the type of methylarginine produced: Type I (PRMT1, 2, 3, 4, 6, and 8) produce asymmetric dimethylarginines, Type II (PRMT5 and 9) produce symmetric dimethylarginines, and Type III (PRMT7) produces monomethylarginine. Aberrant PRMT activity has been implicated in several diseases, including cancer and neurological disorders.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

A "gene product" is the biochemical material that results from the expression of a gene. This can include both RNA and protein molecules. In the case of the tat (transactivator of transcription) gene in human immunodeficiency virus (HIV), the gene product is a regulatory protein that plays a crucial role in the viral replication cycle.

The tat protein is a viral transactivator, which means it increases the transcription of HIV genes by interacting with various components of the host cell's transcription machinery. Specifically, tat binds to a complex called TAR (transactivation response element), which is located in the 5' untranslated region of all nascent HIV mRNAs. By binding to TAR, tat recruits and activates positive transcription elongation factor b (P-TEFb), which then phosphorylates the carboxy-terminal domain of RNA polymerase II, leading to efficient elongation of HIV transcripts.

The tat protein is essential for HIV replication, as it enhances viral gene expression and promotes the production of new virus particles. Inhibiting tat function has been a target for developing antiretroviral therapies against HIV infection.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Aminoglycosides are a class of antibiotics that are derived from bacteria and are used to treat various types of infections caused by gram-negative and some gram-positive bacteria. These antibiotics work by binding to the 30S subunit of the bacterial ribosome, which inhibits protein synthesis and ultimately leads to bacterial cell death.

Some examples of aminoglycosides include gentamicin, tobramycin, neomycin, and streptomycin. These antibiotics are often used in combination with other antibiotics to treat severe infections, such as sepsis, pneumonia, and urinary tract infections.

Aminoglycosides can have serious side effects, including kidney damage and hearing loss, so they are typically reserved for use in serious infections that cannot be treated with other antibiotics. They are also used topically to treat skin infections and prevent wound infections after surgery.

It's important to note that aminoglycosides should only be used under the supervision of a healthcare professional, as improper use can lead to antibiotic resistance and further health complications.

Methylation, in the context of genetics and epigenetics, refers to the addition of a methyl group (CH3) to a molecule, usually to the nitrogenous base of DNA or to the side chain of amino acids in proteins. In DNA methylation, this process typically occurs at the 5-carbon position of cytosine residues that precede guanine residues (CpG sites) and is catalyzed by enzymes called DNA methyltransferases (DNMTs).

DNA methylation plays a crucial role in regulating gene expression, genomic imprinting, X-chromosome inactivation, and suppression of repetitive elements. Hypermethylation or hypomethylation of specific genes can lead to altered gene expression patterns, which have been associated with various human diseases, including cancer.

In summary, methylation is a fundamental epigenetic modification that influences genomic stability, gene regulation, and cellular function by introducing methyl groups to DNA or proteins.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

RNA Polymerase II is a type of enzyme responsible for transcribing DNA into RNA in eukaryotic cells. It plays a crucial role in the process of gene expression, where the information stored in DNA is used to create proteins. Specifically, RNA Polymerase II transcribes protein-coding genes to produce precursor messenger RNA (pre-mRNA), which is then processed into mature mRNA. This mature mRNA serves as a template for protein synthesis during translation.

RNA Polymerase II has a complex structure, consisting of multiple subunits, and it requires the assistance of various transcription factors and coactivators to initiate and regulate transcription. The enzyme recognizes specific promoter sequences in DNA, unwinds the double-stranded DNA, and synthesizes a complementary RNA strand using one of the unwound DNA strands as a template. This process results in the formation of a nascent RNA molecule that is further processed into mature mRNA for protein synthesis or other functional RNAs involved in gene regulation.

Gene silencing is a process by which the expression of a gene is blocked or inhibited, preventing the production of its corresponding protein. This can occur naturally through various mechanisms such as RNA interference (RNAi), where small RNAs bind to and degrade specific mRNAs, or DNA methylation, where methyl groups are added to the DNA molecule, preventing transcription. Gene silencing can also be induced artificially using techniques such as RNAi-based therapies, antisense oligonucleotides, or CRISPR-Cas9 systems, which allow for targeted suppression of gene expression in research and therapeutic applications.

The "tat" gene in the Human Immunodeficiency Virus (HIV) produces the Tat protein, which is a regulatory protein that plays a crucial role in the replication of the virus. The Tat protein functions by enhancing the transcription of the viral genome, increasing the production of viral RNA and ultimately leading to an increase in the production of new virus particles. This protein is essential for the efficient replication of HIV and is a target for potential antiretroviral therapies.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Luciferases are a class of enzymes that catalyze the oxidation of their substrates, leading to the emission of light. This bioluminescent process is often associated with certain species of bacteria, insects, and fish. The term "luciferase" comes from the Latin word "lucifer," which means "light bearer."

The most well-known example of luciferase is probably that found in fireflies, where the enzyme reacts with a compound called luciferin to produce light. This reaction requires the presence of oxygen and ATP (adenosine triphosphate), which provides the energy needed for the reaction to occur.

