A benzofuran derivative used as a protein reagent since the terminal N-NBD-protein conjugate possesses interesting fluorescence and spectral properties. It has also been used as a covalent inhibitor of both beef heart mitochondrial ATPase and bacterial ATPase.
Oxadiazoles are heterocyclic organic compounds consisting of a five-membered ring containing two carbon atoms, one nitrogen atom, and two oxygen atoms (one as a part of the oxadiazole ring and the other as a substituent or part of a larger molecule), which can exist in various isomeric forms and are known for their versatile biological activities, including anti-inflammatory, antiviral, antibacterial, and antitumor properties.
'Benzoxazoles' are heterocyclic organic compounds, consisting of a benzene ring fused to an oxazole ring, which have been studied for their potential pharmacological activities including anti-inflammatory, analgesic, and antipyretic effects.
Very toxic and complex pyrone derivatives from the fungus Calcarisporium arbuscula. They bind to and inhibit mitochondrial ATPase, thereby uncoupling oxidative phosphorylation. They are used as biochemical tools.
A sulfhydryl proteinase with cysteine at the active site from ficus latex. Preferential cleavage is at tyrosine and phenylalanine residues. EC
Compounds that contain a BENZENE ring fused to a furan ring.
Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
The mitochondria of the myocardium.
2-Chloroadenosine. A metabolically stable analog of adenosine which acts as an adenosine receptor agonist. The compound has a potent effect on the peripheral and central nervous system.
A family of nonmetallic, generally electronegative, elements that form group 17 (formerly group VIIa) of the periodic table.
Compounds containing the -SH radical.
Chlorobenzenes are organic compounds consisting of a benzene ring substituted with one or more chlorine atoms, used as solvents, refrigerants, and intermediates in the production of other chemicals, but with limited use due to environmental and health concerns.
A centrally active muscarinic antagonist that has been used in the symptomatic treatment of PARKINSON DISEASE. Benztropine also inhibits the uptake of dopamine.
The rate dynamics in chemical or physical systems.
An essential amino acid. It is often added to animal feed.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
A greenish-yellow, diatomic gas that is a member of the halogen family of elements. It has the atomic symbol Cl, atomic number 17, and atomic weight 70.906. It is a powerful irritant that can cause fatal pulmonary edema. Chlorine is used in manufacturing, as a reagent in synthetic chemistry, for water purification, and in the production of chlorinated lime, which is used in fabric bleaching.
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.

Specific and sensitive assay for alkaline and neutral ceramidases involving C12-NBD-ceramide. (1/347)

A fluorescent analogue of ceramide, C12-NBD-ceramide, was found to be hydrolyzed much faster than 14C-labeled ceramide by alkaline ceramidase from Pseudomonas aeruginosa and neutral ceramidase from mouse liver, while this substrate was relatively resistant to acid ceramidase from plasma of the horseshoe crab. The radioactive substrate was used more preferentially by the acid ceramidase. It should be noted that C6-NBD-ceramide, which is usually used for ceramidase assays, was hardly hydrolyzed by any of the enzymes examined, compared to C12-NBD-ceramide. For the alkaline and neutral enzymes, the Vmax and k (Vmax/Km) with C12-NBD-ceramide were much higher than those with 14C-ceramide. In contrast, for the acid enzyme these parameters with C12-NBD-ceramide were less than half those with the radioisotope-labeled substrate. It is noteworthy that the labeling of ceramide with NBD did not itself reduce the Km of the alkaline enzyme, but did that of the neutral enzyme. It was also found that C12-NBD-ceramide was preferentially hydrolyzed by the alkaline and neutral enzymes, but not the acid one, in several mammalian cell lines. This study clearly shows that the attachment of NBD, but not dansyl, increases the susceptibility of ceramide to alkaline and neutral enzyme, and decreases that to acid enzymes. Thus the use of this substrate provides a specific and sensitive assay for alkaline and neutral ceramidases.  (+info)

Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. (2/347)

Neuronal maturation is a gradual process; first axons and dendrites are established as distinct morphological entities; next the different intracellular organization of these processes occurs; and finally the specialized plasma membrane domains of these two compartments are formed. Only when this has been accomplished does proper neuronal function take place. In this work we present evidence that the correct distribution of a class of axonal membrane proteins requires a mechanism which involves formation of protein-lipid (sphingomyelin/cholesterol) detergent-insoluble complexes (DIGs). Using biochemistry and immunofluorescence microscopy we now show that in developing neurons the randomly distributed Thy-1 does not interact with lipids into DIGs (in fully developed neurons the formation of such complexes is essential for the correct axonal targeting of this protein). Using lipid mass spectrometry and thin layer chromatography we show that the DIG lipid missing in the developing neurons is sphingomyelin, but not cholesterol or glucosylceramide. Finally, by increasing the intracellular levels of sphingomyelin in the young neurons the formation of Thy-1/DIGs was induced and, consistent with a role in sorting, proper axonal distribution was facilitated. These results emphasize the role of sphingomyelin in axonal, and therefore, neuronal maturation.  (+info)

