A replication-defective strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) capable of transforming lymphoid cells and producing a rapidly progressing lymphoid leukemia after superinfection with FRIEND MURINE LEUKEMIA VIRUS; MOLONEY MURINE LEUKEMIA VIRUS; or RAUSCHER VIRUS.
Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice.
Transforming proteins encoded by the abl oncogenes. Oncogenic transformation of c-abl to v-abl occurs by insertional activation that results in deletions of specific N-terminal amino acids.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk.
An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus.
Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) isolated from spontaneous leukemia in AKR strain mice.
A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) producing leukemia of the reticulum-cell type with massive infiltration of liver, spleen, and bone marrow. It infects DBA/2 and Swiss mice.
Retrovirus-associated DNA sequences (abl) originally isolated from the Abelson murine leukemia virus (Ab-MuLV). The proto-oncogene abl (c-abl) codes for a protein that is a member of the tyrosine kinase family. The human c-abl gene is located at 9q34.1 on the long arm of chromosome 9. It is activated by translocation to bcr on chromosome 22 in chronic myelogenous leukemia.
A neoplasm originating from thymic tissue, usually benign, and frequently encapsulated. Although it is occasionally invasive, metastases are extremely rare. It consists of any type of thymic epithelial cell as well as lymphocytes that are usually abundant. Malignant lymphomas that involve the thymus, e.g., lymphosarcoma, Hodgkin's disease (previously termed granulomatous thymoma), should not be regarded as thymoma. (From Stedman, 25th ed)
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
Viruses which enable defective viruses to replicate or to form a protein coat by complementing the missing gene function of the defective (satellite) virus. Helper and satellite may be of the same or different genus.
Established cell cultures that have the potential to propagate indefinitely.
Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene.
The functional hereditary units of VIRUSES.
A species of GAMMARETROVIRUS causing leukemia, lymphosarcoma, immune deficiency, or other degenerative diseases in cats. Several cellular oncogenes confer on FeLV the ability to induce sarcomas (see also SARCOMA VIRUSES, FELINE).
Proteins found in any species of virus.
Species of GAMMARETROVIRUS isolated from fibrosarcoma in cats. The viruses are actually recombinant feline leukemia viruses (FeLV) where part of the genome has been replaced by cellular oncogenes. It is unique to individuals and not transmitted naturally to other cats. FeSVs are replication defective and require FeLV to reproduce.
A strain of MURINE LEUKEMIA VIRUS associated with mouse tumors similar to those caused by the FRIEND MURINE LEUKEMIA VIRUS. It is a replication-competent murine leukemia virus. It can act as a helper virus when complexing with a defective transforming component, RAUSCHER SPLEEN FOCUS-FORMING VIRUS.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
Virus diseases caused by the RETROVIRIDAE.
The type species of DELTARETROVIRUS that causes a form of bovine lymphosarcoma (ENZOOTIC BOVINE LEUKOSIS) or persistent lymphocytosis.
Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Deoxyribonucleic acid that makes up the genetic material of viruses.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.
Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES).
Inbred AKR mice are a strain of laboratory mice that are homozygous at all gene loci and have a high incidence of developing certain diseases, such as leukemia and autoimmune disorders, making them useful for research purposes in biomedicine.
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
A general term for various neoplastic diseases of the lymphoid tissue.
Strains of MURINE LEUKEMIA VIRUS discovered in 1976 by Hartley, Wolford, Old, and Rowe and so named because the viruses originally isolated had the capacity to transform cell foci in mink cell cultures. MCF viruses are generated by recombination with ecotropic murine leukemia viruses including AKR, Friend, Moloney, and Rauscher, causing ERYTHROLEUKEMIA and severe anemia in mice.
An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49.
Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology.
Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen.
Infections produced by oncogenic viruses. The infections caused by DNA viruses are less numerous but more diverse than those caused by the RNA oncogenic viruses.
A genus of RETROVIRIDAE comprising endogenous sequences in mammals, related RETICULOENDOTHELIOSIS VIRUSES, AVIAN, and a reptilian virus. Many species contain oncogenes and cause leukemias and sarcomas.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS.
A species of GAMMARETROVIRUS causing leukemia in the gibbon ape. Natural transmission is by contact.
Ribonucleic acid that makes up the genetic material of viruses.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
Carnivores of genus Mustela of the family MUSTELIDAE. The European mink, which has white upper and lower lips, was widely trapped for commercial purposes and is classified as endangered. The American mink, lacking a white upper lip, is farmed commercially.
The class of heavy chains found in IMMUNOGLOBULIN M. They have a molecular weight of approximately 72 kDa and they contain about 57 amino acid residues arranged in five domains and have more oligosaccharide branches and a higher carbohydrate content than the heavy chains of IMMUNOGLOBULIN G.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
Conditions in which the abnormalities in the peripheral blood or bone marrow represent the early manifestations of acute leukemia, but in which the changes are not of sufficient magnitude or specificity to permit a diagnosis of acute leukemia by the usual clinical criteria.
A strain of PRIMATE T-LYMPHOTROPIC VIRUS 1 isolated from mature T4 cells in patients with T-lymphoproliferation malignancies. It causes adult T-cell leukemia (LEUKEMIA-LYMPHOMA, T-CELL, ACUTE, HTLV-I-ASSOCIATED), T-cell lymphoma (LYMPHOMA, T-CELL), and is involved in mycosis fungoides, SEZARY SYNDROME and tropical spastic paraparesis (PARAPARESIS, TROPICAL SPASTIC).
Ordered rearrangement of B-lymphocyte variable gene regions of the IMMUNOGLOBULIN HEAVY CHAINS, thereby contributing to antibody diversity. It occurs during the first stage of differentiation of the IMMATURE B-LYMPHOCYTES.
Any discrete, presumably solitary, mass of neoplastic PLASMA CELLS either in BONE MARROW or various extramedullary sites.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Retroviral proteins, often glycosylated, coded by the envelope (env) gene. They are usually synthesized as protein precursors (POLYPROTEINS) and later cleaved into the final viral envelope glycoproteins by a viral protease.
Retroviral proteins that have the ability to transform cells. They can induce sarcomas, leukemias, lymphomas, and mammary carcinomas. Not all retroviral proteins are oncogenic.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
A group of replication-defective viruses, in the genus GAMMARETROVIRUS, which are capable of transforming cells, but which replicate and produce tumors only in the presence of Murine leukemia viruses (LEUKEMIA VIRUS, MURINE).
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.

p53 mediates apoptotic crisis in primary Abelson virus-transformed pre-B cells. (1/205)

Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19(Arf), a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53(-/-) mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21(Cip-1), a major downstream target of p53; however, consistent with a role of p19(Arf), transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.  (+info)

Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. (2/205)

To study molecular events involved in B lymphocyte development and V(D)J rearrangement, we have established an efficient system for the differentiation of embryonic stem (ES) cells into mature Ig-secreting B lymphocytes. Here, we show that B lineage cells generated in vitro from ES cells are functionally analogous to normal fetal liver-derived or bone marrow-derived B lineage cells at three important developmental stages: first, they respond to Flt-3 ligand during an early lymphopoietic progenitor stage; second, they become targets for Abelson murine leukemia virus (A-MuLV) infection at a pre-B cell stage; third, they secrete Ig upon stimulation with lipopolysaccharide at a mature mitogen-responsive stage. Moreover, the ES cell-derived A-MuLV-transformed pre-B (EAB) cells are phenotypically and functionally indistinguishable from standard A-MuLV-transformed pre-B cells derived from infection of mouse fetal liver or bone marrow. Notably, EAB cells possess functional V(D)J recombinase activity. In particular, the generation of A-MuLV transformants from ES cells will provide an advantageous system to investigate genetic modifications that will help to elucidate molecular mechanisms in V(D)J recombination and in A-MuLV-mediated transformation.  (+info)

Drosophila abelson interacting protein (dAbi) is a positive regulator of abelson tyrosine kinase activity. (3/205)

Human and mouse Abelson interacting proteins (Abi) are SH3-domain containing proteins that bind to the proline-rich motifs of the Abelson protein tyrosine kinase. We report a new member of this gene family, a Drosophila Abi (dAbi) that is a substrate for Abl kinase and that co-immunoprecipitates with Abl if the Abi SH3 domain is intact. We have identified a new function for both dAbi and human Abi-2 (hAbi-2). Both proteins activate the kinase activity of Abl as assayed by phosphorylation of the Drosophila Enabled (Ena) protein. Removal of the dAbi SH3 domain eliminates dAbi's activation of Abl kinase activity. dAbi is an unstable protein in cells and is present at low steady state levels but its protein level is increased coincident with phosphorylation by Abl kinase. Expression of the antisense strand of dAbi reduces dAbi protein levels and abolishes activation of Abl kinase activity. Modulation of Abi protein levels may be an important mechanism for regulating the level of Abl kinase activity in the cell.  (+info)