Luciferases have important applications in scientific research, particularly in the development of sensitive assays for detecting gene expression and protein-protein interactions. By labeling a protein or gene of interest with luciferase, researchers can measure its activity by detecting the light emitted during the enzymatic reaction. This allows for highly sensitive and specific measurements, making luciferases valuable tools in molecular biology and biochemistry.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Immunoprecipitation (IP) is a research technique used in molecular biology and immunology to isolate specific antigens or antibodies from a mixture. It involves the use of an antibody that recognizes and binds to a specific antigen, which is then precipitated out of solution using various methods, such as centrifugation or chemical cross-linking.

In this technique, an antibody is first incubated with a sample containing the antigen of interest. The antibody specifically binds to the antigen, forming an immune complex. This complex can then be captured by adding protein A or G agarose beads, which bind to the constant region of the antibody. The beads are then washed to remove any unbound proteins, leaving behind the precipitated antigen-antibody complex.

Immunoprecipitation is a powerful tool for studying protein-protein interactions, post-translational modifications, and signal transduction pathways. It can also be used to detect and quantify specific proteins in biological samples, such as cells or tissues, and to identify potential biomarkers of disease.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

A protein subunit refers to a distinct and independently folding polypeptide chain that makes up a larger protein complex. Proteins are often composed of multiple subunits, which can be identical or different, that come together to form the functional unit of the protein. These subunits can interact with each other through non-covalent interactions such as hydrogen bonds, ionic bonds, and van der Waals forces, as well as covalent bonds like disulfide bridges. The arrangement and interaction of these subunits contribute to the overall structure and function of the protein.

Macromolecular substances, also known as macromolecules, are large, complex molecules made up of repeating subunits called monomers. These substances are formed through polymerization, a process in which many small molecules combine to form a larger one. Macromolecular substances can be naturally occurring, such as proteins, DNA, and carbohydrates, or synthetic, such as plastics and synthetic fibers.

In the context of medicine, macromolecular substances are often used in the development of drugs and medical devices. For example, some drugs are designed to bind to specific macromolecules in the body, such as proteins or DNA, in order to alter their function and produce a therapeutic effect. Additionally, macromolecular substances may be used in the creation of medical implants, such as artificial joints and heart valves, due to their strength and durability.

It is important for healthcare professionals to have an understanding of macromolecular substances and how they function in the body, as this knowledge can inform the development and use of medical treatments.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

