A colorimetric reagent for iron, manganese, titanium, molybdenum, and complexes of zirconium. (From Merck Index, 11th ed)
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
Hydroquinones are chemical compounds that function as potent depigmenting agents, inhibiting the enzymatic conversion of tyrosine to melanin, used topically in the treatment of various dermatological disorders such as melasma, freckles, and hyperpigmentation.
A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells.
A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive.
An inhibitor of anion conductance including band 3-mediated anion transport.
A class of organic compounds that contains a naphthalene moiety linked to a sulfonic acid salt or ester.
A chromone complex that acts by inhibiting the release of chemical mediators from sensitized mast cells. It is used in the prophylactic treatment of both allergic and exercise-induced asthma, but does not affect an established asthmatic attack.
A subclass of purinergic P2 receptors that signal by means of a ligand-gated ion channel. They are comprised of three P2X subunits which can be identical (homotrimeric form) or dissimilar (heterotrimeric form).
Compounds that bind to and block the stimulation of PURINERGIC P2 RECEPTORS.
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system.
A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties.
Organic compounds that contain 1,2-diphenylethylene as a functional group.
Substances produced from the reaction between acids and bases; compounds consisting of a metal (positive) and nonmetal (negative) radical. (Grant & Hackh's Chemical Dictionary, 5th ed)
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.

1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt is a chemical compound with the formula Na2C6H4O6S2. It is also known as pyrocatechol-3,5-disulfonic acid disodium salt or sodium salt of 1,2-dihydroxybenzene-3,5-disulfonic acid.

This compound is a white crystalline powder that is soluble in water and has a variety of uses in the chemical industry. It can be used as a reducing agent, a chelating agent, and a developer in photographic processes. It may also have potential applications in the medical field, such as in the treatment of heavy metal poisoning, although more research is needed to confirm its effectiveness and safety for this use.

It's important to note that while 1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt may have various applications, it should be handled with care and used under appropriate conditions, as with any chemical compound.

Catechols are a type of chemical compound that contain a benzene ring with two hydroxyl groups (-OH) attached to it in the ortho position. The term "catechol" is often used interchangeably with "ortho-dihydroxybenzene." Catechols are important in biology because they are produced through the metabolism of certain amino acids, such as phenylalanine and tyrosine, and are involved in the synthesis of various neurotransmitters and hormones. They also have antioxidant properties and can act as reducing agents. In chemistry, catechols can undergo various reactions, such as oxidation and polymerization, to form other classes of compounds.

Hydroquinones are a type of chemical compound that belong to the group of phenols. In a medical context, hydroquinones are often used as topical agents for skin lightening and the treatment of hyperpigmentation disorders such as melasma, age spots, and freckles. They work by inhibiting the enzyme tyrosinase, which is necessary for the production of melanin, the pigment that gives skin its color.

It's important to note that hydroquinones can have side effects, including skin irritation, redness, and contact dermatitis. Prolonged use or high concentrations may also cause ochronosis, a condition characterized by blue-black discoloration of the skin. Therefore, they should be used under the supervision of a healthcare provider and for limited periods of time.

4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid is a chemical compound that is often used in research and scientific studies. It is a type of stilbene derivative, which is a class of compounds characterized by the presence of a central double bond flanked by two phenyl rings.

In this particular compound, one of the phenyl rings has been substituted with an acetamido group (-NH-C(=O)CH3), while the other phenyl ring has been substituted with an isothiocyanato group (-N=C=S) and two sulfonic acid groups (-SO3H).

The compound is often used as a fluorescent probe in biochemical and cellular studies, as it exhibits strong fluorescence when bound to certain proteins or other biological molecules. It can be used to study the interactions between these molecules and to investigate their structure and function.

It's important to note that this compound is not approved for medical use in humans and should only be handled by trained professionals in a controlled laboratory setting.

Edetic acid, also known as ethylenediaminetetraacetic acid (EDTA), is not a medical term per se, but a chemical compound with various applications in medicine. EDTA is a synthetic amino acid that acts as a chelating agent, which means it can bind to metallic ions and form stable complexes.

In medicine, EDTA is primarily used in the treatment of heavy metal poisoning, such as lead or mercury toxicity. It works by binding to the toxic metal ions in the body, forming a stable compound that can be excreted through urine. This helps reduce the levels of harmful metals in the body and alleviate their toxic effects.

EDTA is also used in some diagnostic tests, such as the determination of calcium levels in blood. Additionally, it has been explored as a potential therapy for conditions like atherosclerosis and Alzheimer's disease, although its efficacy in these areas remains controversial and unproven.