Saturable stimulation of fatty acid transport through model cytoplasm by soluble binding protein. (3/347)

To better define the role of soluble binding proteins in the cytoplasmic transport of amphipathic molecules, we measured the diffusional mobility of a fluorescent long-chain fatty acid, 12-N-methyl-(7-nitrobenz-2-oxa-1,3-diazol)aminostearate (NBD-stearate), through model cytoplasm as a function of soluble binding protein concentration. Diffusional mobilities were correlated with the partition of the fatty acid between membrane and protein binding sites. Cytoplasm was modeled as a dense suspension of liposomes, and albumin was used as a model binding protein. Albumin saturably increased NBD-stearate mobility through the membrane suspension approximately eightfold. Fatty acid mobility in the absence of albumin was identical to the mobility of the membrane vesicles (1.99 +/- 0.33 x 10(-8) cm(2)/s), whereas the mobility at saturating concentrations was identical to the mobility of albumin (1.65 +/- 0.12 x 10(-7) cm(2)/s). The protein concentration producing half-maximal stimulation of NBD-stearate diffusion (42.8 +/- 0.3 microM) was unexpectedly greater than that required to solubilize half of the NBD-stearate (17.9 +/- 3.0 microM). These results support a proposed mechanism for cytoplasmic transport of small amphipathic molecules in which aqueous diffusion of the protein-bound form of the molecule largely determines the transport rate. However, slow interchange of fatty acid between the binding protein and membranes also appears to influence the transport rate in this model system.  (+info)

Fluorescent phosphoinositide derivatives reveal specific binding of gelsolin and other actin regulatory proteins to mixed lipid bilayers. (4/347)

Fluorescent derivatives of phosphatidyl inositol (PtdIns)-(4,5)-P2 were synthesized and used to test the effects of the PtdIns-(4, 5)-P2-regulated proteins gelsolin, tau, cofilin, and profilin on labeled PtdIns-(4,5)-P2 that was either in micellar form or mixed with phosphatidylcholine (PtdCho) in bilayer vesicles. Gelsolin increased the fluorescence of 7-nitrobenz-2-oxa-1,3-diazole (NBD)- or pyrene-labeled PtdIns-(4,5)-P2 and NBD-PtdIns-(3,4,5)-P3. Cofilin and profilin produced no detectable change at equimolar ratios to PtdIns-(4,5)-P2, while tau decreased NBD-PtdIns-(4,5)-P2 fluorescence. Fluorescence enhancement by gelsolin of NBD-PtdIns-(4, 5)-P2 in mixed lipid vesicles depended on the mole fraction of PtdIns-(4,5)-P2 in the bilayer. Specific enhancement of 3% NBD-PtdIns-(4,5)-P2 : 97% PtdCho was much lower than that of 10% PtdIns-(4,5)-P2 : 90% PtdCho, but the enhancement of 3% NBD-PtdIns-(4,5)-P2 could be increased by addition of 7% unlabeled PtdIns-(4,5)-P2. The gelsolin-dependent increase in NBD-PtdIns-(4, 5)-P2 fluorescence was reversed by addition of Ca2+ or G-actin. Significant, but weaker, fluorescence enhancement was observed with the gelsolin N-terminal domain (residues 1-160) and a peptide comprised of gelsolin residues 150-169. Fluorescence energy transfer from gelsolin to pyrene-PtdIns-(4,5)-P2 was much stronger with intact gelsolin than the N-terminal region of gelsolin containing the PtdIns-(4,5)-P2 binding sites, suggesting that PtdIns-(4,5)-P2 may bind near a site formed by the juxtaposition of the N- and C-terminal domains of gelsolin.  (+info)

Rapid transbilayer movement of fluorescent phospholipid analogues in the plasma membrane of endocytosis-deficient yeast cells does not require the Drs2 protein. (5/347)

