A class of chemicals that contain an anthracene ring with a naphthalene ring attached to it.
7,8,8a,9a-Tetrahydrobenzo(10,11)chryseno (3,4-b)oxirene-7,8-diol. A benzopyrene derivative with carcinogenic and mutagenic activity.
A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke.
A group of condensed ring hydrocarbons.
An enzyme that catalyzes the acyltransferase of SPHINGOSINE to N-acylsphingosine using acyl-COENZYME A as donor and COENZYME A as acceptor. The enzyme is mainly localized in the MITOCHONDRIA.
Benzothiepins is a class of heterocyclic compounds that have been used in the development of various therapeutic drugs, particularly those with antipsychotic and anti-inflammatory properties, although none are currently in clinical use due to their significant side effects.
Compounds based on pyrazino[2,3-d]pyrimidine which is a pyrimidine fused to a pyrazine, containing four NITROGEN atoms.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
Benzoxepins are heterocyclic compounds that consist of a benzene fused to a oxepine ring, which have been used as building blocks in the synthesis of various pharmaceutical drugs, particularly in the development of psychoactive medications for treating anxiety and depression disorders.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990)
Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE.
Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES.
Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides.
A drug-metabolizing, cytochrome P-448 (P-450) enzyme which catalyzes the hydroxylation of benzopyrene to 3-hydroxybenzopyrene in the presence of reduced flavoprotein and molecular oxygen. Also acts on certain anthracene derivatives. An aspect of EC 1.14.14.1.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS.
A major group of unsaturated cyclic hydrocarbons containing two or more rings. The vast number of compounds of this important group, derived chiefly from petroleum and coal tar, are rather highly reactive and chemically versatile. The name is due to the strong and not unpleasant odor characteristic of most substances of this nature. (From Hawley's Condensed Chemical Dictionary, 12th ed, p96)
The products of chemical reactions that result in the addition of extraneous chemical groups to DNA.
Compounds consisting of two or more fused ring structures.
Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in NERVE TISSUE.
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Inorganic oxides that contain nitrogen.
Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS.
A mild astringent and topical protectant with some antiseptic action. It is also used in bandages, pastes, ointments, dental cements, and as a sunblock.

Benzopyrene is a chemical compound that belongs to the class of polycyclic aromatic hydrocarbons (PAHs). It is formed from the incomplete combustion of organic materials, such as tobacco, coal, and gasoline. Benzopyrene is a potent carcinogen, meaning it has the ability to cause cancer in living tissue.

Benzopyrene is able to induce genetic mutations by interacting with DNA and forming bulky adducts that interfere with normal DNA replication. This can lead to the development of various types of cancer, including lung, skin, and bladder cancer. Benzopyrene has also been linked to an increased risk of developing cardiovascular disease.

In the medical field, benzopyrene is often used as a model compound for studying the mechanisms of chemical carcinogenesis. It is also used in research to investigate the effects of PAHs on human health and to develop strategies for reducing exposure to these harmful substances.

I'm sorry for any confusion, but "Pyrenes" is not a medical term. It is a term used in chemistry and materials science, referring to a type of aromatic hydrocarbon molecule that consists of two benzene rings fused together. If you have a different term or concept in mind, please provide it so I can give you an accurate definition or information.

Sphingosine N-acyltransferase, also known as serine palmitoyltransferase, is an enzyme that catalyzes the initial and rate-limiting step in de novo sphingolipid synthesis. This enzyme is responsible for transferring an acyl group from acyl-CoA to sphingosine, forming 3-ketosphinganine. The reaction occurs in the endoplasmic reticulum and is the first committed step in the biosynthetic pathway of sphingolipids, which are important components of cell membranes and play crucial roles in various cellular processes such as signal transduction and apoptosis. Defects in this enzyme have been associated with several diseases, including hereditary sensory and autonomic neuropathy type I (HSAN1) and cerebral spinalvascular narrowing.

Benzothiepins are a class of heterocyclic compounds that contain a benzene fused to a thiepin ring. They do not have a specific medical definition, as they are not a type of drug or medication. However, some benzothiepin derivatives have been synthesized and studied for their potential pharmacological activity, particularly as anti-inflammatory and analgesic agents.

One example of a benzothiepin derivative is benzothiophene, which has been investigated for its anti-inflammatory properties. However, it is not widely used in clinical practice due to its potential toxicity. Therefore, the term 'benzothiepins' does not have a well-established medical meaning and is primarily used in the context of chemistry and pharmacology research.

