Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes.
Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample.
Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins.
The characteristic three-dimensional shape of a molecule.
Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature.
Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
A change of a substance from one form or state to another.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens, resulting in their opsinization. It also stimulates MACROPHAGES to undergo PHAGOCYTOSIS of microorganisms. Surfactant protein A contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis.
Proteins found in the LUNG that act as PULMONARY SURFACTANTS.
Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes.
The physical characteristics and processes of biological systems.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A fluorescent compound that emits light only in specific configurations in certain lipid media. It is used as a tool in the study of membrane lipids.
A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)
Characteristics or attributes of the outer boundaries of objects, including molecules.
The mixture of gases present in the earth's atmosphere consisting of oxygen, nitrogen, carbon dioxide, and small amounts of other gases.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The force acting on the surface of a liquid, tending to minimize the area of the surface. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An anionic compound that is used as a reagent for determination of potassium, ammonium, rubidium, and cesium ions. It also uncouples oxidative phosphorylation and forms complexes with biological materials, and is used in biological assays.
Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes.
Materials in intermediate state between solid and liquid.
A pulmonary surfactant associated-protein that plays an essential role in alveolar stability by lowering the surface tension at the air-liquid interface. Inherited deficiency of pulmonary surfactant-associated protein B is one cause of RESPIRATORY DISTRESS SYNDROME, NEWBORN.
Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids.
Mixtures of many components in inexact proportions, usually natural, such as PLANT EXTRACTS; VENOMS; and MANURE. These are distinguished from DRUG COMBINATIONS which have only a few components in definite proportions.
A spectroscopic technique in which a range of wavelengths is presented simultaneously with an interferometer and the spectrum is mathematically derived from the pattern thus obtained.
The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
A benzofuran derivative used as a protein reagent since the terminal N-NBD-protein conjugate possesses interesting fluorescence and spectral properties. It has also been used as a covalent inhibitor of both beef heart mitochondrial ATPase and bacterial ATPase.
A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample.
A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS.
Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Deuterium. The stable isotope of hydrogen. It has one neutron and one proton in the nucleus.
Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed)
A naphthalene derivative with carcinogenic action.
The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily.
Phospholipases that hydrolyze the acyl group attached to the 2-position of PHOSPHOGLYCERIDES.
The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a serine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and serine and 2 moles of fatty acids.
Phospholipids which have an alcohol moiety in ethereal linkage with a saturated or unsaturated aliphatic alcohol. They are usually derivatives of phosphoglycerols or phosphatidates. The other two alcohol groups of the glycerol backbone are usually in ester linkage. These compounds are widely distributed in animal tissues.
Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction.
A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Measurement of the intensity and quality of fluorescence.
Salts and esters of the 12-carbon saturated monocarboxylic acid--lauric acid.
The rate dynamics in chemical or physical systems.
Computer-based representation of physical systems and phenomena such as chemical processes.
A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN.
A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL.
Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures.
The accumulation of an electric charge on a object
Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
The physical phenomena describing the structure and properties of atoms and molecules, and their reaction and interaction processes.
The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity.
Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics.
Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.
Detergent-insoluble CELL MEMBRANE components. They are enriched in SPHINGOLIPIDS and CHOLESTEROL and clustered with glycosyl-phosphatidylinositol (GPI)-anchored proteins.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT.
A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.
A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays.
Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Relating to the size of solids.
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)

1,2-Dipalmitoylphosphatidylcholine (DPPC) is a type of phospholipid molecule that is a major component of the lipid bilayer in biological membranes, particularly in lung surfactant. It is composed of two palmitic acid chains attached to a glycerol backbone, which is linked to a phosphate group and a choline headgroup. The chemical formula for DPPC is C44H86NO8P.

In the body, DPPC plays an important role in maintaining the structure and function of cell membranes, as well as reducing surface tension in the lungs. It is also used in research and medical settings as a component of liposomes, which are used for drug delivery and other biomedical applications.

Pulmonary surfactants are a complex mixture of lipids and proteins that are produced by the alveolar type II cells in the lungs. They play a crucial role in reducing the surface tension at the air-liquid interface within the alveoli, which helps to prevent collapse of the lungs during expiration. Surfactants also have important immunological functions, such as inhibiting the growth of certain bacteria and modulating the immune response. Deficiency or dysfunction of pulmonary surfactants can lead to respiratory distress syndrome (RDS) in premature infants and other lung diseases.

A lipid bilayer is a thin membrane made up of two layers of lipid molecules, primarily phospholipids. The hydrophilic (water-loving) heads of the lipids face outwards, coming into contact with watery environments on both sides, while the hydrophobic (water-fearing) tails point inward, away from the aqueous surroundings. This unique structure allows lipid bilayers to form a stable barrier that controls the movement of molecules and ions in and out of cells and organelles, thus playing a crucial role in maintaining cellular compartmentalization and homeostasis.

Differential scanning calorimetry (DSC) is a thermoanalytical technique used to measure the difference in the amount of heat required to increase the temperature of a sample and a reference as a function of temperature. It is commonly used to study phase transitions, such as melting, crystallization, and glass transition, as well as chemical reactions, in a wide range of materials, including polymers, pharmaceuticals, and biological samples.

In DSC, the sample and reference are placed in separate pans and heated at a constant rate. The heat flow required to maintain this heating rate is continuously measured for both the sample and the reference. As the temperature of the sample changes during a phase transition or chemical reaction, the heat flow required to maintain the same heating rate will change relative to the reference. This allows for the measurement of the enthalpy change (ΔH) associated with the transition or reaction.

Differential scanning calorimetry is a powerful tool in materials science and research as it can provide information about the thermal behavior, stability, and composition of materials. It can also be used to study the kinetics of reactions and phase transitions, making it useful for optimizing processing conditions and developing new materials.

Liposomes are artificially prepared, small, spherical vesicles composed of one or more lipid bilayers that enclose an aqueous compartment. They can encapsulate both hydrophilic and hydrophobic drugs, making them useful for drug delivery applications in the medical field. The lipid bilayer structure of liposomes is similar to that of biological membranes, which allows them to merge with and deliver their contents into cells. This property makes liposomes a valuable tool in delivering drugs directly to targeted sites within the body, improving drug efficacy while minimizing side effects.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

Proteolipids are a type of complex lipid-containing proteins that are insoluble in water and have a high content of hydrophobic amino acids. They are primarily found in the plasma membrane of cells, where they play important roles in maintaining the structural integrity and function of the membrane. Proteolipids are also found in various organelles, including mitochondria, lysosomes, and peroxisomes.

Proteolipids are composed of a hydrophobic protein core that is tightly associated with a lipid bilayer through non-covalent interactions. The protein component of proteolipids typically contains several transmembrane domains that span the lipid bilayer, as well as hydrophilic regions that face the cytoplasm or the lumen of organelles.

Proteolipids have been implicated in various cellular processes, including signal transduction, membrane trafficking, and ion transport. They are also associated with several neurological disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The study of proteolipids is an active area of research in biochemistry and cell biology, with potential implications for the development of new therapies for neurological disorders.

Membrane fluidity, in the context of cell biology, refers to the ability of the phospholipid bilayer that makes up the cell membrane to change its structure and organization in response to various factors. The membrane is not a static structure but rather a dynamic one, with its lipids constantly moving and changing position.

Membrane fluidity is determined by the fatty acid composition of the phospholipids that make up the bilayer. Lipids with unsaturated fatty acids have kinks in their hydrocarbon chains, which prevent them from packing closely together and increase membrane fluidity. In contrast, lipids with saturated fatty acids can pack closely together, reducing membrane fluidity.

Membrane fluidity is important for various cellular processes, including the movement of proteins within the membrane, the fusion of vesicles with the membrane during exocytosis and endocytosis, and the ability of the membrane to respond to changes in temperature and other environmental factors. Abnormalities in membrane fluidity have been linked to various diseases, including cancer, neurological disorders, and infectious diseases.

Artificial membranes are synthetic or man-made materials that possess properties similar to natural biological membranes, such as selective permeability and barrier functions. These membranes can be designed to control the movement of molecules, ions, or cells across them, making them useful in various medical and biotechnological applications.

Examples of artificial membranes include:

1. Dialysis membranes: Used in hemodialysis for patients with renal failure, these semi-permeable membranes filter waste products and excess fluids from the blood while retaining essential proteins and cells.
2. Hemofiltration membranes: Utilized in extracorporeal circuits to remove larger molecules, such as cytokines or inflammatory mediators, from the blood during critical illnesses or sepsis.
3. Drug delivery systems: Artificial membranes can be used to encapsulate drugs, allowing for controlled release and targeted drug delivery in specific tissues or cells.
4. Tissue engineering: Synthetic membranes serve as scaffolds for cell growth and tissue regeneration, guiding the formation of new functional tissues.
5. Biosensors: Artificial membranes can be integrated into biosensing devices to selectively detect and quantify biomolecules, such as proteins or nucleic acids, in diagnostic applications.
6. Microfluidics: Artificial membranes are used in microfluidic systems for lab-on-a-chip applications, enabling the manipulation and analysis of small volumes of fluids for various medical and biological purposes.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

A phase transition in the context of medicine and physiology often refers to the transformation of a substance or matter from one state to another within the body, typically in relation to temperature or pressure changes. However, I couldn't find a widely accepted medical definition for "phase transition."

In physics and chemistry, a phase transition is a process where a thermodynamic system changes from one phase or state of matter to another, such as:

1. Solid to liquid (melting)
2. Liquid to gas (vaporization)
3. Gas to liquid (condensation)
4. Solid to gas (sublimation)
5. Changes between different crystalline structures of the same substance (polymorphic phase transitions)

While not a direct medical definition, these concepts are relevant in various biochemical and physiological processes, such as protein folding, cell membrane fluidity, and temperature regulation in the body.

Pulmonary Surfactant-Associated Protein A (SP-A) is a protein that is a major component of pulmonary surfactant, which is a complex mixture of lipids and proteins found in the alveoli of the lungs. SP-A is produced by specialized cells called type II alveolar epithelial cells and has several important functions in the lung.

SP-A plays a role in innate immunity by binding to pathogens, such as bacteria and viruses, and facilitating their clearance from the lungs. It also helps to regulate surfactant homeostasis by participating in the reuptake and recycling of surfactant components. Additionally, SP-A has been shown to have anti-inflammatory effects and may help to modulate the immune response in the lung.

