A plant genus of the family FABACEAE. Members contain ABRIN.
A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally.
Ribosome inactivating proteins consisting of two polypeptide chains, the toxic A subunit and a lectin B subunit, linked by disulfide bridges. The lectin portion binds to cell surfaces and facilitates transport into the ENDOPLASMIC RETICULUM.
A plant genus of the family EUPHORBIACEAE, order Euphorbiales, subclass Rosidae. The seed of Ricinus communis L. is the CASTOR BEAN which is the source of CASTOR OIL; RICIN; and other lectins.
Specific, characterizable, poisonous chemicals, often PROTEINS, with specific biological properties, including immunogenicity, produced by microbes, higher plants (PLANTS, TOXIC), or ANIMALS.
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms.
A toxic lectin from the seeds of jequirity, Abrus precatorius L. Very active poison. Five different proteins have so far been isolated: Abrus agglutinin, the component responsible for: hemagglutinating activity, & abrins a-d, the toxic principals each consisting of two peptide chains are held together by disulfide bonds.
Semisynthetic conjugates of various toxic molecules, including RADIOACTIVE ISOTOPES and bacterial or plant toxins, with specific immune substances such as IMMUNOGLOBULINS; MONOCLONAL ANTIBODIES; and ANTIGENS. The antitumor or antiviral immune substance carries the toxin to the tumor or infected cell where the toxin exerts its poisonous effect.
A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.
Plant-derived ribosome-inactivating protein (RIP) purified from the Chinese medicinal herb tian-hua-fen which is obtained from the root tubers of Trichosanthes kirilowii. It has been used as an abortifacient and in the treatment of trophoblastic tumors. GLQ223 (Compound Q), a highly purified form of trichosanthin, has been proposed as antiviral treatment for AIDS.
Parasitic plants that form a bushy growth on branches of host trees which are in the order Santalales. It includes the Christmas mistletoe family (VISCACEAE), the showy mistletoe family (LORANTHACEAE) and the catkin mistletoe family (Eremolepidaceae). The composition of toxins, lectins, tyramine, phenethylamines, and other compounds may be affected by the host.
Ribosome inactivating proteins consisting of only the toxic A subunit, which is a polypeptide of around 30 kDa.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
Antisera from immunized animals that is purified and used as a passive immunizing agent against specific BACTERIAL TOXINS.
'Carcinoma, Krebs 2' is a histological variant of lung adenocarcinoma, characterized by the presence of mucin-producing columnar cells arranged in papillary or glandular structures, often with psammoma body formation, and typically associated with a better prognosis compared to other types of lung adenocarcinoma.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells.
Chemicals that are used to cause the disturbance, disease, or death of humans during WARFARE.
A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein.
Constituent of the 60S subunit of eukaryotic ribosomes. 28S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes.
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES.
Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins.
A phenothiazine with actions similar to CHLORPROMAZINE. It is used as an antipsychotic and an antiemetic.
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
Glycoprotein molecules on the surface of B- and T-lymphocytes, that react with molecules of antilymphocyte sera, lectins, and other agents which induce blast transformation of lymphocytes.
The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Protein factors uniquely required during the elongation phase of protein synthesis.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
The rate dynamics in chemical or physical systems.
Antibodies produced by a single clone of cells.
Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Established cell cultures that have the potential to propagate indefinitely.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Proteins prepared by recombinant DNA technology.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.

Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding. (1/73)

The effects of pH and ligand binding on the stability of abrin II, a heterodimeric ribosome-inactivating protein, and its subunits have been studied using high-sensitivity differential scanning calorimetry. At pH7.2, the calorimetric scan consists of two transitions, which correspond to the B-subunit [transition temperature (Tm) 319.2K] and the A-subunit (Tm 324.6K) of abrin II, as also confirmed by studies on the isolated A-subunit. The calorimetric enthalpy of the isolated A-subunit of abrin II is similar to that of the higher-temperature transition. However, its Tm is 2.4K lower than that of the higher-temperature peak of intact abrin II. This indicates that there is some interaction between the two subunits. Abrin II displays increased stability as the pH is decreased to 4.5. Lactose increases the Tm values as well as the enthalpies of both transitions. This effect is more pronounced at pH7.2 than at pH4.5. This suggests that ligand binding stabilizes the native conformation of abrin II. Analysis of the B-subunit transition temperature as a function of lactose concentration suggests that two lactose molecules bind to one molecule of abrin II at pH7.2. The presence of two binding sites for lactose on the abrin II molecule is also indicated by isothermal titration calorimetry. Plotting DeltaHm (the molar transition enthalpy at Tm) against Tm yielded values for DeltaCp (change in excess heat capacity) of 27+/-2 kJ.mol-1.K-1 for the B-subunit and 20+/-1 kJ.mol-1.K-1 for the A-subunit. These values have been used to calculate the thermal stability of abrin II and to surmise the mechanism of its transmembrane translocation.  (+info)

Restoration of lectin activity to an inactive abrin B chain by substitution and mutation of the 2 gamma subdomain. (2/73)

Abrin is a heterodimeric plant protein that occurs in several isoforms (abrin-a, abrin-b, abrin-c and abrin-d), whose B chains are believed to either have (abrin-a and abrin-d) or lack (abrin-b and abrin-c) the ability to bind galactose. The 5' signal sequence and toxin B chain (ATB)-coding region were excised from a preproabrin cDNA [K. A. Wood, J. M. Lord, E. J. Wawrzynczak, and M. Piatak (1991) Eur. J. Biochem. 198, 723-732], tentatively identified as abrin-c, which was predicted to lack lectin activity, and fused in-frame to generate pre-ATB cDNA. Transcripts, synthesized in vitro from pre-ATB cloned into the transcription vector pSP64T, were expressed after microinjection into Xenopus oocytes. The recombinant ATB was shown, using a qualitative sugar-binding assay, to be devoid of lectin activity. Lectin activity could not be restored to this nonbinding ATB by replacing the 2 gamma subdomain with the corresponding galactose-binding 2 gamma subdomain from ricin B chain, but it was restored by replacement with the active galactose-binding 2 gamma subdomain from a different abrin isoform (abrin-a). The putative galactose-binding pocket of the nonbinding ATB 2 gamma subdomain contained a His residue at the position occupied by a residue with an aromatic side chain (Tyr or Trp) in functional 2 gamma subdomains. Mutationally converting this His to either Tyr or Trp restored lectin activity to the nonbinding ATB, emphasizing the contribution of an aromatic side chain in a functional 2 gamma subdomain galactose-binding site for members of this lectin family.  (+info)

