Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
An enzyme that catalyzes the formation of CoA derivatives from ATP, acetate, and CoA to form AMP, pyrophosphate, and acetyl CoA. It acts also on propionates and acrylates. EC 6.2.1.1.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC 6.4.1.2.
An enzyme that catalyzes reversibly the phosphorylation of acetate in the presence of a divalent cation and ATP with the formation of acetylphosphate and ADP. It is important in the glycolysis process. EC 2.7.2.1.
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.
An enzyme that catalyzes the synthesis of acetylphosphate from acetyl-CoA and inorganic phosphate. Acetylphosphate serves as a high-energy phosphate compound. EC 2.3.1.8.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.
An enzyme that catalyzes reversibly the hydrolysis of acetyl-CoA to yield CoA and acetate. The enzyme is involved in the oxidation of fatty acids. EC 3.1.2.1.
A drug that is derived from opium, which contains from 0.3-1.5% thebaine depending on its origin. It produces strychnine-like convulsions rather than narcosis. It may be habit-forming and is a controlled substance (opiate) listed in the U.S. Code of Federal Regulations, Title 21 Part 1308.12 (1985). (From Merck Index, 11th ed)
A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals.
Enzymes that catalyze the joining of two molecules by the formation of a carbon-nitrogen bond. EC 6.3.
An enzyme that catalyzes the transfer of acetyl groups from ACETYL-COA to arylamines. It can also catalyze acetyl transfer between arylamines without COENZYME A and has a wide specificity for aromatic amines, including SEROTONIN. However, arylamine N-acetyltransferase should not be confused with the enzyme ARYLALKYLAMINE N-ACETYLTRANSFERASE which is also referred to as SEROTONIN ACETYLTRANSFERASE.
A group of enzymes that catalyze the transfer of carboxyl- or carbamoyl- groups. EC 2.1.3.
A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.
Oxidoreductases that are specific for ALDEHYDES.
An enzyme that catalyzes the formation of acetoacetyl-CoA from two molecules of ACETYL COA. Some enzymes called thiolase or thiolase-I have referred to this activity or to the activity of ACETYL-COA C-ACYLTRANSFERASE.
Formation of an acetyl derivative. (Stedman, 25th ed)
The rate dynamics in chemical or physical systems.
Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3.
An enzyme that catalyzes the formation of O-acetylcarnitine from acetyl-CoA plus carnitine. EC 2.3.1.7.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Salts and esters of hydroxybutyric acid.
An aminobenzoic acid isomer that combines with pteridine and GLUTAMIC ACID to form FOLIC ACID. The fact that 4-aminobenzoic acid absorbs light throughout the UVB range has also resulted in its use as an ingredient in SUNSCREENS.
The conformation, properties, reaction processes, and the properties of the reactions of carbon compounds.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
Glyoxylates are organic compounds that are intermediate products in the metabolic pathways responsible for the breakdown and synthesis of various molecules, including amino acids and carbohydrates, and are involved in several biochemical processes such as the glyoxylate cycle.
A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems.
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Product of the oxidation of ethanol and of the destructive distillation of wood. It is used locally, occasionally internally, as a counterirritant and also as a reagent. (Stedman, 26th ed)
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.
Proteins found in any species of bacterium.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
An enzyme that, in the presence of ATP and COENZYME A, catalyzes the cleavage of citrate to yield acetyl CoA, oxaloacetate, ADP, and ORTHOPHOSPHATE. This reaction represents an important step in fatty acid biosynthesis. This enzyme was formerly listed as EC 4.1.3.8.
Enzymes which transfer coenzyme A moieties from acyl- or acetyl-CoA to various carboxylic acceptors forming a thiol ester. Enzymes in this group are instrumental in ketone body metabolism and utilization of acetoacetate in mitochondria. EC 2.8.3.
Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours.
The functional hereditary units of BACTERIA.
Cobamides are a class of compounds that function as cofactors in various enzymatic reactions, containing a corrin ring similar to vitamin B12, but with different substituents on the benzimidazole moiety, and can be found in certain bacteria and archaea.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
An enzyme that catalyzes the conversion of acetate esters and water to alcohols and acetate. EC 3.1.1.6.
A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.
Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
"Citrates, in a medical context, are compounds containing citric acid, often used in medical solutions for their chelating properties and as a part of certain types of nutritional support."
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A sulfhydryl compound used to prevent urothelial toxicity by inactivating metabolites from ANTINEOPLASTIC AGENTS, such as IFOSFAMIDE or CYCLOPHOSPHAMIDE.
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed)
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P(=O)(O)3 structure. Note that several specific classes of endogenous phosphorus-containing compounds such as NUCLEOTIDES; PHOSPHOLIPIDS; and PHOSPHOPROTEINS are listed elsewhere.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The sum of the weight of all the atoms in a molecule.
A phylum of ARCHAEA comprising at least seven classes: Methanobacteria, Methanococci, Halobacteria (extreme halophiles), Archaeoglobi (sulfate-reducing species), Methanopyri, and the thermophiles: Thermoplasmata, and Thermococci.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
Proteins prepared by recombinant DNA technology.
A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166)
An enzyme that catalyzes the dehydration of 1,2-propanediol to propionaldehyde. EC 4.2.1.28.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
An acetic acid ester of CARNITINE that facilitates movement of ACETYL COA into the matrices of mammalian MITOCHONDRIA during the oxidation of FATTY ACIDS.
Mevalonic acid is a crucial intermediate compound in the HMG-CoA reductase pathway, which is a metabolic route that produces cholesterol, other steroids, and isoprenoids in cells.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Proteins found in any species of fungus.
A species of halophilic archaea whose organisms are nonmotile. Habitats include freshwater and marine mud, animal-waste lagoons, and the rumens of ungulates.
An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Compounds that inhibit HMG-CoA reductases. They have been shown to directly lower cholesterol synthesis.
Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.
A genus of anaerobic, rod-shaped METHANOBACTERIACEAE. Its organisms are nonmotile and use ammonia as the sole source of nitrogen. These methanogens are found in aquatic sediments, soil, sewage, and the gastrointestinal tract of animals.
A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A genus of anaerobic, irregular spheroid-shaped METHANOSARCINALES whose organisms are nonmotile. Endospores are not formed. These archaea derive energy via formation of methane from acetate, methanol, mono-, di-, and trimethylamine, and possibly, carbon monoxide. Organisms are isolated from freshwater and marine environments.
The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
Specific hydroxymethylglutaryl CoA reductases that utilize the cofactor NAD. In liver enzymes of this class are involved in cholesterol biosynthesis.
An enzyme that catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA by transfer of the carbonyl group. It requires a cobamide coenzyme. A block in this enzymatic conversion leads to the metabolic disease, methylmalonic aciduria. EC 5.4.99.2.
An enzyme that catalyzes the synthesis of hydroxymethylglutaryl-CoA from acetyl-CoA and acetoacetyl-CoA. This is a key enzyme in steroid biosynthesis. This enzyme was formerly listed as EC 4.1.3.5.
A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism.

Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. (1/885)

Conversion of serotonin to N-acetylserotonin, the precursor of the circadian neurohormone melatonin, is catalyzed by serotonin N-acetyltransferase (AANAT) in a reaction requiring acetyl coenzyme A (AcCoA). AANAT is a globular protein consisting of an eight-stranded beta sheet flanked by five alpha helices; a conserved motif in the center of the beta sheet forms the cofactor binding site. Three polypeptide loops converge above the AcCoA binding site, creating a hydrophobic funnel leading toward the cofactor and serotonin binding sites in the protein interior. Two conserved histidines not found in other NATs are located at the bottom of the funnel in the active site, suggesting a catalytic mechanism for acetylation involving imidazole groups acting as general acid/base catalysts.  (+info)

Pyruvate dehydrogenase activation in inactive muscle during and after maximal exercise in men. (2/885)

Pyruvate dehydrogenase activity (PDHa) and acetyl-group accumulation were examined in the inactive deltoid muscle in response to maximal leg exercise in men. Seven subjects completed three consecutive 30-s bouts of maximal isokinetic cycling, with 4-min rest intervals between bouts. Biopsies of the deltoid were obtained before exercise, after bouts 1 and 3, and after 15 min of rest recovery. Inactive muscle lactate (LA) and pyruvate (PYR) contents increased more than twofold (P < 0.05) after exercise (bout 3) and remained elevated after 15 min of recovery (P < 0.05). Increased PYR accumulation secondary to LA uptake by the inactive deltoid was associated with greater PDHa, which progressively increased from 0.71 +/- 0.23 mmol. min-1. kg wet wt-1 at rest to a maximum of 1.83 +/- 0.30 mmol. min-1. kg wet wt-1 after bout 3 (P < 0.05) and remained elevated after 15 min of recovery (1.63 +/- 0.24 mmol. min-1. kg wet wt-1; P < 0.05). Acetyl-CoA and acetylcarnitine accumulations were unaltered. Increased PDHa allowed and did not limit the oxidation of LA and PYR in inactive human skeletal muscle after maximal exercise.  (+info)

Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation. (3/885)

The effects of various substrates on the concentrations of free amino acids, citric acid cycle intermediates and acylcarnitines were studies in perfused hindquarter of rat in presence of glucose and insulin in order to assess regulatory mechanisms of the level of citric acid cycle intermediates in skeletal muscle. 1. Acetate and acetoacetate effected a significant increase in the level of citrate cycle intermediates and accumulation of acetylcarnitine. These changes were accompanied by a reduction in the level of alanine. The concentration of AMP was significantly elevated. 2. Muscle mitochondria fixed 14CO2 in the presence of pyruvate. The products were identified as malate or citrate when whole and disintegrated mitochondria were used respectively. The fixation was greatly stimulated by acetylcarnitine. 3. Acetylcarnitine inhibited the production of pyruvate from malate by muscle mitochondria. 4. Perfusion with 2-oxoisocaproate and 2-oxoisovalerate promoted increases in the level of citric cycle intermediates, a drop in both alanine and glutamate, and accumulation of branched-chain acylcarnitines. 2-Oxoisocaproate also caused a reduction of alanine released from the muscle. 5. Perfusion with leucine and valine did not change the concentration of citric acid cycle intermediates, but elevated glutamate and still more the concentration of alanine. 6. It is concluded that citric cycle intermediate level in the perfused resting muscle is modified by a) conditions which change the concentration of acetyl-CoA and thereby modify the rate of pyruvate carboxylation and decarboxylation of malate via malic enzyme b) conditions which change the concentration of pyruvate cause changes in alanine and cycle intermediates in the same direction via transamination reactions c) conditions which change the concentrations of 2-oxoacids which are converted to cycle intermediates via oxidation.  (+info)

The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. (4/885)

This paper focuses on how a methyl group is transferred from a methyl-cobalt(III) species on one protein (the corrinoid iron-sulfur protein (CFeSP)) to a nickel iron-sulfur cluster on another protein (carbon monoxide dehydrogenase/acetyl-CoA synthase). This is an essential step in the Wood-Ljungdahl pathway of anaerobic CO and CO2 fixation. The results described here strongly indicate that transfer of methyl group to carbon monoxide dehydrogenase/acetyl-CoA synthase occurs by an SN2 pathway. They also provide convincing evidence that oxidative inactivation of Co(I) competes with methylation. Under the conditions of our anaerobic assay, Co(I) escapes from the catalytic cycle one in every 100 turnover cycles. Reductive activation of the CFeSP is required to regenerate Co(I) and recruit the protein back into the catalytic cycle. Our results strongly indicate that the [4Fe-4S] cluster of the CFeSP is required for reductive activation. They support the hypothesis that the [4Fe-4S] cluster of the CFeSP does not participate directly in the methyl transfer step but provides a conduit for electron flow from physiological reductants to the cobalt center.  (+info)

The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog. (5/885)