... acetyltransferase Chloramphenicol acetyltransferase Serotonin N-acetyltransferase NatA Acetyltransferase NatB acetyltransferase ... Examples include: Histone acetyltransferases including CBP histone acetyltransferase Choline ... Acetyltransferase (or transacetylase) is a type of transferase enzyme that transfers an acetyl group, a process called ... Acyltransferase Acetylation Acetyltransferases at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e ( ...
The following is a list of human genes that encode N-acetyltransferase enzymes: Evans DA (1989). "N-acetyltransferase". ... N-acetyltransferases are cytosolic enzymes found in the liver and many tissues of most mammalian species, except the dog and ... N-acetyltransferase (NAT) is an enzyme that catalyzes the transfer of acetyl groups from acetyl-CoA to arylamines, ... Sinclair, J.C.; Sandy, J.; Delgoda, R.; Sim, E.; Noble, M.E. (2000). "Structure of arylamine N-acetyltransferase reveals a ...
... may refer to: Arylamine N-acetyltransferase Serotonin N-acetyltransferase This disambiguation page ... lists articles associated with the title Serotonin acetyltransferase. If an internal link led you here, you may wish to change ...
In enzymology, a sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) is an enzyme that catalyzes the chemical reaction acetyl ... The systematic name of this enzyme class is acetyl-phosphate:sulfite S-acetyltransferase (acyl-phosphate hydrolysing, 2- ... Ruff J, Denger K, Cook AM (2003). "Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes ...
Histone acetyltransferases serve many biological roles inside the cell. Chromatin is a combination of proteins and DNA found in ... If histone acetyltransferases are inhibited, then damaged DNA may not be repaired, eventually leading to cell death. ... Histone+Acetyltransferases at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (Articles ... Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring ...
Structure of choline acetyltransferase binding sites Crystal structure of choline ion bound in choline acetyltransferase. Side ... In humans, the choline acetyltransferase enzyme is encoded by the CHAT gene. Choline acetyltransferase was first described by ... Choline+Acetyltransferase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (Articles ... Choline acetyltransferase (commonly abbreviated as ChAT, but sometimes CAT) is a transferase enzyme responsible for the ...
... may refer to: 1-alkylglycerophosphocholine O-acetyltransferase Platelet-activating factor ... acetyltransferase This set index page lists enzyme articles associated with the same name. If an internal link led you here, ...
... (or CAT) is a bacterial enzyme (EC 2.3.1.28) that detoxifies the antibiotic chloramphenicol ... Leslie AG (1990). "Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution". J. Mol. Biol ... Gorman, CM; Moffat LF; Howard BH (1982). "Recombinant genomes which express chloramphenicol acetyltransferase in mammalian ... "Primary structure of a chloramphenicol acetyltransferase specified by R plasmids". Nature. 282 (5741): 870-2. Bibcode:1979Natur ...
... diaminobutyric acid acetyltransferase, DABA acetyltransferase, 2,4-diaminobutanoate acetyltransferase, DAB acetyltransferase, ... Other names in common use include L-2,4-diaminobutyrate acetyltransferase, L-2,4-diaminobutanoate acetyltransferase, EctA, ... In enzymology, a diaminobutyrate acetyltransferase (EC 2.3.1.178) is an enzyme that catalyzes the chemical reaction acetyl-CoA ... The systematic name of this enzyme class is acetyl-CoA:L-2,4-diaminobutanoate N4-acetyltransferase. ...
In enzymology, a phosphate acetyltransferase (EC 2.3.1.8) is an enzyme that catalyzes the chemical reaction acetyl-CoA + ... The systematic name of this enzyme class is acetyl-CoA:phosphate acetyltransferase. Other names in common use include ...
... (also known as Galactoside O-acetyltransferase, thiogalactoside transacetylase, β-galactoside ... Transacetylase Wang XG, Olsen LR, Roderick SL (April 2002). "Structure of the lac operon galactoside acetyltransferase". ... Lewendon A, Ellis J, Shaw WV (November 1995). "Structural and mechanistic studies of galactoside acetyltransferase, the ... Roderick SL (June 2005). "The lac operon galactoside acetyltransferase". Comptes Rendus Biologies. 328 (6): 568-75. doi:10.1016 ...
... (EC 2.3.1.183, PAT, PPT acetyltransferase, Pt-N-acetyltransferase, ac-Pt) is an enzyme with ... Phosphinothricin+acetyltransferase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology (EC ... Botterman J, Gosselé V, Thoen C, Lauwereys M (June 1991). "Characterization of phosphinothricin acetyltransferase and C- ... systematic name acetyl-CoA:phosphinothricin N-acetyltransferase. This enzyme catalyses the following chemical reaction acetyl- ...
... is an enzyme in the Saccharomyces cerevisiae that functions to catalyze the dehydration synthesis of the ...
... (Nα acetyltransferase), is an enzyme that serves to catalyze the addition of acetyl groups to various ... NatA Acetyltransferase is not a single protein but a complex of three subunits. In Saccharomyces cerevisiae NatA ... "The NatA Acetyltransferase Couples Sup35 Prion Complexes to the [PSI ] Phenotype - Pezza et al. 20 (3): 1068- ." Molecular ... To be specific, NatA is the main N{alpha}-terminal acetyltransferase in the yeast cytosol, responsible for the acetylation of ...
Other names in common use include SATase, L-serine acetyltransferase, serine acetyltransferase, and serine transacetylase. This ... In enzymology, a serine O-acetyltransferase (EC 2.3.1.30) is an enzyme that catalyzes the chemical reaction acetyl-CoA + L- ... In molecular biology, the protein domain SATase is short for Serine acetyltransferase and refers to an enzyme that catalyses ... Of particular interest to scientists, is the ability to harness the natural ability of the enzyme, Serine acetyltransferase, to ...