Primary structure of hemolytic lectin CEL-III from marine invertebrate Cucumaria echinata and its cDNA: structural similarity to the B-chain from plant lectin, ricin. (3/73)

CEL-III, a galactose/N-acetylgalactosamine (Gal/GalNAc) specific lectin purified from a marine invertebrate Cucumaria echinata has a strong hemolytic activity especially toward human and rabbit erythrocytes. We determined the primary structure of the CEL-III by examining the amino acid sequences of the protein and the nucleotide sequence of the cDNA. The cDNA encoding CEL-III has 1823 nucleotides and an open reading frame of 1296 nucleotides. CEL-III is composed of 432 amino acid residues with a M(r) of 47 inverted question mark omitted inverted question mark457 and has six internal tandem repeats, each with of 40-50 amino acids, comprising the N-terminal two-thirds of the molecule. Similar repeats are found in the B-chains of cytotoxic plant lectins, such as ricin and abrin, where six repetitive sequences extend throughout the molecules. A hydropathy plot predicts hydrophobic segments in the C-terminal region of CEL-III. These findings suggest that the N-terminal region of CEL-III plays an important role in binding to carbohydrate receptors on the target cell membranes, an event which triggers an intermolecular hydrophobic interaction of the C-terminal region, the result being oligomerization of CEL-III to lead to pore-formation in erythrocyte membrane.  (+info)

Primary structure and function analysis of the Abrus precatorius agglutinin A chain by site-directed mutagenesis. Pro(199) Of amphiphilic alpha-helix H impairs protein synthesis inhibitory activity. (4/73)

Abrus agglutinin (AAG), a low-toxicity protein from the plant Abrus precatorius, is less lethal than abrina (ABRa) in mice (LD(50) = 5 mg/kg versus 20 microg/kg of body weight). Nucleotide sequence analysis of a cDNA clone encoding full-length AAG showed an open reading frame with 1641 base pairs, corresponding to a 547-amino acid residue preproprotein containing a signal peptide and a linker region (two amino acid residues) between the AAG-A and AAG-B subunits. AAG had high homology to ABRa (77.8%). The 13 amino acid residues involved in catalytic function, which are highly conserved among abrins and ricins, were also conserved within AAG-A. The protein synthesis inhibitory activity of AAG-A (IC(50) = 3.5 nM) was weaker than that of ABRa-A (0.05 nM). Molecular modeling followed by site-directed mutagenesis showed that Pro(199) of AAG-A, located in amphiphilic helix H and corresponding to Asn(200) of ABRa-A, can induce bending of helix H. This bending would presumably affect the binding of AAG-A to its target sequence, GpApGpAp, in the tetraloop structure of the 28 S rRNA subunit and could be one of the major factors contributing to the relatively weak protein synthesis inhibitory activity and toxicity of AAG.  (+info)

Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. (5/73)

Abrin A-chain (ABRA) inhibits protein synthesis by its N-glycosidase activity as well as induces apoptosis, but the molecular mechanism of ABRA-induced cell death has been obscure. Using an ABRA mutant that lacks N-glycosidase activity as bait in a yeast two-hybrid system, a 30-kDa antioxidant protein-1 (AOP-1) was found to be an ABRA(E164Q)-interacting protein. The interaction was further confirmed in vitro by a glutathione S-transferase pull-down assay. The colocalization of endogenous AOP-1 and exogenous ABR proteins in the cell was demonstrated by confocal immunofluorescence. We also demonstrated that ABRA attenuates AOP-1 antioxidant activity in a dose-dependent manner and the intracellular level of reactive oxygen species (ROS) increases in ABR-treated cells. Moreover, ROS scavengers N-acetylcysteine and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl delayed programmed cell death. This indicates that ROS are important mediators of ABR-induced apoptosis. When ectopically expressed, AOP-1 blocked the release of cytochrome c and prevented apoptosis in ABR-treated cells. These findings suggest that the binding of ABRA to AOP-1 promotes apoptosis by inhibiting the mitochondrial antioxidant protein AOP-1, resulting in the increase of intracellular ROS and the release of cytochrome c from the mitochondria to the cytosol, which activates caspase-9 and caspase-3.  (+info)

Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. (6/73)

A sensitive test system for toxin-treated ribosomes was worked out by treating rabbit reticulocyte ribosomes with abrin A-chain, ricin A-chain or ricinus agglutinin A-chain, adding neutralizing amounts of specific antitoxins and testing for polyphenylalanine-synthesizing activity in a system where the concentration of elongation factors and ribosomes were varied. The strongest inhibition was obtained in the presence of low concentrations of elongation factor (EF-2). The activity of the ribosomes decreased with time of incubation with the toxin A-chains. Addition of anti-toxins stopped further inactivation. In systems containing untreated and toxin-treated ribosomes the ability to polymerize phenylalanine was proportional to the concentration of untreated ribosomes. There was a linear relationship between toxin A-chain concentration and the number of ribosomes inactivated per minute. The inactivation rate increased with temperature, and the estimated activation energy was 10.6 kcal (44.3 kJ). Linewaver-Burk plots of the data obtained by incubating various ribosome concentrations with toxins indicated a molecular activity of about 1500 ribosomes/minute for abrin and ricin A-chains and 100 ribosomes/minute for ricinus agglutinin A-chain. The apparent Michaelis constant was 0.1-0.2 muM for all three A-chains. The activity of the A-chains in the intact cell is discussed.  (+info)

Suppression of DTT-induced aggregation of abrin by alphaA- and alphaB-crystallins: a model aggregation assay for alpha-crystallin chaperone activity in vitro. (7/73)

