Hydroxysteroid Dehydrogenases: Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.3-Hydroxysteroid Dehydrogenases: Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.17-Hydroxysteroid Dehydrogenases: A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.20-Hydroxysteroid Dehydrogenases: A group of enzymes that catalyze the reversible reduction-oxidation reaction of 20-hydroxysteroids, such as from a 20-ketosteroid to a 20-alpha-hydroxysteroid (EC or to a 20-beta-hydroxysteroid (EC Dehydrogenase (B-Specific): A 3-hydroxysteroid dehydrogenase which catalyzes the reversible reduction of the active androgen, DIHYDROTESTOSTERONE to 5 ALPHA-ANDROSTANE-3 ALPHA,17 BETA-DIOL. It also has activity towards other 3-alpha-hydroxysteroids and on 9-, 11- and 15- hydroxyprostaglandins. The enzyme is B-specific in reference to the orientation of reduced NAD or NADPH.11-beta-Hydroxysteroid Dehydrogenase Type 2: An high-affinity, NAD-dependent 11-beta-hydroxysteroid dehydrogenase that acts unidirectionally to catalyze the dehydrogenation of CORTISOL to CORTISONE. It is found predominantly in mineralocorticoid target tissues such as the KIDNEY; COLON; SWEAT GLANDS; and the PLACENTA. Absence of the enzyme leads to a fatal form of childhood hypertension termed, APPARENT MINERALOCORTICOID EXCESS SYNDROME.11-beta-Hydroxysteroid Dehydrogenase Type 1: A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors.11-beta-Hydroxysteroid Dehydrogenases: Hydroxysteroid dehydrogenases that catalyzes the reversible conversion of CORTISOL to the inactive metabolite CORTISONE. Enzymes in this class can utilize either NAD or NADP as cofactors.Estradiol Dehydrogenases: Enzymes that catalyze the oxidation of estradiol at the 17-hydroxyl group in the presence of NAD+ or NADP+ to yield estrone and NADH or NADPH. The 17-hydroxyl group can be in the alpha- or beta-configuration. EC Enzymes which transfer sulfate groups to various acceptor molecules. They are involved in posttranslational sulfation of proteins and sulfate conjugation of exogenous chemicals and bile acids. EC 2.8.2.Cortisone: A naturally occurring glucocorticoid. It has been used in replacement therapy for adrenal insufficiency and as an anti-inflammatory agent. Cortisone itself is inactive. It is converted in the liver to the active metabolite HYDROCORTISONE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726)Steroid 17-alpha-Hydroxylase: A microsomal cytochrome P450 enzyme that catalyzes the 17-alpha-hydroxylation of progesterone or pregnenolone and subsequent cleavage of the residual two carbons at C17 in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP17 gene, generates precursors for glucocorticoid, androgen, and estrogen synthesis. Defects in CYP17 gene cause congenital adrenal hyperplasia (ADRENAL HYPERPLASIA, CONGENITAL) and abnormal sexual differentiation.Alcohol Oxidoreductases: A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).Steroids: A group of polycyclic compounds closely related biochemically to TERPENES. They include cholesterol, numerous hormones, precursors of certain vitamins, bile acids, alcohols (STEROLS), and certain natural drugs and poisons. Steroids have a common nucleus, a fused, reduced 17-carbon atom ring system, cyclopentanoperhydrophenanthrene. Most steroids also have two methyl groups and an aliphatic side-chain attached to the nucleus. (From Hawley's Condensed Chemical Dictionary, 11th ed)NAD: A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)Hydrocortisone: The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions.Kinetics: The rate dynamics in chemical or physical systems.L-Lactate Dehydrogenase: A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.Testosterone: A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Androsterone: A metabolite of TESTOSTERONE or ANDROSTENEDIONE with a 3-alpha-hydroxyl group and without the double bond. The 3-beta hydroxyl isomer is epiandrosterone.Alcohol Dehydrogenase: A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.Glyceraldehyde-3-Phosphate Dehydrogenases: Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.20-alpha-Hydroxysteroid Dehydrogenase: An enzymes that catalyzes the reversible reduction-oxidation reaction of 20-alpha-hydroxysteroids, such as from PROGESTERONE to 20-ALPHA-DIHYDROPROGESTERONE.Aldehyde Dehydrogenase: An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC Dehydrogenase: An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC DehydrogenaseMalate Dehydrogenase: An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC EC Phosphosulfate: 3'-Phosphoadenosine-5'-phosphosulfate. Key intermediate in the formation by living cells of sulfate esters of phenols, alcohols, steroids, sulfated polysaccharides, and simple esters, such as choline sulfate. It is formed from sulfate ion and ATP in a two-step process. This compound also is an important step in the process of sulfur fixation in plants and microorganisms.Arylsulfotransferase: A sulfotransferase that catalyzes the sulfation of a phenol in the presence of 3'-phosphoadenylylsulfate as sulfate donor to yield an aryl sulfate and adenosine 3',5'-bisphosphate. A number of aromatic compounds can act as acceptors; however, organic hydroxylamines are not substrates. Sulfate conjugation by this enzyme is a major pathway for the biotransformation of phenolic and catechol drugs as well as neurotransmitters. EC Steroid derivatives formed by oxidation of a methyl group on the side chain or a methylene group in the ring skeleton to form a ketone.NADP: Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)Dihydrolipoamide Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.Carbohydrate Dehydrogenases: Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.Succinate Dehydrogenase: A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.L-Iditol 2-Dehydrogenase: An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Dehydroepiandrosterone: A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion.Glycerolphosphate DehydrogenaseSubstrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Glucose 1-Dehydrogenase: A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Ketoglutarate Dehydrogenase ComplexAldehyde Oxidoreductases: Oxidoreductases that are specific for ALDEHYDES.Isoenzymes: Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.Stereoisomerism: The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)Gene Expression Regulation, Enzymologic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.Glucose Dehydrogenases: D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC; EC; EC and EC Dehydrogenase: An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC Alcohol Dehydrogenases: Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.Acyl-CoA Dehydrogenases: Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS.NADH Dehydrogenase: A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC Dehydrogenase: An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC Dehydrogenases: Alcohol oxidoreductases with substrate specificity for LACTIC ACID.Acyl-CoA Dehydrogenase: A flavoprotein oxidoreductase that has specificity for medium-chain fatty acids. It forms a complex with ELECTRON TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.Formate Dehydrogenases: Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC Dehydrogenase: An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.alpha 1-Antitrypsin: Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide): A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC DehydrogenaseRecombinant Proteins: Proteins prepared by recombinant DNA technology.3-Hydroxyacyl CoA Dehydrogenases: Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.Pyruvate Dehydrogenase (Lipoamide): The E1 component of the multienzyme PYRUVATE DEHYDROGENASE COMPLEX. It is composed of 2 alpha subunits (pyruvate dehydrogenase E1 alpha subunit) and 2 beta subunits (pyruvate dehydrogenase E1 beta subunit).Ketone Oxidoreductases: Oxidoreductases that are specific for KETONES.Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.Sulfates: Inorganic salts of sulfuric acid.Dihydrouracil Dehydrogenase (NADP): An oxidoreductase involved in pyrimidine base degradation. It catalyzes the catabolism of THYMINE; URACIL and the chemotherapeutic drug, 5-FLUOROURACIL.Uridine Diphosphate Glucose Dehydrogenase: An enzyme that catalyzes the oxidation of UDPglucose to UDPglucuronate in the presence of NAD+. EC Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.Glucosephosphate Dehydrogenase Deficiency: A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.Placenta: A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES).Receptors, Adrenergic, alpha: One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation.