Serotonin N-acetyltransferase, a member of the GNAT acetyltransferase superfamily, is the penultimate enzyme in the conversion of serotonin to melatonin, the circadian neurohormone. Comparison of the structures of the substrate-free enzyme and the complex with a bisubstrate analog, coenzyme A-S-acetyltryptamine, demonstrates that acetyl coenzyme A (AcCoA) binding is accompanied by a large conformational change that in turn leads to the formation of the serotonin-binding site. The structure of the complex also provides insight into how the enzyme may facilitate acetyl transfer. A water-filled channel leading from the active site to the surface provides a pathway for proton removal following amine deprotonation. Furthermore, structural and mutagenesis results indicate an important role for Tyr-168 in catalysis.  (+info)

Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. (6/885)

Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya.  (+info)

Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. (7/885)

The presence of melatonin (N-acetyl-5-methoxytryptamine) and its precursors, serotonin (5-hydroxytryptamine) and N-acetylserotonin, was demonstrated in extracts of human ovary using reverse-phase high-performance liquid chromatography coupled with fluorometric detection. In addition, activities of two melatonin-synthesizing enzymes, arylalkylamine N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), were found in human ovary homogenates. The apparent Michaelis constants for the substrates of NAT and HIOMT in the human ovary were similar to those reported for the pineal glands of humans and other mammals. These findings strongly suggest that the human ovary, like the pineal gland, may synthesize melatonin from serotonin by the sequential action of NAT and HIOMT.  (+info)

Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis. (8/885)

Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both spermidine and spermine at primary propyl amine moieties, with spermine being the preferred substrate. In the presence of saturating concentrations of acetyl CoA, BltD rapidly acetylates spermine at both the N1 and N12 positions. The Km (app) values for spermine, spermidine and N1-acetylspermine are +info)

Acetyl Coenzyme A, often abbreviated as Acetyl-CoA, is a key molecule in metabolism, particularly in the breakdown and oxidation of carbohydrates, fats, and proteins to produce energy. It is a coenzyme that plays a central role in the cellular process of transforming the energy stored in the chemical bonds of nutrients into a form that the cell can use.

Acetyl-CoA consists of an acetyl group (two carbon atoms) linked to coenzyme A, a complex organic molecule. This linkage is facilitated by an enzyme called acetyltransferase. Once formed, Acetyl-CoA can enter various metabolic pathways. In the citric acid cycle (also known as the Krebs cycle), Acetyl-CoA is further oxidized to release energy in the form of ATP, NADH, and FADH2, which are used in other cellular processes. Additionally, Acetyl-CoA is involved in the biosynthesis of fatty acids, cholesterol, and certain amino acids.

In summary, Acetyl Coenzyme A is a vital molecule in metabolism that connects various biochemical pathways for energy production and biosynthesis.

Acetate-CoA ligase is an enzyme that plays a role in the metabolism of acetate in cells. The enzyme catalyzes the conversion of acetate and coenzyme A (CoA) to acetyl-CoA, which is a key molecule in various metabolic pathways, including the citric acid cycle (also known as the Krebs cycle).

The reaction catalyzed by Acetate-CoA ligase can be summarized as follows:

acetate + ATP + CoA → acetyl-CoA + AMP + PPi

In this reaction, acetate is activated by combining it with ATP to form acetyl-AMP, which then reacts with CoA to produce acetyl-CoA. The reaction also produces AMP and pyrophosphate (PPi) as byproducts.

There are two main types of Acetate-CoA ligases: the short-chain fatty acid-CoA ligase, which is responsible for activating acetate and other short-chain fatty acids, and the acyl-CoA synthetase, which activates long-chain fatty acids. Both types of enzymes play important roles in energy metabolism and the synthesis of various biological molecules.

Coenzyme A, often abbreviated as CoA or sometimes holo-CoA, is a coenzyme that plays a crucial role in several important chemical reactions in the body, particularly in the metabolism of carbohydrates, fatty acids, and amino acids. It is composed of a pantothenic acid (vitamin B5) derivative called pantothenate, an adenosine diphosphate (ADP) molecule, and a terminal phosphate group.

Coenzyme A functions as a carrier molecule for acetyl groups, which are formed during the breakdown of carbohydrates, fatty acids, and some amino acids. The acetyl group is attached to the sulfur atom in CoA, forming acetyl-CoA, which can then be used as a building block for various biochemical pathways, such as the citric acid cycle (Krebs cycle) and fatty acid synthesis.

In summary, Coenzyme A is a vital coenzyme that helps facilitate essential metabolic processes by carrying and transferring acetyl groups in the body.

Coenzymes are small organic molecules that assist enzymes in catalyzing chemical reactions within cells. They typically act as carriers of specific atoms or groups of atoms during enzymatic reactions, facilitating the conversion of substrates into products. Coenzymes often bind temporarily to enzymes at the active site, forming an enzyme-coenzyme complex.

Coenzymes are usually derived from vitamins or minerals and are essential for maintaining proper metabolic functions in the body. Examples of coenzymes include nicotinamide adenine dinucleotide (NAD+), flavin adenine dinucleotide (FAD), and coenzyme A (CoA). When a coenzyme is used up in a reaction, it must be regenerated or replaced for the enzyme to continue functioning.

In summary, coenzymes are vital organic compounds that work closely with enzymes to facilitate biochemical reactions, ensuring the smooth operation of various metabolic processes within living organisms.

Acetyl-CoA carboxylase (ACCA) is a biotin-dependent enzyme that plays a crucial role in fatty acid synthesis. It catalyzes the conversion of acetyl-CoA to malonyl-CoA, which is the first and rate-limiting step in the synthesis of long-chain fatty acids. The reaction catalyzed by ACCA is as follows:

acetyl-CoA + HCO3- + ATP + 2H+ --> malonyl-CoA + CoA + ADP + Pi + 2H2O

ACCA exists in two isoforms, a cytosolic form (ACC1) and a mitochondrial form (ACC2). ACC1 is primarily involved in fatty acid synthesis, while ACC2 is responsible for the regulation of fatty acid oxidation. The activity of ACCA is regulated by several factors, including phosphorylation/dephosphorylation, allosteric regulation, and transcriptional regulation. Dysregulation of ACCA has been implicated in various metabolic disorders, such as obesity, insulin resistance, and non-alcoholic fatty liver disease.

Acetate kinase is an enzyme that catalyzes the reversible phosphorylation of acetate to form acetyl phosphate and ADP (adenosine diphosphate) from ATP (adenosine triphosphate). The reaction is as follows:

Acetate + ATP -> Acetyl phosphate + ADP

This enzyme plays a role in the metabolism of certain bacteria and archaea, where it helps to generate energy in the form of ATP. It is not typically found in humans or other mammals.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

Phosphate Acetyltransferase (PAT) is an enzyme involved in the metabolism of certain amino acids. It catalyzes the transfer of a phosphate group from acetyl phosphate to a variety of acceptor molecules, including carbon, nitrogen, and sulfur nucleophiles. This reaction plays a crucial role in several biochemical pathways, such as the biosynthesis of certain amino acids, vitamins, and cofactors.

The systematic name for this enzyme is acetylphosphate-protein phosphotransferase. It belongs to the family of transferases, specifically those transferring phosphorus-containing groups. The gene that encodes this enzyme in humans is called PAT1 or CABYR. Defects in this gene have been associated with certain neurological disorders.

Acetyltransferases are a type of enzyme that facilitates the transfer of an acetyl group (a chemical group consisting of an acetyl molecule, which is made up of carbon, hydrogen, and oxygen atoms) from a donor molecule to a recipient molecule. This transfer of an acetyl group can modify the function or activity of the recipient molecule.

In the context of biology and medicine, acetyltransferases are important for various cellular processes, including gene expression, DNA replication, and protein function. For example, histone acetyltransferases (HATs) are a type of acetyltransferase that add an acetyl group to the histone proteins around which DNA is wound. This modification can alter the structure of the chromatin, making certain genes more or less accessible for transcription, and thereby influencing gene expression.

Abnormal regulation of acetyltransferases has been implicated in various diseases, including cancer, neurodegenerative disorders, and infectious diseases. Therefore, understanding the function and regulation of these enzymes is an important area of research in biomedicine.

Coenzyme A (CoA) ligases, also known as CoA synthetases, are a class of enzymes that activate acyl groups, such as fatty acids and amino acids, by forming a thioester bond with coenzyme A. This activation is an essential step in various metabolic pathways, including fatty acid oxidation, amino acid catabolism, and the synthesis of several important compounds like steroids and acetylcholine.

CoA ligases catalyze the following reaction:

acyl group + ATP + CoA ↔ acyl-CoA + AMP + PP~i~

In this reaction, an acyl group (R-) from a carboxylic acid is linked to the thiol (-SH) group of coenzyme A through a high-energy thioester bond. The energy required for this activation is provided by the hydrolysis of ATP to AMP and inorganic pyrophosphate (PP~i~).

CoA ligases are classified into three main types based on the nature of the acyl group they activate:

1. Acyl-CoA synthetases (or long-chain fatty acid CoA ligases) activate long-chain fatty acids, typically containing 12 or more carbon atoms.
2. Aminoacyl-CoA synthetases activate amino acids to form aminoacyl-CoAs, which are essential intermediates in the catabolism of certain amino acids.
3. Short-chain specific CoA ligases activate short-chain fatty acids (up to 6 carbon atoms) and other acyl groups like acetate or propionate.

These enzymes play a crucial role in maintaining cellular energy homeostasis, metabolism, and the synthesis of various essential biomolecules.

Acetyl-CoA hydrolase is an enzyme that catalyzes the hydrolysis of Acetyl-CoA into acetate and coenzyme A (CoA). The chemical reaction it catalyzes is as follows:

Acetyl-CoA + H2O → acetate + CoA-SH

This enzyme plays a role in the metabolism of fatty acids, cholesterol, and other compounds. It is also involved in the detoxification of certain drugs and chemicals that are conjugated with Acetyl-CoA before being excreted from the body.

Acetyl-CoA hydrolase is found in various tissues, including the liver, kidney, and intestine. It belongs to the family of hydrolases, specifically those acting on thioester bonds. The gene that encodes this enzyme is called "ACOT" (Acyl-CoA thioesterase). Mutations in this gene have been associated with neurological disorders and other health conditions.

Thebaine is a naturally occurring alkaloid found in the opium poppy (Papaver somniferum) and is defined medically as follows:

A benzylisoquinoline alkaloid, Thebaine is a potent opioid agonist with complex pharmacology. It acts as an antagonist at mu and delta receptors while exhibiting agonist activity at kappa receptors. Due to its strong physiological effects and potential for abuse, thebaine has limited therapeutic use. However, it serves as a crucial intermediate in the semi-synthesis of various opioid analgesics, such as oxycodone, hydrocodone, and nalbuphine.

Please note that this definition is intended for informational purposes only and should not be used as a substitute for professional medical advice, diagnosis, or treatment.

Ubiquinone, also known as coenzyme Q10 (CoQ10), is a lipid-soluble benzoquinone that plays a crucial role in the mitochondrial electron transport chain as an essential component of Complexes I, II, and III. It functions as an electron carrier, assisting in the transfer of electrons from reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) to molecular oxygen during oxidative phosphorylation, thereby contributing to the generation of adenosine triphosphate (ATP), the primary energy currency of the cell.

Additionally, ubiquinone acts as a potent antioxidant in both membranes and lipoproteins, protecting against lipid peroxidation and oxidative damage to proteins and DNA. Its antioxidant properties stem from its ability to donate electrons and regenerate other antioxidants like vitamin E. Ubiquinone is synthesized endogenously in all human cells, with the highest concentrations found in tissues with high energy demands, such as the heart, liver, kidneys, and skeletal muscles.