The eye lens small heat shock proteins (sHSP), alphaA- and alphaB-crystallins, have been shown to function like molecular chaperones, both in vitro and in vivo. It is essential to assess the protective effect of alphaA- and alphaB-crystallins under native conditions to extrapolate the results to in vivo conditions. Insulin and alpha-lactalbumin have widely been used to investigate the chaperone mechanism of alpha-crystallin under native conditions. Due to its smaller size, insulin B-chain may not represent the binding of putative physiological substrate proteins. As it stands, the aggregation of alpha-lactalbumin and binding of alpha-crystallin to it varies under different experimental conditions. Abrin, a ribosome inactivating protein isolated from the seeds of Abrus precatorius, consists of a 30 kDa A-chain and a lectin-like B-chain of 33 kDa joined by a single disulfide bond. Reduction of the disulfide link between the two chains of abrin leads to the aggregation of the B-chain. In this study, we demonstrate that dithiothreitol (DTT)-induced aggregation of abrin B-chain could be monitored by light scattering similar to that of insulin. Moreso, this process could be suppressed by recombinant human alphaA- and alphaB-crystallins in a concentration dependent manner, notably by binding to aggregation prone abrin B-chain. SDS-PAGE and HPLC gel filtration analysis indicate that there is a soluble complex formation between alpha-crystallin and abrin B-chain. Interestingly, in contrast to insulin, there is no significant difference between alphaA- and alphaB-crystallin in suppressing the aggregation of abrin B-chain at two different temperatures (25 and 37 degrees C). HSP26, an another small heat shock/alpha-crystallin family protein, was also able to prevent the DTT-induced aggregation of abrin. These results suggest that due to relatively larger size of its B-chain (33 kDa), compared to insulin B-chain (about 3 kDa), abrin may serve as a better model substrate for in vitro chaperone studies of alpha-crystallin and as well as other sHSP.  (+info)

Cloning, expression of the abrin-a A-chain in Escherichia coli and measurement of the biological activities in vitro. (8/73)

The coding sequence of abrin-a A-chain (ABRaA) gene was obtained by RT-PCR and cloned into the expression vector pET28b. The mature ABRaA has been highly expressed in the cytoplasm of Escherichia coli by 1 mmol/L IPTG induction, and the yield of the soluble recombinant protein was 4 mg/L of induced culture. The recombinant ABRaA was purified to be homogeneity. The biological activities of expressed ABRaA were demonstrated in vitro. It strongly inhibited the protein biosynthesis of rabbit reticulocyte lysates, with an IC(50) of 0.08 nmol/L. It also depurinated 28 S rRNA through cleaving at the A4324 site in rat liver ribosomes by its N-glycosidase activity. These data suggested that the recombinant ABRaA could be used for the preparation of immunotoxins as a potential cancer chemotherapeutic agent.  (+info)

'Abrus' is a term that refers to a genus of plants in the pea family (Fabaceae), specifically to the tropical and subtropical species of the genus *Abrus*. The most well-known species is *Abrus precatorius*, also known as Jequirity, Crab's Eye, or Rosary Pea. This plant has gained notoriety due to its seeds, which contain a potent toxin called abrin.

The abrin toxin is found in the seeds' endosperm and is extremely toxic if ingested or even handled and then accidentally introduced into the body through mucous membranes or broken skin. It functions by inhibiting protein synthesis within cells, leading to cell death and potentially severe health consequences, including organ failure and even death in extreme cases.

It's important to note that all parts of the *Abrus* plant contain toxic compounds, but the seeds are particularly dangerous due to their high concentration of abrin. The seeds are often used in jewelry or rosaries, and great care should be taken when handling them to avoid exposure to the toxin.

Ricin is defined as a highly toxic protein that is derived from the seeds of the castor oil plant (Ricinus communis). It can be produced as a white, powdery substance or a mistable aerosol. Ricin works by getting inside cells and preventing them from making the proteins they need. Without protein, cells die. Eventually, this can cause organ failure and death.

It is not easily inhaled or absorbed through the skin, but if ingested or injected, it can be lethal in very small amounts. There is no antidote for ricin poisoning - treatment consists of supportive care. Ricin has been used as a bioterrorism agent in the past and continues to be a concern due to its relative ease of production and potential high toxicity.

Ribosome-inactivating proteins (RIPs) are a class of toxic proteins that inhibit protein synthesis in cells by modifying ribosomal RNA. They can be found in various plants, animals, and bacteria. Type 2 RIPs are characterized by their structure, which consists of two separate polypeptide chains: an A chain with N-glycosidase activity that removes an adenine residue from a specific site on the 28S rRNA, and a B chain that facilitates the binding of the A chain to the ribosome. The B chain is a lectin domain that allows for specific recognition and binding to glycoconjugates on the cell surface, leading to internalization of the RIP into the cell. Type 2 RIPs are known for their ability to inhibit protein synthesis in both prokaryotic and eukaryotic cells, making them potential candidates for use in cancer therapy and other medical applications.

"Ricinus" is the botanical name for the castor oil plant. Its scientific name is "Ricinus communis." It is a species of flowering plant in the spurge family, Euphorbiaceae. The castor oil that comes from this plant is used in various industries and as a traditional medicine, although the raw seed is toxic due to its ricin content.

Biological toxins are poisonous substances that are produced by living organisms such as bacteria, plants, and animals. They can cause harm to humans, animals, or the environment. Biological toxins can be classified into different categories based on their mode of action, such as neurotoxins (affecting the nervous system), cytotoxins (damaging cells), and enterotoxins (causing intestinal damage).

Examples of biological toxins include botulinum toxin produced by Clostridium botulinum bacteria, tetanus toxin produced by Clostridium tetani bacteria, ricin toxin from the castor bean plant, and saxitoxin produced by certain types of marine algae.

Biological toxins can cause a range of symptoms depending on the type and amount of toxin ingested or exposed to, as well as the route of exposure (e.g., inhalation, ingestion, skin contact). They can cause illnesses ranging from mild to severe, and some can be fatal if not treated promptly and effectively.

Prevention and control measures for biological toxins include good hygiene practices, vaccination against certain toxin-producing bacteria, avoidance of contaminated food or water sources, and personal protective equipment (PPE) when handling or working with potential sources of toxins.

Plant lectins are proteins or glycoproteins that are abundantly found in various plant parts such as seeds, leaves, stems, and roots. They have the ability to bind specifically to carbohydrate structures present on cell membranes, known as glycoconjugates. This binding property of lectins is reversible and non-catalytic, meaning it does not involve any enzymatic activity.

Lectins play several roles in plants, including defense against predators, pathogens, and herbivores. They can agglutinate red blood cells, stimulate the immune system, and have been implicated in various biological processes such as cell growth, differentiation, and apoptosis (programmed cell death). Some lectins also exhibit mitogenic activity, which means they can stimulate the proliferation of certain types of cells.