Pteridines are a class of heterocyclic aromatic organic compounds that are structurally related to pterins, which contain a pyrimidine ring fused to a pyrazine ring. They are naturally occurring substances that can be found in various living organisms such as bacteria, fungi, plants, and animals.

Pteridines have several important biological functions. For instance, they play a crucial role in the synthesis of folate and biotin, which are essential cofactors for various metabolic reactions in the body. Additionally, some pteridines function as chromophores, contributing to the coloration of certain organisms such as butterflies and birds.

In medicine, pteridines have been studied for their potential therapeutic applications. For example, some synthetic pteridine derivatives have shown promising results in preclinical studies as antitumor, antiviral, and antibacterial agents. However, further research is needed to fully understand the medical implications of these compounds.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

Benzoxepins are a class of heterocyclic organic compounds that contain a benzene fused to a oxepine ring. They are not commonly used in medical context, but some benzoxepin derivatives have been studied for their potential pharmacological activities. For example, certain benzoxepin compounds have been investigated for their anti-inflammatory, analgesic, and antipyretic properties. However, it is important to note that these compounds are still in the early stages of research and development and have not yet been approved for medical use.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Leukotriene B4 (LTB4) is a type of lipid mediator called eicosanoid, which is derived from arachidonic acid through the 5-lipoxygenase pathway. It is primarily produced by neutrophils, eosinophils, monocytes, and macrophages in response to various stimuli such as infection, inflammation, or injury. LTB4 acts as a potent chemoattractant and activator of these immune cells, playing a crucial role in the recruitment and activation of neutrophils during acute inflammatory responses. It also enhances the adhesion of leukocytes to endothelial cells, contributing to the development of tissue damage and edema. Dysregulation of LTB4 production has been implicated in several pathological conditions, including asthma, atherosclerosis, and cancer.

Ceramides are a type of lipid molecule that are found naturally in the outer layer of the skin (the stratum corneum). They play a crucial role in maintaining the barrier function and hydration of the skin. Ceramides help to seal in moisture, support the structure of the skin, and protect against environmental stressors such as pollution and bacteria.

In addition to their role in the skin, ceramides have also been studied for their potential therapeutic benefits in various medical conditions. For example, abnormal levels of ceramides have been implicated in several diseases, including diabetes, cardiovascular disease, and cancer. As a result, ceramide-based therapies are being investigated as potential treatments for these conditions.

Medically, ceramides may be mentioned in the context of skin disorders or diseases where there is a disruption in the skin's barrier function, such as eczema, psoriasis, and ichthyosis. In these cases, ceramide-based therapies may be used to help restore the skin's natural barrier and improve its overall health and appearance.

Dihydroxydihydrobenzopyrenes are chemical compounds that are produced when benzo[a]pyrene, a polycyclic aromatic hydrocarbon (PAH), is metabolically activated in the body. Benzo[a]pyrene is found in tobacco smoke and is formed during the incomplete combustion of organic materials such as coal, oil, gasoline, wood, and garbage.

When benzo[a]pyrene is metabolized by enzymes in the liver, it is converted into several different forms, including dihydrodiols and dihydroxydihydrobenzopyrenes. These compounds are more reactive than benzo[a]pyrene itself and can bind to DNA, forming DNA adducts that may contribute to the development of cancer.

Dihydroxydihydrobenzopyrenes have been studied for their potential role in tobacco-related cancers such as lung cancer, and they are considered to be biomarkers of exposure to benzo[a]pyrene and other PAHs. However, more research is needed to fully understand the health effects of these compounds and their role in the development of disease.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Nitric Oxide Synthase Type II (NOS2), also known as Inducible Nitric Oxide Synthase (iNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. Unlike other isoforms of NOS, NOS2 is not constitutively expressed and its expression can be induced by various stimuli such as cytokines, lipopolysaccharides, and bacterial products. Once induced, NOS2 produces large amounts of NO, which plays a crucial role in the immune response against invading pathogens. However, excessive or prolonged production of NO by NOS2 has been implicated in various pathological conditions such as inflammation, septic shock, and neurodegenerative disorders.

I'm sorry for any confusion, but "oxides" is not a term that has a specific medical definition. Oxides are a class of chemical compounds that contain at least one oxygen atom and one other element. They can be formed through the process of oxidation, which involves the combination of oxygen with another substance.