Deficiencies or mutations in SP-A have been associated with various respiratory diseases, including acute respiratory distress syndrome (ARDS), pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).

Phosphatidylglycerols are a type of glycerophospholipids, which are major components of biological membranes. They are composed of a glycerol backbone to which two fatty acid chains and a phosphate group are attached. In the case of phosphatidylglycerols, the phosphate group is linked to a glycerol molecule through an ester bond, forming a phosphoglyceride.

Phosphatidylglycerols are unique because they have an additional glycerol molecule attached to the phosphate group, making them more complex than other glycerophospholipids such as phosphatidylcholine or phosphatidylethanolamine. This additional glycerol moiety can be further modified by the addition of various headgroups, leading to the formation of different subclasses of phosphatidylglycerols.

In biological membranes, phosphatidylglycerols are often found in the inner leaflet of the mitochondrial membrane and play important roles in maintaining the structure and function of this organelle. They have also been implicated in various cellular processes such as membrane fusion, protein trafficking, and bacterial cell wall biosynthesis.

Pulmonary surfactant-associated proteins are a group of proteins that are found in the pulmonary surfactant, a complex mixture of lipids and proteins that coats the inside surfaces of the alveoli in the lungs. The primary function of pulmonary surfactant is to reduce the surface tension at the air-liquid interface in the alveoli, which facilitates breathing by preventing collapse of the alveoli during expiration.

There are four main pulmonary surfactant-associated proteins, designated as SP-A, SP-B, SP-C, and SP-D. These proteins play important roles in maintaining the stability and function of the pulmonary surfactant film, as well as participating in host defense mechanisms in the lungs.

SP-A and SP-D are members of the collectin family of proteins and have been shown to have immunomodulatory functions, including binding to pathogens and modulating immune cell responses. SP-B and SP-C are hydrophobic proteins that play critical roles in reducing surface tension at the air-liquid interface and maintaining the stability of the surfactant film.

Deficiencies or dysfunction of pulmonary surfactant-associated proteins have been implicated in various lung diseases, including respiratory distress syndrome (RDS) in premature infants, chronic interstitial lung diseases, and pulmonary fibrosis.

In medical terms, "gels" are semi-solid colloidal systems in which a solid phase is dispersed in a liquid medium. They have a viscous consistency and can be described as a cross between a solid and a liquid. The solid particles, called the gel network, absorb and swell with the liquid component, creating a system that has properties of both solids and liquids.

Gels are widely used in medical applications such as wound dressings, drug delivery systems, and tissue engineering due to their unique properties. They can provide a moist environment for wounds to heal, control the release of drugs over time, and mimic the mechanical properties of natural tissues.

Biophysics is a interdisciplinary field that combines the principles and methods of physics with those of biology to study biological systems and phenomena. It involves the use of physical theories, models, and techniques to understand and explain the properties, functions, and behaviors of living organisms and their constituents, such as cells, proteins, and DNA.

Biophysics can be applied to various areas of biology, including molecular biology, cell biology, neuroscience, and physiology. It can help elucidate the mechanisms of biological processes at the molecular and cellular levels, such as protein folding, ion transport, enzyme kinetics, gene expression, and signal transduction. Biophysical methods can also be used to develop diagnostic and therapeutic tools for medical applications, such as medical imaging, drug delivery, and gene therapy.

Examples of biophysical techniques include X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, electron microscopy, fluorescence microscopy, atomic force microscopy, and computational modeling. These methods allow researchers to probe the structure, dynamics, and interactions of biological molecules and systems with high precision and resolution, providing insights into their functions and behaviors.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Dimyristoylphosphatidylcholine (DMPC) is a type of phospholipid molecule that is commonly found in animal cell membranes. It is composed of two myristoyl fatty acid chains, a phosphate group, and a choline headgroup. DMPC has a gel-to-liquid crystalline phase transition temperature of around 23-25°C, which makes it a useful compound for studying the physical properties of lipid membranes and for creating model membrane systems in laboratory experiments.

Biophysical phenomena refer to the observable events and processes that occur in living organisms, which can be explained and studied using the principles and methods of physics. These phenomena can include a wide range of biological processes at various levels of organization, from molecular interactions to whole-organism behaviors. Examples of biophysical phenomena include the mechanics of muscle contraction, the electrical activity of neurons, the transport of molecules across cell membranes, and the optical properties of biological tissues. By applying physical theories and techniques to the study of living systems, biophysicists seek to better understand the fundamental principles that govern life and to develop new approaches for diagnosing and treating diseases.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Diphenylhexatriene (DPH) is a fluorescent chemical compound that is often used in research and scientific studies as a probe to investigate the properties and behavior of lipid membranes in cells. It is particularly useful for studying the mobility and orientation of lipids within membranes, as well as the fluidity and microviscosity of the membrane environment.

When DPH is incorporated into a lipid membrane, it can emit fluorescence when excited with light at a specific wavelength. The intensity and polarization of the emitted fluorescence can provide information about the motion and orientation of the DPH molecules, which in turn can reveal details about the physical properties of the membrane.

It's worth noting that while DPH is a valuable tool for studying lipid membranes, it is not typically used as a medical diagnostic or therapeutic agent.

I'm sorry for any confusion, but "thermodynamics" is not a term that has a specific medical definition. It is a branch of physics that deals with the relationships between heat and other forms of energy. However, the principles of thermodynamics can be applied to biological systems, including those in the human body, such as in the study of metabolism or muscle function. But in a medical context, "thermodynamics" would not be a term used independently as a diagnosis, treatment, or any medical condition.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

In medical terms, 'air' is defined as the mixture of gases that make up the Earth's atmosphere. It primarily consists of nitrogen (78%), oxygen (21%), and small amounts of other gases such as argon, carbon dioxide, and trace amounts of neon, helium, and methane.

Air is essential for human life, as it provides the oxygen that our bodies need to produce energy through respiration. We inhale air into our lungs, where oxygen is absorbed into the bloodstream and transported to cells throughout the body. At the same time, carbon dioxide, a waste product of cellular metabolism, is exhaled out of the body through the lungs and back into the atmosphere.

In addition to its role in respiration, air also plays a critical role in regulating the Earth's climate and weather patterns, as well as serving as a medium for sound waves and other forms of energy transfer.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

In medical terms, pressure is defined as the force applied per unit area on an object or body surface. It is often measured in millimeters of mercury (mmHg) in clinical settings. For example, blood pressure is the force exerted by circulating blood on the walls of the arteries and is recorded as two numbers: systolic pressure (when the heart beats and pushes blood out) and diastolic pressure (when the heart rests between beats).

Pressure can also refer to the pressure exerted on a wound or incision to help control bleeding, or the pressure inside the skull or spinal canal. High or low pressure in different body systems can indicate various medical conditions and require appropriate treatment.

Surface tension is not a term that has a specific medical definition. However, it is a physical chemistry concept that relates to the cohesive force between liquid molecules, causing the surface of the liquid to contract and have a higher intermolecular force than its bulk.

In a broader sense, surface tension can have implications in certain medical or biological contexts, such as the movement of liquids in the lungs or the stability of lipid bilayers in cell membranes. But it is not a term that is typically used to describe medical conditions or treatments.

X-ray diffraction (XRD) is not strictly a medical definition, but it is a technique commonly used in the field of medical research and diagnostics. XRD is a form of analytical spectroscopy that uses the phenomenon of X-ray diffraction to investigate the crystallographic structure of materials. When a beam of X-rays strikes a crystal, it is scattered in specific directions and with specific intensities that are determined by the arrangement of atoms within the crystal. By measuring these diffraction patterns, researchers can determine the crystal structures of various materials, including biological macromolecules such as proteins and viruses.

In the medical field, XRD is often used to study the structure of drugs and drug candidates, as well as to analyze the composition and structure of tissues and other biological samples. For example, XRD can be used to investigate the crystal structures of calcium phosphate minerals in bone tissue, which can provide insights into the mechanisms of bone formation and disease. Additionally, XRD is sometimes used in the development of new medical imaging techniques, such as phase-contrast X-ray imaging, which has the potential to improve the resolution and contrast of traditional X-ray images.

Tetraphenylborate is not typically considered a medical term, but rather a chemical one. However, it can be encountered in the context of medical research or pharmaceutical chemistry. Here's a basic definition:

Tetraphenylborate (TPB-) is an anion of tetraphenylboric acid (C6H5B(OH)3), with the chemical formula [B(C6H5)4]-. It is often used in chemistry as a non-coordinating anion, which means it does not readily form bonds with other ions. This property makes it useful in the preparation of salts of cations that are easily hydrolyzed or oxidized.

In a medical context, tetraphenylborate salts have been used in research to study various biological processes. For instance, rubidium tetraphenylborate has been used in studies investigating the function of ion channels in cells. However, these uses are typically within the realm of laboratory research and not in clinical medicine.

I'm sorry for any confusion, but the term "Melitten" does not appear to be a recognized medical term or condition. It is possible that there may be a spelling mistake or typo in the term you are looking for. Please double-check the spelling and try again, or provide more context so I can try to help you find the information you're looking for.

Liquid crystals (LCs) are not exclusive to the medical field, but they do have important applications in medicine, particularly in the development of display technologies for medical devices. Here is a general definition:

Liquid crystals are a state of matter that possess properties between those of conventional liquids and solid crystals. They can flow like liquids but have molecules oriented in a way that they can reflect light, creating birefringence. This unique property makes them useful in various applications, such as LCDs (liquid crystal displays) found in many electronic devices, including medical equipment.

In the context of medicine, liquid crystals are primarily used in LCD screens for medical devices like monitors, imaging systems, and diagnostic equipment. They enable high-resolution, clear, and adjustable visualization of medical images, which is crucial for accurate diagnosis and treatment planning.

Pulmonary Surfactant-Associated Protein B (SP-B) is a small, hydrophobic protein that is an essential component of pulmonary surfactant. Surfactant is a complex mixture of lipids and proteins that reduces surface tension at the air-liquid interface in the alveoli of the lungs, thereby preventing collapse of the alveoli during expiration and facilitating lung expansion during inspiration. SP-B plays a crucial role in the biophysical function of surfactant by promoting its spreading and stability. It is synthesized and processed within type II alveolar epithelial cells and secreted as a part of lamellar bodies, which are lipoprotein complexes that store and release surfactant. Deficiency or dysfunction of SP-B can lead to severe respiratory distress syndrome (RDS) in infants and other lung diseases in both children and adults.