Inhibition of v-Abl transformation by p53 and p19ARF. (4/205)

Tumorigenesis is a multistep process that involves the activation of oncogenes and the inactivation of tumor suppressor genes. The transforming activity of the v-Abl oncogene of Abelson murine leukemia virus (A-MuLV) in immortal cell lines has been well studied, while the effects of v-Abl in primary fibroblasts are less clear. Here we show that v-Abl causes cell cycle arrest in primary mouse embryonic fibroblasts (MEFs) and elevated levels of both p53 and the cyclin-dependent kinase inhibitor p21Cip. p53-/- or p19ARF-/- MEFs were resistant to v-Abl-induced cell cycle arrest. Although wild-type MEFs were resistant to v-Abl transforming activity, p53-/- or p19ARF-/- MEFs were susceptible. The results indicate that loss of p19ARF and p53 function plays an important role during the transformation of primary cells by v-Abl. We suggest that although v-Abl is a potent oncogene, its full potential transforming activity cannot be realized until the ARF-, and p53-dependent growth inhibitory pathway is disabled. We also show that p53 is not the mediator of v-Abl toxicity in immortal fibroblasts and does not determine the susceptibility of immortal fibroblasts to v-Abl transformation.  (+info)

The carboxyl terminus of v-Abl protein can augment SH2 domain function. (5/205)

Abelson murine leukemia virus (Ab-MLV) transforms NIH 3T3 and pre-B cells via expression of the v-Abl tyrosine kinase. Although the enzymatic activity of this molecule is absolutely required for transformation, other regions of the protein are also important for this response. Among these are the SH2 domain, involved in phosphotyrosine-dependent protein-protein interactions, and the long carboxyl terminus, which plays an important role in transformation of hematopoietic cells. Important signals are sent from each of these regions, and transformation is most likely orchestrated by the concerted action of these different parts of the protein. To explore this idea, we compared the ability of the v-Src SH2 domain to substitute for that of v-Abl in the full-length P120 v-Abl protein and in P70 v-Abl, a protein that lacks the carboxyl terminus characteristic of Abl family members. Ab-MLV strains expressing P70/S2 failed to transform NIH 3T3 cells and demonstrated a greatly reduced capacity to mediate signaling events associated with the Ras-dependent mitogen-activated protein (MAP) kinase pathway. In contrast, Ab-MLV strains expressing P120/S2 were indistinguishable from P120 with respect to these features. Analyses of additional mutants demonstrated that the last 162 amino acids of the carboxyl terminus were sufficient to restore transformation. These data demonstrate that an SH2 domain with v-Abl substrate specificity is required for NIH 3T3 transformation in the absence of the carboxyl terminus and suggest that cooperativity between the extreme carboxyl terminus and the SH2 domain facilitates the transmission of transforming signals via the MAP kinase pathway.  (+info)

Transgenic human lambda 5 rescues the murine lambda 5 nullizygous phenotype. (6/205)

The human lambda 5 (hu lambda 5) gene is the structural homologue of the murine lambda 5 (m lambda 5) gene and is transcriptionally active in pro-B and pre-B lymphocytes. The lambda 5 and VpreB polypeptides together with the Ig mu H chain and the signal-transducing subunits, Ig alpha and Ig beta, comprise the pre-B cell receptor. To further investigate the pro-B/pre-B-specific transcription regulation of hu lambda 5 in an in vivo model, we generated mouse lines that contain a 28-kb genomic fragment encompassing the entire hu lambda 5 gene. High levels of expression of the transgenic hu lambda 5 gene were detected in bone marrow pro-B and pre-B cells at the mRNA and protein levels, suggesting that the 28-kb transgene fragment contains all the transcriptional elements necessary for the stage-specific B progenitor expression of hu lambda 5. Flow cytometric and immunoprecipitation analyses of bone marrow cells and Abelson murine leukemia virus-transformed pre-B cell lines revealed the hu lambda 5 polypeptide on the cell surface and in association with mouse Ig mu and mouse VpreB. Finally, we found that the hu lambda 5 transgene is able to rescue the pre-B lymphocyte block when bred onto the m lambda 5-/- background. Therefore, we conclude that the hu lambda 5 polypeptide can biochemically and functionally substitute for m lambda 5 in vivo in pre-B lymphocyte differentiation and proliferation. These studies on the mouse and human pre-B cell receptor provide a model system to investigate some of the molecular requirements necessary for B cell development.  (+info)

Activation of V(D)J recombination induces the formation of interlocus joints and hybrid joints in scid pre-B-cell lines. (7/205)

V(D)J recombination is the mechanism by which antigen receptor genes are assembled. The site-specific cleavage mediated by RAG1 and RAG2 proteins generates two types of double-strand DNA breaks: blunt signal ends and covalently sealed hairpin coding ends. Although these DNA breaks are mainly resolved into coding joints and signal joints, they can participate in a nonstandard joining process, forming hybrid and open/shut joints that link coding ends to signal ends. In addition, the broken DNA molecules excised from different receptor gene loci could potentially be joined to generate interlocus joints. The interlocus recombination process may contribute to the translocation between antigen receptor genes and oncogenes, leading to malignant transformation of lymphocytes. To investigate the underlying mechanisms of these nonstandard recombination events, we took advantage of recombination-inducible cell lines derived from scid homozygous (s/s) and scid heterozygous (s/+) mice by transforming B-cell precursors with a temperature-sensitive Abelson murine leukemia virus mutant (ts-Ab-MLV). We can manipulate the level of recombination cleavage and end resolution by altering the cell culture temperature. By analyzing various recombination products in scid and s/+ ts-Ab-MLV transformants, we report in this study that scid cells make higher levels of interlocus and hybrid joints than their normal counterparts. These joints arise concurrently with the formation of intralocus joints, as well as with the appearance of opened coding ends. The junctions of these joining products exhibit excessive nucleotide deletions, a characteristic of scid coding joints. These data suggest that an inability of scid cells to promptly resolve their recombination ends exposes the ends to a random joining process, which can conceivably lead to chromosomal translocations.  (+info)

Loss of heterozygosity at the Ink4a/Arf locus facilitates Abelson virus transformation of pre-B cells. (8/205)

In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  (+info)

The Abelson murine leukemia virus (Abelson murine leukemia virus, or A-MuLV) is a type of retrovirus that can cause cancer in mice. It was first discovered in 1970 and has since been widely studied as a model system for understanding the mechanisms of retroviral infection and cancer development.

A-MuLV is named after Peter Nowell and David A. Harrison, who first described the virus and its ability to cause leukemia in mice. The virus contains an oncogene called "v-abl," which encodes a tyrosine kinase enzyme that can activate various signaling pathways involved in cell growth and division. When the v-abl oncogene is integrated into the genome of an infected mouse cell, it can cause uncontrolled cell growth and division, leading to the development of leukemia.

A-MuLV has been used extensively in laboratory research to study the molecular mechanisms of cancer development and to develop new therapies for treating cancer. It has also been used as a tool for introducing specific genetic modifications into mouse cells, allowing researchers to study the effects of those modifications on cell behavior and function.

Medical Definition:

Murine leukemia virus (MLV) is a type of retrovirus that primarily infects and causes various types of malignancies such as leukemias and lymphomas in mice. It is a complex genus of viruses, with many strains showing different pathogenic properties.

MLV contains two identical single-stranded RNA genomes and has the ability to reverse transcribe its RNA into DNA upon infection, integrating this proviral DNA into the host cell's genome. This is facilitated by an enzyme called reverse transcriptase, which MLV carries within its viral particle.

The virus can be horizontally transmitted between mice through close contact with infected saliva, urine, or milk. Vertical transmission from mother to offspring can also occur either in-utero or through the ingestion of infected breast milk.

MLV has been extensively studied as a model system for retroviral pathogenesis and tumorigenesis, contributing significantly to our understanding of oncogenes and their role in cancer development. It's important to note that Murine Leukemia Virus does not infect humans.