It is important to note that EDTA should only be administered under medical supervision due to its potential side effects and the need for careful monitoring of its use.

'4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid' is a chemical compound that is often used in research and scientific studies. Its molecular formula is C14H10N2O6S2. This compound is a derivative of stilbene, which is a type of organic compound that consists of two phenyl rings joined by a ethylene bridge. In '4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid', the hydrogen atoms on the carbon atoms of the ethylene bridge have been replaced with isothiocyanate groups (-N=C=S), and the phenyl rings have been sulfonated (introduction of a sulfuric acid group, -SO3H) to increase its water solubility.

This compound is often used as a fluorescent probe in biochemical and cell biological studies due to its ability to form covalent bonds with primary amines, such as those found on proteins. This property allows researchers to label and track specific proteins or to measure the concentration of free primary amines in a sample.

It is important to note that '4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid' is a hazardous chemical and should be handled with care, using appropriate personal protective equipment and safety measures.

Naphthalenesulfonates are a group of chemical compounds that consist of a naphthalene ring, which is a bicyclic aromatic hydrocarbon, substituted with one or more sulfonate groups. Sulfonates are salts or esters of sulfuric acid. Naphthalenesulfonates are commonly used as detergents, dyes, and research chemicals.

In the medical field, naphthalenesulfonates may be used in diagnostic tests to detect certain enzyme activities or metabolic disorders. For example, 1-naphthyl sulfate is a substrate for the enzyme arylsulfatase A, which is deficient in individuals with the genetic disorder metachromatic leukodystrophy. By measuring the activity of this enzyme using 1-naphthyl sulfate as a substrate, doctors can diagnose or monitor the progression of this disease.

It's worth noting that some naphthalenesulfonates have been found to have potential health hazards and environmental concerns. For instance, sodium naphthalenesulfonate has been classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC). Therefore, their use should be handled with caution and in accordance with established safety protocols.

Cromolyn sodium is a medication that belongs to a class of drugs known as mast cell stabilizers. It works by preventing the release of certain chemicals from mast cells, which are immune system cells found in various tissues throughout the body, including the skin, lungs, and gastrointestinal tract.

Mast cells play an important role in the body's allergic response. When a person is exposed to an allergen, such as pollen or pet dander, mast cells release chemicals like histamine, which can cause symptoms of an allergic reaction, such as itching, swelling, and inflammation.

Cromolyn sodium is used to prevent asthma attacks, hay fever, and other allergic reactions. It is often prescribed for people who have difficulty controlling their symptoms with other medications, such as inhaled corticosteroids or antihistamines.

The medication is available in various forms, including inhalers, nasal sprays, and eye drops. When used as an inhaler, cromolyn sodium is typically administered four times a day to prevent asthma symptoms. As a nasal spray or eye drop, it is usually used several times a day to prevent allergic rhinitis or conjunctivitis.

While cromolyn sodium can be effective in preventing allergic reactions, it does not provide immediate relief of symptoms. It may take several days or even weeks of regular use before the full benefits of the medication are felt.

Purinergic P2X receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular ATP (adenosine triphosphate) and other purinergic agonists. These receptors play important roles in various physiological processes, including neurotransmission, pain perception, and immune response.

P2X receptors are composed of three subunits that form a functional ion channel. There are seven different subunits (P2X1-7) that can assemble to form homo- or heterotrimeric receptor complexes with distinct functional properties.

Upon activation by ATP, P2X receptors undergo conformational changes that allow for the flow of cations, such as calcium (Ca^2+^), sodium (Na^+^), and potassium (K^+^) ions, across the cell membrane. This ion flux can lead to a variety of downstream signaling events, including the activation of second messenger systems and changes in gene expression.

Purinergic P2X receptors have been implicated in a number of pathological conditions, including chronic pain, inflammation, and neurodegenerative diseases. As such, they are an active area of research for the development of novel therapeutic strategies.

Purinergic P2 receptor antagonists are pharmaceutical agents that block the activity of P2 receptors, which are a type of cell surface receptor that binds extracellular nucleotides such as ATP and ADP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and platelet aggregation.

P2 receptors are divided into two main subfamilies: P2X and P2Y. The P2X receptors are ligand-gated ion channels that allow the flow of ions across the cell membrane upon activation, while the P2Y receptors are G protein-coupled receptors that activate intracellular signaling pathways.

Purinergic P2 receptor antagonists are used in clinical medicine to treat various conditions, such as chronic pain, urinary incontinence, and cardiovascular diseases. For example, the P2X3 receptor antagonist gefapixant is being investigated for the treatment of refractory chronic cough, while the P2Y12 receptor antagonists clopidogrel and ticagrelor are used to prevent thrombosis in patients with acute coronary syndrome.