Membrane lipids are the main component of biological membranes, forming a lipid bilayer in which various cellular processes take place. These lipids include phospholipids, glycolipids, and cholesterol. Phospholipids are the most abundant type, consisting of a hydrophilic head (containing a phosphate group) and two hydrophobic tails (composed of fatty acid chains). Glycolipids contain a sugar group attached to the lipid molecule. Cholesterol helps regulate membrane fluidity and permeability. Together, these lipids create a selectively permeable barrier that separates cells from their environment and organelles within cells.

Phosphatidylethanolamines (PE) are a type of phospholipid that are abundantly found in the cell membranes of living organisms. They play a crucial role in maintaining the structural integrity and functionality of the cell membrane. PE contains a hydrophilic head, which consists of an ethanolamine group linked to a phosphate group, and two hydrophobic fatty acid chains. This unique structure allows PE to form a lipid bilayer, where the hydrophilic heads face outwards and interact with the aqueous environment, while the hydrophobic tails face inwards and interact with each other.

PE is also involved in various cellular processes, such as membrane trafficking, autophagy, and signal transduction. Additionally, PE can be modified by the addition of various functional groups or molecules, which can further regulate its functions and interactions within the cell. Overall, phosphatidylethanolamines are essential components of cellular membranes and play a critical role in maintaining cellular homeostasis.

A complex mixture is a type of mixture that contains a large number of different chemical components, which can interact with each other in complex ways. These interactions can result in the emergence of new properties or behaviors that are not present in the individual components.

In the context of medical research and regulation, complex mixtures can pose significant challenges due to their complexity and the potential for unexpected interactions between components. Examples of complex mixtures include tobacco smoke, air pollution, and certain types of food and beverages.

Because of their complexity, it can be difficult to study the health effects of complex mixtures using traditional methods that focus on individual chemicals or components. Instead, researchers may need to use more holistic approaches that take into account the interactions between different components and the overall composition of the mixture. This is an active area of research in fields such as toxicology, epidemiology, and environmental health.

Fourier Transform Infrared (FTIR) spectroscopy is a type of infrared spectroscopy that uses the Fourier transform mathematical technique to convert the raw data obtained from an interferometer into a more interpretable spectrum. This technique allows for the simultaneous collection of a wide range of wavelengths, resulting in increased sensitivity and speed compared to traditional dispersive infrared spectroscopy.

FTIR spectroscopy measures the absorption or transmission of infrared radiation by a sample as a function of frequency, providing information about the vibrational modes of the molecules present in the sample. This can be used for identification and quantification of chemical compounds, analysis of molecular structure, and investigation of chemical interactions and reactions.

In summary, FTIR spectroscopy is a powerful analytical technique that uses infrared radiation to study the vibrational properties of molecules, with increased sensitivity and speed due to the use of Fourier transform mathematical techniques and an interferometer.

Calorimetry is the measurement and study of heat transfer, typically using a device called a calorimeter. In the context of medicine and physiology, calorimetry can be used to measure heat production or dissipation in the body, which can provide insight into various bodily functions and metabolic processes.

There are different types of calorimeters used for medical research and clinical applications, including direct and indirect calorimeters. Direct calorimetry measures the heat produced directly by the body, while indirect calorimetry estimates heat production based on oxygen consumption and carbon dioxide production rates. Indirect calorimetry is more commonly used in clinical settings to assess energy expenditure and metabolic rate in patients with various medical conditions or during specific treatments, such as critical illness, surgery, or weight management programs.

In summary, calorimetry in a medical context refers to the measurement of heat exchange within the body or between the body and its environment, which can offer valuable information for understanding metabolic processes and developing personalized treatment plans.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

4-Chloro-7-nitrobenzofurazan is not a medical term, but a chemical compound with the formula C6H2ClN3O4. It is an orange crystalline powder that is used in research and industrial applications, particularly as a reagent in chemical reactions. It is not a substance that is typically encountered in medical settings or treatments.

Atomic Force Microscopy (AFM) is a type of microscopy that allows visualization and measurement of surfaces at the atomic level. It works by using a sharp probe, called a tip, that is mounted on a flexible cantilever. The tip is brought very close to the surface of the sample and as the sample is scanned, the forces between the tip and the sample cause the cantilever to deflect. This deflection is measured and used to generate a topographic map of the surface with extremely high resolution, often on the order of fractions of a nanometer. AFM can be used to study both conductive and non-conductive samples, and can operate in various environments, including air and liquid. It has applications in fields such as materials science, biology, and chemistry.

Sphingomyelins are a type of sphingolipids, which are a class of lipids that contain sphingosine as a backbone. Sphingomyelins are composed of phosphocholine or phosphoethanolamine bound to the ceramide portion of the molecule through a phosphodiester linkage. They are important components of cell membranes, particularly in the myelin sheath that surrounds nerve fibers. Sphingomyelins can be hydrolyzed by the enzyme sphingomyelinase to form ceramide and phosphorylcholine or phosphorylethanolamine. Abnormalities in sphingomyelin metabolism have been implicated in several diseases, including Niemann-Pick disease, a group of inherited lipid storage disorders.

Spectrophotometry, Infrared is a scientific analytical technique used to measure the absorption or transmission of infrared light by a sample. It involves the use of an infrared spectrophotometer, which directs infrared radiation through a sample and measures the intensity of the radiation that is transmitted or absorbed by the sample at different wavelengths within the infrared region of the electromagnetic spectrum.

Infrared spectroscopy can be used to identify and quantify functional groups and chemical bonds present in a sample, as well as to study the molecular structure and composition of materials. The resulting infrared spectrum provides a unique "fingerprint" of the sample, which can be compared with reference spectra to aid in identification and characterization.

Infrared spectrophotometry is widely used in various fields such as chemistry, biology, pharmaceuticals, forensics, and materials science for qualitative and quantitative analysis of samples.

Deuterium is a stable and non-radioactive isotope of hydrogen. The atomic nucleus of deuterium, called a deuteron, contains one proton and one neutron, giving it an atomic weight of approximately 2.014 atomic mass units (amu). It is also known as heavy hydrogen or heavy water because its hydrogen atoms contain one neutron in addition to the usual one proton found in common hydrogen atoms.

Deuterium occurs naturally in trace amounts in water and other organic compounds, typically making up about 0.015% to 0.018% of all hydrogen atoms. It can be separated from regular hydrogen through various methods such as electrolysis or distillation, and it has many applications in scientific research, particularly in the fields of chemistry and physics.

In medical contexts, deuterium is sometimes used as a tracer to study metabolic processes in the body. By replacing hydrogen atoms in specific molecules with deuterium atoms, researchers can track the movement and transformation of those molecules within living organisms. This technique has been used to investigate various physiological processes, including drug metabolism, energy production, and lipid synthesis.

"Spin labels" are a term used in the field of magnetic resonance, including nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). They refer to molecules or atoms that have been chemically attached to a system of interest and possess a stable, unpaired electron. This unpaired electron behaves like a tiny magnet and can be manipulated using magnetic fields and radiofrequency pulses in EPR experiments. The resulting changes in the electron's spin state can provide information about the local environment, dynamics, and structure of the system to which it is attached. Spin labels are often used in biochemistry and materials science to study complex biological systems or materials at the molecular level.

2-Naphthylamine is a crystalline solid organic compound that is classified as a primary aromatic amine. Its chemical formula is C10H9N. It is an intensely orange-red to reddish-brown substance that is slightly soluble in water and more soluble in organic solvents.

2-Naphthylamine is produced by the reduction of 2-naphthol or its derivatives. Historically, it was used as an intermediate in the synthesis of azo dyes and other chemical compounds. However, due to its toxicity and carcinogenicity, its use has been largely discontinued in many industries.

Exposure to 2-Naphthylamine can occur through inhalation, skin contact, or ingestion, and it has been associated with an increased risk of bladder cancer and other health effects. Therefore, appropriate safety measures must be taken when handling this compound, including the use of personal protective equipment (PPE) such as gloves, lab coats, and eye protection.

Adsorption is a process in which atoms, ions, or molecules from a gas, liquid, or dissolved solid accumulate on the surface of a material. This occurs because the particles in the adsorbate (the substance being adsorbed) have forces that attract them to the surface of the adsorbent (the material that the adsorbate is adhering to).

In medical terms, adsorption can refer to the use of materials with adsorptive properties to remove harmful substances from the body. For example, activated charcoal is sometimes used in the treatment of poisoning because it can adsorb a variety of toxic substances and prevent them from being absorbed into the bloodstream.

It's important to note that adsorption is different from absorption, which refers to the process by which a substance is taken up and distributed throughout a material or tissue.

Phospholipase A2 (PLA2) is a type of enzyme that catalyzes the hydrolysis of the sn-2 ester bond in glycerophospholipids, releasing free fatty acids, such as arachidonic acid, and lysophospholipids. These products are important precursors for the biosynthesis of various signaling molecules, including eicosanoids, platelet-activating factor (PAF), and lipoxins, which play crucial roles in inflammation, immunity, and other cellular processes.

Phospholipases A2 are classified into several groups based on their structure, mechanism of action, and cellular localization. The secreted PLA2s (sPLA2s) are found in extracellular fluids and are characterized by a low molecular weight, while the calcium-dependent cytosolic PLA2s (cPLA2s) are larger proteins that reside within cells.

Abnormal regulation or activity of Phospholipase A2 has been implicated in various pathological conditions, such as inflammation, neurodegenerative diseases, and cancer. Therefore, understanding the biology and function of these enzymes is essential for developing novel therapeutic strategies to target these disorders.