In a broader sense, you might encounter the term "oxide" in a medical context when discussing various materials or substances used in medical devices, treatments, or research. For instance, titanium dioxide is a common ingredient in medical-grade sunscreens due to its ability to block and scatter UV light. However, it's important to note that the term "oxides" itself doesn't have a direct connection to medicine or human health.

Benzopyrene hydroxylase is an enzyme that is involved in the metabolism and detoxification of polycyclic aromatic hydrocarbons (PAHs), which are a group of environmental pollutants found in cigarette smoke, air pollution, and charred or overcooked foods. Benzopyrene hydroxylase is primarily found in the liver and is responsible for adding a hydroxyl group to benzopyrene, a type of PAH, making it more water-soluble and easier to excrete from the body. This enzyme plays an important role in the body's defense against the harmful effects of PAHs.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Nitric Oxide Synthase Type III (NOS-III), also known as endothelial Nitric Oxide Synthase (eNOS), is an enzyme responsible for the production of nitric oxide (NO) in the endothelium, the lining of blood vessels. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing NO as a byproduct. The release of NO from eNOS plays an important role in regulating vascular tone and homeostasis, including the relaxation of smooth muscle cells in the blood vessel walls, inhibition of platelet aggregation, and modulation of immune function. Mutations or dysfunction in NOS-III can contribute to various cardiovascular diseases such as hypertension, atherosclerosis, and erectile dysfunction.

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds characterized by the presence of two or more fused benzene rings. They are called "polycyclic" because they contain multiple cyclic structures, and "aromatic" because these structures contain alternating double bonds that give them distinctive chemical properties and a characteristic smell.

PAHs can be produced from both natural and anthropogenic sources. Natural sources include wildfires, volcanic eruptions, and the decomposition of organic matter. Anthropogenic sources include the incomplete combustion of fossil fuels, such as coal, oil, and gasoline, as well as tobacco smoke, grilled foods, and certain industrial processes.

PAHs are known to be environmental pollutants and can have harmful effects on human health. They have been linked to an increased risk of cancer, particularly lung, skin, and bladder cancers, as well as reproductive and developmental toxicity. PAHs can also cause skin irritation, respiratory problems, and damage to the immune system.

PAHs are found in a variety of environmental media, including air, water, soil, and food. They can accumulate in the food chain, particularly in fatty tissues, and have been detected in a wide range of foods, including meat, fish, dairy products, and vegetables. Exposure to PAHs can occur through inhalation, ingestion, or skin contact.

It is important to limit exposure to PAHs by avoiding tobacco smoke, reducing consumption of grilled and smoked foods, using ventilation when cooking, and following safety guidelines when working with industrial processes that produce PAHs.

DNA adducts are chemical modifications or alterations that occur when DNA molecules become attached to or bound with certain harmful substances, such as toxic chemicals or carcinogens. These attachments can disrupt the normal structure and function of the DNA, potentially leading to mutations, genetic damage, and an increased risk of cancer and other diseases.

DNA adducts are formed when a reactive molecule from a chemical agent binds covalently to a base in the DNA molecule. This process can occur either spontaneously or as a result of exposure to environmental toxins, such as those found in tobacco smoke, certain industrial chemicals, and some medications.

The formation of DNA adducts is often used as a biomarker for exposure to harmful substances, as well as an indicator of potential health risks associated with that exposure. Researchers can measure the levels of specific DNA adducts in biological samples, such as blood or urine, to assess the extent and duration of exposure to certain chemicals or toxins.

It's important to note that not all DNA adducts are necessarily harmful, and some may even play a role in normal cellular processes. However, high levels of certain DNA adducts have been linked to an increased risk of cancer and other diseases, making them a focus of ongoing research and investigation.

Medical definitions typically focus on the relevance of a term to medicine or healthcare, so here's a medical perspective on polycyclic compounds:

Polycyclic compounds are organic substances that contain two or more chemical rings in their structure. While not all polycyclic compounds are relevant to medicine, some can have significant medical implications. For instance, polycyclic aromatic hydrocarbons (PAHs) are a type of polycyclic compound that can be found in tobacco smoke and certain types of air pollution. PAHs have been linked to an increased risk of cancer, particularly lung cancer, due to their ability to damage DNA.

Another example is the class of drugs called steroids, which include hormones like cortisol and sex hormones like testosterone and estrogen. These compounds are polycyclic because they contain several interconnected rings in their structure. Steroid medications are used to treat a variety of medical conditions, including inflammation, asthma, and Addison's disease.