Deficiency in ubiquinone can result from genetic disorders, aging, or certain medications (such as statins), leading to impaired mitochondrial function and increased oxidative stress. Supplementation with ubiquinone has been explored as a potential therapeutic strategy for various conditions associated with mitochondrial dysfunction and oxidative stress, including cardiovascular diseases, neurodegenerative disorders, and cancer.

Carbon-Nitrogen (C-N) ligases are a class of enzymes that catalyze the joining of a carbon atom from a donor molecule to a nitrogen atom in an acceptor molecule through a process called ligase reaction. This type of enzyme plays a crucial role in various biological processes, including the biosynthesis of amino acids, nucleotides, and other biomolecules that contain both carbon and nitrogen atoms.

C-N ligases typically require ATP or another energy source to drive the reaction forward, as well as cofactors such as metal ions or vitamins to facilitate the chemical bond formation between the carbon and nitrogen atoms. The specificity of C-N ligases varies depending on the enzyme, with some acting only on specific donor and acceptor molecules while others have broader substrate ranges.

Examples of C-N ligases include glutamine synthetase, which catalyzes the formation of glutamine from glutamate and ammonia, and asparagine synthetase, which catalyzes the formation of asparagine from aspartate and ammonia. Understanding the function and regulation of C-N ligases is important for understanding various biological processes and developing strategies to modulate them in disease states.

Arylamine N-acetyltransferase (NAT) is a group of enzymes involved in the metabolism of aromatic amines, which are found in a variety of substances including tobacco smoke, certain drugs, and environmental contaminants. NAT catalyzes the transfer of an acetyl group from acetyl coenzyme A to the aromatic amine, which can help to detoxify these compounds and make them more water-soluble for excretion. There are two main forms of NAT in humans, known as NAT1 and NAT2, which have different tissue distributions and substrate specificities. Variations in NAT activity due to genetic polymorphisms can affect individual susceptibility to certain chemical exposures and diseases, including cancer.

Carboxyl transferases and carbamoyl transferases are two types of enzymes that play a crucial role in various metabolic pathways by transferring a carboxyl or carbamoyl group from one molecule to another. Here are the medical definitions for both:

1. Carboxyl Transferases: These are a class of enzymes that catalyze the transfer of a carboxyl group (-COOH) from one molecule to another. They play an essential role in several metabolic processes, such as the synthesis and degradation of amino acids, carbohydrates, lipids, and other biomolecules. One example of a carboxyl transferase is pyruvate carboxylase, which catalyzes the addition of a carboxyl group to pyruvate, forming oxaloacetate in the gluconeogenesis pathway.
2. Carbamoyl Transferases: These are enzymes that facilitate the transfer of a carbamoyl group (-CONH2) from one molecule to another. They participate in various metabolic reactions, including the synthesis of essential compounds like arginine, pyrimidines, and urea. An example of a carbamoyl transferase is ornithine carbamoyltransferase (OCT), which catalyzes the transfer of a carbamoyl group from carbamoyl phosphate to ornithine during the urea cycle.

Both carboxyl and carbamoyl transferases are vital for maintaining proper cellular function and homeostasis in living organisms, including humans. Dysregulation or deficiency of these enzymes can lead to various metabolic disorders and diseases.

Ligases are a group of enzymes that catalyze the formation of a covalent bond between two molecules, usually involving the joining of two nucleotides in a DNA or RNA strand. They play a crucial role in various biological processes such as DNA replication, repair, and recombination. In DNA ligases, the enzyme seals nicks or breaks in the phosphodiester backbone of the DNA molecule by catalyzing the formation of an ester bond between the 3'-hydroxyl group and the 5'-phosphate group of adjacent nucleotides. This process is essential for maintaining genomic integrity and stability.

Aldehyde oxidoreductases are a class of enzymes that catalyze the oxidation of aldehydes to carboxylic acids using NAD+ or FAD as cofactors. They play a crucial role in the detoxification of aldehydes generated from various metabolic processes, such as lipid peroxidation and alcohol metabolism. These enzymes are widely distributed in nature and have been identified in bacteria, yeast, plants, and animals.

The oxidation reaction catalyzed by aldehyde oxidoreductases involves the transfer of electrons from the aldehyde substrate to the cofactor, resulting in the formation of a carboxylic acid and reduced NAD+ or FAD. The enzymes are classified into several families based on their sequence similarity and cofactor specificity.

One of the most well-known members of this family is alcohol dehydrogenase (ADH), which catalyzes the oxidation of alcohols to aldehydes or ketones as part of the alcohol metabolism pathway. Another important member is aldehyde dehydrogenase (ALDH), which further oxidizes the aldehydes generated by ADH to carboxylic acids, thereby preventing the accumulation of toxic aldehydes in the body.

Deficiencies in ALDH enzymes have been linked to several human diseases, including alcoholism and certain types of cancer. Therefore, understanding the structure and function of aldehyde oxidoreductases is essential for developing new therapeutic strategies to treat these conditions.

Acetyl-CoA C-acetyltransferase (also known as acetoacetyl-CoA thiolase or just thiolase) is an enzyme involved in the metabolism of fatty acids and ketone bodies. Specifically, it catalyzes the reaction that converts two molecules of acetyl-CoA into acetoacetyl-CoA, which is a key step in the breakdown of fatty acids through beta-oxidation.

The enzyme works by bringing together two acetyl-CoA molecules and removing a coenzyme A (CoA) group from one of them, forming a carbon-carbon bond between the two molecules to create acetoacetyl-CoA. This reaction is reversible, meaning that the enzyme can also catalyze the breakdown of acetoacetyl-CoA into two molecules of acetyl-CoA.

There are several different isoforms of Acetyl-CoA C-acetyltransferase found in various tissues throughout the body, with differing roles and regulation. For example, one isoform is highly expressed in the liver and plays a key role in ketone body metabolism, while another isoform is found in mitochondria and is involved in fatty acid synthesis.

Acetylation is a chemical process that involves the addition of an acetyl group (-COCH3) to a molecule. In the context of medical biochemistry, acetylation often refers to the post-translational modification of proteins, where an acetyl group is added to the amino group of a lysine residue in a protein by an enzyme called acetyltransferase. This modification can alter the function or stability of the protein and plays a crucial role in regulating various cellular processes such as gene expression, DNA repair, and cell signaling. Acetylation can also occur on other types of molecules, including lipids and carbohydrates, and has important implications for drug metabolism and toxicity.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Oxo-acid lyases are a class of enzymes that catalyze the cleavage of a carbon-carbon bond in an oxo-acid to give a molecule with a carbonyl group and a carbanion, which then reacts non-enzymatically with a proton to form a new double bond. The reaction is reversible, and the enzyme can also catalyze the reverse reaction.

Oxo-acid lyases play important roles in various metabolic pathways, such as the citric acid cycle, glyoxylate cycle, and the degradation of certain amino acids. These enzymes are characterized by the presence of a conserved catalytic mechanism involving a nucleophilic attack on the carbonyl carbon atom of the oxo-acid substrate.

The International Union of Biochemistry and Molecular Biology (IUBMB) has classified oxo-acid lyases under EC 4.1.3, which includes enzymes that catalyze the formation of a carbon-carbon bond by means other than carbon-carbon bond formation to an enolate or carbonion, a carbanionic fragment, or a Michael acceptor.

Carnitine O-acetyltransferase (COAT) is an enzyme that plays a crucial role in the transport and metabolism of fatty acids within cells. It is also known as carnitine palmitoyltransferase I (CPT I).

The primary function of COAT is to catalyze the transfer of an acetyl group from acetyl-CoA to carnitine, forming acetylcarnitine and free CoA. This reaction is essential for the entry of long-chain fatty acids into the mitochondrial matrix, where they undergo beta-oxidation to produce energy in the form of ATP.

COAT is located on the outer membrane of the mitochondria and functions as a rate-limiting enzyme in fatty acid oxidation. Its activity can be inhibited by malonyl-CoA, which is an intermediate in fatty acid synthesis. This inhibition helps regulate the balance between fatty acid oxidation and synthesis, ensuring that cells have enough energy while preventing excessive accumulation of lipids.

Deficiencies or mutations in COAT can lead to various metabolic disorders, such as carnitine palmitoyltransferase I deficiency (CPT I deficiency), which may cause symptoms like muscle weakness, hypoglycemia, and cardiomyopathy. Proper diagnosis and management of these conditions often involve dietary modifications, supplementation with carnitine, and avoidance of fasting to prevent metabolic crises.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Hydroxybutyrates are compounds that contain a hydroxyl group (-OH) and a butyric acid group. More specifically, in the context of clinical medicine and biochemistry, β-hydroxybutyrate (BHB) is often referred to as a "ketone body."

Ketone bodies are produced by the liver during periods of low carbohydrate availability, such as during fasting, starvation, or a high-fat, low-carbohydrate diet. BHB is one of three major ketone bodies, along with acetoacetate and acetone. These molecules serve as alternative energy sources for the brain and other tissues when glucose levels are low.

In some pathological states, such as diabetic ketoacidosis, the body produces excessive amounts of ketone bodies, leading to a life-threatening metabolic acidosis. Elevated levels of BHB can also be found in other conditions like alcoholism, severe illnesses, and high-fat diets.

It is important to note that while BHB is a hydroxybutyrate, not all hydroxybutyrates are ketone bodies. The term "hydroxybutyrates" can refer to any compound containing both a hydroxyl group (-OH) and a butyric acid group.

4-Aminobenzoic acid, also known as PABA or para-aminobenzoic acid, is an organic compound that is a type of aromatic amino carboxylic acid. It is a white, crystalline powder that is slightly soluble in water and more soluble in alcohol.

4-Aminobenzoic acid is not an essential amino acid for humans, but it is a component of the vitamin folic acid and is found in various foods such as meat, whole grains, and molasses. It has been used as a topical sunscreen due to its ability to absorb ultraviolet (UV) radiation, although its effectiveness as a sunscreen ingredient has been called into question in recent years.

In addition to its use in sunscreens, 4-aminobenzoic acid has been studied for its potential health benefits, including its possible role in protecting against UV-induced skin damage and its potential anti-inflammatory and analgesic effects. However, more research is needed to confirm these potential benefits and to determine the safety and effectiveness of 4-aminobenzoic acid as a dietary supplement or topical treatment.

I believe there may be some confusion in your question as "Organic chemistry phenomena" is a broad term and not a medical definition. However, I can provide you with an explanation of organic chemistry phenomena in a general context.

Organic chemistry is the study of carbon-containing compounds, their synthesis, reactions, properties, and structures. The term "organic" was originally used to describe biological materials, but now it refers to any compound that contains carbon atoms bonded to hydrogen atoms, except for some simple oxides, sulfides, and halides.

Organic chemistry phenomena encompass a wide range of processes and events related to organic compounds. These can include:

1. Structural properties: Understanding the arrangement of atoms in organic molecules and how they influence chemical behavior and reactivity.
2. Stereochemistry: The study of three-dimensional spatial arrangements of atoms in organic molecules, which can significantly impact their properties and biological activity.
3. Functional groups: Recognizing and understanding the behavior of specific groupings of atoms within organic molecules that determine their chemical reactivity.
4. Reaction mechanisms: Investigating and describing the step-by-step processes by which organic reactions occur, including the movement of electrons, formation and breaking of bonds, and energy changes.
5. Synthetic methodologies: Developing strategies and techniques for creating complex organic molecules from simpler precursors, often involving multiple steps and protecting group strategies.
6. Physical properties: Examining how factors such as molecular weight, polarity, solubility, and melting/boiling points affect the behavior of organic compounds in various conditions.
7. Spectroscopic analysis: Utilizing techniques like NMR (Nuclear Magnetic Resonance), IR (Infrared) spectroscopy, and mass spectrometry to analyze the structure and composition of organic molecules.
8. Biochemistry and medicinal chemistry: Exploring how organic compounds interact with biological systems, including drug design, development, and delivery.