Overall, purinergic P2 receptor antagonists offer a promising therapeutic approach for various diseases by targeting specific receptors involved in pathological processes.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Purinergic P2 receptors are a type of cell surface receptor that bind to purine nucleotides and nucleosides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and mediate various physiological responses. These receptors are divided into two main families: P2X and P2Y.

P2X receptors are ionotropic receptors, meaning they form ion channels that allow the flow of ions across the cell membrane upon activation. There are seven subtypes of P2X receptors (P2X1-7), each with distinct functional and pharmacological properties.

P2Y receptors, on the other hand, are metabotropic receptors, meaning they activate intracellular signaling pathways through G proteins. There are eight subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), each with different G protein coupling specificities and downstream signaling pathways.

Purinergic P2 receptors are widely expressed in various tissues, including the nervous system, cardiovascular system, respiratory system, gastrointestinal tract, and immune system. They play important roles in regulating physiological functions such as neurotransmission, vasodilation, platelet aggregation, smooth muscle contraction, and inflammation. Dysregulation of purinergic P2 receptors has been implicated in various pathological conditions, including pain, ischemia, hypertension, atherosclerosis, and cancer.

Suramin is a medication that has been used for the treatment of African sleeping sickness, which is caused by trypanosomes. It works as a reverse-specific protein kinase CK inhibitor and also blocks the attachment of the parasite to the host cells. Suramin is not absorbed well from the gastrointestinal tract and is administered intravenously.

It should be noted that Suramin is an experimental treatment for other conditions such as cancer, neurodegenerative diseases, viral infections and autoimmune diseases, but it's still under investigation and has not been approved by FDA for those uses.

Stilbenes are a type of chemical compound that consists of a 1,2-diphenylethylene backbone. They are phenolic compounds and can be found in various plants, where they play a role in the defense against pathogens and stress conditions. Some stilbenes have been studied for their potential health benefits, including their antioxidant and anti-inflammatory effects. One well-known example of a stilbene is resveratrol, which is found in the skin of grapes and in red wine.

It's important to note that while some stilbenes have been shown to have potential health benefits in laboratory studies, more research is needed to determine their safety and effectiveness in humans. It's always a good idea to talk to a healthcare provider before starting any new supplement regimen.

In the context of medicine, "salts" often refers to ionic compounds that are formed when an acid and a base react together. The resulting product of this neutralization reaction is composed of cations (positively charged ions) and anions (negatively charged ions), which combine to form a salt.

Salts can also be formed from the reaction between a weak acid and a strong base, or between a strong acid and a weak base. The resulting salt will have properties that are different from those of the reactants, including its solubility in water, pH, and taste. In some cases, salts can be used for therapeutic purposes, such as potassium chloride (KCl) or sodium bicarbonate (NaHCO3), while others may be harmful and pose a risk to human health.