In summary, while not all polycyclic compounds are relevant to medicine, some can have important medical implications, either as harmful environmental pollutants or as useful therapeutic agents.

Carcinogens are agents (substances or mixtures of substances) that can cause cancer. They may be naturally occurring or man-made. Carcinogens can increase the risk of cancer by altering cellular DNA, disrupting cellular function, or promoting cell growth. Examples of carcinogens include certain chemicals found in tobacco smoke, asbestos, UV radiation from the sun, and some viruses.

It's important to note that not all exposures to carcinogens will result in cancer, and the risk typically depends on factors such as the level and duration of exposure, individual genetic susceptibility, and lifestyle choices. The International Agency for Research on Cancer (IARC) classifies carcinogens into different groups based on the strength of evidence linking them to cancer:

Group 1: Carcinogenic to humans
Group 2A: Probably carcinogenic to humans
Group 2B: Possibly carcinogenic to humans
Group 3: Not classifiable as to its carcinogenicity to humans
Group 4: Probably not carcinogenic to humans

This information is based on medical research and may be subject to change as new studies become available. Always consult a healthcare professional for medical advice.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Nitric Oxide Synthase Type I, also known as NOS1 or neuronal nitric oxide synthase (nNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. It is primarily expressed in the nervous system, particularly in neurons, and plays a crucial role in the regulation of neurotransmission, synaptic plasticity, and cerebral blood flow. NOS1 is calcium-dependent and requires several cofactors for its activity, including NADPH, FAD, FMN, and calmodulin. It is involved in various physiological and pathological processes, such as learning and memory, seizure susceptibility, and neurodegenerative disorders.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

Mutagens are physical or chemical agents that can cause permanent changes in the structure of genetic material, including DNA and chromosomes, leading to mutations. These mutations can be passed down to future generations and may increase the risk of cancer and other diseases. Examples of mutagens include ultraviolet (UV) radiation, tobacco smoke, and certain chemicals found in industrial settings. It is important to note that not all mutations are harmful, but some can have negative effects on health and development.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Nitrogen oxides (NOx) are a group of highly reactive gases, primarily composed of nitric oxide (NO) and nitrogen dioxide (NO2). They are formed during the combustion of fossil fuels, such as coal, oil, gas, or biomass, and are emitted from various sources, including power plants, industrial boilers, transportation vehicles, and residential heating systems. Exposure to NOx can have adverse health effects, particularly on the respiratory system, and contribute to the formation of harmful air pollutants like ground-level ozone and fine particulate matter.

Epoxy compounds, also known as epoxy resins, are a type of thermosetting polymer characterized by the presence of epoxide groups in their molecular structure. An epoxide group is a chemical functional group consisting of an oxygen atom double-bonded to a carbon atom, which is itself bonded to another carbon atom.

Epoxy compounds are typically produced by reacting a mixture of epichlorohydrin and bisphenol-A or other similar chemicals under specific conditions. The resulting product is a two-part system consisting of a resin and a hardener, which must be mixed together before use.

Once the two parts are combined, a chemical reaction takes place that causes the mixture to cure or harden into a solid material. This curing process can be accelerated by heat, and once fully cured, epoxy compounds form a strong, durable, and chemically resistant material that is widely used in various industrial and commercial applications.

In the medical field, epoxy compounds are sometimes used as dental restorative materials or as adhesives for bonding medical devices or prosthetics. However, it's important to note that some people may have allergic reactions to certain components of epoxy compounds, so their use must be carefully evaluated and monitored in a medical context.

Zinc oxide is an inorganic compound with the formula ZnO. It exists as a white, odorless, and crystalline powder. In medicine, zinc oxide is used primarily as a topical agent for the treatment of various skin conditions, including diaper rash, minor burns, and irritations caused by eczema or psoriasis.

Zinc oxide has several properties that make it useful in medical applications:

1. Antimicrobial activity: Zinc oxide exhibits antimicrobial properties against bacteria, viruses, and fungi, which can help prevent infection and promote wound healing.
2. Skin protectant: It forms a physical barrier on the skin, protecting it from external irritants, friction, and moisture. This property is particularly useful in products like diaper rash creams and sunscreens.
3. Astringent properties: Zinc oxide can help constrict and tighten tissues, which may reduce inflammation and promote healing.
4. Mineral sunscreen agent: Zinc oxide is a common active ingredient in physical (mineral) sunscreens due to its ability to reflect and scatter UV light, protecting the skin from both UVA and UVB radiation.