... ornithine acetyltransferase, and 2-N-acetyl-L-ornithine:L-glutamate N-acetyltransferase. This enzyme participates in urea cycle ... acetylornithine glutamate acetyltransferase, glutamate acetyltransferase, N-acetyl-L-glutamate synthetase, N-acetylglutamate ... The systematic name of this enzyme class is N2-acetyl-L-ornithine:L-glutamate N-acetyltransferase. Other names in common use ... In enzymology, a glutamate N-acetyltransferase (EC 2.3.1.35) is an enzyme that catalyzes the chemical reaction N2-acetyl-L- ...
In enzymology, a monoterpenol O-acetyltransferase (EC 2.3.1.69) is an enzyme that catalyzes the chemical reaction acetyl-CoA + ... The systematic name of this enzyme class is acetyl-CoA:monoterpenol O-acetyltransferase. This enzyme is also called menthol ...
N-acetyltransferase, p-aminosalicylate N-acetyltransferase, serotonin acetyltransferase, and serotonin N-acetyltransferase. As ... 4-aminobiphenyl N-acetyltransferase, acetyl CoA-arylamine N-acetyltransferase, 2-naphthylamine N-acetyltransferase, arylamine ... In enzymology, an arylamine N-acetyltransferase (EC 2.3.1.5) is an enzyme that catalyzes the chemical reaction acetyl-CoA + an ... The systematic name of this enzyme class is acetyl-CoA:arylamine N-acetyltransferase. Other names in common use include ...
... (arylamine N-acetyltransferase), also known as NAT2, is an enzyme which in humans is encoded by the NAT2 ... "Entrez Gene: NAT2 N-acetyltransferase 2 (arylamine N-acetyltransferase)". "NAT2PRED: a computational predictor of the human N- ... The Arylamine N-acetyltransferase Gene Nomenclature Committee homepage PDBe-KB provides an overview of all the structure ... Sanderson S, Salanti G, Higgins J (2007). "Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking ...
Other names in common use include lysine acetyltransferase, and acetyl-phosphate:L-lysine 6-N-acetyltransferase. This enzyme ... In enzymology, a lysine N-acetyltransferase (EC 2.3.1.32) is an enzyme that catalyzes the chemical reaction acetyl phosphate + ... The systematic name of this enzyme class is acetyl-phosphate:L-lysine N6-acetyltransferase. ...
The systematic name of this enzyme class is acetyl-CoA:(S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N2-acetyltransferase. ... In enzymology, a tetrahydrodipicolinate N-acetyltransferase (EC 2.3.1.89) is an enzyme that catalyzes the chemical reaction ... Other names in common use include tetrahydrodipicolinate acetylase, tetrahydrodipicolinate:acetyl-CoA acetyltransferase, acetyl ... and 2-N-acetyltransferase. This enzyme participates in lysine biosynthesis. Chatterjee SP, White PJ (1982). "Activities and ...
In enzymology, a homoserine O-acetyltransferase (EC 2.3.1.31) is an enzyme that catalyzes the chemical reaction acetyl-CoA + L- ... The systematic name of this enzyme class is acetyl-CoA:L-homoserine O-acetyltransferase. Other names in common use include ... homoserine acetyltransferase, homoserine transacetylase, homoserine-O-transacetylase, and L-homoserine O-acetyltransferase. ...
The systematic name of this enzyme class is acetyl-CoA:glycine C-acetyltransferase. Other names in common use include 2-amino-3 ... In enzymology, a glycine C-acetyltransferase (EC 2.3.1.29) is an enzyme that catalyzes the chemical reaction: acetyl-CoA + ... glycine acetyltransferase, and aminoacetone synthase. This enzyme participates in glycine, serine and threonine metabolism. It ...
The systematic name of this enzyme class is acetyl-CoA:2-aminoethanethiol S-acetyltransferase. Other names in common use ... In enzymology, a thioethanolamine S-acetyltransferase (EC 2.3.1.11) is an enzyme that catalyzes the chemical reaction acetyl- ... include thioltransacetylase B, thioethanolamine acetyltransferase, and acetyl-CoA:thioethanolamine S-acetyltransferase. BRADY ...
In enzymology, an imidazole N-acetyltransferase (EC 2.3.1.2) is an enzyme that catalyzes the chemical reaction acetyl-CoA + ... The systematic name of this enzyme class is acetyl-CoA:imidazole N-acetyltransferase. Other names in common use include ... imidazole acetylase, and imidazole acetyltransferase. Kinsky SC (January 1960). "Assay, purification, and properties of ...
In enzymology, a histidine N-acetyltransferase (EC 2.3.1.33) is an enzyme that catalyzes the chemical reaction acetyl-CoA + L- ... The systematic name of this enzyme class is acetyl-CoA:L-histidine N-acetyltransferase. Other names in common use include ... acetylhistidine synthetase, and histidine acetyltransferase. Baslow MH (December 1966). "N -acetyl-L-histidine synthetase ...
Other names in common use include deacetylvindoline acetyltransferase, DAT, 17-O-deacetylvindoline-17-O-acetyltransferase, ... deacetylvindoline O-acetyltransferase, 17-O-deacetylvindoline O-acetyltransferase, and acetyl-CoA:17-O-deacetylvindoline 17-O- ... acetylcoenzyme A-deacetylvindoline 4-O-acetyltransferase, acetyl-CoA-17-O-deacetylvindoline 17-O-acetyltransferase, ... In enzymology, a deacetylvindoline O-acetyltransferase (EC 2.3.1.107) is an enzyme that catalyzes the chemical reaction acetyl- ...
In enzymology, an alcohol O-acetyltransferase (EC 2.3.1.84) is an enzyme that catalyzes the chemical reaction acetyl-CoA + an ... The systematic name of this enzyme class is acetyl-CoA:alcohol O-acetyltransferase. This enzyme is also called alcohol ... Yoshioka K, Hashimoto N (1981). "Ester formation by alcohol acetyltransferase from brewers' yeast". Agric. Biol. Chem. 45 (10 ...
Other names in common use include aspartate acetyltransferase, and L-aspartate N-acetyltransferase. Goldstein FB (1959). " ... In enzymology, an aspartate N-acetyltransferase (EC 2.3.1.17) is an enzyme that catalyzes the chemical reaction acetyl-CoA + L- ... The systematic name of this enzyme class is acetyl-CoA:L-aspartate N-acetyltransferase. ...