An oncogene protein, specifically the v-abl protein, is a tyrosine kinase enzyme that plays a role in cell growth, differentiation, and survival. The v-abl gene was originally discovered in the Abelson murine leukemia virus (Ab-MLV), which is a retrovirus that can cause leukemia in mice. The viral v-abl gene is a truncated and mutated version of the cellular c-abl gene, which is normally involved in important signaling pathways within cells.

The v-abl protein has gained oncogenic potential due to its altered regulation and constitutive activation, leading to uncontrolled cell growth and division, ultimately resulting in cancer. In humans, abnormal expression or activation of the c-abl gene and its protein product have been implicated in several types of cancer, including leukemia and some solid tumors. The oncogenic nature of v-abl has made it an important target for cancer therapy, with drugs like Imatinib mesylate (Gleevec) being developed to inhibit its activity.

The Moloney murine leukemia virus (Mo-MLV) is a type of retrovirus, specifically a gammaretrovirus, that is commonly found in mice. It was first discovered and isolated by John Moloney in 1960. Mo-MLV is known to cause various types of cancerous conditions, particularly leukemia, in susceptible mouse strains.

Mo-MLV has a single-stranded RNA genome that is reverse transcribed into double-stranded DNA upon infection of the host cell. This viral DNA then integrates into the host's genome and utilizes the host's cellular machinery to produce new virus particles. The Mo-MLV genome encodes for several viral proteins, including gag (group-specific antigen), pol (polymerase), and env (envelope) proteins, which are essential for the replication cycle of the virus.

Mo-MLV is widely used in laboratory research as a model retrovirus to study various aspects of viral replication, gene therapy, and oncogenesis. It has also been engineered as a vector for gene delivery applications due to its ability to efficiently integrate into the host genome and deliver large DNA sequences. However, it is important to note that Mo-MLV and other retroviruses have the potential to cause insertional mutagenesis, which can lead to unintended genetic alterations and adverse effects in some cases.

Cell transformation, viral refers to the process by which a virus causes normal cells to become cancerous or tumorigenic. This occurs when the genetic material of the virus integrates into the DNA of the host cell and alters its regulation, leading to uncontrolled cell growth and division. Some viruses known to cause cell transformation include human papillomavirus (HPV), hepatitis B virus (HBV), and certain types of herpesviruses.

Experimental leukemia refers to the stage of research or clinical trials where new therapies, treatments, or diagnostic methods are being studied for leukemia. Leukemia is a type of cancer that affects the blood and bone marrow, leading to an overproduction of abnormal white blood cells.

In the experimental stage, researchers investigate various aspects of leukemia, such as its causes, progression, and potential treatments. They may conduct laboratory studies using cell cultures or animal models to understand the disease better and test new therapeutic approaches. Additionally, clinical trials may be conducted to evaluate the safety and efficacy of novel treatments in human patients with leukemia.

Experimental research in leukemia is crucial for advancing our understanding of the disease and developing more effective treatment strategies. It involves a rigorous and systematic process that adheres to ethical guidelines and scientific standards to ensure the validity and reliability of the findings.

The AKR murine leukemia virus (AKR MLV) is a type of retrovirus that naturally infects mice of the AKR strain. It is a member of the gammaretrovirus genus and is closely related to other murine leukemia viruses (MLVs).

AKR MLV is transmitted horizontally through close contact with infected animals, as well as vertically from mother to offspring. The virus primarily infects hematopoietic cells, including lymphocytes and macrophages, and can cause a variety of diseases, most notably leukemia and lymphoma.

The AKR MLV genome contains three main structural genes: gag, pol, and env, which encode the viral matrix, capsid, nucleocapsid, reverse transcriptase, integrase, and envelope proteins, respectively. Additionally, the virus carries accessory genes, such as rex and sor, that play a role in regulating viral gene expression and replication.

AKR MLV has been extensively studied as a model system for retrovirus biology and pathogenesis, and its study has contributed significantly to our understanding of the mechanisms of retroviral infection, replication, and disease.

Friend murine leukemia virus (F-MuLV) is a type of retrovirus that specifically infects mice. It was first discovered by Charlotte Friend in the 1950s and has since been widely used as a model system to study retroviral pathogenesis, oncogenesis, and immune responses.

F-MuLV is a complex retrovirus that contains several accessory genes, including gag, pol, env, and others. The virus can cause leukemia and other malignancies in susceptible mice, particularly when it is transmitted from mother to offspring through the milk.

The virus is also known to induce immunosuppression, which makes infected mice more susceptible to other infections and diseases. F-MuLV has been used extensively in laboratory research to investigate various aspects of retroviral biology, including viral entry, replication, gene expression, and host immune responses.

It is important to note that Friend murine leukemia virus only infects mice and is not known to cause any disease in humans or other animals.

I'm happy to help! However, I believe there might be a slight mistake in your question. The correct term is "ABL" (Abelson murine leukemia viral oncogene homolog 1), which refers to a specific gene that encodes a tyrosine kinase protein. ABL genes can play a role in the development of certain types of cancer when they become mutated or dysregulated. Here's a brief medical definition:

ABL (Abelson murine leukemia viral oncogene homolog 1) gene:
A gene located on chromosome 9q34.1 that encodes a tyrosine kinase protein involved in various cellular processes, such as regulation of the cell cycle, differentiation, and apoptosis (programmed cell death). The ABL gene can become dysregulated or mutated, leading to the production of an abnormal tyrosine kinase protein that contributes to the development of certain types of cancer, most notably chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). The Philadelphia chromosome, a result of a reciprocal translocation between chromosomes 9 and 22, creates the abnormal fusion gene BCR-ABL, which encodes a constitutively active tyrosine kinase that drives the development of CML. Targeted therapy using tyrosine kinase inhibitors, such as imatinib (Gleevec), has been successful in treating CML and some forms of ALL with ABL mutations.

Thymoma is a type of tumor that originates from the thymus gland, which is a part of the immune system located in the chest behind the breastbone. Thymomas are typically slow-growing and often do not cause any symptoms until they have grown quite large or spread to other parts of the body.

Thymomas can be classified into different types based on their appearance under a microscope, such as type A, AB, B1, B2, and B3. These classifications are important because they can help predict how aggressive the tumor is likely to be and how it should be treated.

Symptoms of thymoma may include cough, chest pain, difficulty breathing, or swelling in the face or neck. Thymomas can also be associated with autoimmune disorders such as myasthenia gravis, which affects muscle strength and mobility. Treatment for thymoma typically involves surgical removal of the tumor, often followed by radiation therapy or chemotherapy to help prevent recurrence.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

Helper viruses, also known as "auxiliary" or "satellite" viruses, are defective viruses that depend on the assistance of a second virus, called a helper virus, to complete their replication cycle. They lack certain genes that are essential for replication, and therefore require the helper virus to provide these functions.

Helper viruses are often found in cases of dual infection, where both the helper virus and the dependent virus infect the same cell. The helper virus provides the necessary enzymes and proteins for the helper virus to replicate, package its genome into new virions, and bud off from the host cell.

One example of a helper virus is the hepatitis B virus (HBV), which can serve as a helper virus for hepatitis D virus (HDV) infection. HDV is a defective RNA virus that requires the HBV surface antigen to form an envelope around its nucleocapsid and be transmitted to other cells. In the absence of HBV, HDV cannot replicate or cause disease.

Understanding the role of helper viruses in viral infections is important for developing effective treatments and vaccines against viral diseases.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Oncogenes are genes that have the potential to cause cancer. They can do this by promoting cell growth and division (cellular proliferation), preventing cell death (apoptosis), or enabling cells to invade surrounding tissue and spread to other parts of the body (metastasis). Oncogenes can be formed when normal genes, called proto-oncogenes, are mutated or altered in some way. This can happen as a result of exposure to certain chemicals or radiation, or through inherited genetic mutations. When activated, oncogenes can contribute to the development of cancer by causing cells to divide and grow in an uncontrolled manner.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Feline Leukemia Virus (FeLV) is a retrovirus that primarily infects cats, causing a variety of diseases and disorders. It is the causative agent of feline leukemia, a name given to a syndrome characterized by a variety of symptoms such as lymphoma (cancer of the lymphatic system), anemia, immunosuppression, and reproductive disorders. FeLV is typically transmitted through close contact with infected cats, such as through saliva, nasal secretions, urine, and milk. It can also be spread through shared litter boxes and feeding dishes.

