Vesicular biogenic amine transport proteins (VMATs) are a type of transmembrane protein that play a crucial role in the packaging and transport of biogenic amines, such as serotonin, dopamine, norepinephrine, and histamine, into synaptic vesicles within neurons. These proteins are located on the membranes of neurosecretory vesicles and function to regulate the concentration of these neurotransmitters in the cytoplasm and maintain their storage in vesicles until they are released into the synapse during neurotransmission. VMATs are members of the solute carrier family 18 (SLC18) and consist of two isoforms, VMAT1 and VMAT2, which differ in their distribution and substrate specificity. VMAT1 is primarily found in non-neuronal cells, such as endocrine and neuroendocrine cells, while VMAT2 is predominantly expressed in neurons. Dysregulation of VMATs has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, depression, and attention deficit hyperactivity disorder (ADHD).

Vesicular Monoamine Transporter Proteins (VMATs) are a type of transmembrane protein that play a crucial role in the packaging and transport of monoamines, such as serotonin, dopamine, and norepinephrine, into synaptic vesicles within neurons. There are two main isoforms of VMATs, VMAT1 and VMAT2, which differ in their distribution and function.

VMAT1 (also known as SLC18A1) is primarily found in neuroendocrine cells and is responsible for transporting monoamines into large dense-core vesicles. VMAT2 (also known as SLC18A2), on the other hand, is mainly expressed in presynaptic neurons and is involved in the transport of monoamines into small synaptic vesicles.

Both VMAT1 and VMAT2 are integral membrane proteins that utilize a proton gradient to drive the uptake of monoamines against their concentration gradient, allowing for their storage and subsequent release during neurotransmission. Dysregulation of VMAT function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease and depression.

Tetrabenazine is a prescription medication used to treat conditions associated with abnormal involuntary movements, such as chorea in Huntington's disease. It works by depleting the neurotransmitter dopamine in the brain, which helps to reduce the severity and frequency of these movements.

Here is the medical definition:

Tetrabenazine is a selective monoamine-depleting agent, with preferential uptake by dopamine neurons. It is used in the treatment of chorea associated with Huntington's disease. Tetrabenazine inhibits vesicular monoamine transporter 2 (VMAT2), leading to depletion of presynaptic dopamine and subsequent reduction in post-synaptic dopamine receptor activation. This mechanism of action is thought to underlie its therapeutic effect in reducing chorea severity and frequency.

(Definitions provided by Stedman's Medical Dictionary and American Society of Health-System Pharmacists)

Monoamine oxidase (MAO) is an enzyme found on the outer membrane of mitochondria in cells throughout the body, but primarily in the gastrointestinal tract, liver, and central nervous system. It plays a crucial role in the metabolism of neurotransmitters and dietary amines by catalyzing the oxidative deamination of monoamines. This enzyme exists in two forms: MAO-A and MAO-B, each with distinct substrate preferences and tissue distributions.

MAO-A preferentially metabolizes serotonin, norepinephrine, and dopamine, while MAO-B is mainly responsible for breaking down phenethylamines and benzylamines, as well as dopamine in some cases. Inhibition of these enzymes can lead to increased neurotransmitter levels in the synaptic cleft, which has implications for various psychiatric and neurological conditions, such as depression and Parkinson's disease. However, MAO inhibitors must be used with caution due to their potential to cause serious adverse effects, including hypertensive crises, when combined with certain foods or medications containing dietary amines or sympathomimetic agents.

Lobeline is not a medical term per se, but it is a pharmacological substance with some potential medical applications. Lobeline is an alkaloid compound that can be found in certain plants, including the Indian tobacco plant (Lobelia inflata). It has been used in some over-the-counter and prescription medications as a smoking cessation aid due to its ability to stimulate nicotinic acetylcholine receptors in the brain, which may help reduce cravings for nicotine.

However, it's important to note that the effectiveness of lobeline as a smoking cessation aid is still a matter of debate and further research is needed to fully understand its potential benefits and risks.

Membrane transport proteins are specialized biological molecules, specifically integral membrane proteins, that facilitate the movement of various substances across the lipid bilayer of cell membranes. They are responsible for the selective and regulated transport of ions, sugars, amino acids, nucleotides, and other molecules into and out of cells, as well as within different cellular compartments. These proteins can be categorized into two main types: channels and carriers (or pumps). Channels provide a passive transport mechanism, allowing ions or small molecules to move down their electrochemical gradient, while carriers actively transport substances against their concentration gradient, requiring energy usually in the form of ATP. Membrane transport proteins play a crucial role in maintaining cell homeostasis, signaling processes, and many other physiological functions.

Biogenic monoamines are a type of neurotransmitter, which are chemical messengers that transmit signals in the brain and other parts of the nervous system. They are called "biogenic" because they are derived from biological substances, and "monoamines" because they contain one amine group (-NH2) and are derived from the aromatic amino acids: tryptophan, tyrosine, and phenylalanine.