The systematic name of this enzyme class is acetyl-CoA:L-phenylalanine N-acetyltransferase. This enzyme is also called acetyl- ... In enzymology, a phenylalanine N-acetyltransferase (EC 2.3.1.53) is an enzyme that catalyzes the chemical reaction acetyl-CoA ... CoA-L-phenylalanine alpha-N-acetyltransferase. This enzyme participates in phenylalanine metabolism. Leuzinger W, Baker AL, ...
... acetyltransferase Chloramphenicol acetyltransferase Serotonin N-acetyltransferase NatA Acetyltransferase NatB acetyltransferase ... Examples include: Histone acetyltransferases including CBP histone acetyltransferase Choline ... Acetyltransferase (or transacetylase) is a type of transferase enzyme that transfers an acetyl group, a process called ... Acyltransferase Acetylation Acetyltransferases at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e ( ...
We previously showed that CD4,sup,+,/sup, T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synt ... Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase Nat Biotechnol. 2016 Oct;34(10):1066-1071. ... We previously showed that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of ...
... Veronique Vandevoorde Vero at lmb1.rug.ac.be ... Last year, I ordered monoclonal antibodies to chloramphenicol acetyltransferase (CAT) at a company called abV Immune Response, ...
GCNT2 glucosaminyl (N-acetyl) transferase 2 (I blood group) [Homo sapiens] GCNT2 glucosaminyl (N-acetyl) transferase 2 (I blood ... glucosaminyl (N-acetyl) transferase 2 (I blood group)provided by HGNC. Primary source. HGNC:HGNC:4204 See related. Ensembl: ... glucosaminyl (N-acetyl) transferase 2, I-branching enzyme (I blood group). NP_001361676.1. *EC 2.4.1.150 ... GCNT2 glucosaminyl (N-acetyl) transferase 2 (I blood group) [ Homo sapiens (human) ] Gene ID: 2651, updated on 7-Sep-2023 ...
View mouse Kat14 Chr2:144210952-144249595 with: phenotypes, sequences, polymorphisms, proteins, references, function, expression
Downloading a figure as powerpoint requires a browser with javascript support. Enable javascript and try again For help please contact [email protected] ...
Histone acetyltransferase enzymes (HATs) are important therapeutic targets, but there are few cell-based assays available for ... Live-cell studies of p300/CBP histone acetyltransferase activity and inhibition Chembiochem. 2012 Sep 24;13(14):2113-21. doi: ... Histone acetyltransferase enzymes (HATs) are important therapeutic targets, but there are few cell-based assays available for ...
N-acetyltransferase (NAT), which converts serotonin to N-acetylserotonin, is widely distributed in the vertebrate body1,2. In ...
Timeline for Protein Putative acetyltransferase/acyltransferase BC4754 from b.81.1.5: gamma-carbonic anhydrase-like: *Protein ... Protein Putative acetyltransferase/acyltransferase BC4754 from b.81.1.5: gamma-carbonic anhydrase-like appears in SCOPe 2.07. ... Lineage for Protein: Putative acetyltransferase/acyltransferase BC4754. *Root: SCOPe 2.08 *. Class b: All beta proteins [48724 ... More info for Protein Putative acetyltransferase/acyltransferase BC4754 from b.81.1.5: gamma-carbonic anhydrase-like. ...
Protein target information for Chloramphenicol acetyltransferase (Acinetobacter baumannii). Find diseases associated with this ...
Crystal Structure of Mesorhizobium Loti Arylamine N-acetyltransferase 1 In Complex With CoA ... Arylamine N-acetyltransferase. A, B. 312. Mesorhizobium japonicum MAFF 303099. Mutation(s): 1 Gene Names: mlr4870. EC: 2.3.1.5 ... Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of ... Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of ...
Protein target information for Probable acetyl-CoA acetyltransferase (Escherichia coli O6). Find diseases associated with this ...
GCNT2, glucosaminyl (N-acetyl) transferase 2 (I blood group). * Synonyms bA360O19.2, bA421M1.1, CCAT, CTRCT13, GCNT2C, GCNT5, ...
The histone acetyl transferase Tip60 as a regulator of tumor suppression Tip60 is a histone acetyl transferase (HAT) and a ...
... indicating activation of p300 acetyltransferase. Inactivation of p300 acetyltransferase reversed the resveratrol-induced ... We interrupted p300 acetyltransferase activity by knockdown of p300 via an RNAi assay or by C646, an inhibitor of p300 ... Inhibition of p300 Acetyltransferase Activity Abolished the Effect of Res onMotor Repair in Crush Injury Rats ... Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus ...
The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here ... The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here ... The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here ... Loss of N-terminal acetyltransferase A activity induces thermally unstable ribosomal proteins and increases their turnover in ...
Variation of the N-Acetyltransferase 2 Gene in a Romanian and a Kyrgyz Population Sylvia Rabstein; Sylvia Rabstein ... Arylamine N-acetyltransferase 2 (NAT2) catalyzes the addition of an acetyl group from acetyl-CoA to a terminal nitrogen on ... Lin HJ, Han Ch, Lin BK, Hardy S. Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2 ... Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I. Arylamine N-acetyltransferase (NAT2) mutations and their ...
N-alpha-acetyltransferase 60. Names. N-acetyltransferase 15 (GCN5-related, putative). N-alpha-acetyltransferase F. histone ... Naa60 N(alpha)-acetyltransferase 60, NatF catalytic subunit [Mus musculus] Naa60 N(alpha)-acetyltransferase 60, NatF catalytic ... Predicted to enable H4 histone acetyltransferase activity; peptide alpha-N-acetyltransferase activity; and protein ... Acetyltransf_1; Acetyltransferase (GNAT) family. cl21457. Location:74 → 138. TIM; TIM-like beta/alpha barrel domains. ...
Lysine acetyltransferases (KATs) play a critical role in the regulation of central cellular functions such as gene expression ... Chemical Proteomic Approaches to Discover and Characterize Lysine Acetyltransferase Biology. Thursday, September 17, 2015. - ...