FeLV infects cells of the immune system, leading to a weakened immune response and making the cat more susceptible to other infections. The virus can also integrate its genetic material into the host's DNA, potentially causing cancerous changes in infected cells. FeLV is a significant health concern for cats, particularly those that are exposed to outdoor environments or come into contact with other cats. Vaccination and regular veterinary care can help protect cats from this virus.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Sarcoma viruses in cats, also known as feline sarcoma viruses (FeSVs), are a group of retroviruses that can cause tumors and other diseases in felines. There are two main types of FeSVs: the feline leukemia virus (FeLV)-related sarcoma viruses and the independent feline sarcoma viruses.

The FeLV-related sarcoma viruses are formed when a cat is infected with FeLV, and the FeLV genome integrates into the host's DNA in such a way that it becomes rearranged and acquires new oncogenic properties. These rearranged FeLV proviruses can then cause various types of tumors, including fibrosarcomas, lymphosarcomas, and leukemias.

The independent feline sarcoma viruses, on the other hand, are not associated with FeLV infection. They contain their own unique oncogenes that can induce the formation of fibrosarcomas, a type of soft tissue cancer. These viruses are typically transmitted through direct contact with an infected cat or its saliva and can cause rapidly growing tumors at the site of inoculation.

It is important to note that not all cats infected with FeSVs will develop tumors, and other factors such as the cat's age, immune status, and genetic background may also play a role in the development of disease.

I'm sorry for any confusion, but there seems to be no established medical definition or recognition of a "Rauscher Virus" in human or veterinary medicine. It is possible that you may have misspelled or misremembered the name of a specific virus or medical term. If you have more information or context about where this term was used, I'd be happy to help you further research the topic.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Retroviridae infections refer to diseases caused by retroviruses, which are a type of virus that integrates its genetic material into the DNA of the host cell. This allows the virus to co-opt the cell's own machinery to produce new viral particles and infect other cells.

Some well-known retroviruses include human immunodeficiency virus (HIV), which causes AIDS, and human T-lymphotropic virus (HTLV), which can cause certain types of cancer and neurological disorders.

Retroviral infections can have a range of clinical manifestations depending on the specific virus and the host's immune response. HIV infection, for example, is characterized by progressive immunodeficiency that makes the infected individual susceptible to a wide range of opportunistic infections and cancers. HTLV infection, on the other hand, can cause adult T-cell leukemia/lymphoma or tropical spastic paraparesis, a neurological disorder.

Prevention and treatment strategies for retroviral infections depend on the specific virus but may include antiretroviral therapy (ART), vaccination, and behavioral modifications to reduce transmission risk.

Bovine Leukemia Virus (BLV) is a retrovirus that infects cattle and causes enzootic bovine leukosis, a neoplastic disease characterized by the proliferation of malignant B-lymphocytes. The virus primarily targets the animal's immune system, leading to a decrease in the number of white blood cells (leukopenia) and an increased susceptibility to other infections.

The virus is transmitted horizontally through close contact with infected animals or vertically from mother to offspring via infected milk or colostrum. The majority of BLV-infected cattle remain asymptomatic carriers, but a small percentage develop clinical signs such as lymphoma, weight loss, and decreased milk production.

BLV is closely related to human T-cell leukemia virus (HTLV), and both viruses belong to the Retroviridae family, genus Deltaretrovirus. However, it's important to note that BLV does not cause leukemia or any other neoplastic diseases in humans.

A "cell line, transformed" is a type of cell culture that has undergone a stable genetic alteration, which confers the ability to grow indefinitely in vitro, outside of the organism from which it was derived. These cells have typically been immortalized through exposure to chemical or viral carcinogens, or by introducing specific oncogenes that disrupt normal cell growth regulation pathways.

Transformed cell lines are widely used in scientific research because they offer a consistent and renewable source of biological material for experimentation. They can be used to study various aspects of cell biology, including signal transduction, gene expression, drug discovery, and toxicity testing. However, it is important to note that transformed cells may not always behave identically to their normal counterparts, and results obtained using these cells should be validated in more physiologically relevant systems when possible.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Defective viruses are viruses that have lost the ability to complete a full replication cycle and produce progeny virions independently. These viruses require the assistance of a helper virus, which provides the necessary functions for replication. Defective viruses can arise due to mutations, deletions, or other genetic changes that result in the loss of essential genes. They are often non-infectious and cannot cause disease on their own, but they may interfere with the replication of the helper virus and modulate the course of infection. Defective viruses can be found in various types of viruses, including retroviruses, bacteriophages, and DNA viruses.

Retroviridae is a family of viruses that includes human immunodeficiency virus (HIV) and other viruses that primarily use RNA as their genetic material. The name "retrovirus" comes from the fact that these viruses reverse transcribe their RNA genome into DNA, which then becomes integrated into the host cell's genome. This is a unique characteristic of retroviruses, as most other viruses use DNA as their genetic material.

Retroviruses can cause a variety of diseases in animals and humans, including cancer, neurological disorders, and immunodeficiency syndromes like AIDS. They have a lipid membrane envelope that contains glycoprotein spikes, which allow them to attach to and enter host cells. Once inside the host cell, the viral RNA is reverse transcribed into DNA by the enzyme reverse transcriptase, which is then integrated into the host genome by the enzyme integrase.

Retroviruses can remain dormant in the host genome for extended periods of time, and may be reactivated under certain conditions to produce new viral particles. This ability to integrate into the host genome has also made retroviruses useful tools in molecular biology, where they are used as vectors for gene therapy and other genetic manipulations.

'Inbred AKR mice' is a strain of laboratory mice used in biomedical research. The 'AKR' designation stands for "Akita Radioactive," referring to the location where this strain was first developed in Akita, Japan. These mice are inbred, meaning that they have been produced by many generations of brother-sister matings, resulting in a genetically homogeneous population with minimal genetic variation.

Inbred AKR mice are known for their susceptibility to certain types of leukemia and lymphoma, making them valuable models for studying these diseases and testing potential therapies. They also develop age-related cataracts and have a higher incidence of diabetes than some other strains.

It is important to note that while inbred AKR mice are widely used in research, their genetic uniformity may limit the applicability of findings to more genetically diverse human populations.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

A clone is a group of cells that are genetically identical to each other because they are derived from a common ancestor cell through processes such as mitosis or asexual reproduction. Therefore, the term "clone cells" refers to a population of cells that are genetic copies of a single parent cell.

In the context of laboratory research, cells can be cloned by isolating a single cell and allowing it to divide in culture, creating a population of genetically identical cells. This is useful for studying the behavior and characteristics of individual cell types, as well as for generating large quantities of cells for use in experiments.

It's important to note that while clone cells are genetically identical, they may still exhibit differences in their phenotype (physical traits) due to epigenetic factors or environmental influences.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Lymphoma is a type of cancer that originates from the white blood cells called lymphocytes, which are part of the immune system. These cells are found in various parts of the body such as the lymph nodes, spleen, bone marrow, and other organs. Lymphoma can be classified into two main types: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).

HL is characterized by the presence of a specific type of abnormal lymphocyte called Reed-Sternberg cells, while NHL includes a diverse group of lymphomas that lack these cells. The symptoms of lymphoma may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue.

The exact cause of lymphoma is not known, but it is believed to result from genetic mutations in the lymphocytes that lead to uncontrolled cell growth and division. Exposure to certain viruses, chemicals, and radiation may increase the risk of developing lymphoma. Treatment options for lymphoma depend on various factors such as the type and stage of the disease, age, and overall health of the patient. Common treatments include chemotherapy, radiation therapy, immunotherapy, and stem cell transplantation.

Mink cell focus-inducing viruses (MCFs) are a group of gammaherpesviruses that have been isolated from minks and other animals. They are closely related to the human herpesvirus 4 (Epstein-Barr virus, or EBV), which is associated with various human malignancies such as Burkitt's lymphoma, nasopharyngeal carcinoma, and some types of lymphomas.

MCF viruses are characterized by their ability to induce the formation of foci of transformed cells in cultures of mink lymphocytes. These viruses have a complex structure, consisting of a double-stranded DNA genome enclosed within an icosahedral capsid and a lipid bilayer envelope.

MCF viruses are highly species-specific and do not infect human cells. However, they are closely related to the human gammaherpesviruses, and studies of MCF viruses have contributed significantly to our understanding of the molecular mechanisms underlying herpesvirus-induced cell transformation and oncogenesis.

It's worth noting that there is some controversy in the scientific community regarding the classification and nomenclature of these viruses, and different research groups may use slightly different definitions or names for similar viruses.