It's important to note that the term "salts" can also refer to organic compounds that contain a functional group consisting of a single bond between a carbon atom and a halogen atom, such as sodium chloride (NaCl) or potassium iodide (KI). These types of salts are not formed from acid-base reactions but rather through ionic bonding between a metal and a nonmetal.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
D12 - Amino Acids, Peptides, and Proteins. Antigens, CD94. NK Cell Lectin-Like Receptor Subfamily D. ...
Steamed Ginger May Enhance Insulin Secretion through KATP Channel Closure in Pancreatic ß-Cells Potentially by Increasing 1- ...
Stimulation of renin secretion by ethacrynic acid is independent of Na(+)-K(+)-2Cl- cotransport. Am J Physiol. 1990 Oct; 259(4 ...
4-Dichlorophenoxyacetic Acid, Ammonium Salt use 2,4-Dichlorophenoxyacetic Acid 2,4-Dichlorophenoxyacetic Acid, Lithium Salt use ... Disodium use Etidronic Acid 1-Hydroxyethylidene-1,1-Bisphosphonate use Etidronic Acid ... R,S)-Aspartic Acid use Aspartic Acid (S)-1-((1,1-Dimethylethyl)amino)-3-((4-(4-morpholinyl)-1,2,5-thiadazol-3-yl)oxy)-2- ... 4-Dichlorophenoxyacetic Acid, Potassium Salt use 2,4-Dichlorophenoxyacetic Acid 2,4-Dichlorophenoxyacetic Acid, Sodium Salt use ...
Disulfonic Acid 4,5-Dihydro-1-(3-(trifluoromethyl)phenyl)-1H-pyrazol-3-amine ... 99mTc-Dimercaptosuccinic Acid use Technetium Tc 99m Dimercaptosuccinic Acid 99mTc-DMSA use Technetium Tc 99m Dimercaptosuccinic ... 12-S-HETE use 12-Hydroxy-5.8,10,14-eicosatetraenoic Acid 12-S-Hydroxyeicosatetraenoic Acid use 12-Hydroxy-5.8,10,14- ... 99mTc-Diethyl IDA use Technetium Tc 99m Diethyl-iminodiacetic Acid ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
... disodium salt. Previous Indexing. Benzenesulfonates (1974). Catechols (1974). Public MeSH Note. 2009; see TIRON 1991-2008, see ... Sulfur Acids [D02.886.645] * Sulfonic Acids [D02.886.645.600] * Arylsulfonic Acids [D02.886.645.600.080] * Arylsulfonates [ ... 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt Preferred Term Term UI T721552. Date06/26/2008. LexicalTag NON. ... 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt Preferred Concept UI. M0021572. Registry Number. 4X87R5T106. Related ...
... disodium salt. Previous Indexing. Benzenesulfonates (1974). Catechols (1974). Public MeSH Note. 2009; see TIRON 1991-2008, see ... Sulfur Acids [D02.886.645] * Sulfonic Acids [D02.886.645.600] * Arylsulfonic Acids [D02.886.645.600.080] * Arylsulfonates [ ... 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt Preferred Term Term UI T721552. Date06/26/2008. LexicalTag NON. ... 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt Preferred Concept UI. M0021572. Registry Number. 4X87R5T106. Related ...
Calcium Salt N0000179378 Dioctyl Sulfosuccinic Acid, Sodium Salt N0000167411 Diosgenin N0000167025 Diosmin N0000167047 Dioxanes ... disulfonic Acid N0000006481 4-Aminobenzoic Acid N0000168376 4-Aminobutyrate Transaminase N0000167244 4-Aminopyridine ... N0000170620 Edeine N0000178895 Edetate Disodium Calcium N0000179308 Edetates N0000006192 Edetic Acid N0000178916 Edetic Acid, ... Neutral N0000006806 Amino Acids N0000011372 Amino Acids, Acidic N0000011248 Amino Acids, Aromatic N0000011332 Amino Acids, ...
Calcium Dobesilate Monoammonium Salt*Calcium Dobesilate Monoammonium Salt. Calcium Dobesilate Monopotassium Salt*Calcium ... Arylsulfonic Acids [D02.886.645.600.080]. *Arylsulfonates [D02.886.645.600.080.050]. *Benzenesulfonates [D02.886.645.600. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
D10.251.400.143 Butyric Acid D2.241.81.160.140 D2.241.81.114.750 D10.251.400.241.140 D10.251.400.143.500 Caffeic Acids D2.241. ... B5.80.750.450 Keto Acids D2.241.607 D2.241.755 Ketoglutaric Acids D2.241.607.465 D2.241.755.465 L-Selectin D23.50.301.264. ... D2.705.675 Phosphoric Acid Esters D2.705.673 D2.705.400 (Replaced for 2012 by Organophosphates) Phosphorous Acids D2.705.676 ... Aminoethylphosphonic Acid D2.705.50 D2.705.429.249 Aminohippuric Acids D2.241.223.100.120.67 D2.241.223.100.100.100 D2.241. ...
We invite you to complete a survey that will take no more than 3 minutes.. Go to survey ... 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt [D02.455.426.559.389.657.166.210] ...
Arylsulfonic Acids [D02.886.645.600.080]. *Arylsulfonates [D02.886.645.600.080.050]. *Benzenesulfonates [D02.886.645.600. ...
... disulfonic Acid 4-Aminobenzoic Acid 4-Aminobutyrate Transaminase 4-Aminopyridine 4-Butyrolactone 4-Chloro-7-nitrobenzofurazan 4 ... Bile Acids and Salts Bile Canaliculi Bile Duct Diseases Bile Duct Neoplasms Bile Ducts Bile Ducts, Extrahepatic Bile Ducts, ... Amino Acids Amino Acids, Acidic Amino Acids, Aromatic Amino Acids, Basic Amino Acids, Branched-Chain Amino Acids, Cyclic Amino ... Acid Ceramidase Acid Etching, Dental Acid Phosphatase Acid Rain Acid Sensing Ion Channel Blockers Acid Sensing Ion Channels ...

No FAQ available that match "1 2 dihydroxybenzene 3 5 disulfonic acid disodium salt"