Mouse ChAT(Choline Acetyltransferase) ELISA Kit. Mouse ChAT(Choline Acetyltransferase) ELISA Kit ... Choline Acetyltransferase (ChAT) Polyclonal Antibody (Human, Mouse, Rat), APC-Cy7. 4-PAB929Hu01-APC-Cy7 Cloud-Clone * 656.40 ... Mouse Carnitine Acetyltransferase (CRAT) ELISA Kit. SEC400Mu-10x96wellstestplate Cloud-Clone 10x96-wells test plate. 5834.88 ... Choline Acetyltransferase (ChAT) Polyclonal Antibody (Human, Mouse, Rat), Biotinylated. 4-PAB929Hu01-Biotin Cloud-Clone * ...
Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine ... Structural and biochemical characterization of an active arylamine N-acetyltransferase possessing a non-canonical Cys-His-Glu ... These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is ...
E10 chick sympathetic ganglion cells display a cell contact-dependent rise in choline acetyltransferase (ChAT) specific ... A Acheson, U Rutishauser; Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase ... Neural cell adhesion molecule regulates cell contact-mediated changes in choline acetyltransferase activity of embryonic chick ... E10 chick sympathetic ganglion cells display a cell contact-dependent rise in choline acetyltransferase (ChAT) specific ...
The histone acetyltransferase (Head wear) p300/CBP is a transcriptional coactivator implicated. May 22, 2019. woofahs0 comments ... The histone acetyltransferase (Head wear) p300/CBP is a transcriptional coactivator implicated. Home / Uncategorized / The ... The histone acetyltransferase (Head wear) p300/CBP is a transcriptional coactivator implicated in lots of gene regulatory ... p300/CBP provides been shown to be always a rather promiscuous acetyltransferase, with an increase of than 75 proteins ...
Role of histone acetyltransferase inhibitors in cancer therapy. Muthu K. Shanmugam, Arunasalam Dharmarajan, Sudha Warrier, ...
In this study, we engineered a thermostable chloramphenicol acetyltransferase from Staphylococcus aureus (CATSa) for enhanced ... To develop a sustainable production platform, microbial ester biosynthesis using alcohol acetyltransferases (AATs) has been ... From: Single mutation at a highly conserved region of chloramphenicol acetyltransferase enables isobutyl acetate production ...
Weusthuis, R.A. / Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Poster session presented at ... Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. / Weusthuis, R.A. 2017. Poster session presented ... Weusthuis, R. A. (2017). Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Poster session presented ... Weusthuis, RA 2017, Ethyl acetate production by the elusive alcohol acetyltransferase from yeast, International Specialized ...
... form: FBgg0001629, label: ARYLALKYLAMINE N-ACETYLTRANSFERASES }, description: [ . ], comment: [] }, query: Get ... form: FBgg0001628, label: N-ACETYLTRANSFERASES } ], relationships: [], xrefs: [], anatomy_channel_image: [], pub_ ... Open ARYLALKYLAMINE N-ACETYLTRANSFERASES in VFB. VFB Term Json. { term: { core: { iri: http://flybase.org/reports/ ...
choline acetyltransferase n.. *An enzyme, present at the presynaptic ends of axons, that catalyzes the transfer of the acetyl ...
Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments ... Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments ... Nerve growth factor levels and choline acetyltransferase activity in the brain of aged rats with spatial memory impairments. ...
  • 2007). While research on histone deacetylases buy 1062159-35-6 possess resulted in the breakthrough of highly powerful compounds with scientific impact in tumor, the id of histone acetyltransferase inhibitors provides proved more difficult (Cole, 2008). (woofahs.com)
  • Assay interference and off-target liabilities of reported histone acetyltransferase inhibitors. (reactionbiology.com)
  • antibodies to chloramphenicol acetyltransferase from abV Immune Response, Inc. (bio.net)
  • Last year, I ordered monoclonal antibodies to chloramphenicol acetyltransferase (CAT) at a company called abV Immune Response, Inc., Derry, New hamphire. (bio.net)
  • Citation: Ding Z, Cao J, Shen Y, Zou Y, Yang X, Zhou W, Guo Q and Huang C (2018) Resveratrol Promotes Nerve Regeneration via Activation of p300 Acetyltransferase-Mediated VEGF Signaling in a Rat Model of Sciatic Nerve Crush Injury. (vinomis.com)
  • In the affected ventral spinal cord, resveratrol enhanced the expression of several vascular endothelial growth factor family proteins (VEGFs) and increased the phosphorylation of p300 through Akt signaling, indicating activation of p300 acetyltransferase. (vinomis.com)
  • Inactivation of p300 acetyltransferase reversed the resveratrol-induced expression of VEGFs and motor repair in rats that had undergone sciatic nerve crush injury. (vinomis.com)
  • Resveratrol activated p300 acetyltransferase-mediated VEGF signaling in the affected ventral spinal cord, which may have thus contributed to the acceleration of nerve regeneration and motor repair. (vinomis.com)
  • The histone acetyltransferase (Head wear) p300/CBP is a transcriptional coactivator implicated in lots of gene regulatory pathways and protein acetylation events. (woofahs.com)
  • 1996). Within the ensuing years, p300/CBP provides been shown to be always a rather promiscuous acetyltransferase, with an increase of than 75 proteins substrates referred buy 1062159-35-6 to including p53, MyoD, and NFB (Gu et al. (woofahs.com)
  • Histone acetyltransferase enzymes (HATs) are important therapeutic targets, but there are few cell-based assays available for evaluating the pharmacodynamics of HAT inhibitors. (nih.gov)
  • Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes that catalyze the acetyl-CoA-dependent acetylation of arylamines. (rcsb.org)
  • Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. (pasteur.fr)
  • One challenge will be to develop specific inhibitors that discriminate between hARD1 and the many other enzymes, including the histone acetyltransferases, using acetyl-coenzyme A as acetyl donor. (umassmed.edu)