26-cholesterol hydroxylase in rat corpora lutea: A negative regulator of progesterone secretion. (1/46)

From a subtracted cDNA library of rat luteal tissue, where cDNA fragments in functional luteal tissue were subtracted from those in regressing luteal tissue, a cDNA clone corresponding to 26-cholesterol hydroxylase (P450(C26)) was obtained. It is known that P450(C26) catalyzes the conversion of cholesterol to 26-hydroxycholesterol, which blocks cholesterol utilization in the cell, and that 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) catalyzes the conversion of progesterone to an inactive steroid, 20alpha-dihydroprogesterone (20alpha-OHP). Thus, using pseudopregnant rats as a model, physiological cooperation of P450(C26) and 20alpha-HSD in the reduction of progesterone release toward the end of the luteal phase was evaluated. Levels of P450(C26) and 20alpha-HSD mRNA were examined in corpora lutea from pseudopregnant rats by Northern blot or reverse transcription-polymerase chain reaction or both. P450(C26) mRNA was ubiquitously expressed in corpora lutea, and its expression increased toward the end of pseudopregnancy, while 20alpha-HSD was expressed in all corpora lutea on Day 16 (Day 0 = the day of after cervical stimulation) but not detected before Day 10. An inhibitor of 20alpha-HSD, STZ26 (D-homo-16-oxa-4-androstene-3,16alpha-dione), was administered at various doses to rats from Day 12 to 20, effectively suppressing the elevation of 20alpha-OHP in a dose-dependent manner but not the depletion of progesterone completely. The expression of P450(C26) mRNA was increased as STZ26 dose increased, which negatively correlated with the progesterone levels. These results strongly suggest that P450(C26) cooperated with 20alpha-HSD in the reduction of progesterone release from the rat luteal tissue at the end of the functional luteal phase.  (+info)

Conversion of mammalian 3alpha-hydroxysteroid dehydrogenase to 20alpha-hydroxysteroid dehydrogenase using loop chimeras: changing specificity from androgens to progestins. (2/46)

Hydroxysteroid dehydrogenases (HSDs) regulate the occupancy and activation of steroid hormone receptors by converting potent steroid hormones into their cognate inactive metabolites. 3alpha-HSD catalyzes the inactivation of androgens in the prostate by converting 5alpha-dihydrotestosterone to 3alpha-androstanediol, where excess 5alpha-dihydrotestosterone is implicated in prostate disease. By contrast, 20alpha-HSD catalyzes the inactivation of progestins in the ovary and placenta by converting progesterone to 20alpha-hydroxyprogesterone, where progesterone is essential for maintaining pregnancy. Mammalian 3alpha-HSDs and 20alpha-HSDs belong to the aldo-keto reductase superfamily and share 67% amino acid sequence identity yet show positional and stereospecificity for the formation of secondary alcohols on opposite ends of steroid hormone substrates. The crystal structure of 3alpha-HSD indicates that the mature steroid binding pocket consists of 10 residues located on five loops, including loop A and the mobile loops B and C. 3alpha-HSD was converted to 20alpha-HSD by replacing these loops with those found in 20alpha-HSD. However, when pocket residues in 3alpha-HSD were mutated to those found in 20alpha-HSD altered specificity was not achieved. Replacement of loop A created a 17beta-HSD activity that was absent in either 3alpha- or 20alpha-HSD. Once loops A and C were replaced, the chimera had both 3alpha- and 20alpha-HSD activity. When loops A, B, and C were substituted, 3alpha-HSD was converted to a stereospecific 20alpha-HSD with a resultant shift in k(cat)/K(m) for the desired reaction of 2 x 10(11). This study represents an example where sex hormone specificity can be changed at the enzyme level.  (+info)

Prostaglandin F2alpha-induced expression of 20alpha-hydroxysteroid dehydrogenase involves the transcription factor NUR77. (3/46)