Examples of biogenic monoamines include:

1. Serotonin (5-hydroxytryptamine or 5-HT): synthesized from the amino acid tryptophan and plays a crucial role in regulating mood, appetite, sleep, memory, and learning.
2. Dopamine: formed from tyrosine and is involved in reward, motivation, motor control, and reinforcement of behavior.
3. Norepinephrine (noradrenaline): also derived from tyrosine and functions as a neurotransmitter and hormone that modulates attention, arousal, and stress responses.
4. Epinephrine (adrenaline): synthesized from norepinephrine and serves as a crucial hormone and neurotransmitter in the body's fight-or-flight response to stress or danger.
5. Histamine: produced from the amino acid histidine, it acts as a neurotransmitter and mediates allergic reactions, immune responses, and regulates wakefulness and appetite.

Imbalances in biogenic monoamines have been linked to various neurological and psychiatric disorders, such as depression, anxiety, Parkinson's disease, and schizophrenia. Therefore, medications that target these neurotransmitters, like selective serotonin reuptake inhibitors (SSRIs) for depression or levodopa for Parkinson's disease, are often used in the treatment of these conditions.

Monoamine oxidase inhibitors (MAOIs) are a class of drugs that work by blocking the action of monoamine oxidase, an enzyme found in the brain and other organs of the body. This enzyme is responsible for breaking down certain neurotransmitters, such as serotonin, dopamine, and norepinephrine, which are chemicals that transmit signals in the brain.

By inhibiting the action of monoamine oxidase, MAOIs increase the levels of these neurotransmitters in the brain, which can help to alleviate symptoms of depression and other mood disorders. However, MAOIs also affect other chemicals in the body, including tyramine, a substance found in some foods and beverages, as well as certain medications. As a result, MAOIs can have serious side effects and interactions with other substances, making them a less commonly prescribed class of antidepressants than other types of drugs.

MAOIs are typically used as a last resort when other treatments for depression have failed, due to their potential for dangerous interactions and side effects. They require careful monitoring and dosage adjustment by a healthcare provider, and patients must follow strict dietary restrictions while taking them.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Fatty acid transport proteins (FATPs) are a group of membrane-bound proteins that play a crucial role in the uptake and transport of long-chain fatty acids across the plasma membrane of cells. They are widely expressed in various tissues, including the heart, muscle, adipose tissue, and liver.

FATPs have several domains that enable them to perform their functions, including a cytoplasmic domain that binds to fatty acids, a transmembrane domain that spans the plasma membrane, and an ATP-binding cassette (ABC) domain that hydrolyzes ATP to provide energy for fatty acid transport.

FATPs also play a role in the regulation of intracellular lipid metabolism by modulating the activity of enzymes involved in fatty acid activation, desaturation, and elongation. Mutations in FATP genes have been associated with various metabolic disorders, including congenital deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), a rare autosomal recessive disorder that affects fatty acid oxidation.

In summary, fatty acid transport proteins are essential for the uptake and metabolism of long-chain fatty acids in cells and have implications in various metabolic disorders.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Reserpine is an alkaloid derived from the Rauwolfia serpentina plant, which has been used in traditional medicine for its sedative and hypotensive effects. In modern medicine, reserpine is primarily used to treat hypertension (high blood pressure) due to its ability to lower both systolic and diastolic blood pressure.

Reserpine works by depleting catecholamines, including norepinephrine, epinephrine, and dopamine, from nerve terminals in the sympathetic nervous system. This leads to a decrease in peripheral vascular resistance and heart rate, ultimately resulting in reduced blood pressure.

Reserpine is available in various forms, such as tablets or capsules, and is typically administered orally. Common side effects include nasal congestion, dizziness, sedation, and gastrointestinal disturbances like diarrhea and nausea. Long-term use of reserpine may also lead to depression in some individuals. Due to its potential for causing depression, other antihypertensive medications are often preferred over reserpine when possible.

Dopamine plasma membrane transport proteins, also known as dopamine transporters (DAT), are a type of protein found in the cell membrane that play a crucial role in the regulation of dopamine neurotransmission. They are responsible for the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron, thereby terminating the signal transduction of dopamine and regulating the amount of dopamine available for further release.

Dopamine transporters belong to the family of sodium-dependent neurotransmitter transporters and are encoded by the SLC6A3 gene in humans. Abnormalities in dopamine transporter function have been implicated in several neurological and psychiatric disorders, including Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and substance use disorders.

In summary, dopamine plasma membrane transport proteins are essential for the regulation of dopamine neurotransmission by mediating the reuptake of dopamine from the synaptic cleft back into the presynaptic neuron.

Methamphetamine is a powerful, highly addictive central nervous system stimulant that affects brain chemistry, leading to mental and physical dependence. Its chemical formula is N-methylamphetamine, and it is structurally similar to amphetamine but has additional methyl group, which makes it more potent and longer-lasting.