  • Together with the powerful apoptotic effect (particularly notable if considering that anacardic acid and other KAT inhibitors are not cell permeable) appoint them as valuable biological tools to understand the mechanisms of lysine acetyltransferases. (cnr.it)
  • Link to all annotated objects annotated to protein acetyltransferase complex. (planteome.org)
  • Link to all direct and indirect annotations to protein acetyltransferase complex. (planteome.org)
  • Recently, several reports demonstrated that knockdown of the protein acetyltransferase hARD1 significantly reduced the growth rate of human cancer cell lines. (umassmed.edu)
  • N terminal acetylation or CH3CO as epigenetic regulation of Anti- -Coenzyme A acetyltransferase 2 PAb by NATs.This antibody needs to be stored at + 4°C in a fridge short term in a concentrated dilution. (polabo.com)
  • Orthologous to human NAA60 (N-alpha-acetyltransferase 60, NatF catalytic subunit). (nih.gov)
  • Histone acetyltransferases acetylate lysines on histones and other proteins using tritium-labeled acetyl-Coenzyme A as the acetyl donor. (reactionbiology.com)
  • By adding a small molecule called an acetyl group to particular locations on histones, histone acetyltransferases control the activity of certain genes. (medlineplus.gov)
  • N- acetyltransferase 10 knockdown significantly reduced both the total and ac4C acetylated levels of MMP1 mRNA and decreased its mRNA stability . (bvsalud.org)
  • Acetyltransferase (or transacetylase) is a type of transferase enzyme that transfers an acetyl group, a process called acetylation. (wikipedia.org)
  • The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. (lu.se)
  • Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 is important for yeast model organisms to survive DNA damage and maintain genome integrity. (umassmed.edu)
  • N-acetyltransferase 10 promotes the progression of oral squamous cell carcinoma through N4-acetylcytidine RNA acetylation of MMP1 mRNA. (bvsalud.org)
  • N- acetyltransferase 10 (NAT10) is a crucial enzyme involved in mRNA acetylation , regulating target gene expression and biological functions of various diseases through mediating N4-acetylcytidine (ac4C) acetylation . (bvsalud.org)
  • As part of a project on environmental disasters in minority populations, this study aimed to evaluate differences in the sequence of N-acetyltransferase 2 ( NAT2 ) as a metabolic susceptibility gene in yet unexplored ethnicities. (aacrjournals.org)
  • Lysine acetyltransferases (KATs) play a critical role in the regulation of central cellular functions such as gene expression and metabolism. (nih.gov)
  • The KAT6B gene provides instructions for making a type of enzyme called a histone acetyltransferase. (medlineplus.gov)
  • Little is known about the function of the histone acetyltransferase produced from the KAT6B gene. (medlineplus.gov)
  • Studies suggest that these mutations likely prevent the production of functional histone acetyltransferase from one copy of the KAT6B gene in each cell. (medlineplus.gov)
  • E10 chick sympathetic ganglion cells display a cell contact-dependent rise in choline acetyltransferase (ChAT) specific activity over the first several days in culture. (rupress.org)
  • Histone acetyltransferase assays performed at Reaction Biology are radiometric activity assays using tritiated acetyl-Coenzyme A as a cofactor. (reactionbiology.com)
  • Variations of the alkyl chain length can change the activity profile from inhibition of both KAT3A/KAT2B (as derivative 2a) to the peculiar profile of pentadecylidenemalonate 1b, the first activator/inhibitor of histone acetyltransferases. (cnr.it)
  • Arylamine N-Acetyltransferase" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (wakehealth.edu)
  • However, arylamine N-acetyltransferase should not be confused with the enzyme ARYLALKYLAMINE N-ACETYLTRANSFERASE which is also referred to as SEROTONIN ACETYLTRANSFERASE. (wakehealth.edu)
  • This graph shows the total number of publications written about "Arylamine N-Acetyltransferase" by people in this website by year, and whether "Arylamine N-Acetyltransferase" was a major or minor topic of these publications. (wakehealth.edu)
  • Below are the most recent publications written about "Arylamine N-Acetyltransferase" by people in Profiles. (wakehealth.edu)
  • These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. (pasteur.fr)
  • With ~1750 lysine-acetylated proteins in the human proteome, Reaction Biology's histone acetyltransferase assays provide an important advantage in terms of assay flexibility as well as gold standard quality. (reactionbiology.com)
  • We previously showed that CD4 + T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals. (nih.gov)
  • Here, we show that the enzyme choline acetyltransferase (ChAT), which catalyzes the rate-limiting step of ACh production, is robustly induced in both CD4 + and CD8 + T cells during lymphocytic choriomeningitis virus (LCMV) infection in an IL-21-dependent manner. (lih.lu)
  • Description: This is Double-antibody Sandwich Enzyme-linked immunosorbent assay for detection of Mouse Choline Acetyltransferase (ChAT) in tissue homogenates, cell lysates and other biological fluids. (glideruniversity.org)
  • Description: Enzyme-linked immunosorbent assay based on the Double-antibody Sandwich method for detection of Mouse Choline Acetyltransferase (ChAT) in samples from tissue homogenates, cell lysates and other biological fluids with no significant corss-reactivity with analogues from other species. (glideruniversity.org)
  • Description: A sandwich quantitative ELISA assay kit for detection of Rat Choline Acetyltransferase (ChAT) in samples from tissue homogenates, cell lysates or other biological fluids. (glideruniversity.org)
  • All our histone acetyltransferase assay services are performed at our screening facility in Pennsylvania, US. (reactionbiology.com)