Prostaglandin F(2)alpha (PGF(2)alpha) binding to its receptor on the rat corpus luteum triggers various signal transduction pathways that lead to the activation of a steroidogenic enzyme, 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD), which in turn catabolizes progesterone. The molecular mechanism underlying PGF(2)alpha-induced 20alpha-HSD enzyme activity has not yet been explored. In this report we show, using mice lacking PGF(2)alpha receptor and pregnant rats, that PGF(2)alpha is responsible for the rapid and massive expression of the 20alpha-HSD gene at the end of pregnancy leading to a decrease in progesterone secretion. We also present evidence that PGF(2)alpha enhances 20alpha-HSD promoter activity. We have determined a region upstream of the -1590 position in the 20alpha-HSD promoter that confers regulation by PGF(2)alpha in ovarian primary cells. This region encompasses a unique transcription factor-binding site with a sequence of a NUR77 response element. Deletion of this motif or overexpression of a NUR77 dominant negative protein caused a complete loss of 20alpha-HSD promoter activation by PGF(2)alpha. NUR77 also transactivated the 20alpha-HSD promoter in transient transfection experiments in corpus luteum-derived cells (GG-CL). This induction required the NUR77-transactivating domain. We also show that PGF(2)alpha induces a very rapid expression of NUR77 that binds to a distal response element located at -1599/-1606 but does not interact with another proximal putative NUR77 response element located downstream in the promoter. A rapid increase in NUR77 mRNA was observed in mice corpora lutea just before parturition at a time when 20alpha-HSD becomes expressed. This increase in the expression of both genes was not seen in PGF(2)alpha receptor knockout mice. By using cyclosporin A and PGF(2)alpha treatment, we established that inhibition of NUR77 DNA binding in vivo prevents PGF(2)alpha induction of the 20alpha-HSD gene in the corpus luteum. Taken together, our results demonstrate, for the first time, that PGF(2)alpha induces in the corpus luteum the expression of the nuclear orphan receptor and transcription factor, NUR77, which in turn leads to the transcriptional stimulation of 20alpha-HSD, triggering the decrease in serum progesterone essential for parturition.  (+info)

Characterization of a human 20alpha-hydroxysteroid dehydrogenase. (4/46)

It has been suggested that 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a T-cell differentiation marker in mice. In the human, this enzyme has generally been associated with types 1 and 2 17beta-HSDs, which belong to the short-chain alcohol dehydrogenase family, whereas the rat, rabbit, pig and bovine 20alpha-HSDs are members of the aldoketo reductase superfamily, which also includes the 3alpha-HSD family. In this study, we report the cloning, from a human skin cDNA library, of a cDNA that shows, after transfection into human embryonic kidney (HEK-293) cells, high 20alpha-HSD activity but negligible 3alpha- and 17beta-hydroxysteroid dehydrogenase activities. A comparison of the amino acid sequence of the human 20alpha-HSD with those of other related 20alpha- and 3alpha-HSDs indicates that the human 20alpha-HSD shares 79.9, 68.7 and 52.3% identity with rabbit, rat and bovine 20alpha-HSDs, whereas it shows 97, 84 and 65% identity with human type 3, type 1 and rat 3alpha-HSDs. In contrast, the enzyme shares only 15.2 and 15.0% identity with type 1 and type 2 human 17beta-HSDs. DNA analysis predicts a protein of 323 amino acids, with a calculated molecular weight of 36 767 Da. In intact transfected cells, the human 20alpha-HSD preferentially catalyzes the reduction of progesterone to 20alpha-hydroxyprogesterone with a K(m) value of 0.6 microM, the reverse reaction (oxidation) being negligible. In a cell cytosolic preparation, the enzyme could use both NADPH and NADH as cofactors, but NADPH, which gave 4-fold lower K(m) values, was preferred. We detected the expression of 20alpha-HSD mRNA in liver, prostate, testis, adrenal, brain, uterus and mammary-gland tissues and in human keratinocyte (HaCaT) cells. The present study clearly indicates that the genuine human 20alpha-HSD belongs to the aldoketo reductase family, like the 20alpha-HSDs from other species.  (+info)

Dependence on prolactin of the luteolytic effect of prostaglandin F2alpha in rat luteal cell cultures. (5/46)