Methamphetamine exists in various forms, including crystalline powder (commonly called "meth" or "crystal meth") and a rocklike form called "glass." It can be taken orally, snorted, smoked, or injected after being dissolved in water or alcohol.

Methamphetamine use leads to increased levels of dopamine, a neurotransmitter responsible for reward, motivation, and reinforcement, resulting in euphoria, alertness, and energy. Prolonged use can cause severe psychological and physiological harm, including addiction, psychosis, cardiovascular issues, dental problems (meth mouth), and cognitive impairments.

Biological transport, active is the process by which cells use energy to move materials across their membranes from an area of lower concentration to an area of higher concentration. This type of transport is facilitated by specialized proteins called transporters or pumps that are located in the cell membrane. These proteins undergo conformational changes to physically carry the molecules through the lipid bilayer of the membrane, often against their concentration gradient.

Active transport requires energy because it works against the natural tendency of molecules to move from an area of higher concentration to an area of lower concentration, a process known as diffusion. Cells obtain this energy in the form of ATP (adenosine triphosphate), which is produced through cellular respiration.

Examples of active transport include the uptake of glucose and amino acids into cells, as well as the secretion of hormones and neurotransmitters. The sodium-potassium pump, which helps maintain resting membrane potential in nerve and muscle cells, is a classic example of an active transporter.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Adrenergic uptake inhibitors are a class of medications that work by blocking the reuptake of neurotransmitters, such as norepinephrine and dopamine, into the presynaptic neuron. This results in an increase in the amount of neurotransmitter available to bind to postsynaptic receptors, leading to an enhancement of adrenergic transmission.

These medications are used in the treatment of various medical conditions, including depression, attention deficit hyperactivity disorder (ADHD), and narcolepsy. Some examples of adrenergic uptake inhibitors include:

* Tricyclic antidepressants (TCAs): These medications, such as imipramine and amitriptyline, were developed in the 1950s and are used to treat depression, anxiety disorders, and chronic pain.
* Selective serotonin-norepinephrine reuptake inhibitors (SNRIs): These medications, such as venlafaxine and duloxetine, were developed in the 1990s and are used to treat depression, anxiety disorders, and chronic pain.
* Norepinephrine-dopamine reuptake inhibitors (NDRIs): These medications, such as bupropion, are used to treat depression and ADHD.

It's important to note that these medications can have side effects and should be used under the supervision of a healthcare provider.

Vesicular Acetylcholine Transport Proteins (VAChT) are specialized integral membrane proteins that play a crucial role in the storage and release of the neurotransmitter acetylcholine (ACh) within synaptic vesicles. These transport proteins are located in the membranes of synaptic vesicles, which are small, membrane-bound organelles found in nerve terminals.

VAChT is responsible for actively transporting ACh from the cytosol (the fluid inside the cell) into these synaptic vesicles. The protein uses the energy derived from the hydrolysis of ATP to move ACh against its concentration gradient, accumulating it within the vesicles to high concentrations. This allows for the efficient and rapid release of ACh into the synapse upon stimulation of the nerve terminal, facilitating neurotransmission between neurons.

Defects in VAChT function or expression have been implicated in several neurological disorders, including certain forms of epilepsy and mental retardation, highlighting its importance in maintaining normal neural communication.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Synaptic vesicles are tiny membrane-enclosed sacs within the presynaptic terminal of a neuron, containing neurotransmitters. They play a crucial role in the process of neurotransmission, which is the transmission of signals between nerve cells. When an action potential reaches the presynaptic terminal, it triggers the fusion of synaptic vesicles with the plasma membrane, releasing neurotransmitters into the synaptic cleft. These neurotransmitters can then bind to receptors on the postsynaptic neuron and trigger a response. After release, synaptic vesicles are recycled through endocytosis, allowing them to be refilled with neurotransmitters and used again in subsequent rounds of neurotransmission.

An encyclopedia is a comprehensive reference work containing articles on various topics, usually arranged in alphabetical order. In the context of medicine, a medical encyclopedia is a collection of articles that provide information about a wide range of medical topics, including diseases and conditions, treatments, tests, procedures, and anatomy and physiology. Medical encyclopedias may be published in print or electronic formats and are often used as a starting point for researching medical topics. They can provide reliable and accurate information on medical subjects, making them useful resources for healthcare professionals, students, and patients alike. Some well-known examples of medical encyclopedias include the Merck Manual and the Stedman's Medical Dictionary.

Nervous system diseases, also known as neurological disorders, refer to a group of conditions that affect the nervous system, which includes the brain, spinal cord, nerves, and muscles. These diseases can affect various functions of the body, such as movement, sensation, cognition, and behavior. They can be caused by genetics, infections, injuries, degeneration, or tumors. Examples of nervous system diseases include Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, migraine, stroke, and neuroinfections like meningitis and encephalitis. The symptoms and severity of these disorders can vary widely, ranging from mild to severe and debilitating.