Zinc oxide can be found in various medical and skincare products, such as creams, ointments, pastes, lotions, and powders. It is generally considered safe for topical use, but it may cause skin irritation or allergic reactions in some individuals.

... pyrene 9,10-oxide, benzo(a)pyrene, methotrexate, and vitamin E. The expression of the UPF0488 gene increases after treatment ... "C8orf33 chromosome 8 open reading frame 33 [Homo sapiens]". Entrez Gene. Ma C, Chen HI, Flores M, Huang Y, Chen Y (2013). "BRCA ... Chromosome 8 open reading frame 33 (C8orf33) is a human protein-coding gene of currently unknown function. The UPF0488 protein ... 7 (Suppl 5): S5. doi:10.1186/1752-0509-7-S5-S5. PMC 4029357. PMID 24564956. "UPF0488 protein C8orf33 [Homo sapiens]". Entrez ...
... pyrene 9,10-oxide MeSH D04.615.885.120 - buspirone MeSH D04.615.885.345 - fluorescamine MeSH D04.615.885.347 - fluoresceins ... pyrene MeSH D04.615.799.306.400 - dihydroxydihydrobenzopyrenes MeSH D04.615.799.306.400.350 - 7,8-dihydro-7,8-dihydroxybenzo(a) ... 8-hydroxy-2-(di-n-propylamino)tetralin MeSH D04.615.638.960.492 - levobunolol MeSH D04.615.638.960.585 - mibefradil MeSH ... 9,10-dimethyl-1,2-benzanthracene MeSH D04.615.149.500 - methylcholanthrene MeSH D04.615.149.700 - perylene MeSH D04.615.181.384 ...
... pyrene 9,10-oxide, benzo(a)pyrene, methotrexate, and vitamin E. The expression of the UPF0488 gene increases after treatment ... "C8orf33 chromosome 8 open reading frame 33 [Homo sapiens]". Entrez Gene. Ma C, Chen HI, Flores M, Huang Y, Chen Y (2013). "BRCA ... Chromosome 8 open reading frame 33 (C8orf33) is a human protein-coding gene of currently unknown function. The UPF0488 protein ... 7 (Suppl 5): S5. doi:10.1186/1752-0509-7-S5-S5. PMC 4029357. PMID 24564956. "UPF0488 protein C8orf33 [Homo sapiens]". Entrez ...
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10- ... 4-Hydroxyaminoquinoline-1-oxide 4-Hydroxyaminoquinoline-N-oxide use 4-Hydroxyaminoquinoline-1-oxide ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ...
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10- ... 4-Hydroxyaminoquinoline-1-oxide 4-Hydroxyaminoquinoline-N-oxide use 4-Hydroxyaminoquinoline-1-oxide ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ...
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10- ... 4-Hydroxyaminoquinoline-1-oxide 4-Hydroxyaminoquinoline-N-oxide use 4-Hydroxyaminoquinoline-1-oxide ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ...
... pyrene (BP). Addition of (bi)sulfite to incubations containing BP-7,8-diol and an active peroxidase resulted in significantly ... pyrene (BP-7,8-diol) was examined. Both horseradish peroxidase and prostaglandin peroxidase catalyze the one-electron oxidation ... pyrene 9,10-oxide; Animals; Chromatography, High Pressure Liquid; Dihydroxydihydrobenzopyrenes*; Free Radicals; Horseradish ... This (bi)sulfite-derived peroxyl radical then reacts with BP-7,8-diol to form BP-7,8-diol-9,10-epoxides, the ultimate ...
Benzo[a]pyrene diol epoxide-induced 3p21.3 aberrations and genetic predisposition to lung cancer. Wu X, Zhao Y, Honn SE, ... No mutations found in exon 2 of gene p16CDKN2A during rat tongue carcinogenesis induced by 4-nitroquinoline-1-oxide. Minicucci ... Benzo[a]pyrene diol epoxide-induced 9p21 aberrations associated with genetic predisposition to bladder cancer. Hazra A, ... In this case control study, we used two assays with mutagens relevant to tobacco exposure (benzo[a]pyrene diol epoxide (BPDE) ...