Radiation scattering is a physical process in which radiation particles or waves deviate from their original direction due to interaction with matter. This phenomenon can occur through various mechanisms such as:

1. Elastic Scattering: Also known as Thomson scattering or Rayleigh scattering, it occurs when the energy of the scattered particle or wave remains unchanged after the collision. In the case of electromagnetic radiation (e.g., light), this results in a change of direction without any loss of energy.
2. Inelastic Scattering: This type of scattering involves an exchange of energy between the scattered particle and the target medium, leading to a change in both direction and energy of the scattered particle or wave. An example is Compton scattering, where high-energy photons (e.g., X-rays or gamma rays) interact with charged particles (usually electrons), resulting in a decrease in photon energy and an increase in electron kinetic energy.
3. Coherent Scattering: In this process, the scattered radiation maintains its phase relationship with the incident radiation, leading to constructive and destructive interference patterns. An example is Bragg scattering, which occurs when X-rays interact with a crystal lattice, resulting in diffraction patterns that reveal information about the crystal structure.

In medical contexts, radiation scattering can have both beneficial and harmful effects. For instance, in diagnostic imaging techniques like computed tomography (CT) scans, radiation scattering contributes to image noise and reduces contrast resolution. However, in radiation therapy for cancer treatment, controlled scattering of therapeutic radiation beams can help ensure that the tumor receives a uniform dose while minimizing exposure to healthy tissues.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Phosphatidylserines are a type of phospholipids that are essential components of the cell membrane, particularly in the brain. They play a crucial role in maintaining the fluidity and permeability of the cell membrane, and are involved in various cellular processes such as signal transduction, protein anchorage, and apoptosis (programmed cell death). Phosphatidylserines contain a polar head group made up of serine amino acids and two non-polar fatty acid tails. They are abundant in the inner layer of the cell membrane but can be externalized to the outer layer during apoptosis, where they serve as signals for recognition and removal of dying cells by the immune system. Phosphatidylserines have been studied for their potential benefits in various medical conditions, including cognitive decline, Alzheimer's disease, and depression.

Phospholipid ethers are a type of phospholipid in which the traditional fatty acid chains are replaced by alkyl or alkenyl groups linked to the glycerol backbone via an ether bond. They are a significant component of lipoproteins and cell membranes, particularly in archaea, where they contribute to the stability and rigidity of the membrane at extreme temperatures and pressures.

The two main types of phospholipid ethers are plasmalogens and diether lipids. Plasmalogens contain a vinyl ether bond at the sn-1 position, while diether lipids have an ether bond at both the sn-1 and sn-2 positions. These unique structures give phospholipid ethers distinct chemical and biological properties compared to conventional phospholipids with ester-linked fatty acids.

Fluorescence Polarization (FP) is not a medical term per se, but a technique used in medical research and diagnostics. Here's a general definition:

Fluorescence Polarization is a biophysical technique used to measure the rotational movement of molecules in solution after they have been excited by polarized light. When a fluorophore (a fluorescent molecule) absorbs light, its electrons become excited and then return to their ground state, releasing energy in the form of light. This emitted light often has different properties than the incident light, one of which can be its polarization. If the fluorophore is large or bound to a large structure, it may not rotate significantly during the time between absorption and emission, resulting in emitted light that maintains the same polarization as the excitation light. Conversely, if the fluorophore is small or unbound, it will rotate rapidly during this period, and the emitted light will be depolarized. By measuring the degree of polarization of the emitted light, researchers can gain information about the size, shape, and mobility of the fluorophore and the molecules to which it is attached. This technique is widely used in various fields including life sciences, biochemistry, and diagnostics.

Phospholipases are a group of enzymes that catalyze the hydrolysis of phospholipids, which are major components of cell membranes. Phospholipases cleave specific ester bonds in phospholipids, releasing free fatty acids and other lipophilic molecules. Based on the site of action, phospholipases are classified into four types:

1. Phospholipase A1 (PLA1): This enzyme hydrolyzes the ester bond at the sn-1 position of a glycerophospholipid, releasing a free fatty acid and a lysophospholipid.
2. Phospholipase A2 (PLA2): PLA2 cleaves the ester bond at the sn-2 position of a glycerophospholipid, releasing a free fatty acid (often arachidonic acid) and a lysophospholipid. Arachidonic acid is a precursor for eicosanoids, which are signaling molecules involved in inflammation and other physiological processes.
3. Phospholipase C (PLC): PLC hydrolyzes the phosphodiester bond in the headgroup of a glycerophospholipid, releasing diacylglycerol (DAG) and a soluble head group, such as inositol trisphosphate (IP3). DAG acts as a secondary messenger in intracellular signaling pathways, while IP3 mediates the release of calcium ions from intracellular stores.
4. Phospholipase D (PLD): PLD cleaves the phosphoester bond between the headgroup and the glycerol moiety of a glycerophospholipid, releasing phosphatidic acid (PA) and a free head group. PA is an important signaling molecule involved in various cellular processes, including membrane trafficking, cytoskeletal reorganization, and cell survival.

Phospholipases have diverse roles in normal physiology and pathophysiological conditions, such as inflammation, immunity, and neurotransmission. Dysregulation of phospholipase activity can contribute to the development of various diseases, including cancer, cardiovascular disease, and neurological disorders.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

"Laureates" is not a medical term. However, if you are referring to "laurates" as a salt or ester of lauric acid, then here's the definition:

Laurates are organic compounds that contain a laurate group, which is the anion (negatively charged ion) derived from lauric acid. Lauric acid is a saturated fatty acid with a 12-carbon chain, and its anion has the chemical formula CH3(CH2)10COO-.

Laurates can be formed by reacting lauric acid with a base to form a salt (e.g., sodium laurate, potassium laurate) or by reacting it with an alcohol to form an ester (e.g., methyl laurate, ethyl laurate). These compounds have various applications in industry, including as surfactants, emulsifiers, and solubilizers in personal care products, cosmetics, and pharmaceuticals.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Gramicidin is not a medical condition but rather an antibiotic substance that is used in medical treatments.

Here's the scientific and pharmacological definition:

Gramicidin is a narrow-spectrum, cationic antimicrobial peptide derived from gram-positive bacteria of the genus Bacillus. It is an ionophore that selectively binds to monovalent cations, forming channels in lipid bilayers and causing disruption of bacterial cell membranes, leading to bacterial lysis and death. Gramicidin D, a mixture of at least four different gramicidins (A, B, C, and D), is commonly used in topical formulations for the treatment of skin and eye infections due to its potent antimicrobial activity against many gram-positive and some gram-negative bacteria. However, it has limited systemic use due to its potential toxicity to mammalian cells.

Ergosterol is a steroid found in the cell membranes of fungi, which is similar to cholesterol in animals. It plays an important role in maintaining the fluidity and permeability of fungal cell membranes. Ergosterol is also the target of many antifungal medications, which work by disrupting the synthesis of ergosterol or binding to it, leading to increased permeability and eventual death of the fungal cells.

Phospholipases A are a group of enzymes that hydrolyze phospholipids into fatty acids and lysophospholipids by cleaving the ester bond at the sn-1 or sn-2 position of the glycerol backbone. There are three main types of Phospholipases A:

* Phospholipase A1 (PLA1): This enzyme specifically hydrolyzes the ester bond at the sn-1 position, releasing a free fatty acid and a lysophospholipid.
* Phospholipase A2 (PLA2): This enzyme specifically hydrolyzes the ester bond at the sn-2 position, releasing a free fatty acid (often arachidonic acid, which is a precursor for eicosanoids) and a lysophospholipid.
* Phospholipase A/B (PLA/B): This enzyme has both PLA1 and PLA2 activity and can hydrolyze the ester bond at either the sn-1 or sn-2 position.

Phospholipases A play important roles in various biological processes, including cell signaling, membrane remodeling, and host defense. They are also involved in several diseases, such as atherosclerosis, neurodegenerative disorders, and cancer.

In the context of medical terminology, "solutions" refers to a homogeneous mixture of two or more substances, in which one substance (the solute) is uniformly distributed within another substance (the solvent). The solvent is typically the greater component of the solution and is capable of dissolving the solute.

Solutions can be classified based on the physical state of the solvent and solute. For instance, a solution in which both the solvent and solute are liquids is called a liquid solution or simply a solution. A solid solution is one where the solvent is a solid and the solute is either a gas, liquid, or solid. Similarly, a gas solution refers to a mixture where the solvent is a gas and the solute can be a gas, liquid, or solid.

In medical applications, solutions are often used as vehicles for administering medications, such as intravenous (IV) fluids, oral rehydration solutions, eye drops, and topical creams or ointments. The composition of these solutions is carefully controlled to ensure the appropriate concentration and delivery of the active ingredients.

In medical terms, membranes refer to thin layers of tissue that cover or line various structures in the body. They are composed of connective tissue and epithelial cells, and they can be found lining the outer surface of the body, internal organs, blood vessels, and nerves. There are several types of membranes in the human body, including:

1. Serous Membranes: These membranes line the inside of body cavities and cover the organs contained within them. They produce a lubricating fluid that reduces friction between the organ and the cavity wall. Examples include the pleura (lungs), pericardium (heart), and peritoneum (abdominal cavity).
2. Mucous Membranes: These membranes line the respiratory, gastrointestinal, and genitourinary tracts, as well as the inner surface of the eyelids and the nasal passages. They produce mucus to trap particles, bacteria, and other substances, which helps protect the body from infection.
3. Synovial Membranes: These membranes line the joint cavities and produce synovial fluid, which lubricates the joints and allows for smooth movement.
4. Meninges: These are three layers of membranes that cover and protect the brain and spinal cord. They include the dura mater (outermost layer), arachnoid mater (middle layer), and pia mater (innermost layer).
5. Amniotic Membrane: This is a thin, transparent membrane that surrounds and protects the fetus during pregnancy. It produces amniotic fluid, which provides a cushion for the developing baby and helps regulate its temperature.

I'm sorry for any confusion, but static electricity is not a term that has a specific medical definition. Static electricity is an electrical charge that builds up on the surface of objects. This occurs when there is an imbalance of electric charges within or on the surface of a material. It can be caused by certain conditions, such as friction, which can build up an electric charge.

While not a medical term, static electricity can have various effects in different settings, including medical ones. For instance, it can cause issues with electronic equipment used in healthcare settings. Additionally, some people may experience a shock or spark when they touch a conductive object that has been charged with static electricity. However, these occurrences are not typically considered medical conditions or issues.

Micelles are structures formed in a solution when certain substances, such as surfactants, reach a critical concentration called the critical micelle concentration (CMC). At this concentration, these molecules, which have both hydrophilic (water-attracting) and hydrophobic (water-repelling) components, arrange themselves in a spherical shape with the hydrophilic parts facing outward and the hydrophobic parts clustered inside. This formation allows the hydrophobic components to avoid contact with water while the hydrophilic components interact with it. Micelles are important in various biological and industrial processes, such as drug delivery, soil remediation, and the formation of emulsions.

