Facial asymmetry refers to a condition in which the facial features are not identical or proportionate on both sides of a vertical line drawn down the middle of the face. This can include differences in the size, shape, or positioning of facial features such as the eyes, ears, nose, cheeks, and jaw. Facial asymmetry can be mild and barely noticeable, or it can be more severe and affect a person's appearance and/or functionality of the mouth and jaw.

Facial asymmetry can be present at birth (congenital) or can develop later in life due to various factors such as injury, surgery, growth disorders, nerve damage, or tumors. In some cases, facial asymmetry may not cause any medical problems and may only be of cosmetic concern. However, in other cases, it may indicate an underlying medical condition that requires treatment.

Depending on the severity and cause of the facial asymmetry, treatment options may include cosmetic procedures such as fillers or surgery, orthodontic treatment, physical therapy, or medication to address any underlying conditions.

Orthognathic surgery, also known as corrective jaw surgery, is a surgical procedure performed to correct and realign the bones of the jaws and face to improve their function and appearance. The surgery is typically recommended when there are significant skeletal discrepancies or dental malocclusions that cannot be corrected with orthodontic treatment alone.

Orthognathic surgery involves making precise cuts in the jawbones, repositioning them, and securing them in their new position using plates, screws, or wires. The procedure can be performed on the upper jaw (maxilla), lower jaw (mandible), or both, depending on the nature of the problem.

The goals of orthognathic surgery include improving bite function, chewing and swallowing ability, speech, breathing, and facial aesthetics. Patients who undergo this surgery often experience significant improvements in their quality of life and self-confidence. However, it is important to note that orthognathic surgery requires careful planning, coordination between the oral surgeon and orthodontist, and a commitment to post-surgical recovery and rehabilitation.

Jaw abnormalities, also known as maxillofacial abnormalities, refer to any structural or functional deviations from the normal anatomy and physiology of the jaw bones (mandible and maxilla) and the temporomandibular joint (TMJ). These abnormalities can be present at birth (congenital) or acquired later in life due to various factors such as trauma, infection, tumors, or degenerative diseases.

Examples of jaw abnormalities include:

1. Micrognathia: a condition where the lower jaw is underdeveloped and appears recessed or small.
2. Prognathism: a condition where the lower jaw protrudes forward beyond the normal position.
3. Maxillary hypoplasia/aplasia: a condition where the upper jaw is underdeveloped or absent.
4. Mandibular hypoplasia/aplasia: a condition where the lower jaw is underdeveloped or absent.
5. Condylar hyperplasia: a condition where one or both of the condyles (the rounded ends of the mandible that articulate with the skull) continue to grow abnormally, leading to an asymmetrical jaw and facial deformity.
6. TMJ disorders: conditions affecting the temporomandibular joint, causing pain, stiffness, and limited movement.
7. Jaw tumors or cysts: abnormal growths that can affect the function and structure of the jaw bones.

Jaw abnormalities can cause various problems, including difficulty with chewing, speaking, breathing, and swallowing, as well as aesthetic concerns. Treatment options may include orthodontic treatment, surgery, or a combination of both, depending on the severity and nature of the abnormality.

Sagittal split ramus osteotomy (SSRO) is a specific type of orthognathic surgery, which is performed on the ramus of the mandible (lower jaw). The procedure involves making a surgical cut in the ramus bone in a sagittal direction (splitting it from front to back), and then splitting the bone further into two segments. These segments are then repositioned to correct dentofacial deformities, such as jaw misalignment or asymmetry. The procedure is often used to treat severe cases of malocclusion (bad bite) and jaw joint disorders. After the bones are repositioned, they are stabilized with plates and screws until they heal together in their new position.

Genioplasty is a surgical procedure that is performed to reshape or reposition the chin. It involves making cuts in the chin bone (mandible) and moving it forward or backward, depending on the desired result. Genioplasty can also be used to correct congenital deformities, facial trauma, or sleep apnea. The procedure is typically performed by an oral and maxillofacial surgeon or a plastic surgeon and can be done alone or in combination with other facial cosmetic procedures such as rhinoplasty (nose reshaping).

The "chin" is the lower, prominent part of the front portion of the jaw in humans and other animals. In medical terms, it is often referred to as the mentum or the symphysis of the mandible. The chin helps in protecting the soft tissues of the mouth and throat during activities such as eating, speaking, and swallowing. It also plays a role in shaping the overall appearance of the face. Anatomically, the chin is formed by the fusion of the two halves of the mandible (lower jawbone) at the symphysis menti.