Evidence is presented that endocytosis-deficient Saccharomyces cerevisiae end4 yeast cells rapidly internalize the fluorescent phospholipid analogues 1-palmitoyl-2-{6-[7-nitro-2,1, 3-benzoxadiazol-4-yl(NBD)amino] caproyl}phosphatidylcholine (P-C6-NBD-PtdCho) and P-C6-NBD-phosphatidylserine (P-C6-NBD-PtdSer). Both analogues redistributed between the exoplasmic and cytoplasmic leaflet with a half-time of < 15 min at 0 degrees C. The plateau of internalized analogues was about 70%. Transbilayer movement is probably protein-mediated, as the flip-flop of both analogues was very slow in liposomes composed of plasma-membrane lipids. Rapid analogue internalization was not abolished on depletion of intracellular ATP by about 90%. For P-C6-NBD-PtdCho only was a moderate decrease in the plateau of internalized analogues of about 20% observed, while that of P-C6-NBD-PtdSer was not affected. The Drs2 protein plays only a minor role, if any, in the rapid transbilayer movement of analogues in S. cerevisiae end4 cells. In S. cerevisiae end4 Deltadrs2 cells harbouring both an end4 allele and a drs2 null allele, about 60% and 50% of P-C6-NBD-PtdCho and P-C6-NBD-PtdSer, respectively, became internalized within 15 min at 0 degrees C. The preferential orientation of P-C6-NBD-PtdSer to the cytoplasmic leaflet is in qualitative agreement with the sequestering of endogenous phosphatidylserine to the cytoplasmic leaflet, as assessed by binding of annexin V. Virtually no binding of annexin V to spheroplasts of the parent wild-type strain or the mutant strains was observed. Likewise, no difference in the exposure of endogenous aminophospholipids to the exoplasmic leaflet between these strains was found by labelling with trinitrobenzenesulfonic acid. Thus, lipid asymmetry, at least of aminophospholipids, was preserved in S. cerevisiae end4 cells independently of the presence of the Drs2 protein.  (+info)

Cytoplasmic transport of fatty acids in rat enterocytes: role of binding to fatty acid-binding protein. (6/347)

The intracellular movement of fatty acids is thought to be facilitated through codiffusion with fatty acid-binding protein (FABP). This facilitation may occur by decreasing binding to immobile membranes, leading to faster cytoplasmic diffusion. The aims of this study were to measure the intracellular transport of 12-N-methyl-(7-nitrobenzo-2-oxa-1,3-diazol)aminostearate (NBD-stearate) in villus rat enterocytes and to determine 1) the mechanism of its cytoplasmic transport and 2) if its transport rate correlated with the known variation of FABP binding capacity along the length of the small intestine. Two-dimensional laser photobleaching was used to measure the movement of a fluorescent fatty acid NBD-stearate in enterocytes isolated from different segments of rat intestine. The fraction of NBD-stearate found in the cytostol of enterocytes was determined by differential centrifugation. Cytoplasmic transport of NBD-stearate occurred solely by diffusion and not by convection. Diffusion was homogeneous (nondirectional), consistent with isotropic diffusion. The diffusion rate varied with location along the intestine, correlating with the local FABP concentration and measured cytosolic binding. We conclude that cytoplasmic proteins like FABP promote the intracellular transport of fatty acids by enhancing their diffusive flux. We suggest that facilitation is not specific for a particular cell type but occurs in a variety of cells that transport fatty acids and may contain different types of FABP.  (+info)

Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. (7/347)

Brownian ratchets use a time-varying asymmetric potential that can be applied to separate diffusing particles or molecules. A new type of Brownian ratchet, a geometrical Brownian ratchet, has been realized. Charged, fluorescently labeled phospholipids in a two-dimensional fluid bilayer were driven in one direction by an electric field through a two-dimensional periodic array of asymmetric barriers to lateral diffusion fabricated from titanium oxide on silica. Diffusion spreads the phospholipid molecules in the orthogonal direction, and the asymmetric barriers rectify the Brownian motion, causing a directional transport of molecules. The geometrical ratchet can be used as a continuous molecular sieve to separate mixtures of membrane-associated molecules that differ in electrophoretic mobility and diffusion coefficient.  (+info)

Location of the catalytic nucleophile of phospholipase D of Streptomyces antibioticus in the C-terminal half domain. (8/347)

Phospholipase D (PLD) of Streptomyces antibioticus was labelled with fluorescent-labelled substrate, 1-hexanoyl-2-{6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)-amino]hexanoyl}-sn-glycero-3-phosphocholine, when it was incubated with the substrate and the reaction followed by SDS/PAGE. Mutant enzymes lacking the catalytic activity were not labelled under the same conditions, indicating that labelling of the PLD occurred as the result of its catalytic action. This confirmed that the labelled protein was the phosphatidyl PLD intermediate. PLDs contain two copies of the highly conserved catalytic HxKxxxxD (HKD) motif. Therefore, two protein fragments were separately prepared with recombinant strains of Escherichia coli. One of the fragments was the N-terminal half of the intact PLD containing one HKD motif, and the other was the C-terminal half with the other motif. An active enzyme was reconstructed from these two fragments, and therefore designated fragmentary PLD (fPLD). When fPLD was subjected to the labelling experiment, only the C-terminal half was labelled. Therefore, it was concluded that the catalytic nucleophile that bound directly to the phosphatidyl group of the substrate was located on the C-terminal half of PLD, and that the N-terminal half did not contain such a nucleophile.  (+info)