... pyrene Anti-BaPDE BPDE Benzo(a)pyrene 7,8-Dihydrodiol 9,10-Epoxide Benzo(a)pyrene-7,8-diol 9,10-Epoxide Pharm Action. ... Benzo(a)pyrene 7,8-Dihydrodiol 9,10-Epoxide Term UI T044195. Date04/09/1986. LexicalTag NON. ThesaurusID UNK (19XX). ... Benzo(a)pyrene-7,8-diol 9,10-Epoxide Term UI T044196. Date04/09/1986. LexicalTag NON. ThesaurusID UNK (19XX). ... Pyrenes [D04.615.799] * Benzopyrenes [D04.615.799.306] * Dihydroxydihydrobenzopyrenes [D04.615.799.306.400] * 7,8-Dihydro-7,8- ...
... pyrene Anti-BaPDE BPDE Benzo(a)pyrene 7,8-Dihydrodiol 9,10-Epoxide Benzo(a)pyrene-7,8-diol 9,10-Epoxide Pharm Action. ... Benzo(a)pyrene 7,8-Dihydrodiol 9,10-Epoxide Term UI T044195. Date04/09/1986. LexicalTag NON. ThesaurusID UNK (19XX). ... Benzo(a)pyrene-7,8-diol 9,10-Epoxide Term UI T044196. Date04/09/1986. LexicalTag NON. ThesaurusID UNK (19XX). ... Pyrenes [D04.615.799] * Benzopyrenes [D04.615.799.306] * Dihydroxydihydrobenzopyrenes [D04.615.799.306.400] * 7,8-Dihydro-7,8- ...
Oxide Synthase N0000167838 Nitric Oxide Synthase Type I N0000167839 Nitric Oxide Synthase Type II N0000167837 Nitric Oxide ... pyrene 9,10-oxide N0000167869 7-Alkoxycoumarin O-Dealkylase N0000168572 8,11,14-Eicosatrienoic Acid N0000170820 8-Bromo Cyclic ... 4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester N0000166552 4,4-Diisothiocyanostilbene-2,2- ... Cation Channels N0000170595 Cyclic Nucleotide-Regulated Protein Kinases N0000167036 Cyclic P-Oxides N0000167037 Cyclic S-Oxides ...
... pyrene 9,10-oxide D2.455.426.559.847.799.306.400.350 8,11,14-Eicosatrienoic Acid D10.251.355.255.74 D10.251.355.255.207 8-Bromo ... D3.383.742.680.705.950 Zinc Oxide-Eugenol Cement J1.637.51.339.291.925 Zinc Phosphate Cement J1.637.51.339.291.950 Zinostatin ... J1.637.51.720.830 Pyrenes D2.455.426.559.847.799 Pyrimidine Dimers D3.383.742.686.600 Pyrimidine Nucleosides D3.383.742.680 ... pyrene D2.455.426.559.847.799.306.300 Benzocycloheptenes D2.455.426.559.847.181 Benzomorphans D3.132.610.422.106 D3.132.577.249 ...
3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10- ... 4-Hydroxyaminoquinoline-1-oxide 4-Hydroxyaminoquinoline-N-oxide use 4-Hydroxyaminoquinoline-1-oxide ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ...
Dihydroxy-dihydro-benzopyrènes Entry term(s):. Benzopyrene Dihydrodiols. Dihydrobenzopyrene Diols. Dihydrodiolbenzopyrenes. ... pyrene 9,10-oxide [D02.455.426.559.847.799.306.400.350] ... Benzo(a)pyrene [D02.455.426.559.847.799.306.300] Benzo(a)pyrene ... 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide [D04.615.799.306.400.350] ...
Persistence of benzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a] pyrene in Fischer 344 rats: time distribution of total ... Analysis of human urine for pyridine-N-oxide metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific ... Environ Health 10(suppl 1):S3, PMID: 21489213, 10.1186/1476-069X-10-S1-S3. Crossref, Medline, Google Scholar ... PLoS One 9(10):e108854, PMID: 25329995, 10.1371/journal.pone.0108854. Crossref, Medline, Google Scholar ...
  • Addition of (bi)sulfite to incubations containing BP-7,8-diol and an active peroxidase resulted in significantly increased levels of BP diol-epoxide formation. (nih.gov)
  • In this case control study, we used two assays with mutagens relevant to tobacco exposure (benzo[a]pyrene diol epoxide (BPDE) and bleomycin) to see whether sensitivity to these mutagens could be used as biomarkers for assessing risk of premalignant lesions. (nih.gov)
  • This (bi)sulfite-derived peroxyl radical then reacts with BP-7,8-diol to form BP-7,8-diol-9,10-epoxides, the ultimate carcinogenic form of benzo[a]pyrene (BP). (nih.gov)