While not a medical definition per se, understanding organic chemistry phenomena is crucial for many areas within medicine, such as pharmaceutical research, toxicology, and biochemistry.

Adipates are a group of chemical compounds that are esters of adipic acid. Adipic acid is a dicarboxylic acid with the formula (CH₂)₄(COOH)₂. Adipates are commonly used as plasticizers in the manufacture of polyvinyl chloride (PVC) products, such as pipes, cables, and flooring. They can also be found in cosmetics, personal care products, and some food additives.

Adipates are generally considered to be safe for use in consumer products, but like all chemicals, they should be used with caution and in accordance with recommended guidelines. Some adipates have been shown to have potential health effects, such as endocrine disruption and reproductive toxicity, at high levels of exposure. Therefore, it is important to follow proper handling and disposal procedures to minimize exposure.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Glyoxylates are organic compounds that are intermediates in various metabolic pathways, including the glyoxylate cycle. The glyoxylate cycle is a modified version of the Krebs cycle (also known as the citric acid cycle) and is found in plants, bacteria, and some fungi.

Glyoxylates are formed from the breakdown of certain amino acids or from the oxidation of one-carbon units. They can be converted into glycine, an important amino acid involved in various metabolic processes. In the glyoxylate cycle, glyoxylates are combined with acetyl-CoA to form malate and succinate, which can then be used to synthesize glucose or other organic compounds.

Abnormal accumulation of glyoxylates in the body can lead to the formation of calcium oxalate crystals, which can cause kidney stones and other health problems. Certain genetic disorders, such as primary hyperoxaluria, can result in overproduction of glyoxylates and increased risk of kidney stone formation.

Malonyl Coenzyme A (CoA) is not a medical term per se, but rather a biochemical concept. Here's the scientific or biochemical definition:

Malonyl Coenzyme A is an important intermediate in various metabolic pathways, particularly in fatty acid synthesis. It is formed through the reaction between malonic acid and coenzyme A, catalyzed by the enzyme acetyl-CoA carboxylase. Malonyl CoA plays a crucial role in the elongation step of fatty acid synthesis, where it provides the two-carbon unit that is added to a growing fatty acid chain.

In a medical context, understanding the function and regulation of Malonyl CoA metabolism can be relevant for several pathological conditions, including metabolic disorders like diabetes and obesity.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Acetic acid is an organic compound with the chemical formula CH3COOH. It is a colorless liquid with a pungent, vinegar-like smell and is the main component of vinegar. In medical terms, acetic acid is used as a topical antiseptic and antibacterial agent, particularly for the treatment of ear infections, external genital warts, and nail fungus. It can also be used as a preservative and solvent in some pharmaceutical preparations.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

The Citric Acid Cycle, also known as the Krebs cycle or tricarboxylic acid (TCA) cycle, is a crucial metabolic pathway in the cell's powerhouse, the mitochondria. It plays a central role in the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins, into carbon dioxide and high-energy electrons. This process generates energy in the form of ATP (adenosine triphosphate), reducing equivalents (NADH and FADH2), and water.

The cycle begins with the condensation of acetyl-CoA with oxaloacetate, forming citrate. Through a series of enzyme-catalyzed reactions, citrate is converted back to oxaloacetate, releasing two molecules of carbon dioxide, one GTP (guanosine triphosphate), three NADH, one FADH2, and regenerating oxaloacetate to continue the cycle. The reduced coenzymes (NADH and FADH2) then donate their electrons to the electron transport chain, driving ATP synthesis through chemiosmosis. Overall, the Citric Acid Cycle is a vital part of cellular respiration, connecting various catabolic pathways and generating energy for the cell's metabolic needs.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

Coenzyme A-transferases are a group of enzymes that catalyze the transfer of Coenzyme A (CoA) from one molecule to another. CoA is a coenzyme that plays a crucial role in various metabolic processes, including the oxidation of carbohydrates, fatty acids, and amino acids.

Coenzyme A-transferases can be further classified into several subfamilies based on their specific functions and the types of molecules they act upon. For example, some CoA-transferases transfer CoA to acyl groups, forming acyl-CoAs, which are important intermediates in fatty acid metabolism. Other CoA-transferases transfer CoA to pyruvate, forming pyruvate dehydrogenase complexes that play a key role in glucose metabolism.

These enzymes are essential for maintaining the proper functioning of various metabolic pathways and are involved in a wide range of physiological processes, including energy production, lipid synthesis, and detoxification. Defects in CoA-transferases can lead to several metabolic disorders, such as fatty acid oxidation disorders and pyruvate dehydrogenase deficiency.

I'm sorry for any confusion, but "Polyesters" is not a medical term. It is a term used in materials science and textile industry to describe a type of synthetic fiber made from polymers characterized by the presence of ester groups in their main chain. If you have any questions related to medical terminology or concepts, I'd be happy to help with those instead!

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Cobamides are a class of compounds that are structurally related to vitamin B12 (cobalamin). They consist of a corrin ring, which is a large heterocyclic ring made up of four pyrrole rings, and a cobalt ion in the center. The lower axial ligand of the cobalt ion can be a variety of different groups, including cyano, hydroxo, methyl, or 5'-deoxyadenosyl groups.

Cobamides are involved in a number of important biological processes, including the synthesis of amino acids and nucleotides, the metabolism of fatty acids and cholesterol, and the regulation of gene expression. They function as cofactors for enzymes called cobamide-dependent methyltransferases, which transfer methyl groups (CH3) from one molecule to another.

Cobamides are found in a wide variety of organisms, including bacteria, archaea, and eukaryotes. In humans, the most important cobamide is vitamin B12, which is essential for the normal functioning of the nervous system and the production of red blood cells. Vitamin B12 deficiency can lead to neurological problems and anemia.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

'Clostridium' is a genus of gram-positive, rod-shaped bacteria that are widely distributed in nature, including in soil, water, and the gastrointestinal tracts of animals and humans. Many species of Clostridium are anaerobic, meaning they can grow and reproduce in environments with little or no oxygen. Some species of Clostridium are capable of producing toxins that can cause serious and sometimes life-threatening illnesses in humans and animals.

Some notable species of Clostridium include:

* Clostridium tetani, which causes tetanus (also known as lockjaw)
* Clostridium botulinum, which produces botulinum toxin, the most potent neurotoxin known and the cause of botulism
* Clostridium difficile, which can cause severe diarrhea and colitis, particularly in people who have recently taken antibiotics
* Clostridium perfringens, which can cause food poisoning and gas gangrene.

It is important to note that not all species of Clostridium are harmful, and some are even beneficial, such as those used in the production of certain fermented foods like sauerkraut and natto. However, due to their ability to produce toxins and cause illness, it is important to handle and dispose of materials contaminated with Clostridium species carefully, especially in healthcare settings.

Acetylesterase is an enzyme that catalyzes the hydrolysis of acetyl esters into alcohol and acetic acid. This enzyme plays a role in the metabolism of various xenobiotics, including drugs and environmental toxins, by removing acetyl groups from these compounds. Acetylesterase is found in many tissues, including the liver, intestine, and blood. It belongs to the class of enzymes known as hydrolases, which act on ester bonds.

Biotin is a water-soluble vitamin, also known as Vitamin B7 or Vitamin H. It is a cofactor for several enzymes involved in metabolism, particularly in the synthesis and breakdown of fatty acids, amino acids, and carbohydrates. Biotin plays a crucial role in maintaining healthy skin, hair, nails, nerves, and liver function. It is found in various foods such as nuts, seeds, whole grains, milk, and vegetables. Biotin deficiency is rare but can occur in people with malnutrition, alcoholism, pregnancy, or certain genetic disorders.

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Citrates are the salts or esters of citric acid, a weak organic acid that is naturally found in many fruits and vegetables. In a medical context, citrates are often used as a buffering agent in intravenous fluids to help maintain the pH balance of blood and other bodily fluids. They are also used in various medical tests and treatments, such as in urine alkalinization and as an anticoagulant in kidney dialysis solutions. Additionally, citrate is a component of some dietary supplements and medications.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Mesna is a medication used in the prevention and treatment of hemorrhagic cystitis (inflammation and bleeding of the bladder) caused by certain chemotherapy drugs, specifically ifosfamide and cyclophosphamide. Mesna works by neutralizing the toxic metabolites of these chemotherapy agents, which can cause bladder irritation and damage.

Mesna is administered intravenously (into a vein) along with ifosfamide or cyclophosphamide, and it may also be given as a separate infusion after the chemotherapy treatment. The dosage and timing of Mesna administration are determined by the healthcare provider based on the patient's weight, kidney function, and the dose of chemotherapy received.

It is important to note that Mesna does not have any direct anticancer effects and is used solely to manage the side effects of chemotherapy.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Pyruvic acid, also known as 2-oxopropanoic acid, is a key metabolic intermediate in both anaerobic and aerobic respiration. It is a carboxylic acid with a ketone functional group, making it a β-ketoacid. In the cytosol, pyruvate is produced from glucose during glycolysis, where it serves as a crucial link between the anaerobic breakdown of glucose and the aerobic process of cellular respiration in the mitochondria.

During low oxygen availability or high energy demands, pyruvate can be converted into lactate through anaerobic glycolysis, allowing for the continued production of ATP (adenosine triphosphate) without oxygen. In the presence of adequate oxygen and functional mitochondria, pyruvate is transported into the mitochondrial matrix where it undergoes oxidative decarboxylation to form acetyl-CoA by the enzyme pyruvate dehydrogenase complex (PDC). This reaction also involves the reduction of NAD+ to NADH and the release of CO2. Acetyl-CoA then enters the citric acid cycle, where it is further oxidized to produce energy in the form of ATP, NADH, FADH2, and GTP (guanosine triphosphate) through a series of enzymatic reactions.

In summary, pyruvic acid is a vital metabolic intermediate that plays a significant role in energy production pathways, connecting glycolysis to both anaerobic and aerobic respiration.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Organophosphates are a group of chemicals that include insecticides, herbicides, and nerve gases. They work by inhibiting an enzyme called acetylcholinesterase, which normally breaks down the neurotransmitter acetylcholine in the synapse between nerves. This leads to an overaccumulation of acetylcholine, causing overstimulation of the nervous system and resulting in a wide range of symptoms such as muscle twitching, nausea, vomiting, diarrhea, sweating, confusion, and potentially death due to respiratory failure. Organophosphates are highly toxic and their use is regulated due to the risks they pose to human health and the environment.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

Fermentation is a metabolic process in which an organism converts carbohydrates into alcohol or organic acids using enzymes. In the absence of oxygen, certain bacteria, yeasts, and fungi convert sugars into carbon dioxide, hydrogen, and various end products, such as alcohol, lactic acid, or acetic acid. This process is commonly used in food production, such as in making bread, wine, and beer, as well as in industrial applications for the production of biofuels and chemicals.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Pantothenic Acid, also known as Vitamin B5, is a water-soluble vitamin that plays a vital role in the metabolism of proteins, carbohydrates, and fats. It is essential for the synthesis of coenzyme A (CoA), which is involved in various biochemical reactions in the body, including energy production, fatty acid synthesis, and cholesterol metabolism.

Pantothenic Acid is widely distributed in foods, including meat, poultry, fish, whole grains, legumes, and vegetables. Deficiency of this vitamin is rare but can lead to symptoms such as fatigue, irritability, sleep disturbances, muscle cramps, and gastrointestinal problems.

In addition to its role in metabolism, Pantothenic Acid also has potential benefits for wound healing, reducing inflammation, and supporting the immune system.

Histone Acetyltransferases (HATs) are a group of enzymes that play a crucial role in the regulation of gene expression. They function by adding acetyl groups to specific lysine residues on the N-terminal tails of histone proteins, which make up the structural core of nucleosomes - the fundamental units of chromatin.