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

"Physicochemical phenomena" is not a term that has a specific medical definition. However, in general terms, physicochemical phenomena refer to the physical and chemical interactions and processes that occur within living organisms or biological systems. These phenomena can include various properties and reactions such as pH levels, osmotic pressure, enzyme kinetics, and thermodynamics, among others.

In a broader context, physicochemical phenomena play an essential role in understanding the mechanisms of drug action, pharmacokinetics, and toxicity. For instance, the solubility, permeability, and stability of drugs are all physicochemical properties that can affect their absorption, distribution, metabolism, and excretion (ADME) within the body.

Therefore, while not a medical definition per se, an understanding of physicochemical phenomena is crucial to the study and practice of pharmacology, toxicology, and other related medical fields.

Physical chemistry is a branch of chemistry that deals with the fundamental principles and laws governing the behavior of matter and energy at the molecular and atomic levels. It combines elements of physics, chemistry, mathematics, and engineering to study the properties, composition, structure, and transformation of matter. Key areas of focus in physical chemistry include thermodynamics, kinetics, quantum mechanics, statistical mechanics, electrochemistry, and spectroscopy.

In essence, physical chemists aim to understand how and why chemical reactions occur, what drives them, and how they can be controlled or predicted. This knowledge is crucial for developing new materials, medicines, energy technologies, and other applications that benefit society.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Fatty alcohols, also known as long-chain alcohols or long-chain fatty alcohols, are a type of fatty compound that contains a hydroxyl group (-OH) and a long alkyl chain. They are typically derived from natural sources such as plant and animal fats and oils, and can also be synthetically produced.

Fatty alcohols can vary in chain length, typically containing between 8 and 30 carbon atoms. They are commonly used in a variety of industrial and consumer products, including detergents, emulsifiers, lubricants, and personal care products. In the medical field, fatty alcohols may be used as ingredients in certain medications or topical treatments.

In the context of medical terminology, "motion" generally refers to the act or process of moving or changing position. It can also refer to the range of movement of a body part or joint. However, there is no single specific medical definition for the term "motion." The meaning may vary depending on the context in which it is used.

Surfactants, also known as surface-active agents, are amphiphilic compounds that reduce the surface tension between two liquids or between a liquid and a solid. They contain both hydrophilic (water-soluble) and hydrophobic (water-insoluble) components in their molecular structure. This unique property allows them to interact with and stabilize interfaces, making them useful in various medical and healthcare applications.

In the medical field, surfactants are commonly used in pulmonary medicine, particularly for treating respiratory distress syndrome (RDS) in premature infants. The lungs of premature infants often lack sufficient amounts of natural lung surfactant, which can lead to RDS and other complications. Exogenous surfactants, derived from animal sources or synthetically produced, are administered to replace the missing or dysfunctional lung surfactant, improving lung compliance and gas exchange.

Surfactants also have applications in topical formulations for dermatology, as they can enhance drug penetration into the skin, reduce irritation, and improve the spreadability of creams and ointments. Additionally, they are used in diagnostic imaging to enhance contrast between tissues and improve visualization during procedures such as ultrasound and X-ray examinations.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

Membrane microdomains, also known as lipid rafts, are specialized microenvironments within the cell membrane. They are characterized by the presence of sphingolipids, cholesterol, and specific proteins that cluster together, forming dynamic, heterogeneous, and highly organized domains. These microdomains are involved in various cellular processes such as signal transduction, membrane trafficking, and pathogen entry. However, it's important to note that the existence and function of membrane microdomains are still subjects of ongoing research and debate within the scientific community.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Diffusion, in the context of medicine and physiology, refers to the process by which molecules move from an area of high concentration to an area of low concentration until they are evenly distributed throughout a space or solution. This passive transport mechanism does not require energy and relies solely on the random motion of particles. Diffusion is a vital process in many biological systems, including the exchange of gases in the lungs, the movement of nutrients and waste products across cell membranes, and the spread of drugs and other substances throughout tissues.

Choline is an essential nutrient that is vital for the normal functioning of all cells, particularly those in the brain and liver. It is a water-soluble compound that is neither a vitamin nor a mineral, but is often grouped with vitamins because it has many similar functions. Choline is a precursor to the neurotransmitter acetylcholine, which plays an important role in memory, mood, and other cognitive processes. It also helps to maintain the structural integrity of cell membranes and is involved in the transport and metabolism of fats.

Choline can be synthesized by the body in small amounts, but it is also found in a variety of foods such as eggs, meat, fish, nuts, and cruciferous vegetables. Some people may require additional choline through supplementation, particularly if they follow a vegetarian or vegan diet, are pregnant or breastfeeding, or have certain medical conditions that affect choline metabolism.

Deficiency in choline can lead to a variety of health problems, including liver disease, muscle damage, and neurological disorders. On the other hand, excessive intake of choline can cause fishy body odor, sweating, and gastrointestinal symptoms such as diarrhea and vomiting. It is important to maintain adequate levels of choline through a balanced diet and, if necessary, supplementation under the guidance of a healthcare professional.

I'm sorry for any confusion, but there seems to be a misunderstanding. Mathematics is not a medical term; it is a branch of science dedicated to the study of numbers, shapes, and structures. However, mathematics does have many applications in medicine, such as in modeling disease spread, analyzing medical images, or designing clinical trials. If you have any questions related to mathematics in a medical context, I'd be happy to help clarify those for you!

Hydrogen bonding is not a medical term per se, but it is a fundamental concept in chemistry and biology that is relevant to the field of medicine. Here's a general definition:

Hydrogen bonding is a type of attractive force between molecules or within a molecule, which occurs when a hydrogen atom is bonded to a highly electronegative atom (like nitrogen, oxygen, or fluorine) and is then attracted to another electronegative atom. This attraction results in the formation of a partially covalent bond known as a "hydrogen bond."

In biological systems, hydrogen bonding plays a crucial role in the structure and function of many biomolecules, such as DNA, proteins, and carbohydrates. For example, the double helix structure of DNA is stabilized by hydrogen bonds between complementary base pairs (adenine-thymine and guanine-cytosine). Similarly, the three-dimensional structure of proteins is maintained by a network of hydrogen bonds that help to determine their function.

In medical contexts, hydrogen bonding can be relevant in understanding drug-receptor interactions, where hydrogen bonds between a drug molecule and its target protein can enhance the binding affinity and specificity of the interaction, leading to more effective therapeutic outcomes.

Fluorescein is not a medical condition, but rather a diagnostic dye that is used in various medical tests and procedures. It is a fluorescent compound that absorbs light at one wavelength and emits light at another wavelength, which makes it useful for imaging and detecting various conditions.

In ophthalmology, fluorescein is commonly used in eye examinations to evaluate the health of the cornea, conjunctiva, and anterior chamber of the eye. A fluorescein dye is applied to the surface of the eye, and then the eye is examined under a blue light. The dye highlights any damage or abnormalities on the surface of the eye, such as scratches, ulcers, or inflammation.

Fluorescein is also used in angiography, a medical imaging technique used to examine blood vessels in the body. A fluorescein dye is injected into a vein, and then a special camera takes pictures of the dye as it flows through the blood vessels. This can help doctors diagnose and monitor conditions such as cancer, diabetes, and macular degeneration.

Overall, fluorescein is a valuable diagnostic tool that helps medical professionals detect and monitor various conditions in the body.

A drug carrier, also known as a drug delivery system or vector, is a vehicle that transports a pharmaceutical compound to a specific site in the body. The main purpose of using drug carriers is to improve the efficacy and safety of drugs by enhancing their solubility, stability, bioavailability, and targeted delivery, while minimizing unwanted side effects.

Drug carriers can be made up of various materials, including natural or synthetic polymers, lipids, inorganic nanoparticles, or even cells and viruses. They can encapsulate, adsorb, or conjugate drugs through different mechanisms, such as physical entrapment, electrostatic interaction, or covalent bonding.

Some common types of drug carriers include:

1. Liposomes: spherical vesicles composed of one or more lipid bilayers that can encapsulate hydrophilic and hydrophobic drugs.
2. Polymeric nanoparticles: tiny particles made of biodegradable polymers that can protect drugs from degradation and enhance their accumulation in target tissues.
3. Dendrimers: highly branched macromolecules with a well-defined structure and size that can carry multiple drug molecules and facilitate their release.
4. Micelles: self-assembled structures formed by amphiphilic block copolymers that can solubilize hydrophobic drugs in water.
5. Inorganic nanoparticles: such as gold, silver, or iron oxide nanoparticles, that can be functionalized with drugs and targeting ligands for diagnostic and therapeutic applications.
6. Cell-based carriers: living cells, such as red blood cells, stem cells, or immune cells, that can be loaded with drugs and used to deliver them to specific sites in the body.
7. Viral vectors: modified viruses that can infect cells and introduce genetic material encoding therapeutic proteins or RNA interference molecules.

The choice of drug carrier depends on various factors, such as the physicochemical properties of the drug, the route of administration, the target site, and the desired pharmacokinetics and biodistribution. Therefore, selecting an appropriate drug carrier is crucial for achieving optimal therapeutic outcomes and minimizing side effects.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

The term "Theoretical Models" is used in various scientific fields, including medicine, to describe a representation of a complex system or phenomenon. It is a simplified framework that explains how different components of the system interact with each other and how they contribute to the overall behavior of the system. Theoretical models are often used in medical research to understand and predict the outcomes of diseases, treatments, or public health interventions.

A theoretical model can take many forms, such as mathematical equations, computer simulations, or conceptual diagrams. It is based on a set of assumptions and hypotheses about the underlying mechanisms that drive the system. By manipulating these variables and observing the effects on the model's output, researchers can test their assumptions and generate new insights into the system's behavior.