In the medical field, plant lectins have gained attention due to their potential therapeutic applications. For instance, some lectins have been shown to possess anti-cancer properties and are being investigated as potential cancer treatments. However, it is important to note that some lectins can be toxic or allergenic to humans and animals, so they must be used with caution.

Abrin is a protein toxin found in the seeds of the rosary pea plant (Abrus precatorius), also known as jequirity bean. It is a highly potent toxin, similar in structure and function to ricin, which is found in castor beans. Abrin inhibits protein synthesis in cells by removing a critical adenine residue from the 28S rRNA of the 60S ribosomal subunit, thereby preventing peptide bond formation and ultimately leading to cell death.

Ingesting or inhaling abrin can cause severe illness or death in both humans and animals. Symptoms of abrin poisoning may include nausea, vomiting, diarrhea, abdominal pain, and fever, followed by respiratory distress, multi-organ failure, and potentially fatal shock. There is no antidote for abrin poisoning, and treatment is primarily supportive, focusing on managing symptoms and maintaining vital organ function.

It's important to note that abrin is classified as a potential bioterrorism agent due to its high toxicity and potential use in malicious attacks. As such, handling or coming into contact with abrin should be avoided, and any suspected exposure should be reported to medical professionals immediately.

Immunotoxins are biomolecules that combine the specificity of an antibody with the toxicity of a toxin. They are created by chemically linking a monoclonal antibody (that recognizes and binds to a specific cell surface antigen) to a protein toxin (that inhibits protein synthesis in cells). The immunotoxin selectively binds to the target cell, gets internalized, and releases the toxin into the cytosol, leading to cell death. Immunotoxins have been explored as potential therapeutic agents for targeted cancer therapy and treatment of other diseases.

Lactose is a disaccharide, a type of sugar, that is naturally found in milk and dairy products. It is made up of two simple sugars, glucose and galactose, linked together. In order for the body to absorb and use lactose, it must be broken down into these simpler sugars by an enzyme called lactase, which is produced in the lining of the small intestine.

People who have a deficiency of lactase are unable to fully digest lactose, leading to symptoms such as bloating, diarrhea, and abdominal cramps, a condition known as lactose intolerance.

Trichosanthin is a type II ribosome-inactivating protein (RIP) isolated from the root tuber of Chinese snake gourd, Trichosanthes kirilowii. It has been studied for its potential anti-cancer and anti-viral properties. In traditional Chinese medicine, it has been used to treat various ailments including skin diseases and gynecological conditions. However, it is important to note that trichosanthin can have toxic effects on the human body, particularly on the reproductive system, and its medical use is limited.

Mistletoe, in a medical context, does not have a specific definition. However, it is worth noting that mistletoe is a parasitic plant that grows on the branches of trees and shrubs. In alternative medicine, extracts from mistletoe (Viscum album) are used in Europe to treat various conditions, including cancer. The extracts are thought to stimulate the immune system and have anti-tumor properties. However, it's important to note that the use of mistletoe as a medical treatment is considered complementary and alternative medicine (CAM), and its effectiveness and safety are still being studied. It should not be used as a substitute for conventional cancer treatments.

Ribosome-inactivating proteins (RIPs) are a type of protein that can inhibit the function of ribosomes, which are the cellular structures responsible for protein synthesis. Ribosome-inactivating proteins are classified into two types: Type 1 and Type 2.

Type 1 Ribosome-Inactivating Proteins (RIPs) are defined as single-chain proteins that inhibit protein synthesis by depurinating a specific adenine residue in the sarcin-ricin loop of the large rRNA molecule within the ribosome. This results in the irreversible inactivation of the ribosome, preventing it from participating in further protein synthesis.

Type 1 RIPs are found in various plant species and have been identified as potential therapeutic agents for cancer treatment due to their ability to selectively inhibit protein synthesis in cancer cells. However, they can also be toxic to normal cells, which limits their clinical use. Examples of Type 1 RIPs include dianthin, gelonin, and trichosanthin.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Antitoxins are substances, typically antibodies, that neutralize toxins produced by bacteria or other harmful organisms. They work by binding to the toxin molecules and rendering them inactive, preventing them from causing harm to the body. Antitoxins can be produced naturally by the immune system during an infection, or they can be administered artificially through immunization or passive immunotherapy. In a medical context, antitoxins are often used as a treatment for certain types of bacterial infections, such as diphtheria and botulism, to help counteract the effects of the toxins produced by the bacteria.

I believe you are asking for a medical definition of "Krebs 2 carcinoma." In this context, "Krebs" is likely a reference to the German physician and scientist, Dr. Wilhelm Krebs, who made significant contributions to the field of cancer research. However, I could not find any specific type of carcinoma directly associated with him.

"Carcinoma 2" or "Carcinoma, Type 2" is not a standard medical classification. Carcinomas are cancers that begin in cells that line the inner or outer surfaces of certain organs. When discussing a specific carcinoma, it's usually named after the organ where it originates, such as lung carcinoma, breast carcinoma, or colon carcinoma.

If you meant to ask about a specific type of carcinoma or a particular cancer-related term in German, please provide more context so I can give you an accurate and helpful response.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Diphtheria toxin is a potent exotoxin produced by the bacterium Corynebacterium diphtheriae, which causes the disease diphtheria. This toxin is composed of two subunits: A and B. The B subunit helps the toxin bind to and enter host cells, while the A subunit inhibits protein synthesis within those cells, leading to cell damage and tissue destruction.

The toxin can cause a variety of symptoms depending on the site of infection. In respiratory diphtheria, it typically affects the nose, throat, and tonsils, causing a thick gray or white membrane to form over the affected area, making breathing and swallowing difficult. In cutaneous diphtheria, it infects the skin, leading to ulcers and necrosis.

Diphtheria toxin can also have systemic effects, such as damage to the heart, nerves, and kidneys, which can be life-threatening if left untreated. Fortunately, diphtheria is preventable through vaccination with the diphtheria, tetanus, and pertussis (DTaP or Tdap) vaccine.

Chemical warfare agents are defined as chemical substances that are intended or have the capability to cause death, injury, temporary incapacitation, or sensory irritation through their toxic properties when deployed in a military theater. These agents can be in gaseous, liquid, or solid form and are typically categorized based on their physiological effects. Common categories include nerve agents (e.g., sarin, VX), blister agents (e.g., mustard gas), choking agents (e.g., phosgene), blood agents (e.g., cyanide), and incapacitating agents (e.g., BZ). The use of chemical warfare agents is prohibited by international law under the Chemical Weapons Convention.