4-Chloro-7-nitrobenzofurazan is not a medical term, but a chemical compound with the formula C6H2ClN3O4. It is an orange crystalline powder that is used in research and industrial applications, particularly as a reagent in chemical reactions. It is not a substance that is typically encountered in medical settings or treatments.

Oxadiazoles are heterocyclic compounds containing a five-membered ring consisting of two carbon atoms, one nitrogen atom, and two oxygen atoms in an alternating sequence. There are three possible isomers of oxadiazole, depending on the position of the nitrogen atom: 1,2,3-oxadiazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole. These compounds have significant interest in medicinal chemistry due to their diverse biological activities, including anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer properties. Some oxadiazoles also exhibit potential as contrast agents for medical imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT).

Benzoxazoles are a class of heterocyclic organic compounds that consist of a benzene ring fused to an oxazole ring. The term "benzoxazoles" generally refers to the parent compound, but it can also refer to its derivatives that contain various functional groups attached to the benzene and/or oxazole rings.

Benzoxazoles have a wide range of applications in the pharmaceutical industry, as they are used in the synthesis of several drugs with anti-inflammatory, antifungal, and antiviral properties. They also have potential uses in materials science, such as in the development of organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs).

It is worth noting that benzoxazoles themselves are not used in medical treatments or therapies. Instead, their derivatives with specific functional groups and structures are designed and synthesized to have therapeutic effects on various diseases and conditions.

Aurovertins are a group of naturally occurring organic compounds that are produced by certain species of fungi. They belong to a class of molecules known as bisanthraquinones, which contain two anthraquinone units joined together. Aurovertins have been found to inhibit the activity of certain enzymes in the body, and they have been studied for their potential use as pharmaceuticals. However, they are also known to be toxic to some organisms, so their therapeutic use is still being explored.

There are several different aurovertins that have been identified, including aurovertin A, B, C, and D. These compounds differ from one another in their chemical structure and biological activity. For example, aurovertin A has been found to inhibit the activity of an enzyme called ATP synthase, which is involved in energy production within cells. This has led to interest in the potential use of aurovertin A as a research tool for studying cellular metabolism and as a possible therapeutic agent for diseases that are associated with mitochondrial dysfunction.

It is important to note that aurovertins have not been approved for use as drugs, and they should only be used in a laboratory setting under the supervision of trained professionals. Further research is needed to determine the safety and efficacy of these compounds before they can be considered for therapeutic use in humans.

Ficain is not typically defined in the context of human medicine, but it is a term used in biochemistry and molecular biology. Ficain is a proteolytic enzyme, also known as ficin, that is isolated from the latex of the fig tree (Ficus species). It has the ability to break down other proteins into smaller peptides or individual amino acids by cleaving specific peptide bonds. Ficain is often used in research and industrial applications, such as protein degradation, digestion studies, and biochemical assays.

Benzofurans are a class of organic compounds that consist of a benzene ring fused to a furan ring. The furan ring is a five-membered aromatic heterocycle containing one oxygen atom and four carbon atoms. Benzofurans can be found in various natural and synthetic substances. Some benzofuran derivatives have biological activity and are used in medicinal chemistry, while others are used as flavorings or fragrances. However, some benzofuran compounds are also known to have psychoactive effects and can be abused as recreational drugs.

Proton-translocating ATPases are complex, multi-subunit enzymes found in the membranes of many organisms, from bacteria to humans. They play a crucial role in energy transduction processes within cells.

In simpler terms, these enzymes help convert chemical energy into a form that can be used to perform mechanical work, such as moving molecules across membranes against their concentration gradients. This is achieved through a process called chemiosmosis, where the movement of ions (in this case, protons or hydrogen ions) down their electrochemical gradient drives the synthesis of ATP, an essential energy currency for cellular functions.

Proton-translocating ATPases consist of two main domains: a catalytic domain responsible for ATP binding and hydrolysis, and a membrane domain that contains the ion transport channel. The enzyme operates in either direction depending on the energy status of the cell: it can use ATP to pump protons out of the cell when there's an excess of chemical energy or utilize the proton gradient to generate ATP during times of energy deficit.