Theoretical models are useful for medical research because they allow scientists to explore complex systems in a controlled and systematic way. They can help identify key drivers of disease or treatment outcomes, inform the design of clinical trials, and guide the development of new interventions. However, it is important to recognize that theoretical models are simplifications of reality and may not capture all the nuances and complexities of real-world systems. Therefore, they should be used in conjunction with other forms of evidence, such as experimental data and observational studies, to inform medical decision-making.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

... contains the peptide sinapultide (KL4 acetate, KLLLLKLLLLKLLLLKLLLLK), dipalmitoylphosphatidylcholine, 1-palmitoyl- ... 2-oleoyl-sn-glycero-3-phosphoglycerol (as the sodium salt), and palmitic acid.[citation needed] The scientific groundwork for ...
25-hydroxyvitamin d 2 MeSH D10.570.938.590 - lanosterol MeSH D10.627.430.354 - cod liver oil MeSH D10.627.430.450 - fatty acids ... 1-butanol MeSH D10.289.110.220 - chlorobutanol MeSH D10.289.110.855 - tert-butyl alcohol MeSH D10.289.220.720 - sodium dodecyl ... 1,2-dipalmitoylphosphatidylcholine MeSH D10.570.755.375.760.400.840 - phosphatidylethanolamines MeSH D10.570.755.375.760.400. ... sulfate MeSH D10.289.230.250 - dolichol phosphates MeSH D10.289.600.610 - 1-octanol MeSH D10.351.801.632 - triacetin MeSH ...
The SNALPs (around 81 nm in size here) were formulated by spontaneous vesiculation from a mixture of cholesterol, dipalmitoyl phosphatidylcholine ... Further, only 2 of the 6 mice treated had noticeable tumors around the implantation site. Even so, GAPDH, a tumor-derived ... Researchers tested a 1 mg/kg single dose, too, obtaining a 68% silencing of the target gene, indicating dose-dependent ... According to the study, a 2 mg/kg dose of PLK1-specific siRNA administered for 3 weeks to mice implanted with tumors resulted ...
... /SPLUNC1 binds with high affinity and specificity to dipalmitoylphosphatidylcholine, one of the major and most important ... 278 (2): 1165-1173. doi:10.1074/jbc.M210523200. PMID 12409287. Zhang B, Nie X, Xiao B, Xiang J, Shen S, Gong J, et al. ( ... 65 (2): 220-8. doi:10.1111/j.1398-9995.2009.02141.x. PMID 19650845. S2CID 29636426. Cheng M, Chen Y, Yu X, Tian Z, Wei H (2008 ... 38 (1): 80-90. doi:10.1002/gcc.10247. PMID 12874788. S2CID 24805514. Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, ...
... (DPPC) is a phospholipid (and a lecithin) consisting of two C16 palmitic acid groups attached to ... Dipalmitoylphosphatidylcholine (DPPC) is routinely used to formulate some medicines used for treatment of respiratory distress ... "Dipalmitoylphosphatidylcholine - an overview , ScienceDirect Topics". Retrieved 2019-10-25. Wang, Min; ... is dipalmitoylphosphatidylcholine or DPPC. While DPPC itself already has the ability to reduce the surface tension of the ...
... investigated as potential amphiphilic species for aiding adsorption of the pulmonary surfactant dipalmitoylphosphatidylcholine ... 1-Pentadecanol is an organic chemical compound classified as an alcohol. At room temperature, it is a white, flaky solid. It is ... Small amounts of 1-pentadecanol have been found (using thin-layer chromatography and GC/MS) to naturally occur in the leaves of ... It, along with 1-hexadecanol, was found to be selectively antimicrobial against P. acnes and not other Gram-positive bacteria ( ...
... and dipalmitoyl phosphatidylcholine. MPL is a derivative of the lipid A molecule found in the membrane of Gram-negative ... 2 (Supplement 4): S199-201. doi:10.1097/01.JTO.0000282977.65747.30. Merck KGaA to test Stimuvax in breast cancer trial ( ... The 26th modified amino acid, K, is palmityl-lysine (N6-(1-oxohexadecyl)-L-lysine), and the 27th is glycine. In the ... The first 25 amino acids of tecemotide are derived from the mucin 1 (MUC1, carcinoma-associated mucin, episialin, or CD227) ...
40% dipalmitoylphosphatidylcholine (DPPC); ~40% other phospholipids (PC); ~10% surfactant proteins (SP-A, SP-B, SP-C and SP-D ... Dipalmitoylphosphatidylcholine (DPPC) is a phospholipid with two 16-carbon saturated chains and a phosphate group with ... Up to 90% of surfactant DPPC (dipalmitoylphosphatidylcholine) is recycled from the alveolar space back into the type II ... dipalmitoylphosphatidylcholine (DPPC), reduces surface tension. As a medication, pulmonary surfactant is on the WHO Model List ...
DPPC (dipalmitoylphosphatidylcholine), as mentioned above, is a lipid with very useful stabilizing and compacting attributes. ... The lipid shown to be most needed on this surface (Dipalmitoylphosphatidylcholine) does not easily move to the gas/fluid ... 17 (2): 407-29. doi:10.2741/3935. PMC 3635489. PMID 22201752. Lyra PP, Diniz EM, Abe-Sandes K, Angelo AL, Machado TM, Cardeal M ... 27 (1): 24-9. doi:10.2500/ajra.2013.27.3838. PMID 23406594. S2CID 34564655. Sarker M, Rose J, McDonald M, Morrow MR, Booth V ( ...
The first trials of a potential treatment for HMD, dipalmitoylphosphatidylcholine, were published within a few years but were ... p. 1. Clarke, Thurston (July 1, 2013). "How "Icebergs" John F. and Jackie Kennedy Warmed to One Another After the Death of ... The infant's birth weight was 4 pounds 10+12 ounces (2.11 kg). He was the first child born to a serving U.S. president and ... 101 (1): 8-12. doi:10.1159/000325162. PMID 21791934. President John F. Kennedy on the Death of His Infant Son Patrick Bouvier ...
Hollars CW, Dunn RC (July 1998). "Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed ... doi:10.1007/978-1-62703-782-2_7. ISBN 978-1-62703-781-5. PMID 24395412. Roos C, Kai L, Proverbio D, Ghoshdastider U, Filipek S ... 1666 (1-2): 105-17. doi:10.1016/j.bbamem.2004.04.011. PMID 15519311. Cavagnero S, Dyson HJ, Wright PE (April 1999). "Improved ... 75 (1): 342-53. Bibcode:1998BpJ....75..342H. doi:10.1016/s0006-3495(98)77518-6. PMC 1299703. PMID 9649391. Groves JT, Ulman N, ...
Halliday's product was a synthetic lung surfactant called Turfsurf and was a mixture of Dipalmitoylphosphatidylcholine and high ... 1 (6): 417-433. doi:10.1007/BF03257169. PMID 14720029. S2CID 7756898. Morley, C.J.; Miller, N.; Bangham, A.D.; Davis, J.A. ( ... 89 (1): 13-20. doi:10.1542/peds.89.1.13. Halliday, HL; Patterson, CC; Halahakoon, CW; European Multicenter Steroid Study, Group ... Retrieved 1 February 2023. (Articles with short description, Short description matches Wikidata, Use dmy dates from December ...
... and pulmonary surfactants such as dipalmitoylphosphatidylcholine. Lauramidopropyl betaine is the major component of ... ISBN 978-1-285-60719-1. Jensen, Jan H.; Gordon, Mark S. (1995). "On the Number of Water Molecules Necessary to Stabilize the ... Tautomerism of amino acids follows this stoichiometry: RCH(NH2)CO2H ⇌ RCN(N+H3)CO−2 The ratio of the concentrations of the two ... ISBN 1-57259-153-6. Gonenne, Amnon; Ernst, Robert (1978-06-15). "Solubilization of membrane proteins by sulfobetaines, novel ...
... from the content of phosphorus and contains 55 mg of phosphatidylcholine of which 30 mg is dipalmitoylphosphatidylcholine. ... Each milliliter of poractant alfa contains 80 mg of surfactant (extract) that includes 76 mg of phospholipids and 1 mg of ... and that infants treated at birth had similar neurodevelopmental status to untreated controls at a corrected age of 2 years. ...
Dipalmitoylphosphatidylcholine (lecithin) is a major component of the pulmonary surfactant, and is often used in the lecithin- ... Animal lung phosphatidylcholine, for example, contains a high proportion of dipalmitoylphosphatidylcholine. Phospholipase D ... 4 (2): 135-7. doi:10.4103/0974-2077.85040. PMC 3183720. PMID 21976907. Kokkinidis DG, Bosdelekidou EE, Iliopoulou SM, Tassos AG ... "Chapter 2: Lipid metabolism in procaryotes". In Vance DE, Vance J (eds.). Biochemistry of Lipids, Lipoproteins and Membranes. ...
Lucinactant contains the peptide sinapultide (KL4 acetate, KLLLLKLLLLKLLLLKLLLLK), dipalmitoylphosphatidylcholine, 1-palmitoyl- ... 2-oleoyl-sn-glycero-3-phosphoglycerol (as the sodium salt), and palmitic acid.[citation needed] The scientific groundwork for ...
Dipalmitoylphosphatidylcholine (DPPC). *Distearoylphosphatidylcholine (DSPC). *Dimyristoylphosphatidylcholine(DMPC). ... 1 Molecular structure of phosphatidylcholine. Natural PC. *PC is extracted from egg yolk, soybean, bovine heart and spinal cord ...
... and dipalmitoylphosphatidylcholine (DPPC) influences TGF-β1, PDGF-AA, and IL-1β production in vitro and in vivo. These ... Advanced Search Search Help About NIOSHTIC-2 Feedback Terms: ultrafine* OR (nano* AND particle*) OR nanotech* OR ... Tube dispersal also elicited more robust IL-1β production in THP-1 cells. While COOH-MWCNTs were poorly taken up in BEAS-2B and ... Well-dispersed AP- and PD-MWCNTs were readily taken up by BEAS-2B, THP-1 cells, and alveolar macrophages (AM) and induced more ...
kg-1. day-1, n = 6) or "normal" protein intake (1.0 g protein. kg-1. day-1, n = 8) on the pattern and rate of 24-h ... 2. Triglycerides: These are a type of fat that is stored in the body and can be converted into energy when needed. 3. ... 2. As a moisturizer: Glycerol is used as a moisturizer in skin care products, such as lotions and creams, to hydrate and soothe ... Methods1. *More work is needed to determine the net energy content of FM using more accurate methods such as indirect ...
Powered by Pure, Scopus & Elsevier Fingerprint Engine™ © 2023 Elsevier B.V We use cookies to help provide and enhance our service and tailor content. By continuing you agree to the use of cookies. ...
At 1.0% perdeuterated ethanol or 0.5% perdeuterated 1-butanol, a small splitting of the alcohol resonance(s) was detected in ... At 1.0% perdeuterated ethanol or 0.5% perdeuterated 1-butanol, a small splitting of the alcohol resonance(s) was detected in ... At 1.0% perdeuterated ethanol or 0.5% perdeuterated 1-butanol, a small splitting of the alcohol resonance(s) was detected in ... At 1.0% perdeuterated ethanol or 0.5% perdeuterated 1-butanol, a small splitting of the alcohol resonance(s) was detected in ...