RNA-directed DNA polymerase is a type of enzyme that can synthesize DNA using an RNA molecule as a template. This process is called reverse transcription, and it is the mechanism by which retroviruses, such as HIV, replicate their genetic material. The enzyme responsible for this reaction in retroviruses is called reverse transcriptase.

Reverse transcriptase is an important target for antiretroviral therapy used to treat HIV infection and AIDS. In addition to its role in viral replication, RNA-directed DNA polymerase also has applications in molecular biology research, such as in the production of complementary DNA (cDNA) copies of RNA molecules for use in downstream applications like cloning and sequencing.

Virus receptors are specific molecules (commonly proteins) on the surface of host cells that viruses bind to in order to enter and infect those cells. This interaction between the virus and its receptor is a critical step in the infection process. Different types of viruses have different receptor requirements, and identifying these receptors can provide important insights into the biology of the virus and potential targets for antiviral therapies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A provirus is a form of the genetic material of a retrovirus that is integrated into the DNA of the host cell it has infected. Once integrated, the provirus is replicated along with the host's own DNA every time the cell divides, and it becomes a permanent part of the host's genome.

The process of integration involves the reverse transcription of the retroviral RNA genome into DNA by the enzyme reverse transcriptase, followed by the integration of the resulting double-stranded proviral DNA into the host chromosome by the enzyme integrase.

Proviruses can remain dormant and inactive for long periods of time, or they can become active and produce new viral particles that can infect other cells. In some cases, proviruses can also disrupt the normal functioning of host genes, leading to various diseases such as cancer.

"Gene products, GAG" refer to the proteins that are produced by the GAG (Group-specific Antigen) gene found in retroviruses, such as HIV (Human Immunodeficiency Virus). These proteins play a crucial role in the structure and function of the viral particle or virion.

The GAG gene encodes for a polyprotein that is cleaved by a protease into several individual proteins, including matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. These proteins are involved in the formation of the viral core, which encloses the viral RNA genome and associated enzymes required for replication.

The MA protein is responsible for binding to the host cell membrane during viral entry, while the CA protein forms the capsid shell that surrounds the viral RNA and NC protein. The NC protein binds to the viral RNA and helps to package it into the virion during assembly. Overall, GAG gene products are essential for the life cycle of retroviruses and are important targets for antiretroviral therapy in HIV-infected individuals.

A tumor virus infection is a condition in which a person's cells become cancerous or transformed due to the integration and disruption of normal cellular functions by a viral pathogen. These viruses are also known as oncoviruses, and they can cause tumors or cancer by altering the host cell's genetic material, promoting uncontrolled cell growth and division, evading immune surveillance, and inhibiting apoptosis (programmed cell death).

Examples of tumor viruses include:

1. DNA tumor viruses: These are double-stranded DNA viruses that can cause cancer in humans. Examples include human papillomavirus (HPV), hepatitis B virus (HBV), and Merkel cell polyomavirus (MCV).
2. RNA tumor viruses: Also known as retroviruses, these single-stranded RNA viruses can cause cancer in humans. Examples include human T-cell leukemia virus type 1 (HTLV-1) and human immunodeficiency virus (HIV).

Tumor virus infections are responsible for approximately 15-20% of all cancer cases worldwide, making them a significant public health concern. Prevention strategies, such as vaccination against HPV and HBV, have been shown to reduce the incidence of associated cancers.

A gammaretrovirus is a type of retrovirus, which is a virus that contains RNA as its genetic material and uses the reverse transcriptase enzyme to produce DNA from its RNA genome. Gammaretroviruses are enveloped viruses, meaning they have a lipid membrane derived from the host cell. They are also classified as simple retroviruses because their genome only contains the genes gag, pol, and env.

Gammaretroviruses are known to cause diseases in animals, including leukemias and immunodeficiencies. One example of a gammaretrovirus is the feline leukemia virus (FeLV), which can cause a variety of symptoms in cats, including anemia, lymphoma, and immune suppression.

Gammaretroviruses have also been implicated in some human diseases, although they are not thought to be major causes of human disease. For example, the human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that is closely related to gammaretroviruses and can cause adult T-cell leukemia/lymphoma and tropical spastic paraparesis/ HTLV-associated myelopathy (TSP/HAM).

It's important to note that the classification of retroviruses has evolved over time, and some viruses that were once classified as gammaretroviruses are now considered to be part of other retrovirus genera.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

Virus integration, in the context of molecular biology and virology, refers to the insertion of viral genetic material into the host cell's genome. This process is most commonly associated with retroviruses, such as HIV (Human Immunodeficiency Virus), which have an enzyme called reverse transcriptase that converts their RNA genome into DNA. This DNA can then integrate into the host's chromosomal DNA, becoming a permanent part of the host's genetic material.

This integration is a crucial step in the retroviral life cycle, allowing the virus to persist within the host cell and evade detection by the immune system. It also means that the viral genome can be passed on to daughter cells when the host cell divides.

However, it's important to note that not all viruses integrate their genetic material into the host's genome. Some viruses, like influenza, exist as separate entities within the host cell and do not become part of the host's DNA.

Gibbon Ape Leukemia Virus (GaLV) is not exactly a "leukemia virus" in the sense that it directly causes leukemia in humans. Instead, GaLV is a type of retrovirus that primarily infects gibbons and some other non-human primates. It's important to note that GaLV is not known to infect or cause disease in healthy human beings.

GaLV has four subtypes (A, B, C, and D), with A and B being the most well-studied. These viruses have a close genetic relationship with certain human retroviruses, such as Human T-cell Leukemia Virus types I and II (HTLV-I/II). Although GaLV is not known to cause leukemia or any other diseases in humans directly, it has served as an important model for understanding the biology and pathogenesis of retroviruses, including those that can cause leukemia and other malignancies in humans.

The term "leukemia virus" is often used to describe retroviruses that can cause leukemia or lymphoma, such as HTLV-I/II and Human Immunodeficiency Virus (HIV). GaLV does not fit into this category for humans, but it's essential to understand its role in the context of retroviral research and comparative primatology.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

I'm sorry for any confusion, but "Mink" is not a medical term. It refers to a species of small, semiaquatic carnivorous mammals that are known for their sleek fur. They belong to the family Mustelidae, which also includes otters, weasels, and ferrets. If you have any questions about medical terminology or health-related topics, I'd be happy to help!

Immunoglobulin mu-chains (IgM) are a type of heavy chain found in immunoglobulins, also known as antibodies. IgM is the first antibody to be produced in response to an initial exposure to an antigen and plays a crucial role in the early stages of the immune response.

IgM antibodies are composed of four monomeric units, each consisting of two heavy chains and two light chains. The heavy chains in IgM are called mu-chains, which have a molecular weight of approximately 72 kDa. Each mu-chain contains five domains: one variable (V) domain at the N-terminus, four constant (C) domains (Cμ1-4), and a membrane-spanning region followed by a short cytoplasmic tail.

IgM antibodies are primarily found on the surface of B cells as part of the B cell receptor (BCR). When a B cell encounters an antigen, the BCR binds to it, triggering a series of intracellular signaling events that lead to B cell activation and differentiation into plasma cells. In response to activation, the B cell begins to secrete IgM antibodies into the bloodstream.

IgM antibodies have several unique features that make them effective in the early stages of an immune response. They are highly efficient at agglutination, or clumping together, of pathogens and antigens, which helps to neutralize them. IgM antibodies also activate the complement system, a group of proteins that work together to destroy pathogens.

Overall, Immunoglobulin mu-chains are an essential component of the immune system, providing early protection against pathogens and initiating the adaptive immune response.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

DNA restriction enzymes, also known as restriction endonucleases, are a type of enzyme that cut double-stranded DNA at specific recognition sites. These enzymes are produced by bacteria and archaea as a defense mechanism against foreign DNA, such as that found in bacteriophages (viruses that infect bacteria).

Restriction enzymes recognize specific sequences of nucleotides (the building blocks of DNA) and cleave the phosphodiester bonds between them. The recognition sites for these enzymes are usually palindromic, meaning that the sequence reads the same in both directions when facing the opposite strands of DNA.

Restriction enzymes are widely used in molecular biology research for various applications such as genetic engineering, genome mapping, and DNA fingerprinting. They allow scientists to cut DNA at specific sites, creating precise fragments that can be manipulated and analyzed. The use of restriction enzymes has been instrumental in the development of recombinant DNA technology and the Human Genome Project.