Molecular docking simulation is a computational method used in structural molecular biology and drug design to predict the binding orientation and affinity of two molecules, such as a protein (receptor) and a ligand (drug). It involves modeling the three-dimensional structures of the molecules and simulating their interaction using physical forces and energies. The goal is to identify the most stable and favorable binding conformation(s) between the two molecules, which can provide insights into how they interact at the molecular level and help in the design and optimization of new drugs or therapeutic agents.

Molecular docking simulations typically involve several steps, including:

1. Preparation of the receptor and ligand structures, such as adding hydrogen atoms, assigning charges, and optimizing the geometry.
2. Defining a search space or grid around the binding site of the receptor where the ligand is likely to bind.
3. Generating multiple conformations of the ligand using various algorithms, such as systematic, stochastic, or genetic algorithms.
4. Docking each ligand conformation into the receptor's binding site and scoring its binding affinity based on various energy functions, such as van der Waals forces, electrostatic interactions, hydrogen bonding, and desolvation effects.
5. Analyzing the docking results to identify the most promising binding modes and refining them using molecular dynamics simulations or other methods.

Molecular docking simulations have become an essential tool in drug discovery and development, as they can help predict the activity and selectivity of potential drugs, reduce the time and cost of experimental screening, and guide the optimization of lead compounds for further development.

28S ribosomal RNA (rRNA) is a component of the large subunit of the eukaryotic ribosome, which is the site of protein synthesis in the cell. The ribosome is composed of two subunits, one large and one small, that come together around an mRNA molecule to translate it into a protein.

The 28S rRNA is a type of rRNA that is found in the large subunit of the eukaryotic ribosome, along with the 5S and 5.8S rRNAs. Together, these rRNAs make up the structural framework of the ribosome and play a crucial role in the process of translation.

The 28S rRNA is synthesized in the nucleolus as a precursor RNA (pre-rRNA) that undergoes several processing steps, including cleavage and modification, to produce the mature 28S rRNA molecule. The length of the 28S rRNA varies between species, but it is typically around 4700-5000 nucleotides long in humans.

Abnormalities in the structure or function of the 28S rRNA can lead to defects in protein synthesis and have been implicated in various diseases, including cancer and neurological disorders.

Reticulocytes are immature red blood cells that still contain remnants of organelles, such as ribosomes and mitochondria, which are typically found in developing cells. These organelles are involved in the process of protein synthesis and energy production, respectively. Reticulocytes are released from the bone marrow into the bloodstream, where they continue to mature into fully developed red blood cells called erythrocytes.

Reticulocytes can be identified under a microscope by their staining characteristics, which reveal a network of fine filaments or granules known as the reticular apparatus. This apparatus is composed of residual ribosomal RNA and other proteins that have not yet been completely eliminated during the maturation process.

The percentage of reticulocytes in the blood can be used as a measure of bone marrow function and erythropoiesis, or red blood cell production. An increased reticulocyte count may indicate an appropriate response to blood loss, hemolysis, or other conditions that cause anemia, while a decreased count may suggest impaired bone marrow function or a deficiency in erythropoietin, the hormone responsible for stimulating red blood cell production.

Translational peptide chain elongation is the process during protein synthesis where activated amino acids are added to the growing peptide chain in a sequence determined by the genetic code present in messenger RNA (mRNA). This process involves several steps:

1. Recognition of the start codon on the mRNA by the small ribosomal subunit, which binds to the mRNA and brings an initiator tRNA with a methionine or formylmethionine amino acid attached into the P site (peptidyl site) of the ribosome.
2. The large ribosomal subunit then joins the small subunit, forming a complete ribosome complex.
3. An incoming charged tRNA with an appropriate amino acid, complementary to the next codon on the mRNA, binds to the A site (aminoacyl site) of the ribosome.
4. Peptidyl transferase, a catalytic domain within the large ribosomal subunit, facilitates the formation of a peptide bond between the amino acids attached to the tRNAs in the P and A sites. The methionine or formylmethionine initiator amino acid is now covalently linked to the second amino acid via this peptide bond.
5. Translocation occurs, moving the tRNA with the growing peptide chain from the P site to the E site (exit site) and shifting the mRNA by one codon relative to the ribosome. The uncharged tRNA is then released from the E site.
6. The next charged tRNA carrying an appropriate amino acid binds to the A site, and the process repeats until a stop codon is reached on the mRNA.
7. Upon encountering a stop codon, release factors recognize it and facilitate the release of the completed polypeptide chain from the final tRNA in the P site. The ribosome then dissociates from the mRNA, allowing for further translational events to occur.

Translational peptide chain elongation is a crucial step in protein synthesis and requires precise coordination between various components of the translation machinery, including ribosomes, tRNAs, amino acids, and numerous accessory proteins.

Protein synthesis inhibitors are a class of medications or chemical substances that interfere with the process of protein synthesis in cells. Protein synthesis is the biological process by which cells create proteins, essential components for the structure, function, and regulation of tissues and organs. This process involves two main stages: transcription and translation.

Translation is the stage where the genetic information encoded in messenger RNA (mRNA) is translated into a specific sequence of amino acids, resulting in a protein molecule. Protein synthesis inhibitors work by targeting various components of the translation machinery, such as ribosomes, transfer RNAs (tRNAs), or translation factors, thereby preventing or disrupting the formation of new proteins.

These inhibitors have clinical applications in treating various conditions, including bacterial and viral infections, cancer, and autoimmune disorders. Some examples of protein synthesis inhibitors include:

1. Antibiotics: Certain antibiotics, like tetracyclines, macrolides, aminoglycosides, and chloramphenicol, target bacterial ribosomes and inhibit their ability to synthesize proteins, thereby killing or inhibiting the growth of bacteria.
2. Antiviral drugs: Protein synthesis inhibitors are used to treat viral infections by targeting various stages of the viral replication cycle, including protein synthesis. For example, ribavirin is an antiviral drug that can inhibit viral RNA-dependent RNA polymerase and mRNA capping, which are essential for viral protein synthesis.
3. Cancer therapeutics: Some chemotherapeutic agents target rapidly dividing cancer cells by interfering with their protein synthesis machinery. For instance, puromycin is an aminonucleoside antibiotic that can be incorporated into elongating polypeptide chains during translation, causing premature termination and inhibiting overall protein synthesis in cancer cells.
4. Immunosuppressive drugs: Protein synthesis inhibitors are also used as immunosuppressants to treat autoimmune disorders and prevent organ rejection after transplantation. For example, tacrolimus and cyclosporine bind to and inhibit the activity of calcineurin, a protein phosphatase that plays a crucial role in T-cell activation and cytokine production.