These enzymes are essential for various biological processes, including nutrient uptake, pH regulation, and maintaining ion homeostasis across membranes. In humans, they are primarily located in the inner mitochondrial membrane (forming the F0F1-ATP synthase) and plasma membranes of certain cells (as V-type ATPases). Dysfunction of these enzymes has been linked to several diseases, including neurological disorders and cancer.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

I'm happy to help! However, it seems like there are two terms combined into one request: "Mitochondria" and "Heart." I will provide separate definitions for each.

Mitochondrion (singular) or Mitochondria (plural): These are specialized structures found in the cytoplasm of most eukaryotic cells (cells with a true nucleus), including human cells. They are often referred to as the "powerhouse" of the cell because they generate energy in the form of ATP (adenosine triphosphate) through a process called oxidative phosphorylation. Mitochondria contain their own DNA, which is distinct from the nuclear DNA, and are believed to have originated from ancient bacteria that established a symbiotic relationship with primitive eukaryotic cells.

Heart: In human anatomy, the heart is a muscular organ responsible for pumping blood throughout the body. It is located in the thoracic cavity, slightly left of the center, and is enclosed by the pericardium, a double-walled sac that provides protection and lubrication for the heart's movement. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it to the rest of the body. The heart's pumping action is regulated by electrical signals that originate in a group of specialized cardiac muscle cells called the sinoatrial node (SA node).

2-Chloroadenosine is a synthetic, chlorinated analog of adenosine, which is a naturally occurring purine nucleoside. It acts as an antagonist at adenosine receptors and has been studied for its potential effects on the cardiovascular system, including its ability to reduce heart rate and blood pressure. It may also have anti-cancer properties and has been investigated as a potential therapeutic agent in cancer treatment. However, further research is needed to establish its safety and efficacy in clinical settings.

Halogens are a group of nonmetallic elements found in the seventh group of the periodic table. They include fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). Tennessine (Ts) is sometimes also classified as a halogen, although it has not been extensively studied.

In medical terms, halogens have various uses in medicine and healthcare. For example:

* Chlorine is used for disinfection and sterilization of surgical instruments, drinking water, and swimming pools. It is also used as a medication to treat certain types of anemia.
* Fluoride is added to drinking water and toothpaste to prevent dental caries (cavities) by strengthening tooth enamel.
* Iodine is used as a disinfectant, in medical imaging, and in the treatment of thyroid disorders.
* Bromine has been used in the past as a sedative and anticonvulsant, but its use in medicine has declined due to safety concerns.

Halogens are highly reactive and can be toxic or corrosive in high concentrations, so they must be handled with care in medical settings.

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Chlorobenzenes are a group of chemical compounds that consist of a benzene ring (a cyclic structure with six carbon atoms in a hexagonal arrangement) substituted with one or more chlorine atoms. They have the general formula C6H5Clx, where x represents the number of chlorine atoms attached to the benzene ring.

Chlorobenzenes are widely used as industrial solvents, fumigants, and intermediates in the production of other chemicals. Some common examples of chlorobenzenes include monochlorobenzene (C6H5Cl), dichlorobenzenes (C6H4Cl2), trichlorobenzenes (C6H3Cl3), and tetrachlorobenzenes (C6H2Cl4).

Exposure to chlorobenzenes can occur through inhalation, skin contact, or ingestion. They are known to be toxic and can cause a range of health effects, including irritation of the eyes, skin, and respiratory tract, headaches, dizziness, nausea, and vomiting. Long-term exposure has been linked to liver and kidney damage, neurological effects, and an increased risk of cancer.

It is important to handle chlorobenzenes with care and follow appropriate safety precautions to minimize exposure. If you suspect that you have been exposed to chlorobenzenes, seek medical attention immediately.

Benztropine is an anticholinergic medication that is primarily used to treat the symptoms of Parkinson's disease, such as rigidity, tremors, and muscle spasms. It works by blocking the action of acetylcholine, a neurotransmitter in the brain that is involved in the regulation of motor function.

Benztropine is also used to treat side effects caused by certain medications, such as antipsychotics, that can cause Parkinson-like symptoms. It may be prescribed to help reduce drooling or to manage muscle stiffness and restlessness.

The medication comes in the form of tablets or a solution for injection and is typically taken orally once or twice a day. Common side effects of benztropine include dry mouth, blurred vision, dizziness, and constipation. More serious side effects may include hallucinations, confusion, and irregular heartbeat.