"Preleukemia" is a term that was used historically to describe conditions characterized by the presence of preleukemic cells or certain genetic changes that could potentially progress into acute leukemia. However, this terminology has largely been replaced in modern medicine.

Currently, the preferred terms are "clonal hematopoiesis" or "clonal cytopenias of undetermined significance (CCUS)" for conditions where there is an expansion of blood cells with certain genetic mutations but without evidence of progression to acute leukemia.

One example of this is a condition called "clonal hematopoiesis of indeterminate potential" (CHIP), which is defined by the presence of certain somatic mutations in hematopoietic stem cells, but without evidence of cytopenias or progression to malignancy.

It's important to note that not all individuals with CHIP will develop leukemia, and many may never experience any symptoms related to this condition. However, the presence of CHIP has been associated with an increased risk of hematologic cancers, as well as cardiovascular disease.

Human T-lymphotropic virus 1 (HTLV-1) is a complex retrovirus that infects CD4+ T lymphocytes and can cause adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus is primarily transmitted through breastfeeding, sexual contact, or contaminated blood products. After infection, the virus integrates into the host's genome and can remain latent for years or even decades before leading to disease. HTLV-1 is endemic in certain regions of the world, including Japan, the Caribbean, Central and South America, and parts of Africa.

'Gene rearrangement in B-lymphocytes, heavy chain' refers to the biological process that occurs during the development of B-lymphocytes (a type of white blood cell) in the bone marrow. This process involves the rearrangement of genetic material on chromosome 14, specifically within the immunoglobulin heavy chain gene locus.

During B-cell maturation, the variable region of the heavy chain gene is assembled from several gene segments, including the variable (V), diversity (D), and joining (J) segments. Through a series of genetic recombination events, these segments are randomly selected and joined together to form a unique V(D)J exon that encodes the variable region of the immunoglobulin heavy chain protein.

This gene rearrangement process allows for the generation of a diverse repertoire of antibodies with different specificities, enabling B-lymphocytes to recognize and respond to a wide range of foreign antigens. However, if errors occur during this process, it can lead to the production of autoantibodies that target the body's own cells and tissues, contributing to the development of certain immune disorders such as autoimmune diseases.

A plasmacytoma is a discrete tumor mass that is composed of neoplastic plasma cells, which are a type of white blood cell found in the bone marrow. Plasmacytomas can be solitary (a single tumor) or multiple (many tumors), and they can develop in various locations throughout the body.

Solitary plasmacytoma is a rare cancer that typically affects older adults, and it usually involves a single bone lesion, most commonly found in the vertebrae, ribs, or pelvis. In some cases, solitary plasmacytomas can also occur outside of the bone (extramedullary plasmacytoma), which can affect soft tissues such as the upper respiratory tract, gastrointestinal tract, or skin.

Multiple myeloma is a more common and aggressive cancer that involves multiple plasmacytomas in the bone marrow, leading to the replacement of normal bone marrow cells with malignant plasma cells. This can result in various symptoms such as bone pain, anemia, infections, and kidney damage.

The diagnosis of plasmacytoma typically involves a combination of imaging studies, biopsy, and laboratory tests to assess the extent of the disease and determine the appropriate treatment plan. Treatment options for solitary plasmacytoma may include surgery or radiation therapy, while multiple myeloma is usually treated with chemotherapy, targeted therapy, immunotherapy, and/or stem cell transplantation.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

A gene product is the biochemical material, such as a protein or RNA, that is produced by the expression of a gene. Env, short for "envelope," refers to a type of gene product that is commonly found in enveloped viruses. The env gene encodes the viral envelope proteins, which are crucial for the virus's ability to attach to and enter host cells during infection. These envelope proteins typically form a coat around the exterior of the virus and interact with receptors on the surface of the host cell, triggering the fusion or endocytosis processes that allow the viral genome to enter the host cell.

Therefore, in medical terms, 'Gene Products, env' specifically refers to the proteins or RNA produced by the env gene in enveloped viruses, which play a critical role in the virus's infectivity and pathogenesis.

Retroviridae proteins, oncogenic, refer to the proteins expressed by retroviruses that have the ability to transform normal cells into cancerous ones. These oncogenic proteins are typically encoded by viral genes known as "oncogenes," which are acquired through the process of transduction from the host cell's DNA during retroviral replication.

The most well-known example of an oncogenic retrovirus is the Human T-cell Leukemia Virus Type 1 (HTLV-1), which encodes the Tax and HBZ oncoproteins. These proteins manipulate various cellular signaling pathways, leading to uncontrolled cell growth and malignant transformation.

It is important to note that not all retroviruses are oncogenic, and only a small subset of them have been associated with cancer development in humans or animals.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Repetitive sequences in nucleic acid refer to repeated stretches of DNA or RNA nucleotide bases that are present in a genome. These sequences can vary in length and can be arranged in different patterns such as direct repeats, inverted repeats, or tandem repeats. In some cases, these repetitive sequences do not code for proteins and are often found in non-coding regions of the genome. They can play a role in genetic instability, regulation of gene expression, and evolutionary processes. However, certain types of repeat expansions have been associated with various neurodegenerative disorders and other human diseases.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Sarcoma viruses, murine, are a group of RNA viruses that primarily affect mice and other rodents. They are classified as type C retroviruses, which means they contain an envelope, have reverse transcriptase enzyme activity, and replicate through a DNA intermediate.

The murine sarcoma viruses (MSVs) are associated with the development of various types of tumors in mice, particularly fibrosarcomas, which are malignant tumors that originate from fibroblasts, the cells that produce collagen and other fibers in connective tissue.

The MSVs are closely related to the murine leukemia viruses (MLVs), and together they form a complex called the murine leukemia virus-related viruses (MLVRVs). The MLVRVs can undergo recombination events, leading to the generation of new viral variants with altered biological properties.

The MSVs are important tools in cancer research because they can transform normal cells into tumor cells in vitro and in vivo. The study of these viruses has contributed significantly to our understanding of the molecular mechanisms underlying cancer development and progression.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