In medical terms, the face refers to the front part of the head that is distinguished by the presence of the eyes, nose, and mouth. It includes the bones of the skull (frontal bone, maxilla, zygoma, nasal bones, lacrimal bones, palatine bones, inferior nasal conchae, and mandible), muscles, nerves, blood vessels, skin, and other soft tissues. The face plays a crucial role in various functions such as breathing, eating, drinking, speaking, seeing, smelling, and expressing emotions. It also serves as an important identifier for individuals, allowing them to be recognized by others.

The mandibular condyle is a part of the temporomandibular joint (TMJ) in the human body. It is a rounded eminence at the end of the mandible (lower jawbone) that articulates with the glenoid fossa of the temporal bone in the skull, allowing for movements such as opening and closing the mouth, chewing, speaking, and swallowing. The mandibular condyle has both a fibrocartilaginous articular surface and a synovial joint capsule surrounding it, which provides protection and lubrication during these movements.

Orthodontics is a specialized branch of dentistry that focuses on the diagnosis, prevention, and treatment of dental and facial irregularities. This involves correcting teeth that are improperly positioned, often using braces or other appliances to move them into the correct position over time. The goal of orthodontic treatment is to create a healthy, functional bite and improve the appearance of the teeth and face.

Orthodontists are dental specialists who have completed additional training beyond dental school in order to become experts in this field. They use various techniques and tools, such as X-rays, models of the teeth, and computer imaging, to assess and plan treatment for each individual patient. The type of treatment recommended will depend on the specific needs and goals of the patient.

Orthodontic treatment can be beneficial for people of all ages, although it is most commonly started during childhood or adolescence when the teeth and jaws are still growing and developing. However, more and more adults are also seeking orthodontic treatment to improve their smile and oral health.

Goldenhar Syndrome, also known as Oculoauriculovertebral Spectrum (OAVS), is a rare congenital condition characterized by a combination of abnormalities affecting the development of the eyes, ears, jaw, and spine. The specific features of this syndrome can vary significantly from one individual to another, but they often include underdevelopment or absence of one ear (microtia) or both ears (anotia), benign growths or cysts in the ear (preauricular tags or sinuses), abnormalities in the formation of the jaw (hemifacial microsomia), and a variety of eye problems such as small eyes (microphthalmia) or anophthalmia (absence of one or both eyes). In addition, some individuals with Goldenhar Syndrome may have vertebral abnormalities, including scoliosis or spina bifida.

The exact cause of Goldenhar Syndrome is not fully understood, but it is believed to be related to disturbances in the development of the first and second branchial arches during embryonic development. These structures give rise to the facial bones, muscles, ears, and nerves. In some cases, genetic factors may play a role, but most cases appear to occur spontaneously, without a clear family history.

Treatment for Goldenhar Syndrome typically involves a multidisciplinary approach, with input from specialists such as plastic surgeons, ophthalmologists, audiologists, and orthodontists. Treatment may include reconstructive surgery to address facial asymmetry or ear abnormalities, hearing aids or other devices to improve hearing, and corrective lenses or surgery to address eye problems. Regular monitoring and follow-up care are also important to ensure optimal outcomes and to address any new issues that may arise over time.

The mandible, also known as the lower jaw, is the largest and strongest bone in the human face. It forms the lower portion of the oral cavity and plays a crucial role in various functions such as mastication (chewing), speaking, and swallowing. The mandible is a U-shaped bone that consists of a horizontal part called the body and two vertical parts called rami.

The mandible articulates with the skull at the temporomandibular joints (TMJs) located in front of each ear, allowing for movements like opening and closing the mouth, protrusion, retraction, and side-to-side movement. The mandible contains the lower teeth sockets called alveolar processes, which hold the lower teeth in place.

In medical terminology, the term "mandible" refers specifically to this bone and its associated structures.

Cephalometry is a medical term that refers to the measurement and analysis of the skull, particularly the head face relations. It is commonly used in orthodontics and maxillofacial surgery to assess and plan treatment for abnormalities related to the teeth, jaws, and facial structures. The process typically involves taking X-ray images called cephalograms, which provide a lateral view of the head, and then using various landmarks and reference lines to make measurements and evaluate skeletal and dental relationships. This information can help clinicians diagnose problems, plan treatment, and assess treatment outcomes.

Photogrammetry is not typically considered a medical term, but rather it is a technique used in various fields including engineering, architecture, and geology. However, it has found some applications in the medical field, particularly in orthopedics and wound care. Here's a definition that covers its general use as well as its medical applications:

Photogrammetry is the science of making measurements from photographs, especially for recovering the exact positions of surface points on an object. It involves the use of photography to accurately measure and map three-dimensional objects or environments. In the medical field, photogrammetry can be used to create 3D models of body parts (such as bones or wounds) by capturing multiple images from different angles and then processing them using specialized software. These 3D models can help healthcare professionals plan treatments, monitor progress, and assess outcomes in a more precise manner.