  • Description: A sandwich ELISA kit for detection of Choline Acetyltransferase from Mouse in samples from blood, serum, plasma, cell culture fluid and other biological fluids. (glideruniversity.org)
  • Arylalkylamine N-acetyltransferase) This enzyme is critical in the production of melatonin from serotonin. (myhappygenes.com)
  • These mutations lead to the production of a shortened histone acetyltransferase enzyme. (medlineplus.gov)
  • For detailed information about [formate-C-acetyltransferase]-activating enzyme, go to the full flat file . (brenda-enzymes.org)
  • Choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, is an important cholinergic marker whose levels/activity are reduced in aging and Alzheimer's disease (AD). (uwo.ca)
  • Solution of buffer used for diluting enzyme histone acetyltransferases (KAT). (signalchem.com)
  • The systematic name of this enzyme class is acetyl-CoA:taxan-10beta-ol O-acetyltransferase . (alchetron.com)
  • This enzyme is also called acetyl coenzyme A: 10-hydroxytaxane O-acetyltransferase . (alchetron.com)
  • In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals . (bvsalud.org)
  • Background: Histone acetyltransferase enzymes (HATs) are implicated in egulation of transcription. (diva-portal.org)
  • One challenge will be to develop specific inhibitors that discriminate between hARD1 and the many other enzymes, including the histone acetyltransferases, using acetyl-coenzyme A as acetyl donor. (umassmed.edu)
  • PmvE shares strong homologies with N(1)-spermidine/spermine acetyltransferase enzymes involved in the metabolism of polyamines. (unicatt.it)
  • We recently described the human protein acetyltransferase hARD1 (human Arrest Defective 1). (uib.no)
  • Recently, several reports demonstrated that knockdown of the protein acetyltransferase hARD1 significantly reduced the growth rate of human cancer cell lines. (umassmed.edu)
  • Brain region weights and choline acetyltransferase activity, an enzymatic marker for development of cholinergic nerve terminals, were within normal limits in the nicotine-exposed animals. (nih.gov)
  • The degree of reduction of choline acetyltransferase activity in cerebral cholinergic neurons is significantly correlated with the severity of dementia or cognitive impairments observed in Alzheimer's disease. (nih.gov)
  • Here we show that choline acetyltransferase mediated by TAT protein transduction domain passes through the blood-brain barrier and enters the neurons in mice, increasing choline acetyltransferase and neurotransmitter acetylcholine contents. (nih.gov)
  • Choline acetyltransferase facilitates the production of a molecule called acetylcholine. (medlineplus.gov)
  • The mutations lead to decreased production of choline acetyltransferase or the production of a protein with decreased ability to aid in the production of acetylcholine. (medlineplus.gov)
  • Lysine acetyltransferases (KATs) play a critical role in the regulation of central cellular functions such as gene expression and metabolism. (nih.gov)
  • Below are the lysine acetyltransferases found in mammals and where they are expressed along the rat nephron. (nih.gov)
  • Proteins that may have acetyltransferase activity, but lack experimental evidence for intrinsic activity are listed as putative lysine acetyltransferases. (nih.gov)
  • To return to the original lysine acetyltransferase database click here . (nih.gov)
  • Over the years, studies on Gcn5 structure-function have often formed the basis by which we understand the complex activities and regulation of the entire protein acetyltransferase family. (nih.gov)
  • This thesis describes the role of the conserved histone acetyltransferase (HAT) Gcn5 in transcriptional regulation in Schizosaccharomyces pombe. (diva-portal.org)
  • We also investigate the interactions between Gcn5 and other histone deacetylases and acetyltransferases and show overlapping functionality between Gcn5 and another histone acetyltransferase, Mst2, in stress response, regulation of subtelomeric genes and DNA damage repair. (diva-portal.org)
  • The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. (bvsalud.org)
  • Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. (bvsalud.org)
  • The key molecules involved in this dynamic process are histone acetyltransferase (HAT) and histone deacetylases (HDAC), which add acetyl group to histone and remove it from histone respectively [ 4 , 5 ]. (biomedcentral.com)
  • In this review, we provide an overview of our fundamental understanding of catalysis, regulation of activity and substrate selection, and inhibitor development for this archetypal acetyltransferase. (nih.gov)
  • NOC2 like nucleolar associated transcriptional repressor (NOC2L) was recently identified as a novel inhibitor of histone acetyltransferase (INHAT). (biomedcentral.com)
  • N-terminal acetyltransferases (NATs) transfer an acetyl group to the N-termini of proteins, and the major NATs in yeast and humans are NatA, NatB, and NatC. (hindawi.com)
  • To our knowledge , this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. (bvsalud.org)
  • Characterization of rat hepatic acetyltransferase. (nih.gov)
  • Krell, RD & Goldberg, AM 1973, ' The in vivo effects of irreversible inhibitors of choline acetyltransferase (CAT) ', Federation Proceedings , vol. 32, no. 3 (I). (johnshopkins.edu)
  • N-Terminal Acetyltransferase F" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (umassmed.edu)
  • The recombination TAT-choline acetyltransferase fusion protein injected intravenously improves the memory and cognitive dysfunction in Alzheimer's disease model mice induced by amyloid-beta peptide. (nih.gov)
  • Conclusion: A human protein N-α-acetyltransferase is herein described. (uib.no)
  • Violin plots show distribution of expression levels for N-acetyltransferase domain-containing protein (SMED30009746) in cells (dots) of each of the 12 neoblast clusters. (stowers.org)