The process of histone acetylation neutralizes the positive charge of lysine residues, reducing their attraction to the negatively charged DNA backbone. This leads to a more open and relaxed chromatin structure, facilitating the access of transcription factors and other regulatory proteins to the DNA, thereby promoting gene transcription.

HATs are classified into two main categories: type A HATs, which are primarily found in the nucleus and associated with transcriptional activation, and type B HATs, which are located in the cytoplasm and participate in chromatin assembly during DNA replication and repair. Dysregulation of HAT activity has been implicated in various human diseases, including cancer, neurodevelopmental disorders, and cardiovascular diseases.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Euryarchaeota is a phylum within the domain Archaea, which consists of a diverse group of microorganisms that are commonly found in various environments such as soil, oceans, and the digestive tracts of animals. This group includes methanogens, which are archaea that produce methane as a metabolic byproduct, and extreme halophiles, which are archaea that thrive in highly saline environments.

The name Euryarchaeota comes from the Greek words "eury," meaning wide or broad, and "archaios," meaning ancient or primitive. This name reflects the phylum's diverse range of habitats and metabolic capabilities.

Euryarchaeota are characterized by their unique archaeal-type cell walls, which contain a variety of complex polysaccharides and proteins. They also have a distinct type of intracellular membrane called the archaellum, which is involved in motility. Additionally, Euryarchaeota have a unique genetic code that differs from that of bacteria and eukaryotes, with some codons specifying different amino acids.

Overall, Euryarchaeota are an important group of archaea that play a significant role in global carbon and nitrogen cycles, as well as in the breakdown of organic matter in various environments.

Environmental biodegradation is the breakdown of materials, especially man-made substances such as plastics and industrial chemicals, by microorganisms such as bacteria and fungi in order to use them as a source of energy or nutrients. This process occurs naturally in the environment and helps to break down organic matter into simpler compounds that can be more easily absorbed and assimilated by living organisms.

Biodegradation in the environment is influenced by various factors, including the chemical composition of the substance being degraded, the environmental conditions (such as temperature, moisture, and pH), and the type and abundance of microorganisms present. Some substances are more easily biodegraded than others, and some may even be resistant to biodegradation altogether.

Biodegradation is an important process for maintaining the health and balance of ecosystems, as it helps to prevent the accumulation of harmful substances in the environment. However, some man-made substances, such as certain types of plastics and industrial chemicals, may persist in the environment for long periods of time due to their resistance to biodegradation, leading to negative impacts on wildlife and ecosystems.

In recent years, there has been increasing interest in developing biodegradable materials that can break down more easily in the environment as a way to reduce waste and minimize environmental harm. These efforts have led to the development of various biodegradable plastics, coatings, and other materials that are designed to degrade under specific environmental conditions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

A cell-free system is a biochemical environment in which biological reactions can occur outside of an intact living cell. These systems are often used to study specific cellular processes or pathways, as they allow researchers to control and manipulate the conditions in which the reactions take place. In a cell-free system, the necessary enzymes, substrates, and cofactors for a particular reaction are provided in a test tube or other container, rather than within a whole cell.

Cell-free systems can be derived from various sources, including bacteria, yeast, and mammalian cells. They can be used to study a wide range of cellular processes, such as transcription, translation, protein folding, and metabolism. For example, a cell-free system might be used to express and purify a specific protein, or to investigate the regulation of a particular metabolic pathway.

One advantage of using cell-free systems is that they can provide valuable insights into the mechanisms of cellular processes without the need for time-consuming and resource-intensive cell culture or genetic manipulation. Additionally, because cell-free systems are not constrained by the limitations of a whole cell, they offer greater flexibility in terms of reaction conditions and the ability to study complex or transient interactions between biological molecules.

Overall, cell-free systems are an important tool in molecular biology and biochemistry, providing researchers with a versatile and powerful means of investigating the fundamental processes that underlie life at the cellular level.

Propanediol Dehydratase is not a medical term per se, but rather a biochemical term. It refers to an enzyme that catalyzes the conversion of 1,2-propanediol (also known as propylene glycol) into propionaldehyde and water in the metabolic pathway known as the glycerol/propanediol utilization (GUD) system.

The reaction catalyzed by Propanediol Dehydratase is:
(CH3)2CH(OH)CH2OH → CH3CH2CHO + H2O

This enzyme is found in certain bacteria and archaea that are capable of utilizing 1,2-propanediol as a carbon source for growth. Deficiency or absence of this enzyme can affect the metabolic capabilities of these microorganisms.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Acetyl-L-carnitine, also known as ALCAR, is a form of the amino acid carnitine. It is a naturally occurring substance in the body that plays a crucial role in energy production in cells, particularly within mitochondria, the "powerhouses" of the cell.

Acetyl-L-carnitine is involved in the transport of fatty acids into the mitochondria, where they can be broken down to produce energy. It also functions as an antioxidant, helping to protect cells from damage caused by free radicals.

This compound has been studied for its potential benefits in various medical conditions, including neurological disorders, cardiovascular diseases, and liver diseases. Some research suggests that Acetyl-L-carnitine may help improve cognitive function, reduce fatigue, and alleviate pain. However, more studies are needed to confirm these findings and establish the optimal dosage and safety profiles for different medical conditions.

It is important to note that while Acetyl-L-carnitine is available as a dietary supplement, its use should be discussed with a healthcare provider before starting any new supplement regimen, especially if you have a medical condition or are taking medication.

Mevalonic acid is not a term that is typically used in medical definitions, but rather it is a biochemical concept. Mevalonic acid is a key intermediate in the biosynthetic pathway for cholesterol and other isoprenoids. It is formed from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) by the enzyme HMG-CoA reductase, which is the target of cholesterol-lowering drugs known as statins.

In a medical context, mevalonic acid may be mentioned in relation to certain rare genetic disorders, such as mevalonate kinase deficiency (MKD) or hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), which are caused by mutations in the gene encoding mevalonate kinase, an enzyme involved in the metabolism of mevalonic acid. These conditions can cause recurrent fevers, rashes, joint pain, and other symptoms.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

'Methanosarcina barkeri' is not a medical term, but a species name in the domain of microbiology. It refers to a type of archaea (single-celled organisms) that is capable of methanogenesis - producing methane as a metabolic byproduct. This microorganism is commonly found in anaerobic environments such as wetlands, digestive tracts of animals, and sewage sludge. It's not something that typically has a direct medical definition or relevance, unless in the context of specific research or environmental/industrial settings.

Pantetheine is not a medical term per se, but it is a biochemical compound with relevance to medicine. Pantetheine is the alcohol form of pantothenic acid (vitamin B5), and it plays a crucial role in the metabolism of proteins, carbohydrates, and fats. It is a component of coenzyme A, which is involved in numerous biochemical reactions within the body.

Coenzyme A, containing pantetheine, participates in oxidation-reduction reactions, energy production, and the synthesis of various compounds, such as fatty acids, cholesterol, steroid hormones, and neurotransmitters. Therefore, pantetheine is essential for maintaining proper cellular function and overall health.

While there isn't a specific medical condition associated with pantetheine deficiency, ensuring adequate intake of vitamin B5 (through diet or supplementation) is vital for optimal health and well-being.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, are a class of cholesterol-lowering medications. They work by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. By blocking this enzyme, the liver is stimulated to take up more low-density lipoprotein (LDL) cholesterol from the bloodstream, leading to a decrease in LDL cholesterol levels and a reduced risk of cardiovascular disease.

Examples of HMG-CoA reductase inhibitors include atorvastatin, simvastatin, pravastatin, rosuvastatin, and fluvastatin. These medications are commonly prescribed to individuals with high cholesterol levels, particularly those who are at risk for or have established cardiovascular disease.

It's important to note that while HMG-CoA reductase inhibitors can be effective in reducing LDL cholesterol levels and the risk of cardiovascular events, they should be used as part of a comprehensive approach to managing high cholesterol, which may also include lifestyle modifications such as dietary changes, exercise, and weight management.

Riboflavin, also known as vitamin B2, is a water-soluble vitamin that plays a crucial role in energy production and cellular function, growth, and development. It is essential for the metabolism of carbohydrates, fats, and proteins, and it helps to maintain healthy skin, hair, and nails. Riboflavin is involved in the production of energy by acting as a coenzyme in various redox reactions. It also contributes to the maintenance of the mucous membranes of the digestive tract and promotes iron absorption.

Riboflavin can be found in a variety of foods, including milk, cheese, leafy green vegetables, liver, kidneys, legumes, yeast, mushrooms, and almonds. It is sensitive to light and heat, so exposure to these elements can lead to its degradation and loss of vitamin activity.

Deficiency in riboflavin is rare but can occur in individuals with poor dietary intake or malabsorption disorders. Symptoms of riboflavin deficiency include inflammation of the mouth and tongue, anemia, skin disorders, and neurological symptoms such as confusion and mood changes. Riboflavin supplements are available for those who have difficulty meeting their daily requirements through diet alone.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Phenylacetates are a group of organic compounds that contain a phenyl group (a benzene ring with a hydroxyl group) and an acetic acid group. In the context of medicine, sodium phenylacetate is used in the treatment of certain metabolic disorders, such as urea cycle disorders, to help remove excess ammonia from the body. It does this by conjugating with glycine to form phenylacetylglutamine, which can then be excreted in the urine.

It is important to note that the use of phenylacetates should be under the supervision of a medical professional, as improper use or dosage can lead to serious side effects.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Palmitoyl Coenzyme A, often abbreviated as Palmitoyl-CoA, is a type of fatty acyl coenzyme A that plays a crucial role in the body's metabolism. It is formed from the esterification of palmitic acid (a saturated fatty acid) with coenzyme A.

Medical Definition: Palmitoyl Coenzyme A is a fatty acyl coenzyme A ester, where palmitic acid is linked to coenzyme A via an ester bond. It serves as an important intermediate in lipid metabolism and energy production, particularly through the process of beta-oxidation in the mitochondria. Palmitoyl CoA also plays a role in protein modification, known as S-palmitoylation, which can affect protein localization, stability, and function.

Methanobacterium is a genus of archaea belonging to the order Methanobacteriales and the family Methanobacteriaceae. They are commonly known as methanogenic bacteria, but they are not true bacteria; instead, they belong to the domain Archaea. These organisms are characterized by their ability to produce methane as a metabolic end-product in anaerobic conditions. They are typically found in environments like swamps, wetlands, digestive tracts of animals, and sewage sludge. The cells of Methanobacterium are usually rod-shaped and may appear gram-positive or gram-variable. Some species are capable of forming endospores.

Lovastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a crucial role in the production of cholesterol in the body. By reducing the amount of cholesterol produced in the liver, lovastatin helps to decrease the levels of low-density lipoprotein (LDL) or "bad" cholesterol and triglycerides in the blood, while increasing the levels of high-density lipoprotein (HDL) or "good" cholesterol.

Lovastatin is available in both immediate-release and extended-release forms, and it is typically taken orally once or twice a day, depending on the dosage prescribed by a healthcare provider. Common side effects of lovastatin include headache, nausea, diarrhea, and muscle pain, although more serious side effects such as liver damage and muscle weakness are possible, particularly at higher doses.

It is important to note that lovastatin should not be taken by individuals with active liver disease or by those who are pregnant or breastfeeding. Additionally, it may interact with certain other medications, so it is essential to inform a healthcare provider of all medications being taken before starting lovastatin therapy.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Methanosarcina is a genus of archaea, which are single-celled microorganisms that lack a nucleus and other membrane-bound organelles. These archaea are characterized by their ability to produce methane as a metabolic byproduct during the process of anaerobic respiration or fermentation. Methanosarcina species are found in various environments, including freshwater and marine sediments, waste treatment facilities, and the digestive tracts of animals. They are capable of degrading a wide range of organic compounds, such as acetate, methanol, and methylamines, to produce methane. It's important to note that while Methanosarcina species can be beneficial in certain environments, they may also contribute to the release of greenhouse gases, particularly methane, which is a potent contributor to climate change.