In summary, protein synthesis inhibitors are valuable tools for treating various diseases, including bacterial and viral infections, cancer, and autoimmune disorders. By targeting the protein synthesis machinery of pathogens or abnormal cells, these drugs can selectively inhibit their growth and proliferation while minimizing harm to normal cells.

Trifluoperazine is an antipsychotic medication that belongs to the class of drugs called phenothiazines. It works by blocking the action of dopamine, a neurotransmitter in the brain, and helps to reduce symptoms of schizophrenia such as hallucinations, delusions, paranoia, and disordered thought. Trifluoperazine may also be used to manage anxiety or agitation in certain medical conditions. It is available in the form of tablets for oral administration. As with any medication, trifluoperazine should be taken under the supervision of a healthcare provider due to potential side effects and risks associated with its use.

Ribosomes are complex macromolecular structures composed of ribonucleic acid (RNA) and proteins that play a crucial role in protein synthesis within cells. They serve as the site for translation, where messenger RNA (mRNA) is translated into a specific sequence of amino acids to create a polypeptide chain, which eventually folds into a functional protein.

Ribosomes consist of two subunits: a smaller subunit and a larger subunit. These subunits are composed of ribosomal RNA (rRNA) molecules and proteins. In eukaryotic cells, the smaller subunit is denoted as the 40S subunit, while the larger subunit is referred to as the 60S subunit. In prokaryotic cells, these subunits are named the 30S and 50S subunits, respectively. The ribosome's overall structure resembles a "doughnut" or a "cotton reel," with grooves and binding sites for various factors involved in protein synthesis.

Ribosomes can be found floating freely within the cytoplasm of cells or attached to the endoplasmic reticulum (ER) membrane, forming part of the rough ER. Membrane-bound ribosomes are responsible for synthesizing proteins that will be transported across the ER and ultimately secreted from the cell or inserted into the membrane. In contrast, cytoplasmic ribosomes synthesize proteins destined for use within the cytoplasm or organelles.

In summary, ribosomes are essential components of cells that facilitate protein synthesis by translating mRNA into functional polypeptide chains. They can be found in various cellular locations and exist as either free-floating entities or membrane-bound structures.

Mitogen receptors are a type of cell surface receptor that become activated in response to the binding of mitogens, which are substances that stimulate mitosis (cell division) and therefore promote growth and proliferation of cells. The activation of mitogen receptors triggers a series of intracellular signaling events that ultimately lead to the transcription of genes involved in cell cycle progression and cell division.

Mitogen receptors include receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and cytokine receptors, among others. RTKs are transmembrane proteins that have an intracellular tyrosine kinase domain, which becomes activated upon ligand binding and phosphorylates downstream signaling molecules. GPCRs are seven-transmembrane domain proteins that activate heterotrimeric G proteins upon ligand binding, leading to the activation of various intracellular signaling pathways. Cytokine receptors are typically composed of multiple subunits and activate Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) proteins upon ligand binding.

Abnormal activation of mitogen receptors has been implicated in the development and progression of various diseases, including cancer, autoimmune disorders, and inflammatory conditions. Therefore, understanding the mechanisms underlying mitogen receptor signaling is crucial for the development of targeted therapies for these diseases.

Protein biosynthesis is the process by which cells generate new proteins. It involves two major steps: transcription and translation. Transcription is the process of creating a complementary RNA copy of a sequence of DNA. This RNA copy, or messenger RNA (mRNA), carries the genetic information to the site of protein synthesis, the ribosome. During translation, the mRNA is read by transfer RNA (tRNA) molecules, which bring specific amino acids to the ribosome based on the sequence of nucleotides in the mRNA. The ribosome then links these amino acids together in the correct order to form a polypeptide chain, which may then fold into a functional protein. Protein biosynthesis is essential for the growth and maintenance of all living organisms.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Peptide elongation factors are a group of proteins that play a crucial role in the process of protein synthesis in cells, specifically during the elongation stage of translation. They assist in the addition of amino acids to the growing polypeptide chain by facilitating the binding of aminoacyl-tRNAs (transfer RNAs with attached amino acids) to the ribosome, where protein synthesis occurs.

In prokaryotic cells, there are two main peptide elongation factors: EF-Tu and EF-G. EF-Tu forms a complex with aminoacyl-tRNA and delivers it to the ribosome's acceptor site (A-site), where the incoming amino acid is matched with the corresponding codon on the mRNA. Once the correct match is made, GTP hydrolysis occurs, releasing EF-Tu from the complex, allowing for peptide bond formation between the new amino acid and the growing polypeptide chain.

EF-G then enters the scene to facilitate translocation, the movement of the ribosome along the mRNA, which shifts the newly formed peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) and makes room for another aminoacyl-tRNA in the A-site. This process continues until protein synthesis is complete.

In eukaryotic cells, the equivalent proteins are called EF1α, EF1β, EF1γ, and EF2 (also known as eEF1A, eEF1B, eEF1G, and eEF2). The overall function remains similar to that in prokaryotes, but the specific mechanisms and protein names differ.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

Disulfides are a type of organic compound that contains a sulfur-sulfur bond. In the context of biochemistry and medicine, disulfide bonds are often found in proteins, where they play a crucial role in maintaining their three-dimensional structure and function. These bonds form when two sulfhydryl groups (-SH) on cysteine residues within a protein molecule react with each other, releasing a molecule of water and creating a disulfide bond (-S-S-) between the two cysteines. Disulfide bonds can be reduced back to sulfhydryl groups by various reducing agents, which is an important process in many biological reactions. The formation and reduction of disulfide bonds are critical for the proper folding, stability, and activity of many proteins, including those involved in various physiological processes and diseases.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