Luteal regression is a multistep, prolonged process, and long-term luteal cultures are required for studying it in vitro. Cell suspensions from ovaries of superovulated rats were enriched with steroidogenic cells, seeded on laminin or fibronectin, and maintained in defined medium for up to 10 days. Progesterone secretion was much lower than that of 20alpha-dihydroprogesterone, a product of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). Prolactin added throughout the incubation period gradually increased the percent progesterone out of total progestins to fourfold, while reducing 20alpha-HSD mRNA by 73%. Luteinizing hormone accelerated the establishment of higher percent progesterone by prolactin but by itself had no effect. Prolactin did not increase total progestin production or cytochrome P450 side-chain cleavage (P450(scc)) mRNA. Cell viability was unaffected by prolactin and/or LH. Prostaglandin F2alpha (PGF2alpha) was added 7-8 days after seeding. In prolactin-treated cells, PGF2alpha reduced steroidogenesis after 4-45 h, and at 45 h total progestins and P450(scc) mRNA were reduced by 45%. At 8-45 h PGF2alpha reduced the percent progesterone out of total progestins, and at 45 h 20alpha-HSD mRNA was doubled. In contrast, in prolactin-deprived cultures, PGF2alpha had little effect on total progestins or 20alpha-HSD mRNA but doubled P450(scc) mRNA. Phospholipase C activity was stimulated by PGF2alpha regardless of prolactin. Thus, when prolactin-treated, our cultures are a good model for mature corpora lutea challenged with PGF2alpha; the finding that without prolactin PGF2alpha has an alternative set of actions could help in identifying the signaling pathways of PGF2alpha responsible for its luteolytic effects.  (+info)

Luteal expression of cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase, and 20alpha-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. (6/46)

A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  (+info)

Progesterone metabolism in human leukemic monoblast U937 cells. (7/46)

Progesterone markedly inhibits the functions of human macrophages and T lymphocytes, and acts as an immunosuppressant during pregnancy. It is important to examine progesterone metabolites to understand the overall bioactive properties of this sex steroid. However, progesterone metabolism has not been examined in human immune cells. The human leukemic monoblast U937 cell line exhibits monocytic lineage and provides a valuable model to analyze monocyte-macrophage differentiation. Therefore, in this study, we analyzed progesterone metabolism in U937 cells by thin-layer chromatography. Progesterone was metabolized to 5alpha-pregnan-3beta,6alpha-diol-20-one via 5alpha-dihydroprogesterone and 5alpha-pregnan-3beta-ol-20-one, and 5alpha-pregnan-3beta,20alpha-diol was also detected as a final metabolic product via 20alpha-dihydroprogesterone and 5alpha-pregnan-20alpha-ol-3-one. 5alpha-reduction (5alpha-reductase type 1) and 20alpha-reduction were involved in the first step of metabolism. To identify the enzyme responsible for the 20alpha-reduction, we screened an U937 cDNA library, and obtained a clone (1.2 kb), which was identical to the human hepatic bile acid-binding protein or 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). 293 cells transfected with this cDNA demonstrated marked 20alpha-reduction of progesterone to 20alphaDHP, but 20alpha-oxidative, 3alpha-HSD or 17beta-HSD activity was found to be negligible. In experimental animals, the importance of 20alpha-HSD has been reported to be involved in the protection of immune cells from the toxic effects of progesterone. Therefore, our present data suggest that 20alpha-HSD plays an important role in the regulation of progesterone actions in human immune cells.  (+info)

Effects of deletion of the prolactin receptor on ovarian gene expression. (8/46)

Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R) gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy.  (+info)

  • In enzymology, a 20-α-hydroxysteroid dehydrogenase (EC is an enzyme that catalyzes the chemical reaction 17alpha,20alpha-dihydroxypregn-4-en-3-one + NAD(P)+ ⇌ {\displaystyle \rightleftharpoons } 17alpha-hydroxyprogesterone + NAD(P)H + H+ The 3 substrates of this enzyme are 17alpha,20alpha-dihydroxypregn-4-en-3-one, NAD+, and NADP+, whereas its 4 products are 17-alpha-hydroxyprogesterone, NADH, NADPH, and H+. (wikipedia.org)
  • Furthermore, 10 and/or 20 mg/kg ZEN exposure significantly reduced Esr1, gonadotropin-releasing hormone receptor (GnRHr), and ATP binding cassette transporters b1 and c1 (ABCb1 and ABCc1) in the placenta and foetal and weaned F1 brains, and also produced a dose-dependent increase in 3β-HSD in the placenta. (mdpi.com)