It's important to note that benztropine can interact with other medications, so it's essential to inform your healthcare provider of all the drugs you are taking before starting this medication. Additionally, benztropine should be used cautiously in older adults, people with glaucoma or enlarged prostate, and those with a history of heart problems.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Chlorine is a chemical element with the symbol Cl and atomic number 17. It is a member of the halogen group of elements and is the second-lightest halogen after fluorine. In its pure form, chlorine is a yellow-green gas under standard conditions.

Chlorine is an important chemical compound that has many uses in various industries, including water treatment, disinfection, and bleaching. It is also used in the production of a wide range of products, such as plastics, solvents, and pesticides.

In medicine, chlorine compounds are sometimes used for their antimicrobial properties. For example, sodium hypochlorite (bleach) is a common disinfectant used to clean surfaces and equipment in healthcare settings. Chlorhexidine is another chlorine compound that is widely used as an antiseptic and disinfectant in medical and dental procedures.

However, it's important to note that exposure to high concentrations of chlorine gas can be harmful to human health, causing respiratory irritation, coughing, and shortness of breath. Long-term exposure to chlorine can also lead to more serious health effects, such as damage to the lungs and other organs.

Catechols are a type of chemical compound that contain a benzene ring with two hydroxyl groups (-OH) attached to it in the ortho position. The term "catechol" is often used interchangeably with "ortho-dihydroxybenzene." Catechols are important in biology because they are produced through the metabolism of certain amino acids, such as phenylalanine and tyrosine, and are involved in the synthesis of various neurotransmitters and hormones. They also have antioxidant properties and can act as reducing agents. In chemistry, catechols can undergo various reactions, such as oxidation and polymerization, to form other classes of compounds.

Environmental biodegradation is the breakdown of materials, especially man-made substances such as plastics and industrial chemicals, by microorganisms such as bacteria and fungi in order to use them as a source of energy or nutrients. This process occurs naturally in the environment and helps to break down organic matter into simpler compounds that can be more easily absorbed and assimilated by living organisms.

Biodegradation in the environment is influenced by various factors, including the chemical composition of the substance being degraded, the environmental conditions (such as temperature, moisture, and pH), and the type and abundance of microorganisms present. Some substances are more easily biodegraded than others, and some may even be resistant to biodegradation altogether.

Biodegradation is an important process for maintaining the health and balance of ecosystems, as it helps to prevent the accumulation of harmful substances in the environment. However, some man-made substances, such as certain types of plastics and industrial chemicals, may persist in the environment for long periods of time due to their resistance to biodegradation, leading to negative impacts on wildlife and ecosystems.

In recent years, there has been increasing interest in developing biodegradable materials that can break down more easily in the environment as a way to reduce waste and minimize environmental harm. These efforts have led to the development of various biodegradable plastics, coatings, and other materials that are designed to degrade under specific environmental conditions.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