... study on the solvolysis reaction of substituted benzoyl chlorides in the presence of zwitterionic vesicles of dipalmitoyl phosphatidylcholine ... study on the solvolysis reaction of substituted benzoyl chlorides in the presence of zwitterionic vesicles of dipalmitoyl phosphatidylcholine ... study on the solvolysis reaction of substituted benzoyl chlorides in the presence of zwitterionic vesicles of dipalmitoyl phosphatidylcholine ... study on the solvolysis reaction of substituted benzoyl chlorides in the presence of zwitterionic vesicles of dipalmitoyl phosphatidylcholine ...
Pressure locking of the subgel phase of hydrated dipalmitoyl phosphatidylcholine bilayers. From National Research Council ... Search for: Mushayakarara, E.1; Search for: Wong, P. T. T.1; Search for: Mantsch, H. H.1. ... Pressure locking of the subgel phase of hydrated dipalmitoyl phosphatidylcholine bilayers. DOI. Resolve DOI: ... Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure ...
what is dipalmitoylphosphatidylcholine, what is its function. Definition. surfactant that decreases surface tension in lungs, ... 2. convert activated form CDP-choline. ethanolamine. 3. choling-phosphate or ethanolamine-phosphate is transfered to a molecule ... 1. sphingosine acylated at amino with a long chain FA desaturated to make cremide. 2.phosphorylcholine from phosphatidylcholine ... glycerol back bone, 2 fatty acyl groups on C1 and C2, phosphate on C3. ...
... including 2-channel ratiometric TIRF microscopy and fluorescence lifetime imaging, to characterize membrane order at the T cell ... 1,2-Dipalmitoylphosphatidylcholine, Animals, Antigen-Presenting Cells, Humans, Immunological Synapses, Jurkat Cells, ... including 2-channel ratiometric TIRF microscopy and fluorescence lifetime imaging, to characterize membrane order at the T cell ...
... are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can ... 2. UGTs and Latency. The majority of the UGT enzyme protein, including its catalytic site, is believed to reside inside the ER ... 2. The isolation and structure of uridine-diphosphate-glucuronic acid. Biochem. J. 1955, 59, 279-288. [Google Scholar] [ ... Cell Biol. 2000, 1, 31-39. [Google Scholar] [CrossRef] [PubMed]. *Suzuki, K.G.; Fujiwara, T.K.; Sanematsu, F.; Iino, R.; Edidin ...
A Phospholipase A1 which is capable of hydrolyzing a phospholipid to produce a 2-acyl lysophospholipid and is obtainable from ... dipalmitoylphosphatidylcholine (1 mCi/mmole) in which the palmitoyl group at the 2-position is labelled with .sup.14 C (NEN ... dipalmitoylphosphatidylcholine (1 mCi/mmole) in which the palmitoyl group at the 2-position is labelled with .sup.14 C (NEN ... dipalmitoylphosphatidylcholine in which both the 1- and 2- position palmitoyl groups were labelled with .sup.14 C. This is ...
... as one active phospholipid that inhibited the Th1 function of mature DCs whereas the dipalmitoyl-phosphatidylcholine had no ... Then 35+/-1 cercariae of S. japonicum were given to each mouse by abdominal skin 10 days after the 3rd immunization. 45 days ... 1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition ... 1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition ...
A series of CH2 wagging modes in the 1320-1370-cm-1 region of alkane and phospholipid IR spectra characteristic of nonplanar ... A study of the Lα → HII interconversion in two unsaturated phosphatidylethanolamines (1-palmitoyl-2-oleoyl- (POPE) and 1,2- ... abstract = "A series of CH2 wagging modes in the 1320-1370-cm-1 region of alkane and phospholipid IR spectra characteristic of ... N2 - A series of CH2 wagging modes in the 1320-1370-cm-1 region of alkane and phospholipid IR spectra characteristic of ...
Dipalmitoylphosphatidylcholine) and variable amounts of cholesterol. The effect of cholesterol content on nano-liposome size, ... Compounds 1,2 & 4 were characterised to some degree mostly from NMR spectral studies with compound 2 only being characterised ... Based on this information, A method was employed to synthesise four derivates of Muddassars 1,3-diketone compound through the ... A recent computational study concluded that 1,3-diketone compounds may exhibit antibacterial properties suggesting that they ...
Regulation of platelet-activating factor synthesis in human monocytes by dipalmitoyl phosphatidylcholine. Journal of Leukocyte ... Regulation of platelet-activating factor synthesis in human monocytes by dipalmitoyl phosphatidylcholine. Journal of Leukocyte ... Leukemia 26(1), pp. 177-179. (10.1038/leu.2011.188). 2011. *Coles, S., Man, S. T., Hills, R. K., Wang, E. C. Y., Burnett, A. K ... Leukemia 34(2), pp. 427-440. (10.1038/s41375-019-0596-4). 2019. *Menendez Gonzalez, J. B. et al. 2019. Gata2 as a crucial ...
Dipalmitoyl phosphatidylcholine (DPPC), or lecithin, is functionally the principle phospholipid. Phosphatidylglycerol makes up ... Dipalmitoyl phosphatidylcholine (DPPC), tripalmitin, SP-B , 0.5%, SP-C 99% of TP wt/wt ... Outcomes at 2 years of age after repeat doses of antenatal corticosteroids. N Engl J Med. 2007. 357:1179-89. [QxMD MEDLINE Link ... Treat PDA with ibuprofen or indomethacin, which can be repeated during the first 2 weeks if the PDA reopens. [8] In refractory ...
1. 163. 1. 163. hypothetical protein CHLREDRAFT_192837 [Chlamydomonas reinhardtii]. RefSeq. XP_001697682.1. 0.00004. 254. 283. ... 2. 93. A Chain A, Wif Domain-Egf-Like Domain 1 Of Human Wnt Inhibitory Factor 1 In Complex With 1,2- ... Dipalmitoylphosphatidylcholine. PDB. 1kul_A. 0.000004. 37. 126. 2. 93. A Chain A, Wif Domain-Egf-Like Domain 1 Of Human Wnt ... 2. 93. A Chain A, Glucoamylase, Granular Starch-Binding Domain Complex With Cyclodextrin, Nmr, Minimized Average Structure. ...
It is well known that dipalmitoyl phosphatidylcholine (DPPC) is the main lipid of the pulmonary surfactant, about 50% in weight ... Thus, only two methyl groups are present at the end of the polar head : - S+(CH3)2 instead of - N+(CH3)3 . Furthermore, this ... The alk-1-enyl-acyl derivatives (1-alk-1′-enyl-, 2-acyl-sn-glycero-3-phosphorylcholine) are also named choline plasmalogen (or ... Oxidation of linoleic acid-PC formed human serum albumin-bound 2-(w-carboxyheptyl)-pyrrole, while oxidation of arachidonic acid ...
Structural Changes in Dipalmitoylphosphatidylcholine Bilayer Promoted by Ca2+ Ions: a Small-Angle Neutron Scattering Study. ... 2009;28(2):117-25.. Search in Google Scholar. [14] Kučerka, N., Papp-Szabo, E., Nieh, M. P., Harroun, T. A., Schooling, S. R., ... 1] Allen, W. J., Lemkul, J. A., and Bevan, D. R. GridMAT-MD: a Grid-Based Membrane Analysis Tool for Use With Molecular ... 10.1007/s00232-011-9395-1. Search in Google Scholar. [35] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., ...
1-Sar-8-Ile Angiotensin II use 1-Sarcosine-8-Isoleucine Angiotensin II ... 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- ... 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ...
1-Sar-8-Ile Angiotensin II use 1-Sarcosine-8-Isoleucine Angiotensin II ... 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- ... 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ...
1-Sar-8-Ile Angiotensin II use 1-Sarcosine-8-Isoleucine Angiotensin II ... 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- ... 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ...
1-Sar-8-Ile Angiotensin II use 1-Sarcosine-8-Isoleucine Angiotensin II ... 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- ... 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ...
1-Sar-8-Ile Angiotensin II use 1-Sarcosine-8-Isoleucine Angiotensin II ... 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester ... 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- ... 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer ...
... dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylglycerol (DMPG), distearoylphosphatidylglycerol (DSPG), ... Example 1 (5-PD-L1 Lipo) 66 6 23 5 Example 2 (10-PD-L1 Lipo) 66 1 23 10 Example 3 (20-PD-L1 Lipo) 57 0 23 20 Example 4 (30-PD- ... Example 1 (5-PD-L1 Lipo) 115.0 ± 0.98 -13.3 ± 5.66 Example 2 (10-PD-L1 Lipo) 163.7 ± 1.65 -12.2 ± 4.33 Example 3 (20-PD-L1 Lipo ... 1 × 106 CT26 cells were inoculated into the left thigh of each of the mice (n=6) to construct establish a cancer animal model. ...
  • We demonstrate that the dispersal of as-prepared (AP), purified (PD), and carboxylated (COOH) MWCNTs by bovine serum albumin (BSA) and dipalmitoylphosphatidylcholine (DPPC) influences TGF-β1, PDGF-AA, and IL-1β production in vitro and in vivo. (
  • A unique surface interaction for perdeuterated ethanol and 1-butanol with dipalmitoylphosphatidylcholine (DPPC)/monosialoganglioside (G M1 ) multilamellar vesicles can be detected from the fast exchange averaging of the nuclear quadrupole coupling constant of the alcohol in the free and bound states using deuterium NMR. (
  • Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. (
  • A quantitative comparison of 1,2-dipalmitoylphosphatidylcholine (DPPC) and 1,2-dipalmitoylphosphatidylethanolamine (DPPE) shows the former to have 0.4 double gauche (gg), 0.5 end gauche (eg), and about 1.0 (kink + gtg) conformers per chain just above the gel-liquid crystal phase transition, while the more highly ordered DPPE L α phase shows about 0.2 gg, 0.1 eg, and 1.0 (kink + gtg) conformers. (
  • Phase-separation was observed in the form of domains made of dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), or SM/cholesterol (SM/Chl) surrounded by a fluid matrix of dioleoylphosphatidylcholine (DOPC). (
  • Time-lapse images collected following addition of 1 mM azithromycin revealed progressive erosion and disappearance of DPPC gel domains within 60 min. (
  • Dipalmitoylphosphatidylcholine (DPPC) is the main component of lung surfactants. (