The Abelson murine leukemia virus is named for the American pediatrician Herbert T. Abelson, who together with Louise S ... Shields A, Rosenberg N, Baltimore D (1979). "Virus production by Abelson murine leukemia virus-transformed lymphoid cells". J. ... The Abelson murine leukemia virus (Ab-MLV or A-MuLV) is a retrovirus (Class VI) used to induce malignant transformation of ... Abelson+murine+leukemia+virus at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Articles with 'species ...
"President's Cancer Panel". Witte ON, Dasgupta A, Baltimore D (February 28, 1980). "Abelson murine leukemia virus protein is ... Konopka JB, Watanabe SM, Witte ON (July 1984). "An alteration of the human c-abl protein in K562 leukemia cells unmasks ... Witte's research has contributed to the understanding of human leukemias, immune disorders and stem cell activity in cancers of ... This finding influenced the development of targeted drugs like Ibrutinib to treat leukemia and lymphoma. Witte's current ...
... fibroblasts by cloned Abelson murine leukemia virus DNA and recovery of transmissible virus by recombination with helper virus ... In Weinberg's lab, Tabin constructed murine leukemia virus, the first recombinant retrovirus that could be used as a eukaryotic ... "Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene". Nature. 297 (5866): 474-8. Bibcode: ...
He tackled new problems such as the pathogenesis of Abelson murine leukemia virus (AMuLV), lymphocyte differentiation and ... Baltimore extended this work and examined two RNA tumor viruses, Rauscher murine leukemia virus and Rous sarcoma virus. He went ... Witte ON, Dasgupta A, Baltimore D (February 1980). "Abelson murine leukaemia virus protein is phosphorylated in vitro to form ... His early interest in phage genetics quickly yielded to a passion for animal viruses. He took the Cold Spring Harbor course on ...
... the mineral Abelson murine leukemia virus, also known as "Abelson's virus" Abelson's paradox Ableson (a surname) This page ... American journalist Dave Abelson (born 1975), Canadian tennis player Evelyn Abelson (1886-1967), English artist Hal Abelson, ... American biochemist Matthew Abelson, American musician Neva Abelson (1910-2000), American physician Philip Abelson (1913-2004 ... Abelson, originating from both Swedish and Yiddish, and derived from the name Abel, is the surname of: Alan Abelson (1925-2013 ...
... which was initially isolated from the Abelson murine leukemia virus. The ABL1 proto-oncogene encodes a cytoplasmic and nuclear ... "Entrez Gene: ABL1 v-abl Abelson murine leukemia viral oncogene homolog 1". Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers ... Abelson+Leukemia+Virus at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Drosophila Abl tyrosine kinase ... Abelson HT, Rabstein LS (August 1970). "Lymphosarcoma: virus-induced thymic-independent disease in mice". Cancer Research. 30 ( ...
Abelson murine leukemia virus Bovine leukemia virus Feline leukemia virus Human T-lymphotropic virus Murine leukemia virus ... Xenotropic murine leukemia virus-related virus Gibbon-ape leukemia virus Leucosis This disambiguation page lists articles ... associated with the title Leukemia virus. If an internal link led you here, you may wish to change the link to point directly ...
The Moloney, Rauscher, Abelson and Friend MLVs, named for their discoverers, are used in cancer research.[citation needed] ... The Friend virus (FV) is a strain of murine leukemia virus. The Friend virus has been used for both immunotherapy and vaccines ... The murine leukemia viruses (MLVs or MuLVs) are retroviruses named for their ability to cause cancer in murine (mouse) hosts. ... The murine leukemia viruses are group/type VI retroviruses belonging to the gammaretroviral genus of the Retroviridae family. ...
... leukemia virus, murine MeSH B04.820.650.375.525.020 - abelson murine leukemia virus MeSH B04.820.650.375.525.050 - akr murine ... leukemia virus, murine MeSH B04.909.574.807.375.525.020 - abelson murine leukemia virus MeSH B04.909.574.807.375.525.050 - akr ... leukemia virus, murine MeSH B04.909.777.731.375.525.020 - abelson murine leukemia virus MeSH B04.909.777.731.375.525.050 - akr ... leukemia virus MeSH B04.820.650.375.525.225 - friend murine leukemia virus MeSH B04.820.650.375.525.300 - gross virus MeSH ...
2009). Unutmaz D (ed.). "Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid ... Simpson-Abelson MR, Sonnenberg GF, Takita H, et al. (2008). "Long-term engraftment and expansion of tumor-derived memory T ... 2009). "Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid ... Models of acute or chronic leukemia established using cancer cells collected from patients (A complete list of publications is ...
The symbol ABL1 is derived from Abelson, the name of a leukemia virus which carries a similar protein. The symbol BCR is ... Ras in particular is shown to be an important downstream target of BCR-ABL1 in CML, as Ras mutants in murine models disrupt the ... Burke BA, Carroll M (June 2010). "BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia". Leukemia ... and occasionally in acute myelogenous leukemia (AML) as well as mixed-phenotype acute leukemia (MPAL). The chromosomal defect ...
"Entrez Gene: ABL2 v-abl Abelson murine leukemia viral oncogene homolog 2 (arg, Abelson-related gene)". Nagy, Ádám; Pongor, ... Genes,+abl at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Abelson+Leukemia+Virus at the U.S. National ... The protein Abl gene is also known as abelson murine leukemia viral oncogene homolog 1 and is a protein that is encoded by the ... Tyrosine-protein kinase ABL2 also known as Abelson-related gene (Arg) is an enzyme that in humans is encoded by the ABL2 gene. ...
The Abelson murine leukemia virus is named for the American pediatrician Herbert T. Abelson, who together with Louise S ... Shields A, Rosenberg N, Baltimore D (1979). "Virus production by Abelson murine leukemia virus-transformed lymphoid cells". J. ... The Abelson murine leukemia virus (Ab-MLV or A-MuLV) is a retrovirus (Class VI) used to induce malignant transformation of ... Abelson+murine+leukemia+virus at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Articles with species ...
Transformation by Abelson Murine Leukemia Virus: Properties of the Transformed Cells. scientific article published on January 1 ... Transformation by Abelson Murine Leukemia Virus: Properties of the Transformed Cells (English) ...
2. A transformation-defective mutant of Abelson murine leukemia virus lacks protein kinase activity Witte, Owen N.; Goff, ... Interactions of Host Proteins with the Murine Leukemia Virus Integrase Studamire, Barbara; Goff, Stephen P. 2010 Articles ... 1. Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus Mitra, Sudha W.; Goff, ... Endophilins Interact with Moloney Murine Leukemia Virus Gag and Modulate Virion Production. Wang, Margaret Q.; Kim, Wankee; Gao ...
Lane 1 : RAW264.7 (mouse Abelson murine leukemia virus-induced tumor macrophage) whole cell lysate. Lane 2 : NIH/3T3 (mouse ... Smad4 knockout human chronic myelogenous leukemia near-haploid cell line, Left) / WT HAP1 (human chronic myelogenous leukemia ...
Abelson murine leukemia virus-induced pre-B tumor cells Formulation Phosphate-buffered solution, pH 7.2, containing 0.09% ...
Lane 2 : RAW 264.7 (Mouse macrophage cell line transformed with Abelson murine leukemia virus) whole cell lysate. Lane 3 : PC- ...
AF033812\AF033812\621..3566\2946\AAC82569.1\Abelson murine leukemia virus\Abelson murine leukemia virus, complete genome./gene ... Abelson murine leukemia virus\Abelson murine leukemia virus genome with v-abl oncogene. The virusis shown as integrated in the ... Abelson murine leukemia virus\Abelson murine leukemia virus genome with v-abl oncogene. The virusis shown as integrated in the ... Abelson murine leukemia virus\Abelson (P160) murine leukemia virus (Ab-MLV) abl gene./codon_start=1/protein_id="CAB56205.1"/db_ ...
Virus : A-MuLV - Abelson murine leukemia virus (A-MuLV-P160) Tumor Synonym. lymphoma. ...
... plasmid was constructed in which human MRP-1/CD9 cDNA is expressed under the control of the Abelson murine leukemia virus ...
Abelson murine leukaemia virus. *Abelson murine leukemia virus. *AKR (endogenous) murine leukaemia virus ... Murine leukemia virus. Taxonomic Hierarchy , Viruses and Viroids , Riboviria , Pararnavirae , Artverviricota , Revtraviricetes ... Taxonomic Hierarchy , Viruses and Viroids , DNA and RNA reverse transcribing viruses , Ortervirales , Retroviridae , ... AKR (endogenous) murine leukemia virus. *Friend murine leukemia virus. *MLV (Murine leukemia virus) ...
... an Abelson murine leukemia virus transformed cell line used as a macrophage model) (15). However, in other studies, with ... High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol (2008) 128(6):1545- ... 3. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol (2010) 10(7):514-26 ... Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J Inflamm Res (2013) 6: ...
Abelson murine leukemia virus Medicine & Life Sciences 49% * Neoplasms Medicine & Life Sciences 46% ...
Here we describe the phenotypic and molecular characteristics of the B cell leukemia/lymphoma in the Tg mice. The transformed B ... Human Immunodeficiency Virus Type I (HIV-1) infection is associated with a high incidence of B-cell lymphomas. The role of HIV ... HIV Tg mice were negative for Abelson murine leukemia virus; however, the transgene might be activating a murine oncovirus [49 ... A similar pattern of pre-B cell transformation occurs following infection with Abelson murine leukemia virus (Ab-MLV) which ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... B04 - VIRUSES. ABELSON LEUKEMIA VIRUS. ABELSON MURINE LEUKEMIA VIRUS. AKR VIRUS. AKR MURINE LEUKEMIA VIRUS. ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ... GASTROENTERITIS VIRUS, MURINE. MURINE HEPATITIS VIRUS. GASTROENTERITIS VIRUS, PORCINE TRANSMISSIBLE. TRANSMISSIBLE ...