... (NBD-F) is a fluorogenic, amine labeling dye that is not fluorescent itself, but covalently reacts ... Fluorescamine FQ "4-Fluoro-7-nitrobenzofurazan". PubChem. National Library of Medicine. Retrieved 11 March 2023. Stoyanov, ... doi:10.1016/s1570-0232(02)00535-4. ISSN 1570-0232. PMID 12401353. Maroulis, Marios; Monemvasios, Ioannis; Vardaka, Elisabeth; ... "Determination of domoic acid in mussels by HPLC with post-column derivatization using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole ( ...
5-tetrahydro-8-chloro-3-methyl-5-phenyl-1h-3-benzazepin-7-ol MeSH D03.438.079.800 - 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl- ... 8-chloro-, 2-acetylhydrazide MeSH D03.494.347.500 - loxapine MeSH D03.494.347.500.040 - amoxapine MeSH D03.494.382.393 - ... 4,5-dihydro-1-(3-(trifluoromethyl)phenyl)-1h-pyrazol-3-amine MeSH D03.383.129.539.200 - epirizole MeSH D03.383.129.539.487 - ... 4-oxadiazole MeSH D03.383.312.649.290 - fanft MeSH D03.383.312.649.308 - furagin MeSH D03.383.312.649.313 - furazolidone MeSH ...
"4-Chloro-7-nitrobenzofurazan" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... This graph shows the total number of publications written about "4-Chloro-7-nitrobenzofurazan" by people in UAMS Profiles by ... Below are the most recent publications written about "4-Chloro-7-nitrobenzofurazan" by people in Profiles over the past ten ... Below are MeSH descriptors whose meaning is more general than "4-Chloro-7-nitrobenzofurazan". ...
4-Fluoro-7-nitrobenzofurazan (NBD-F) is a fluorogenic, amine labeling dye that is not fluorescent itself, but covalently reacts ... Fluorescamine FQ "4-Fluoro-7-nitrobenzofurazan". PubChem. National Library of Medicine. Retrieved 11 March 2023. Stoyanov, ... doi:10.1016/s1570-0232(02)00535-4. ISSN 1570-0232. PMID 12401353. Maroulis, Marios; Monemvasios, Ioannis; Vardaka, Elisabeth; ... "Determination of domoic acid in mussels by HPLC with post-column derivatization using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole ( ...
Both chloro-dialkylamino-1-phenyl-ethanes 7a-d and 8a-d lead to 4-dialkylamino-2,2,3-triphenyl-butyronitriles 6a-d. Full ... The 2-chloro-1-dialkylamino-propanes 4a-d are reacted with diphenylacetonitrile under phase transfer conditions to give a ... In the 4D mode, a linear correlation was attained between the amplitude of the peak and concentration in the range 0.1-0.8 µgml ... Zero order (0D), first order (1D) and fourth order (4D) derivative measurements were applied for the quantitative analysis of ...
Synthesis of NBD-pip-CCF was carried out by conjugation of cholesteryl chloroformate (CCF) and 4-Chloro-7-nitrobenzofurazan ... we performed calculations in silico for obtained 7-nitrobenzoxadiazole (NBD) derivatives codenamed DAM-NBD ​​and NBD-pip-CCF. ... 4 1 master student of the Faculty of Chemistry, Belarusian State University; Trainee junior researcher of the Faculty of ... Keywords: 4-Chloro-7-nitrobenzofurazan; molecular docking; fluorescent probe; cholesterol; oxysterols View paper * Download ...
CL-USER, (load #P"~/projects/7-chloro-4-nitrobenzofurazan/nbdserver.lisp"). CL-USER, (defvar *pool* (run-rampool 13337 (* 10 ...
Spectrofluorimetric and spectrophotometric analysis of 1S, 2S pseudoephedrine and 4-Chloro-7-Nitrobenzofurazan., Darlene R. ...
Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary ... The structure of bovine f1-atpase covalently inhibited with 4-chloro-7-nitrobenzofurazan ...
7. Biochemical analysis, photosynthetic gene (psbA) down-regulation, and in silico receptor prediction in weeds in response to ... Experiments with metabolism inhibitors demonstrated that NBD-Cl (4-chloro-7-nitrobenzofurazan) increased quizalofop efficacy ...
Weed Technology / Volume 32 / Issue 4 / August 2018 Published online by Cambridge University Press: 28 May 2018, pp. 379-384 ... An experimental 2,4-D choline formulation with Colex-D® Technology (GF-3073) and a 2,4-D dimethylamine (DMA) formulation were ... Spray drift treatments were applied in 100 L ha−1 with tractor sprayers at 276 kPa equipped with a 7-m wide boom at 50 cm above ... H2O2 production was not light dependent in 2,4-D-resistant C. sumatrensis, with increases even under dark conditions. The 2,4-D ...
Hariyanti, H., Yanuar, A., Kusmardi, K. & Hayun, H., Dec 2020, In: MolBank. 2020, 4, p. 1-4 4 p., M1162.. Research output: ... Nasution, I. A. R., Andrajati, R., Syafhan, N. F. & Imaniar, R., 2023, In: Pharmaceutical Sciences Asia. 50, 3, p. 204-210 7 p. ... Noviarini, A., Wahyuni, T. & Bahtiar, A., Jan 2020, In: Toxicology International. 27, 1-2, p. 7-13 7 p.. Research output: ... Abasaeed, A. E., Abuelkhair, M. A., Andrajati, R. & Elnour, A. A., Oct 2013, In: Saudi medical journal. 34, 10, p. 1048-1054 7 ...