  • Abrin is a ribosome inhibiting protein like ricin, a toxin which can be found in the seeds of the castor oil plant, and pulchellin, a toxin which can be found in the seeds of Abrus pulchellus. (wikipedia.org)
  • In terms of structure, abrin-a is related to the lectin, ricin, produced in the seeds of Ricinus communis. (wikipedia.org)
  • According to other estimates, the LD50 value of abrin is between 10 and 1000 μg/kg and is comparable to that of ricin. (wikipedia.org)
  • Abrin resembles ricin in that it is also a type 2 ribosome-inactivating protein (RIP-II) and has a similar mode of action, but abrin's effect is more potent than ricin's. (wikipedia.org)
  • Abrin, like the similar plant toxin ricin, causes toxicity by inhibiting the formation (synthesis) of proteins in the cells of the exposed individual. (cdc.gov)
  • Abrin (and ricin) may cause severe allergic reactions. (cdc.gov)
  • Abrin is similar to ricin, a toxin that also is found in the seeds of a plant (the castor bean plant). (cdc.gov)
  • Abrin is a type II RIP obtained from the mature seeds of Abrus precatorius plant that is extremely toxic and has been shown to be 75 times more potent than its well studied sister toxin, ricin. (iisc.ac.in)
  • Ricin and abrin are ribosome-inactivating proteins, which can be easily and cheaply extracted, thus they can become potential biothreat agents. (phiab.com)
  • have developed a ricin and abrin activity assay based on the digital holographic microscopy (HoloMonitor M4) evaluation of cells following intoxication. (phiab.com)
  • Effects of ricin and abrin intoxication on cell lines were characterized by a decrease in cell confluence, reduced cell division, and smaller cell counts compared to untreated cells. (phiab.com)
  • Authors conclude that HoloMonitor M4 can be applied for early and sensitive detection of ricin and abrin, as well as other toxins and substances, effects in cellular features upon toxin-mediated cell death processes. (phiab.com)
  • 11. Garber E. A. E. Toxicity and detection of ricin and abrin in beverages // Journal of food protection. (medline.ru)
  • 12. Garber E. A. E., Venkateswaran K. V., OBrien T. W. Simultaneous multiplex detection and confirmation of the proteinaceous toxins abrin, ricin, botulinum toxins, and Staphylococcus enterotoxins A, B, and C in food // Journal of agricultural and food chemistry. (medline.ru)
  • New immune-based methods are being developed to enable rapid and sensitive detection of toxins in food substrates, such as C. botulinum, ricin, and abrin. (fda.gov)
  • Fortunately it lacks a lectin domain or subunit such as Abrin or Ricin. (drugsandpoisons.com)
  • Antitumor effects of abrin and ricin used singly and in combination with cisplatin. (musc.edu)
  • Abrin can also be transmitted through the skin via small pellets or projectiles designed to carry toxin. (cdc.gov)
  • In spite of abrin being a potential bio-warfare agent, there is no antidote or vaccine available against this toxin till date. (iisc.ac.in)
  • The study reported in the thesis focuses on understanding the mechanism of neutralization of abrin by the mAb D6F10 and development of a potential vaccine candidate against the toxin. (iisc.ac.in)
  • Jequirity beans contain abrin, a related and even more potent toxin. (msdmanuals.com)
  • However, the seed coating of the jequirity bean is often not intact, and simple bacterial digestion can release the abrin toxin. (msdmanuals.com)
  • Abrin is a potent toxin obtained from the seeds of Abrus precatorius. (iisc.ac.in)
  • Detection of abrin holotoxin using novel monoclonal antibodies //Toxins. (medline.ru)
  • other vegetable toxins, such as abrin and resin , and many animal poisons, such as snake venom and eel serum . (dictionary.net)
  • Abrin is an extremely toxic toxalbumin found in the seeds of the rosary pea (or jequirity pea), Abrus precatorius. (wikipedia.org)
  • Abrin is an extremely toxic plant protein derived from the seeds of the plant Abrus precatorius . (cdc.gov)
  • Abrus precatorius agglutinin (APA) is a homologue of abrin obtained from the same plant source. (iisc.ac.in)
  • Abrin is a toxalbumin made by Abrus precatorius (Rosary Pea, Crab's Eyes, Jequirity), a vine that produces pea-sized bright red with a black splotch seeds that are used as beads and to make rattles. (drugsandpoisons.com)
  • However, due to its high toxicity and the possibility of being processed into an aerosol, the use of abrin as a biological weapon is possible in principle. (wikipedia.org)
  • Exposure to abrin on the skin can cause an allergic reaction, indicated by blisters, redness, irritation, and pain, however, there is no evidence of toxicity after skin contact has been made. (wikipedia.org)
  • In clinical studies involving cancer patients, up to 0.3 μg/kg intravenous of abrin immunotoxin was tolerated without the development of serious symptoms of toxicity. (wikipedia.org)
  • The toxicity of abrin is also increased if it is inhaled. (wikipedia.org)
  • The first and only neutralizing monoclonal antibody (mAb) against abrin, namely D6F10, was reported from our laboratory and has been shown to rescue toxicity of abrin in cells as well as in mice. (iisc.ac.in)
  • The brightly coloured seeds of this plant contain about 0.08% of abrin. (wikipedia.org)
  • Abrin naturally occurs in the seeds of the rosary pea, a plant common to tropical regions that is occasionally employed as an herbal remedy for certain conditions. (wikipedia.org)
  • Abrin is a natural poison that is found in the seeds of a plant called the rosary pea or jequirity pea. (cdc.gov)
  • The seeds of the rosary pea have been used to make beaded jewelry, which can lead to abrin poisoning if the seeds are swallowed. (cdc.gov)
  • It would take a deliberate act to obtain abrin from rosary pea seeds and use it to poison people. (cdc.gov)
  • These seeds, although chock full of abrin, have a hard water-resistant coat, meaning that if you ingest them they are only toxic if they are chewed or broken. (drugsandpoisons.com)
  • The study also highlights that chimeric protein constructs could possibly be developed as potential vaccine candidates for neutralization of abrin intoxication. (iisc.ac.in)
  • This involved the use of explosives filled with the potent poison abrin, discovered as part of a series of arrests across the country following the stabbing of the-then chief security minister Wiranto. (thediplomat.com)
  • The LD50 dose for abrin is only 2.8 µg/kg body weight of mice and its potential use in bio-warfare is a cause of major concern. (iisc.ac.in)
  • Colloidal Gold-Based Immunochromatographic Test Strip for Rapid Detection of Abrin in Food Samples // Journal of food protection. (medline.ru)
  • 13. Garber E. A. E., Walker J. L., O'BRIEN T. W. Detection of abrin in food using enzyme-linked immunosorbent assay and electrochemiluminescence technologies // Journal of food protection. (medline.ru)