Methane is not a medical term, but it is a chemical compound that is often mentioned in the context of medicine and health. Medically, methane is significant because it is one of the gases produced by anaerobic microorganisms during the breakdown of organic matter in the gut, leading to conditions such as bloating, cramping, and diarrhea. Excessive production of methane can also be a symptom of certain digestive disorders like irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth (SIBO).

In broader terms, methane is a colorless, odorless gas that is the primary component of natural gas. It is produced naturally by the decomposition of organic matter in anaerobic conditions, such as in landfills, wetlands, and the digestive tracts of animals like cows and humans. Methane is also a potent greenhouse gas with a global warming potential 25 times greater than carbon dioxide over a 100-year time frame.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Hydroxymethylglutaryl-CoA-Reductases (NADP-dependent) are a group of enzymes that play a crucial role in the metabolic pathway known as cholesterol biosynthesis. The NADP-dependent hydroxymethylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme in this pathway, and it catalyzes the conversion of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) to mevalonic acid using nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor.

Mevalonic acid is a key intermediate in the biosynthesis of cholesterol and other isoprenoids, making HMGCR an important target for cholesterol-lowering drugs such as statins. Mutations in the gene encoding HMGCR can lead to several genetic disorders, including megacephaly-capillary malformation syndrome and cerebrotendinous xanthomatosis.

Methylmalonyl-CoA mutase is a mitochondrial enzyme that plays a crucial role in the metabolism of certain amino acids and fatty acids. Specifically, it catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA, which is an important step in the catabolic pathways of valine, isoleucine, threonine, methionine, odd-chain fatty acids, and cholesterol.

The enzyme requires a cofactor called adenosylcobalamin (vitamin B12) for its activity. In the absence of this cofactor or due to mutations in the gene encoding the enzyme, methylmalonyl-CoA mutase deficiency can occur, leading to the accumulation of methylmalonic acid and other toxic metabolites, which can cause a range of symptoms including vomiting, dehydration, lethargy, hypotonia, developmental delay, and metabolic acidosis. This condition is typically inherited in an autosomal recessive manner and can be diagnosed through biochemical tests and genetic analysis.

Hydroxymethylglutaryl-CoA Synthase (HMG-CoA Synthase) is a key enzyme in the cholesterol biosynthesis pathway. It catalyzes the reaction of acetoacetyl-CoA and acetyl-CoA to form HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A), which is a crucial intermediate in the synthesis of cholesterol, ketone bodies, and other isoprenoids.

There are two isoforms of this enzyme: HMG-CoA synthase 1 (HMGCS1) and HMG-CoA synthase 2 (HMGCS2). HMGCS1 is primarily expressed in the liver and is involved in cholesterol synthesis, while HMGCS2 is mainly found in the brain, kidney, and liver, where it plays a role in ketone body synthesis during periods of fasting or low-carbohydrate diets.

Defects in HMG-CoA synthase can lead to metabolic disorders, such as hypocholesterolemia (low cholesterol levels) and hyperketonemia (elevated ketone bodies). Additionally, inhibitors of HMG-CoA synthase are used as cholesterol-lowering drugs, known as statins, to treat conditions like hyperlipidemia and prevent cardiovascular diseases.

Carnitine is a naturally occurring substance in the body that plays a crucial role in energy production. It transports long-chain fatty acids into the mitochondria, where they can be broken down to produce energy. Carnitine is also available as a dietary supplement and is often used to treat or prevent carnitine deficiency.

The medical definition of Carnitine is:

"A quaternary ammonium compound that occurs naturally in animal tissues, especially in muscle, heart, brain, and liver. It is essential for the transport of long-chain fatty acids into the mitochondria, where they can be oxidized to produce energy. Carnitine also functions as an antioxidant and has been studied as a potential treatment for various conditions, including heart disease, diabetes, and kidney disease."

Carnitine is also known as L-carnitine or levocarnitine. It can be found in foods such as red meat, dairy products, fish, poultry, and tempeh. In the body, carnitine is synthesized from the amino acids lysine and methionine with the help of vitamin C and iron. Some people may have a deficiency in carnitine due to genetic factors, malnutrition, or certain medical conditions, such as kidney disease or liver disease. In these cases, supplementation may be necessary to prevent or treat symptoms of carnitine deficiency.