1,2,4-Oxadiazolidine-2-propanoic acid, alpha-amino-3,5-dioxo-, (S)-. Previous Indexing. Convulsants (1975-1990). Neuromuscular ... 5-Amino-3-((5-nitro-2-furyl)vinyl)-1,2,4-oxadiazole [D03.383.129.462.580.200] ...
article: Synthesis of 4-aryloxy-7-nitrobenzofurazan derivatives from 4-chloro-7-nitrobenzofurazan and various phenoxide anions ...
2-Chloro-2-deoxyadenosine use Cladribine 2-Chloroacetophenone use omega-Chloroacetophenone 2-Chloroadenosine ... 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7 ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ... 3-Deoxyarabinoheptulosonate-7-Phosphate Synthetase use 3-Deoxy-7-Phosphoheptulonate Synthase 3 End Processing, RNA use RNA 3 ...
2-Chloro-2-deoxyadenosine use Cladribine 2-Chloroacetophenone use omega-Chloroacetophenone 2-Chloroadenosine ... 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide 7,8-Dihydroxy-9,10-Epoxy-7,8,9,10-Tetrahydrobenzo(a)pyrene use 7,8-Dihydro-7 ... 7-Ethoxycoumarin O-Dealkylase use 7-Alkoxycoumarin O-Dealkylase 7-Ethoxycoumarin O-Deethylase use 7-Alkoxycoumarin O-Dealkylase ... 3-Deoxyarabinoheptulosonate-7-Phosphate Synthetase use 3-Deoxy-7-Phosphoheptulonate Synthase 3-Hydroxy-3-methylglutaric Acid ...
Arai, G. and M. Onozuka (1979) Mechanism of the reaction of chloro-p-benzoquinones with sodium sulfite. Nippon Kagaku Kaishi, ... A 7, 360-369.. *Tang, Q., Z. Liang, J. Liu, J. Xu and Q. Miao (2010) N-heteroquinones: Quadruple weak hydrogen bonds and n- ... Critical Tables 7, 173-211.. *Brode, W. R. (1943) Chemical Spectroscopy. 2nd Ed., pp. 239-245. John Wiley and Sons, Inc., New ... 4, 50097-50101.. *Heldt, J. R., J. Heldt, M. Stoń and H. A. Diehl (1995) Photophysical properties of 4-alkyl- and 7- ...
Arai, G. and M. Onozuka (1979) Mechanism of the reaction of chloro-p-benzoquinones with sodium sulfite. Nippon Kagaku Kaishi, ... A 7, 360-369.. *Tang, Q., Z. Liang, J. Liu, J. Xu and Q. Miao (2010) N-heteroquinones: Quadruple weak hydrogen bonds and n- ... Critical Tables 7, 173-211.. *Brode, W. R. (1943) Chemical Spectroscopy. 2nd Ed., pp. 239-245. John Wiley and Sons, Inc., New ... 4, 50097-50101.. *Heldt, J. R., J. Heldt, M. Stoń and H. A. Diehl (1995) Photophysical properties of 4-alkyl- and 7- ...
2_Chloro_4_nitrophenyl_beta_D_lactoside, Fluorescent Substrate for Cellulases, 25mg. 234.97 €. -. MarkerGene. ... Nitrobenzofurazan_4_ylamino)dodecanoic acid (C12_NBD), Fluorescent fatty acid, 100 mg. 258.08 €. -. MarkerGene. ... 2_Chloro_4_nitrophenyl_beta_D_cellobioside, Fluorescent Substrate for Cellulases, 25mg. 172.06 €. -. MarkerGene. ... 2, 7_Dichlorofluorescein diacetate, Enzyme Substrate, 25mg. 143.81 €. -. MarkerGene. M0815. Green FAM Poly Caspases Assay Kit ...
  • Since fluorescent 3beta-hydroxy-5-ene steroids are used to study the distribution and metabolism of cholesterol, and in the literature, as far as we know, such studies were carried out only for a pair of SCP-2 with commercial 22-NBD-cholesterol, we performed calculations in silico for obtained 7-nitrobenzoxadiazole (NBD) derivatives codenamed DAM-NBD ​​and NBD-pip-CCF. (sciforum.net)
  • 4-Fluoro-7-nitrobenzofurazan (NBD-F) is a fluorogenic, amine labeling dye that is not fluorescent itself, but covalently reacts with secondary or primary amines to form a fluorescently labeled product. (wikipedia.org)
  • We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). (nih.gov)
  • The TetR family of transcriptional factors are known to regulate expression of genes involved in bacterial efflux systems against antimicrobial compounds or drugs [ 4 ]. (biomedcentral.com)
  • The inhibitory activity of one of the compounds, (3-methoxyphenyl)-(4,4,7-trimethyl-4,5-dihydro-1H-[1,2]dithiolo[3,4-C]quinolin-1-ylidene)amine (MDQA), was chlamydia specific and was selected for further study. (oregonstate.edu)
  • Using fluorescence correlation spectroscopy NBD94(444-547) has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. (core.ac.uk)
  • The proposed method is based on the reaction of 4-chloro-7-nitrobenzofurazan (NBD-Cl) with bupropion to produce a fluorescent derivative. (ogu.edu.tr)
  • Protein that belongs to this family is known to act as transcriptional repressors, and they bind to their regulatory sequence and repress expression of target genes that are related to drug detoxification or export [ 4 ]. (biomedcentral.com)