Goff SP, Gilboa E, Witte ON, Baltimore D: Structure of the Abelson murine leukemia virus genome and the homologous cellular ... For example, the Abelson murine leukemia retrovirus (A-MuLV) [13] was shown to carry a transforming gene (vABL) that had a ... Abelson HT, Rabstein LS: Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res. 1970, 30: 2213-2222. ... Sefton BM, Hunter T, Raschke WC: Evidence that the Abelson virus protein functions in vivo as a protein kinase that ...
Lane 7 : Raw 264.7 (mouse macrophage cell line transformed with Abelson murine leukemia virus) cell lysate. Lane 8 : C2C12 ( ... Liu H et al. Antiviral Effects of ABMA and DABMA against Influenza Virus In Vitro and In Vivo via Regulating the Endolysosomal ... Plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. ...
Several chimeric murine retroviruses were constructed to test whether the gag sequence of Abelson murine leukemia virus (A-MuLV ... This recombinant virus behaved like the A-MuLV virus from which it was derived: it transformed both fibroblasts and lymphoid ... src of Rous sarcoma virus and fps of Fujinami sarcoma virus. Although the src- or fps- containing chimerae could transform ... To investigate this functional similarity, we replaced the gag sequence of an A-MuLV virus with the 5 end of src. ...
... gene was initial recognized as the mammalian homolog from the oncogenic gene products from the Abelson murine leukemia virus. ... In addition, the activation of PI3K Akt signaling is commonly observed in a number of leukemia patients and leukemia cell lines ... In human leukemia cells, coadministration of alvocidib and bortezomib in vitro led to NF ?B inactivation, downregulation of ... Akt as well as the loss of your tumor suppressor PTEN are standard in numerous varieties of human tumors as well as leukemia. ...
Abelson Leukemia Virus use Abelson murine leukemia virus Abelson murine leukemia virus ...
  • A highly efficient helper virus commonly used when growing A-MuLV in vitro is Moloney murine leukemia virus (M-MuLV). (wikipedia.org)
  • However, this is only possible when the host cell is co-infected with a helper virus which provides functions it needs to be able to replicate which it does not code for in its own genome such as a reverse transcriptase and some major structural proteins. (wikipedia.org)
  • The Abelson murine leukemia virus (Ab-MLV or A-MuLV) is a retrovirus (Class VI) used to induce malignant transformation of murine lymphoid cells. (wikipedia.org)
  • 3903\2757\CAA24781.1\Abelson murine leukemia virus\Abelson murine leukemia virus genome with v-abl oncogene. (or.jp)
  • 4724\492\CAA24782.1\Abelson murine leukemia virus\Abelson murine leukemia virus genome with v-abl oncogene. (or.jp)
  • The Abelson non receptor tyrosine kinase gene was initial recognized as the mammalian homolog from the oncogenic gene products from the Abelson murine leukemia virus. (pkc-inhibitors.com)
  • Several chimeric murine retroviruses were constructed to test whether the gag sequence of Abelson murine leukemia virus (A-MuLV) could influence the in vitro specificity of two sarcoma-inducing oncogenes: src of Rous sarcoma virus and fps of Fujinami sarcoma virus. (duke.edu)
  • This recombinant virus behaved like the A-MuLV virus from which it was derived: it transformed both fibroblasts and lymphoid cells in vitro. (duke.edu)
  • 3662\492\CAB56205.1\Abelson murine leukemia virus\Abelson (P160) murine leukemia virus (Ab-MLV) abl gene. (or.jp)
  • The determining hallmark of persistent myeloid leukemia (CML) may be the fusion gene while it began with a hematopoietic stem cell (1C4). (angiogenesis-blog.com)
  • Species of GAMMARETROVIRUS , containing many well-defined strains, producing leukemia in mice. (nih.gov)
  • Around the same time, and building on the observation that the vitamin folic acid could stimulate acute lymphoblastic leukemia (ALL) cells, Farber used folate analogs such as aminopterin and then amethopterin (methotrexate) to treat ALL, in what is often heralded as the first 'rational' drug development approach [ 4 ]. (biomedcentral.com)
  • Human Immunodeficiency Virus Type I (HIV-1) infection is associated with a high incidence of B-cell lymphomas. (biomedcentral.com)
  • Murine models for human AIDS-related B cell lymphomas have been lacking. (biomedcentral.com)
  • In vitro studies have shown that lymphocyte infection produces tumor cell populations comprising three types of cells: stable productive cells, non-productive cells and cells which produced defective virus particles which are not infective. (wikipedia.org)
  • Mixture treatment also statistically considerably improved apoptosis of Compact disc34+ leukemic stem/progenitor cells and removed their long-term leukemia-initiating activity in NSG mice. (angiogenesis-blog.com)
  • We previously confirmed that overexpression of in primitive hematopoietic cells provides them a rise benefit in vitro and the capability to generate leukemia in vivo, synergizing with to improve these final results (39). (angiogenesis-blog.com)
  • It causes leukemia directly by interfering with the normal growth and differentiation processes of lymphocytes. (wikipedia.org)
  • 15] demonstrated the importance of L-Gln for osteoclast differentiation of murine BMMs. (sciforschenonline.org)
  • One candidate focus on is certainly Abelson helper integration site 1 (encodes a distinctive proteins with multiple SH3 binding sites, an SH3 area, and seven WD40 repeats, all known mediators of proteinCprotein connections (38). (angiogenesis-blog.com)
  • In the present study, plasmid was constructed in which human MRP-1/CD9 cDNA is expressed under the control of the Abelson murine leukemia virus promoter sequence. (nih.gov)
  • To investigate this functional similarity, we replaced the gag sequence of an A-MuLV virus with the 5' end of src. (duke.edu)
  • 335\333\AAB20358.1\Abelson murine leukemia virus\abl-derived protein P90A [Abelson mouse leukemia virus Ab-MLV,strain P90A, Genomic, 400 nt]. (or.jp)
  • A-MuLV causes a rapidly progressive lymphosarcoma known as Abelson disease in mice, which is a type of leukemia that does not involve the thymus. (wikipedia.org)
  • Here we describe the phenotypic and molecular characteristics of the B cell leukemia/lymphoma in the Tg mice. (biomedcentral.com)
  • Notably, it functioned as a dynamic probe, allowing real-time monitoring of heightened NCL expression triggered by a respiratory syncytial virus (RSV) on normal cell surfaces. (bvsalud.org)
  • Human Immunodeficiency Virus Type I (HIV-1) infection is associated with an elevated incidence of B-cell non-Hodgkin's lymphoma (NHL) and in recent years also with Hodgkin's lymphoma [ 1 ]. (biomedcentral.com)
  • The murine macrophage cell line RAW264.7 was first established almost four decades ago [5,6]. (sciforschenonline.org)
  • Serological characterization of C-type retroviruses endogenous to the C57BL/6 mouse and isolated in tumours induced by radiation leukaemia virus (RadLV-Rs). (microbiologyresearch.org)
  • The Abelson murine leukemia virus (Ab-MLV or A-MuLV) is a retrovirus (Class VI) used to induce malignant transformation of murine lymphoid cells. (wikipedia.org)
  • A selective temperature-sensitive defect in viral RNA expression in cells infected with a ts transformation mutant of murine sarcoma virus. (wikidata.org)
  • 4. In vitro transformation of murine pro-B and pre-B cells by v-mpl, a truncated form of a cytokine receptor. (nih.gov)
  • 16. Viral oncogene expression during differentiation of Abelson virus-infected murine promonocytic leukemia cells. (nih.gov)
  • [15] Syncytin-1 has been shown to interfere with viral infection in-vitro by RDR interference group member spleen necrosis virus. (wikipedia.org)
  • Different serotypes of B-tropic murine leukemia viruses and association with endogenous ecotropic viral loci. (microbiologyresearch.org)
  • Radiation-induced murine leukemias and endogenous retroviruses: the time course of viral expression. (microbiologyresearch.org)
  • Serological characterization of B-tropic viruses of C57BL mice: possible origin by recombination of endogenous N-tropic and xenotropic viruses. (microbiologyresearch.org)
  • Similar outcomes have been also obtained with murine herpes virus 68, orf73 is shown to become significant for latency in splenocytes in vivo. (bcl-2protein.com)
  • Structural markers on core protein p30 of murine leukemia virus: functional correlation with Fv-1 tropism. (microbiologyresearch.org)
  • Search, retrieve and analyze Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences in NCBI Virus . (nih.gov)
  • A-MuLV causes a rapidly progressive lymphosarcoma known as Abelson disease in mice, which is a type of leukemia that does not involve the thymus. (wikipedia.org)
  • 6. Proviral integration of an Abelson-murine leukemia virus deregulates BKLF-expression in the hypermutating pre-B cell line 18-81. (nih.gov)
  • Note that the expression "active in" does not always refer to the source organism of the promoter (e.g. in viruses). (expasy.org)
  • These limitations were overcome in 2006 when Takashaki and Yamanaka reported the reprogramming of murine fibroblast by ectopic expression of Oct4, Sox2, Klf4 and c-Myc [ 4 ]. (biomedcentral.com)
  • See all publicly available virus sequences in newly designed interface at NCBI Virus and send us your feedback! (nih.gov)
  • 14. Autocrine production of pre-B-cell stimulating activity by a variety of transformed murine pre-B-cell lines. (nih.gov)