  • The severity of the effects of abrin poisoning vary on the means of exposure to the substance (whether inhaled, ingested, or injected). (wikipedia.org)
  • Exposure to even a small amount of abrin may be fatal. (cdc.gov)
  • Accidental exposure to abrin is not likely. (cdc.gov)
  • The major signs and symptoms of abrin poisoning depend on how someone was exposed (route of exposure) how much they were exposed to (dose). (cdc.gov)
  • Initial signs and symptoms of abrin poisoning by breathing in or swallowing are likely to occur within 8 hours of exposure. (cdc.gov)
  • Skin and eye exposure: Abrin in the powder or mist form can cause redness and pain of the skin and the eyes. (cdc.gov)
  • Death from abrin poisoning could take place within 36 to 72 hours of exposure, depending on the route of exposure (inhalation, ingestion, or injection) and the dose received. (cdc.gov)
  • Because no antidote exists for abrin, the most important factor is avoiding abrin exposure in the first place. (cdc.gov)
  • If exposure cannot be avoided, the most important factor is getting the abrin off or out of the body as quickly as possible. (cdc.gov)
  • Abrin is only formed in nature by the rosary pea. (wikipedia.org)
  • Despite this, the rosary pea yields small quantities of abrin, which reduces the risk. (wikipedia.org)
  • The rosary pea, which is the source of abrin, is common to many tropical areas throughout the world and is sometimes used as an herbal remedy. (cdc.gov)
  • Whatever Chamberlain may have done to mask his URL and to allegedly shop for deadly poisons like abrin and pure nicotine, he was quickly identified when the FBI questioned sellers who had done business with him and shipped him these things. (sfist.com)
  • Abrin is a stable substance, meaning that it can last for a long time in the environment despite extreme conditions such as very hot or very cold temperatures. (cdc.gov)
  • Abrin can be absorbed into the body through ingestion, inhalation, or eye contact. (cdc.gov)
  • Abrin-a is the most potent of the four isotoxins, encoded for by an intron-free gene, and consists of two subunits or chains, A and B. The primary product of protein biosynthesis, preproabrin, consists of a signal peptide sequence, the amino acid sequences for subunits A and B, and a linker. (wikipedia.org)
  • Abrin works by binding to and penetrating the cells of the body, inhibiting cell protein synthesis after being transported to the endoplasmic reticulum (ER). (wikipedia.org)
  • Analysis of the crystal structure of abrin A chain revealed that a helix spanning the amino acids 148-167 was present at the core of the protein structure and truncation in this region of the protein possibly results in loss of conformation leading to abrogation of antibody binding. (iisc.ac.in)
  • Furthermore, the mAb D6F10 rescues inhibition of protein synthesis by abrin in HeLa cells by internalizing in cells along with abrin and possibly occluding the active site cleft of ABA. (iisc.ac.in)
  • Within a few hours of breathing in significant amounts of abrin, the likely signs and symptoms would be difficulty breathing (respiratory distress), fever, cough, nausea, and tightness in the chest. (cdc.gov)
  • Showing these signs and symptoms does not necessarily mean that a person has been exposed to abrin. (cdc.gov)
  • Indoor Air: Abrin can be released into indoor air as fine particles (aerosol). (cdc.gov)
  • Agricultural: If abrin is released into the air as fine particles (aerosol), it has the potential to contaminate agricultural products. (cdc.gov)
  • The A chains of abrin and APA share 67% sequence identity and their crystal structures superimpose very well but unlike abrin the APA A chain does not bind the mAb D6F10. (iisc.ac.in)
  • Abrin can be made in the form of a powder, a mist, or a pellet, or it can be dissolved in water. (cdc.gov)
  • You could breathe in (inhale) abrin if it is in the form of a mist or a powder. (cdc.gov)
  • A molecule of abrin-a has a total of 528 amino acids and is about 65 kDa in mass. (wikipedia.org)
  • Abrin causes illness by getting inside the cells of a person's body and preventing the cells from making the proteins they need. (cdc.gov)
  • Abrin has been classified as a select agent by the Centre for Disease Control and Prevention, U.S.A., because it is stable, effective at very low concentrations and easy to purify and disseminate in large amounts. (iisc.ac.in)
  • Someone who swallows a significant amount of abrin would develop vomiting and diarrhea that may become bloody. (cdc.gov)
  • Abrin has been shown to act as an immunoadjuvant in the treatment of cancer in mice. (wikipedia.org)
  • Abrin-a is formed after the cleavage of a signal peptide sequence and post-translational modifications such as glycosylation and disulfide bridge formation in the endoplasmic reticulum (ER). (wikipedia.org)
  • Abrin is used in medical research because of its potential as a treatment to kill cancer cells. (cdc.gov)
  • Abrin has some potential medical uses, such as in treatment to kill cancer cells. (cdc.gov)
  • Effects of abrin poisoning depend on whether abrin was breathed in, swallowed, or injected. (cdc.gov)
  • In the hospital, abrin poisoning is treated by giving victims supportive medical care to minimize the effects of the poisoning. (cdc.gov)
  • You could swallow (ingest) abrin if it is in food or water. (cdc.gov)
  • By attaching its non-specifically binding B chain, which acts as a haptomer, to the carbohydrate chain of a glycoprotein on the cell surface, the abrin molecule anchors itself to the cell, and is subsequently engulfed, however, both specific and nonspecific binding result in the uptake of abrin via endocytosis, as well as the activation of the A chain, caused by the cleavage of the B chain. (wikipedia.org)
  • Water: Abrin can be used to contaminate water. (cdc.gov)
  • Care could include helping victims breathe, giving them intravenous fluids (fluids given through a needle inserted into a vein), giving them medications to treat conditions such as seizure and low blood pressure, administering activated charcoal (if the abrin was very recently swallowed), or washing out their eyes with water if their eyes are irritated. (cdc.gov)
  • Abrin is classed as a "select agent" under U.S. law. (wikipedia.org)
  • Abrin can be absorbed through abraded skin or through wounds, but probably not through intact skin, unless it is carried in a solvent that enhances absorption. (cdc.gov)
  • You could be exposed if you touch surfaces on which abrin particles or droplets have landed, or if particles or droplets of abrin land on your skin or in your eyes. (cdc.gov)
  • Pellets of abrin, or abrin dissolved in a liquid, could be injected into a person's body. (cdc.gov)

No images available that match "abrin"