  • In this paper, two medusa-like ACyDs, modified at the primary rim bearing four (ACyD4) and eight carbons (ACyD8) acyl chain length, and one bouquet-like CyD, modified at primary side with thiohexyl and at secondary one with oligoethylene moiety (SC6OH), were investigated for their ability to assemble in nanostructures or to form hybrid dipalmitoylphosphatidylcholine (DPPC)/ACyDs systems. (
  • By combining dipalmitoylphosphatidylcholine (DPPC) lipids, cholesterol and the water-soluble polymer PEG2000, the researchers incorporated baicalein into liposomes (nanoscale drug-delivery capsules). (
  • A Phospholipase A1 which is capable of hydrolyzing a phospholipid to produce a 2-acyl lysophospholipid and is obtainable from species of the fungus Aspergillus. (
  • The present invention relates to an enzyme capable of hydrolysing the 1-acyl group of a phospholipid, that is a Phospholipase A1, as well as to processes for the production and to the use of such an enzyme. (
  • Thus, a Phospholipase A1 hydrolyzes the 1-acyl group of a phospholipid, i.e. it hydrolyzes the bond between the fatty acid and the glycerine residue at the 1-position of the phospholipid. (
  • Selective hydrolysis of a phospholipid substrate with a Phospholipase A1 produces a 2-acyl lysophospholipid and selective hydrolysis of a phospholipid with a Phospholipase A2 results in the production of a 1-acyl lysophospholipid. (
  • We identified the 1-palmitoyl-2-linoleyl-phosphatidylcholine (PLPC) as one active phospholipid that inhibited the Th1 function of mature DCs whereas the dipalmitoyl-phosphatidylcholine had no significant effect. (
  • A series of CH 2 wagging modes in the 1320-1370-cm -1 region of alkane and phospholipid IR spectra characteristic of nonplanar conformers has been used for quantitative evaluation of conformational states in disordered (phospholipid L α and H II and alkane liquid) phases. (
  • 2] Alsop, R. J., Maria, Schober R., and Rheinstadter, M. C. Swelling of Phospholipid Membranes by Divalent Metal Ions Depends on the Location of the Ions in the Bilayers. (
  • One aspect of the present invention provides a peptide-liposome complex composed of a lipid bilayer including (a) a first phospholipid, (b) a second phospholipid containing PEG, (c) cholesterol, and (d) a lipid conjugate consisting of the second phospholipid and a peptide having the amino acid sequence set forth in SEQ ID NO: 1. (
  • The second phospholipid may be 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)2000] (DSPE-mPEG2000) or 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)2000] (DSPE-PEG2000-MAL). (
  • Lucinactant contains the peptide sinapultide (KL4 acetate, KLLLLKLLLLKLLLLKLLLLK), dipalmitoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (as the sodium salt), and palmitic acid. (
  • At 1.0% perdeuterated ethanol or 0.5% perdeuterated 1-butanol, a small splitting of the alcohol resonance(s) was detected in the liquid-crystalline phase, but not in the gel phase of the bilayer. (
  • [12] and pulmonary surfactants such as dipalmitoylphosphatidylcholine . (
  • Among the four surfactant apoproteins identified, surfactant protein B (SP-B) and SP-C are two small hydrophobic proteins that make up 2-4% of the surfactant mass and are present in commercially available surfactant preparations. (
  • The shapes of the domains were found to change dramatically when a small amount (2 mol %) of cholesterol was incorporated in the monolayer. (
  • A Phospholipase A2 hydrolyzes the 2-acyl, or central acyl, group and Phospholipases C and D, which are also known as phosphodiesterases, cleave on the two sides of the phosphodiester linkage. (
  • Thus, the species active on CD36 have been identified to have an sn-2 acyl group that incorporates a terminal g -hydroxy (or oxo)- a , b -unsaturated carbonyl (alcohol or aldehyde group). (
  • The observed crystal packing of the domains provides a plausible model for the association of multiple tandemly linked EGF-like domains in proteins such as fibrillin-1, Notch, and protein S. This model is consistent with the known functional data and suggests a general biological role for these domains. (
  • The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (
  • Well-dispersed AP- and PD-MWCNTs were readily taken up by BEAS-2B, THP-1 cells, and alveolar macrophages (AM) and induced more prominent TGF-β1 and IL-1β production in vitro and TGF-β1, IL-1β, and PDGF-AA production in vivo than nondispersed tubes. (
  • The compounds generated from different precursors are similar except for the chain length of the truncated oxidized fatty acid at the sn-2 position. (
  • Later, other compounds were discovered that contain the same structural motif, a quaternary nitrogen atom with a carboxylate group attached to it via a -CH 2 - link. (
  • In animal cells, the fatty acid from the 1-position is frequently 16:0 and that from the 2-position is 18:1 or 18:2, exceptionally more unsaturated fatty acids are found. (
  • Stud Univ Babes-Bolyai, Biol 24(2):32-35. (
  • [2] With amino acids , for example, in solution a chemical equilibrium will be established between the "parent" molecule and the zwitterion. (
  • MTSase is responsible for converting the alpha-1,4-glucosidic linkage to an alpha,alpha-1,1-glucosidic linkage at the reducing end of the maltooligosaccharide through an intramolecular transglucosylation reaction, while MTHase hydrolyzes the penultimate alpha-1,4 linkage of the reducing end, resulting in the release of trehalose. (
  • 1993. In vitro percutaneous absorption and metabolism in man of 2-chloro-4-ethylamino-6-isopropylamine-s-triazine (atrazine). (
  • 1: Biochim Biophys Acta. (
  • These structures were shown to derived from phosphatidylcholine molecules having C16:0 at the sn-1 position and either C18:2n-6, C20:4n-6 or C22:6n-3 at the sn-2 position. (
  • Unite de chimie des interfaces, Universite catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium. (
  • A study of the L α → H II interconversion in two unsaturated phosphatidylethanolamines (1-palmitoyl-2-oleoyl- (POPE) and 1,2-dielaidoyl- (DEPE)) shows a substantial increase in both gg and eg conformers near temperatures leading to the inverted micellar state in each instance, with smaller percentage increases in (kink + gtg) states. (
  • Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). (
  • This subfamily also includes bacterial alpha amylases and 1,4-alpha-glucan branching enzymes which are highly similar to MTHase. (
  • Infection of iPSCs with lentiviral inserts is a highly efficient process since stem cells grow quickly, remain undifferentiated in specific cell culture conditions and can establish fully infected clones within 2-3 passages. (
  • The nanocomposites were fabricated with various weight percentages of carbon nanofibers (0.5%, 1%, 3%) that were treated with different silane coating thicknesses (2.8nm, 46nm) through melt-mixing and compressive processing. (
  • The SP-B gene is on human chromosome 2, and its primary translation product is 40 kd, which is clipped to become an 8-kd protein in the type II cells before entering lamellar bodies to be cosecreted with phospholipids. (
  • Particularly, a considerable number of drugs with high therapeutic efficacy are currently used in clinical applications as monoclonal antibodies that selectively bind to immune checkpoints, specifically programmed death-ligand 1 (PD-L1), programmed death-receptor (PD-1), and cytotoxic T lymphocyte associated protein 4 (CTLA-4), which are involved in the interaction between cancer cells and T cells. (
  • About 1% of the people older than 65 years have Parkinson's, which is caused by an imbalance in the brain resulting from alpha-synuclein, a small unstable protein that accumulates in clusters and clumps. (
  • In contrast, the gamma subunits in HgbF do not allow 2,3 DPG to bind easily and therefore HgF holds on to O 2 more tightly than HgbA. (
  • On the oxygen dissociation curve, HgbF represents a leftward shift compared to the normal curve because of its lack of affinity to bind 2,3-DPG and therefore a lower p50 compared to normal HgbA. (
  • Generally, machine surfaces get damaged (e.g. wear scar) during operations, which impedes stable sliding [1,2]. (
  • In the paralyzed state, the compliance of the chest wall is quite high and often greater than 25 mL/cm H 2 O. The ribs of the newborn infant are made mostly of cartilage and are quite elastic. (
  • it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. (
  • In HgbA, 2,3 DPG binds to the beta subunits and facilitates the dissociation of oxygen from the HgbA molecule. (
  • MNPs are tiny needles, small enough (100 -1,000 μm) that perforate superficial layers of the skin to deliver therapeutic agent into the dermis in a relatively painless and invasive manner [1, 2]. (
  • Tube dispersal also elicited more robust IL-1β production in THP-1 cells. (
  • Here, we employ the phase-sensitive membrane dye di-4-ANEPPDHQ together with a variety of spectrally-resolved microscopy techniques, including 2-channel ratiometric TIRF microscopy and fluorescence lifetime imaging, to characterize membrane order at the T cell immunological synapse at high spatial and temporal resolution in live cells at physiological temperature. (
  • The phase changes were observed by incorporating 1 mol% of a fluorescent probe, NBD-PC, into the lipid forming the monolayer. (
  • Finally, a temperature dependence inconsistent with the prediction of the rotational isomeric state model is noted for the 1368-cm -1 band characteristic of (kink + gtg) conformers in alkanes. (
  • Journal of Rare Diseases Research & Treatment 7(2), pp. 1-4. (
  • British Journal of Haematology 193(1), pp. 155-159. (
  • JOURNAL OF RESEARCH of the National Bureau of Standards - A.Phys ics and Chemistry 1977;81A(1):89-96. (
  • Journal of Membrane Biology 2010;235(1):43-50. (
  • The Journal of Physical Chemistry B 5-2- 2015b;119(5):1947-56. (