... also known as solute carrier family 33 member 1 (SLC33A1) is a protein that in humans is ... Jonas MC, Pehar M, Puglielli L (October 2010). "AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell ... "Entrez Gene: Solute carrier family 33 (acetyl-CoA transporter), member 1". Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, ... Hirabayashi Y, Kanamori A, Nomura KH, Nomura K (February 2004). "The acetyl-CoA transporter family SLC33". Pflügers Archiv. 447 ...
Goodridge AG (November 1972). "Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate ... Numa S, Ringelmann E, Lynen F (December 1965). "[On inhibition of acetyl-CoA-carboxylase by fatty acid-coenzyme A compounds]". ... Majerus PW, Kilburn E (November 1969). "Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of ... Coenzyme A now enters the enzyme and another intermediate is formed which consists of AMP-long chain fatty acid-Coenzyme A. ( ...
... acetyl-CoA carboxylase] synthetase, biotin-[acetyl coenzyme A carboxylase] synthetase, acetyl coenzyme A holocarboxylase ... Landman AD, Darkshinamurti K (March 1975). "Acetyl-Coenzyme A carboxylase. Role of the prosthetic group in enzyme ... acetyl-CoA:carbon-dioxide ligase (ADP-forming)] The 3 substrates of this enzyme are ATP, biotin, and apo-[acetyl-CoA:carbon- ... In enzymology, a biotin-[acetyl-CoA-carboxylase] ligase (EC 6.3.4.15) is an enzyme that catalyzes the chemical reaction ATP + ...
"Succinyl and acetyl coenzyme A deacylases". J. Biol. Chem. 198 (1): 323-334. PMID 12999747.[permanent dead link] Portal: ... The enzyme acetyl-CoA hydrolase (EC 3.1.2.1) catalyzes the reaction acetyl-CoA + H2O ⇌ {\displaystyle \rightleftharpoons } CoA ... Acetyl-CoA synthetase and ACSS2, enzymes that perform the reverse reaction using ATP Gergely J, Hele P, Ramakrishnan CV (1952 ...
Gergely J, Hele P, Ramakrishnan CV (1952). "Succinyl and acetyl coenzyme A deacylases". J. Biol. Chem. 198 (1): 323-334. PMID ... Other names in common use include succinyl-CoA acylase, succinyl coenzyme A hydrolase, and succinyl coenzyme A deacylase. This ...
... acetyl-Coenzyme A acetyltransferase 2) gene Acetyl-Coenzyme A acetyltransferase 2 is an acetyl-CoA C-acetyltransferase enzyme. ... "Entrez Gene: acetyl-Coenzyme A acetyltransferase 2". Human ACAT2 genome location and ACAT2 gene details page in the UCSC Genome ... Acetyl-CoA acetyltransferase, cytosolic, also known as cytosolic acetoacetyl-CoA thiolase, is an enzyme that in humans is ... Matsumoto K, Fujiwara Y, Nagai R, Yoshida M, Ueda S (Feb 2008). "Expression of two isozymes of acyl-coenzyme A: cholesterol ...
"Entrez Gene: acetyl-Coenzyme A carboxylase beta". Widmer J, Fassihi KS, Schlichter SC, Wheeler KS, Crute BE, King N, Nutile- ... Acetyl-CoA carboxylase 2 also known as ACC-beta or ACC2 is an enzyme that in humans is encoded by the ACACB gene. Acetyl-CoA ... Diaz FJ, Meary A, Arranz MJ, Ruaño G, Windemuth A, de Leon J (December 2009). "Acetyl-coenzyme A carboxylase alpha gene ... Rosa G, Manco M, Vega N, Greco AV, Castagneto M, Vidal H, Mingrone G (November 2003). "Decreased muscle acetyl-coenzyme A ...
... acetyl-Coenzyme A carboxylase alpha". Abu-Elheiga L, Jayakumar A, Baldini A, Chirala SS, Wakil SJ (April 1995). "Human acetyl- ... Acetyl-CoA carboxylase 1 also known as ACC-alpha or ACCa is an enzyme that in humans is encoded by the ACACA gene. Acetyl-CoA ... Diaz FJ, Meary A, Arranz MJ, Ruaño G, Windemuth A, de Leon J (December 2009). "Acetyl-coenzyme A carboxylase alpha gene ... Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, Park BW, Kim KS (September 2007). "Up-regulation of acetyl-CoA carboxylase ...
Acetyl-Coenzyme A acyltransferase 1 is an acetyl-CoA C-acyltransferase enzyme. This gene encodes an enzyme operative in the ... "Entrez Gene: acetyl-Coenzyme A acyltransferase 1". Bout A, Hoovers JM, Bakker E, Mannens MM, Geurts van Kessel A, Westerveld A ... 3-Ketoacyl-CoA thiolase, peroxisomal also known as acetyl-Coenzyme A acyltransferase 1 is an enzyme that in humans is encoded ... 1987). "Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency". Proc. Natl. Acad. Sci. U.S.A. 84 (8): 2494-6. Bibcode: ...
Acetyl-Coenzyme A acetyltransferase 1) gene. Acetyl-Coenzyme A acetyltransferase 1 is an acetyl-CoA C-acetyltransferase enzyme ... "Entrez Gene: acetyl-Coenzyme A acetyltransferase 1". Abdelkreem E, Harijan RK, Yamaguchi S, Wierenga RK, Fukao T (October 2019 ... Ge J, Zhai W, Cheng B, He P, Qi B, Lu H, Zeng Y, Chen X (September 2013). "Insulin induces human acyl-coenzyme A: cholesterol ... Acetyl-CoA acetyltransferase, mitochondrial, also known as acetoacetyl-CoA thiolase, is an enzyme that in humans is encoded by ...
... acetyl-CoA carboxylase kinase-2, acetyl-CoA carboxylase kinase-3 (AMP-activated), acetyl-coenzyme A carboxylase kinase, ACK2, ... acetyl-CoA carboxylase bound kinase, acetyl-CoA carboxylase kinase, acetyl-CoA carboxylase kinase (cAMP-independent), acetyl- ... acetyl-CoA carboxylase] phosphotransferase. Other names in common use include acetyl coenzyme A carboxylase kinase ( ... Jamil H, Madsen NB (1987). "Phosphorylation state of acetyl-coenzyme A carboxylase. I. Linear inverse relationship to activity ...
Acetyl-Coenzyme A acyltransferase 2 is an acetyl-CoA C-acyltransferase enzyme. The ACAA2 gene encodes a 41.9 kDa protein that ... "Entrez Gene: acetyl-Coenzyme A acyltransferase 2". Abe H, Ohtake A, Yamamoto S, Satoh Y, Takayanagi M, Amaya Y, Takiguchi M, ... Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H (Jun 2008). "Acetyl-Coenzyme A acyltransferase 2 attenuates the ... Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H (Jun 2008). "Acetyl-Coenzyme A acyltransferase 2 attenuates the ...
... is one of five crucial coenzymes that are necessary in the reaction mechanism of the citric acid cycle. Its acetyl- ... Here, acetyl-CoA is generated for oxidation and energy production. In the citric acid cycle, coenzyme A works as an allosteric ... Berg JM, Tymoczko JL, Stryer L (2002). "Acetyl Coenzyme A Carboxylase Plays a Key Role in Controlling Fatty Acid Metabolism". ... Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the ...
Tan X, Loke HK, Fitch S, Lindahl PA (April 2005). "The tunnel of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase ... S2CID 21633407.* Hegg EL (October 2004). "Unraveling the structure and mechanism of acetyl-coenzyme A synthase". Accounts of ... relying on CODH to produce CO by reduction of CO2 needed for the synthesis of Acetyl-CoA from a methyl, coenzyme a (CoA) and ... CODH can form a monofunctional enzyme, as is the case in Rhodospirillum rubrum, or can form a cluster with acetyl-CoA synthase ...
Lindahl PA (July 2004). "Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis". Journal of ... Acetyl-CoA synthase (ACS), not to be confused with Acetyl-CoA synthetase or Acetate-CoA ligase (ADP forming), is a nickel- ... Hegg EL (October 2004). "Unraveling the structure and mechanism of acetyl-coenzyme A synthase". Accounts of Chemical Research. ... and the second reaction involves ACS synthesizing acetyl-CoA using the carbon monoxide from CODH together with coenzyme-A (CoA ...
Peptides, such as acetyl hexapeptide-3 (Argireline), Matryxil, and copper peptides. Coenzyme Q10. Sunscreens provide a high ...
Stadtman, E. R.; Novelli, G. D.; Lipmann, F. (1951). "Coenzyme A function in and acetyl transfer by the phosphotransacetylase ... In the same period he collaborated with Fritz Lipmann on the function of coenzyme A. Later his work took on a more ...
Jetten MS; Stams AJ; Zehnder AJ (October 1989). "Isolation and characterization of acetyl-coenzyme A synthetase from ...
Pyruvate is then converted into to acetyl-coenzyme A (acetyl-CoA). The Citric acid cycle then takes acetyl-CoA and through a ...
Higa HH, Varki A (1988). "Acetyl-coenzyme A:polysialic acid O-acetyltransferase from K1-positive Escherichia coli. The enzyme ... The systematic name of this enzyme class is acetyl-CoA:polysialic-acid O-acetyltransferase. Other names in common use include ... In enzymology, a polysialic-acid O-acetyltransferase (EC 2.3.1.136) is an enzyme that catalyzes the chemical reaction acetyl- ... responsible for the O-acetyl plus phenotype and for O-acetyl form variation". J. Biol. Chem. 263 (18): 8872-8. PMID 2897964. ...
Pyruvate is oxidized into acetyl coenzyme A catalyzed by pyruvate:ferredoxin oxidoreductase. Two molecules of carbon dioxide ( ... coenzyme A → adenosine monophosphate + pyrophosphate + butyryl-CoA As a short-chain fatty acid, butyrate is metabolized by ...
At the end of glycolysis, PEP is converted to pyruvate, which is converted to acetyl-coenzyme-A (acetyl-CoA), which enters the ... Smith TE (April 1970). "Escherichia coli phosphoenolpyruvate carboxylase: competitive regulation by acetyl-coenzyme A and ... The main allosteric activators of PEP carboxylase are acetyl-CoA and fructose-1,6-bisphosphate (F-1,6-BP). Both molecules are ... It is also noteworthy that the negative effectors aspartate competes with the positive effector acetyl-CoA, suggesting that ...
This enzyme is also called acetyl coenzyme A: 10-hydroxytaxane O-acetyltransferase. Menhard B, Zenk MH (1999). "Purification ... and characterization of acetyl coenzyme A: 10-hydroxytaxane O-acetyltransferase from cell suspension cultures of Taxus ... In enzymology, a 10-hydroxytaxane O-acetyltransferase (EC 2.3.1.163) is an enzyme that catalyzes the chemical reaction acetyl- ... The systematic name of this enzyme class is acetyl-CoA:taxan-10beta-ol O-acetyltransferase. ...
Acetylcholine is synthesized from choline and acetyl coenzyme A. Adrenergic neurons - noradrenaline. Noradrenaline ( ...
The two molecules joined together that make up Acetyl CoA are acetate and coenzyme A (CoA). The complete reaction with all the ... Acetyl Co-A can also be used in fatty acid synthesis, and a common function of the synthetase is to produce acetyl Co-A for ... g l u c o s e ⟹ A c e t y l − C o A {\displaystyle glucose\Longrightarrow Acetyl-CoA} Acetyl CoA used in the production of both ... PDB: 1RY2​; Jogl G, Tong L (February 2004). "Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP". ...
... acetyl coenzyme A:DAC acetyltransferase, acetyl-CoA:DAC acetyltransferase, CPC acetylhydrolase, acetyl-CoA:DAC O- ... S; Matsumoto, H; Matsuda, A; Sugiura, H; Komatsu, K; Ichikawa, S (1992). "Purification of acetyl coenzyme A: ... "Cloning and disruption of the cefG gene encoding acetyl coenzyme A: deacetylcephalosporin C o-acetyltransferase from Acremonium ... The systematic name of this enzyme class is acetyl-CoA:deacetylcephalosporin-C O-acetyltransferase. Other names in common use ...
... this cleaves the coenzyme and releases nicotinamide and O-acetyl-ADP-ribose. The sirtuins mainly seem to be involved in ... This means the coenzyme can continuously cycle between the NAD+ and NADH forms without being consumed. In appearance, all forms ... The coenzyme NAD+ was first discovered by the British biochemists Arthur Harden and William John Young in 1906. They noticed ... It acts as a coenzyme in redox reactions, as a donor of ADP-ribose moieties in ADP-ribosylation reactions, as a precursor of ...
... acetyl-L-carnitine, dexpramipexole, and olesoxime). Other drugs with a variety of mechanisms were tested in clinical trials and ... and coenzyme Q); anti-apoptotic drugs (pentoxyfilline, omigapil, and minocycline); and drugs to improve mitochondria function ( ...
The systematic name of this enzyme class is acetyl-CoA:malonate CoA-transferase. This enzyme is also called malonate coenzyme A ... In enzymology, a malonate CoA-transferase (EC 2.8.3.3) is an enzyme that catalyzes the chemical reaction acetyl-CoA + malonate ... displaystyle \rightleftharpoons } acetate + malonyl-CoA Thus, the two substrates of this enzyme are acetyl-CoA and malonate, ...
It is also known as the reductive acetyl-coenzyme A (Acetyl-CoA) pathway. This pathway enables these organisms to use hydrogen ... When operating in the reverse direction, the acetyl-CoA synthase is sometimes called acetyl-CoA decarbonylase. Not to be ... the formyl group is reduced to a methyl group and then combined with the carbon monoxide and Coenzyme A to produce acetyl-CoA. ... The former catalyzes the reduction of the CO2 and the latter combines the resulting CO with a methyl group to give acetyl-CoA. ...
Acetyl-coenzyme A transporter 1 also known as solute carrier family 33 member 1 (SLC33A1) is a protein that in humans is ... Jonas MC, Pehar M, Puglielli L (October 2010). "AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell ... "Entrez Gene: Solute carrier family 33 (acetyl-CoA transporter), member 1". Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, ... Hirabayashi Y, Kanamori A, Nomura KH, Nomura K (February 2004). "The acetyl-CoA transporter family SLC33". Pflügers Archiv. 447 ...
TGCN5 HISTONE ACETYL TRANSFERASEAcetyl Coenzyme A
... Immunohorizons. 2022 Dec 1; ... In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is ... Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP ... The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support ...
STRUCTURE OF THE BIOTINYL DOMAIN OF ACETYL-COENZYME A CARBOXYLASE DETERMINED BY MAD PHASING ... Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.. Athappilly, F.K., Hendrickson, W. ... Acetyl-coenzyme A carboxylase catalyzes the first committed step of fatty acid biosynthesis. Universally, this reaction ... STRUCTURE OF THE BIOTINYL DOMAIN OF ACETYL-COENZYME A CARBOXYLASE DETERMINED BY MAD PHASING. *PDB DOI: https://doi.org/10.2210/ ...
ACETYL COENZYME *A. C23 H38 N7 O17 P3 S. ZSLZBFCDCINBPY-ZSJPKINUSA-N. Ligand Interaction. ... CRYSTAL STRUCTURE OF S.PNEUMONIAE N-ACETYLGLUCOSAMINE-1-PHOSPHATE URIDYLTRANSFERASE, GLMU, BOUND TO ACETYL COENZYME A. *PDB DOI ... The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in ... Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A ...
... in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetyl-coenzyme A ...
Order Anti-Acetyl Coenzyme A Carboxylase alpha Ser80 ALEXA Fluor 594 01011072278 at Gentaur Coenzyme A Carboxylase alpha (Ser80 ... acetyl CoA carboxylase 1; acetyl Coenzyme A; Acetyl Coenzyme A; Biotin carboxylase; Acetyl-Coenzyme A Carboxylase alpha. ... Acetyl Coenzyme A Carboxylase alpha phospho S80; p-Acetyl Coenzyme A Carboxylase alpha phospho S80; ACAC; ACACA; ACACA; ACACA_ ... Acetyl Coenzyme A Carboxylase alpha Ser80. Specificity. This antibody reacts specifically with Acetyl Coenzyme A Carboxylase ...
Acetyl Coenzyme A Acetyltransferase 1 (ACAT1) Polyclonal Antibody, Cat#CAU23176. Rating Required Select Rating. 1 star (worst) ...
Order Anti-Acetyl Coenzyme A Carboxylase alpha Ser1263 ALEXA Fluor 594 01010528318 at Gentaur Coenzyme A Carboxylase alpha ( ... acetyl CoA carboxylase 1; acetyl Coenzyme A; Acetyl Coenzyme A; Biotin carboxylase; Acetyl-Coenzyme A Carboxylase alpha. ... Acetyl Coenzyme A Carboxylase alpha Ser1263. Specificity. This antibody reacts specifically with Acetyl Coenzyme A Carboxylase ... Acetyl Coenzyme A Carboxylase alpha phospho S1263; p-Acetyl Coenzyme A Carboxylase alpha phospho S1263; ACAC; ACACA; ACACA; ...
This 2-carbon acetyl group then binds with coenzyme A, forming acetyl coenzyme A. The acetyl coenzyme A is then brought back ... Formation of Acetyl Coenzyme A The next step in aerobic respiration is the formation of acetyl coenzyme A. In this step, ... Two turns of the citric acid cycle are required to break down the original acetyl coenzyme A from the single glucose molecule. ... Aerobic respiration has four stages: Glycolysis, formation of acetyl coenzyme A, the citric acid cycle, and the electron ...
Resistant parasites generated in vitro showed mutations in acetyl-coenzyme A synthetase and acyl-coenzyme A synthetase 11. ... coenzyme A biosynthetic enzymes converted pantothenamides into coenzyme A analogs that interfered with parasite acetyl-coenzyme ... Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Schalkwijk et al., Sci ...
Shop Memory and Brain with Acetyl L-Carnitine - 30 Capsules 9436322, read customer reviews and more at HSN.com. ... CoEnzyme Q-10 200 - 30 Capsules. Price:. $22.90 $29.90 Rating. 4.7 5.0 4361 ... Andrew Lessman Memory and Brain with Acetyl L-Carnitine. Andrew Lessmans Memory and Brain with Acetyl L-Carnitine (ALC) ... Memory and Brain with Acetyl L-Carnitine - 30 Capsules. 4.1 5.0 262 ...
Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP ... Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP Coordinates. PDB Format Method. X-RAY DIFFRACTION ... Jogl, G. et al., Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP. Biochemistry (2004) Release Date ...
... assay for measuring acetyl coenzyme A. straightforward off-column capillary electrophoretic (CE) assay for measuring acetyl ... coenzyme A carboxylase is really a target for the introduction of antibiotics [2 3 herbicides [4] and healing agencies for ... 1 Acetyl-CoA carboxylase response scheme. Many assays have already been created to monitor the experience of isolated bacterial ... Recently Kroeger created a high-throughput assay for mammalian ACC where radiolabeled acetyl-CoA was found in an ACC/fatty ...
Cycling of acetyl-CoA through acetylcarnitine appears key to matching instantaneous acetyl-CoA supply with metabolic demand, ... has revealed that acetylcarnitine provides a route of disposal for excess acetyl-CoA and a means to replenish acetyl-CoA when ... indicating a rapid exchange between pyruvate-derived acetyl-CoA and the acetylcarnitine pool. In vivo, dichloroacetate ... Carnitine acetyltransferase catalyzes the reversible conversion of acetyl-coenzyme A (CoA) into acetylcarnitine. The aim of ...
Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl ... Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl ... Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl ...
Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiology, 131 ... Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals. In: Plant Physiology ... Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals, Plant Physiology, ... Identification of an acetyl-coenzyme A. Geraniol/citronellol acetyltransferase in developing rose petals. Plant Physiology. ...
... acetyl-coenzyme A carboxylase 1; CROT: carnitine O-octanoyltransferase ; FA: fatty acid; FABP4: fatty acid binding protein 4; ...
... acetyl-coenzyme A carboxylase beta; carnitine palmitoyl transferase; diacylglycerol; fatty acid oxidation; free fatty acid; ... Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/ ... acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected ...
Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J.M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second ... Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 53, 710-725 (2014). ... Obesity is also linked to systemic inhibition of autophagy as a result of high intracellular concentrations of acetyl coenzyme ... that decrease the synthesis of cytosolic acetyl coenzyme A; (ii) agents, such as spermidine, that inhibit acetyltransferases ...
... acetyl-coenzyme A is the acetyl donor for histone acetylation; β-hydroxybutyrate inhibits class I histone deacetylases; and the ...
ACC, acetyl-coA carboxylase; ACOX1, peroxisomal acyl-coenzyme A oxidase 1; BCAT2, branched chain amino-acid transaminase 2; ... Acetyl-coA carboxylase (ACC), Fatty acid synthase (FAS)]; fatty acid oxidation (Peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), ...
Decanoyl coenzyme A (Decanoyl CoA) is coupled with S-adenosylmethionine (SAM) by Vibrio cholera CqsA enzyme to produce a potent ... quorum-sensing molecule, 3-aminotridec-2-en-4-one (Ea-CAI-1; Decanoyl coenzyme A is a substrate for acyltransferase; ... Competitive binding experiments with malonyl-CoA and [1-14C]acetyl-CoA, [1-14C]butyryl-CoA or [1-14C]decanoyl-CoA indicate that ... Decanoyl coenzyme A is a substrate for acyltransferase.. It is a substrate for human liver glycine-N-acylase. ...
The majority of acetate is utilized as the conjugate to coenzyme A (CoA), acetyl-CoA. Acetyl-CoA is a precursor to fatty acid ... Acetyl-CoA also serves as a precursor for the synthesis of acetylcholine and as the donor for acetyl groups for post- ...
Acetyl-coenzyme A (CoA): alpha-glucosamide N -acetyltransferase. 2.3.1.3. MPS type III-D ... Furthermore, it suggests that this enzyme belongs to a new structural class of proteins that transport the activated acetyl ... 12q14 (Sanfilippo syndrome): The diagnosis requires a specific lysosomal enzyme assay for glucosamine (N -acetyl)-6-sulfatase ( ...
... p-acetyl-coenzyme A carboxylase (ACC); (h)). β-actin served as a loading control. Cell viability was measured by using a CCK-8 ... p-acetyl-coenzyme A carboxylase (ACC); (h)). β-actin served as a loading control. Cell viability was measured by using a CCK-8 ...
Acetyl-coenzyme A (CoA): alpha-glucosamide N -acetyltransferase. 2.3.1.3. MPS type III-D ...
Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and ... but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 ... but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 ... Malyl-CoA lyase (MCL) is an Mg2+-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl- ...
Acetyl Coenzyme A carboxylase alpha (6). * AGL/Alpha-glucosidase (11). * Alkaline Phosphatase (6). ...
  • Acetyl-coenzyme A carboxylase catalyzes the first committed step of fatty acid biosynthesis. (rcsb.org)
  • Acetyl-CoA carboxylase (ACC) is a complex multifunctional enzyme system. (polabo.com)
  • N terminal acetylation or CH3CO as epigenetic regulation of Anti-Acetyl Coenzyme A Carboxylase alpha (Ser1263) by NATs.The Anti-Acetyl Coenzyme A Carboxylase alpha (Ser1263) is a α- or alpha protein sometimes glycoprotein present in blood.This antibody needs to be stored at + 4°C in a fridge short term in a concentrated dilution. (polabo.com)
  • straightforward off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition originated. (healthcarecoremeasures.com)
  • Fig. 1 Acetyl-CoA carboxylase response scheme. (healthcarecoremeasures.com)
  • Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. (uchicago.edu)
  • Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. (nih.gov)
  • The bifunctional bacterial enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the two-step formation of UDP-GlcNAc, a fundamental precursor in bacterial cell wall biosynthesis. (rcsb.org)
  • ACC is a biotin-containing enzyme which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. (polabo.com)
  • Decanoyl coenzyme A (Decanoyl CoA) is coupled with S-adenosylmethionine (SAM) by Vibrio cholera CqsA enzyme to produce a potent quorum-sensing molecule, 3-aminotridec-2-en-4-one (Ea-CAI-1. (sigmaaldrich.com)
  • 12q14 (Sanfilippo syndrome): The diagnosis requires a specific lysosomal enzyme assay for glucosamine ( N -acetyl)-6-sulfatase (GNS) activity. (medscape.com)
  • Trifunctional enzyme subunit beta, mitochondrial (TP-beta) also known as 3-ketoacyl-CoA thiolase , acetyl-CoA acyltransferase , or beta-ketothiolase is an enzyme that in humans is encoded by the HADHB gene . (wikidoc.org)
  • Histone acetylation that controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs), as one of major epigenetic mechanisms controls transcription and its abnormal regulation was implicated in various aspects of cancer. (bvsalud.org)
  • Aerobic respiration has four stages: Glycolysis, formation of acetyl coenzyme A, the citric acid cycle, and the electron transport chain. (livestrong.com)
  • Two turns of the citric acid cycle are required to break down the original acetyl coenzyme A from the single glucose molecule. (livestrong.com)
  • Acetyl-CoA is a precursor to fatty acid and cholesterol synthesis and an important starting compound for the citric acid cycle. (sigmaaldrich.com)
  • This cDNA was functionally expressed in Escherichia coli, and its gene product displayed acetyl-coenzyme A:geraniol acetyltransferase enzymatic activity in vitro. (huji.ac.il)
  • BACKGROUND: Carnitine acetyltransferase catalyzes the reversible conversion of acetyl-coenzyme A (CoA) into acetylcarnitine. (ox.ac.uk)
  • Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. (degruyter.com)
  • Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation. (nih.gov)
  • Acetyl-CoA also serves as a precursor for the synthesis of acetylcholine and as the donor for acetyl groups for post-translational acetylation reactions of histone and non-histone proteins. (sigmaaldrich.com)
  • The next step in aerobic respiration is the formation of acetyl coenzyme A. In this step, pyruvate is brought into the mitochondria to be oxidized, creating a 2-carbonacetyl group. (livestrong.com)
  • Under ____ conditions, pyruvate is changed to Acetyl Coenzyme A. 1. (flashcardmachine.com)
  • Acetyl-coenzyme A transporter 1 also known as solute carrier family 33 member 1 (SLC33A1) is a protein that in humans is encoded by the SLC33A1 gene. (wikipedia.org)
  • The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. (nih.gov)
  • The HADHB protein catalyzes the final step of beta-oxidation, in which 3-ketoacyl CoA is cleaved by the thiol group of another molecule of Coenzyme A . The thiol is inserted between C-2 and C-3, which yields an acetyl CoA molecule and an acyl CoA molecule, which is two carbons shorter. (wikidoc.org)
  • In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. (nih.gov)
  • The enzymatic activity of isolated bacterial CT was frequently assayed within the invert (nonphysiological) path using the radioactivity assay that assessed the biotin-dependent decarboxylation of radiolabeled malonyl-CoA or where acetyl-CoA creation was combined towards the citrate synthase-malate dehydrogenase response and NAD+ decrease was supervised spectrophotometrically at 340 nm [12]. (healthcarecoremeasures.com)
  • Andrew Lessman's Memory and Brain with Acetyl L-Carnitine (ALC)provides our most comprehensive, natural support for memory, brain and mental acuity. (hsn.com)
  • We begin with 500 mg of Acetyl L-Carnitine (ALC), a building block for Acetylcholine (our primary neurotransmitter) and recognized for its role in energy production within the brain. (hsn.com)
  • Animal studies indicate that the combination of Alpha Lipoic Acid and Acetyl L-Carnitine helps promote metabolic functioning to fight against free radicals and oxidative stress. (puritan.com)
  • As a supplement ACETYL L-CARNITINE 400MG W/ALPHA LIPOIC ACID 200MG capsules can be used as part of a healthy aging program. (puritan.com)
  • Productive utilization of CO 2 relies on a set of oxygen sensitive metalloenzymes exploiting the metal organic chemistry of nickel and cobalt to synthesize acetyl-CoA from activated one-carbon compounds. (degruyter.com)
  • In addition to the central catalysts, CO dehydrogenase and acetyl-CoA synthase, ATPases are needed in the pathway. (degruyter.com)
  • The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. (nih.gov)
  • Cell-free extracts of petals acetylated several alcohols, utilizing acetyl-coenzyme A, to produce the corresponding acetate esters. (huji.ac.il)
  • The majority of acetate is utilized as the conjugate to coenzyme A (CoA), acetyl-CoA. (sigmaaldrich.com)
  • Here, oxaloacetate combines with the acetyl coenzyme A, creating citric acid -- the name of the cycle. (livestrong.com)
  • The first step involves a two-carbon acetyl group being transferred by coenzyme A to a four-carbon compound, oxaloacetate. (brighthub.com)
  • Resistant parasites generated in vitro showed mutations in acetyl-coenzyme A synthetase and acyl-coenzyme A synthetase 11. (tropiq.nl)
  • Recently Kroeger created a high-throughput assay for mammalian ACC where radiolabeled acetyl-CoA was found in an ACC/fatty acidity synthase combined assay and radiolabeled palmitic acidity was discovered [17]. (healthcarecoremeasures.com)
  • The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. (osti.gov)
  • The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in complex with both AcCoA and the end product UDP-GlcNAc, have been determined and refined to 2.3, 2.5, and 1.75 A, respectively. (rcsb.org)
  • We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. (osti.gov)
  • Cycling of acetyl-CoA through acetylcarnitine appears key to matching instantaneous acetyl-CoA supply with metabolic demand, thereby helping to balance myocardial substrate supply and contractile function. (ox.ac.uk)
  • The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. (osti.gov)
  • Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. (osti.gov)
  • article{osti_1500021, title = {Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway}, author = {Yu, Hong and Li, Xiaoqian and Duchoud, Fabienne and Chuang, Derrick S. and Liao, James C.}, abstractNote = {The Calvin-Benson-Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. (osti.gov)
  • The cycling of acetyl-coenzyme A through acetylcarnitine buffers cardiac substrate supply: a hyperpolarized 13C magnetic resonance study. (ox.ac.uk)
  • This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. (osti.gov)
  • The reductive acetyl-coenzyme A (acetyl-CoA) pathway, also known as the Wood-Ljungdahl pathway, allows reduction and condensation of two molecules of carbon dioxide (CO 2 ) to build the acetyl-group of acetyl-CoA. (degruyter.com)
  • Once the acetyl CoA is produced, it has to be completely broken down by entering the Krebs cycle. (brighthub.com)
  • This 2-carbon acetyl group then binds with coenzyme A, forming acetyl coenzyme A. The acetyl coenzyme A is then brought back into the mitochondria for use in the next step. (livestrong.com)
  • The fourth step involves carbon dioxide being taken out again, the oxidation of the alpha-ketoglutarate, and the adding of coenzyme A. Succinyl-CoA, a four-carbon compound is then formed. (brighthub.com)