Osteogenesis, distraction refers to a surgical procedure and controlled rehabilitation process used in orthopedic surgery, oral and maxillofacial surgery, and neurosurgery to lengthen bones or correct bone deformities. The term "osteogenesis" means bone formation, while "distraction" refers to the gradual separation of bone segments.

In this procedure, a surgeon first cuts the bone (osteotomy) and then applies an external or internal distraction device that slowly moves apart the cut ends of the bone. Over time, new bone forms in the gap between the separated bone segments through a process called distraction osteogenesis. This results in increased bone length or correction of deformities.

Distraction osteogenesis is often used to treat various conditions such as limb length discrepancies, craniofacial deformities, and spinal deformities. The procedure requires careful planning, precise surgical technique, and close postoperative management to ensure optimal outcomes.

The facial nerve, also known as the seventh cranial nerve (CN VII), is a mixed nerve that carries both sensory and motor fibers. Its functions include controlling the muscles involved in facial expressions, taste sensation from the anterior two-thirds of the tongue, and secretomotor function to the lacrimal and salivary glands.

The facial nerve originates from the brainstem and exits the skull through the internal acoustic meatus. It then passes through the facial canal in the temporal bone before branching out to innervate various structures of the face. The main branches of the facial nerve include:

1. Temporal branch: Innervates the frontalis, corrugator supercilii, and orbicularis oculi muscles responsible for eyebrow movements and eyelid closure.
2. Zygomatic branch: Supplies the muscles that elevate the upper lip and wrinkle the nose.
3. Buccal branch: Innervates the muscles of the cheek and lips, allowing for facial expressions such as smiling and puckering.
4. Mandibular branch: Controls the muscles responsible for lower lip movement and depressing the angle of the mouth.
5. Cervical branch: Innervates the platysma muscle in the neck, which helps to depress the lower jaw and wrinkle the skin of the neck.

Damage to the facial nerve can result in various symptoms, such as facial weakness or paralysis, loss of taste sensation, and dry eyes or mouth due to impaired secretion.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

Facial paralysis is a loss of facial movement due to damage or dysfunction of the facial nerve (cranial nerve VII). This nerve controls the muscles involved in facial expressions, such as smiling, frowning, and closing the eyes. Damage to one side of the facial nerve can cause weakness or paralysis on that side of the face.

Facial paralysis can result from various conditions, including:

1. Bell's palsy - an idiopathic (unknown cause) inflammation of the facial nerve
2. Trauma - skull fractures, facial injuries, or surgical trauma to the facial nerve
3. Infections - Lyme disease, herpes zoster (shingles), HIV/AIDS, or bacterial infections like meningitis
4. Tumors - benign or malignant growths that compress or invade the facial nerve
5. Stroke - damage to the brainstem where the facial nerve originates
6. Congenital conditions - some people are born with facial paralysis due to genetic factors or birth trauma

Symptoms of facial paralysis may include:

* Inability to move one or more parts of the face, such as the eyebrows, eyelids, mouth, or cheeks
* Drooping of the affected side of the face
* Difficulty closing the eye on the affected side
* Changes in saliva and tear production
* Altered sense of taste
* Pain around the ear or jaw
* Speech difficulties due to weakened facial muscles

Treatment for facial paralysis depends on the underlying cause. In some cases, such as Bell's palsy, spontaneous recovery may occur within a few weeks to months. However, physical therapy, medications, and surgical interventions might be necessary in other situations to improve function and minimize complications.

A facial expression is a result of the contraction or relaxation of muscles in the face that change the physical appearance of an individual's face to convey various emotions, intentions, or physical sensations. Facial expressions can be voluntary or involuntary and are a form of non-verbal communication that plays a crucial role in social interaction and conveying a person's state of mind.

The seven basic facial expressions of emotion, as proposed by Paul Ekman, include happiness, sadness, fear, disgust, surprise, anger, and contempt. These facial expressions are universally recognized across cultures and can be detected through the interpretation of specific muscle movements in the face, known as action units, which are measured and analyzed in fields such as psychology, neurology, and computer vision.

Facial muscles, also known as facial nerves or cranial nerve VII, are a group of muscles responsible for various expressions and movements of the face. These muscles include:

1. Orbicularis oculi: muscle that closes the eyelid and raises the upper eyelid
2. Corrugator supercilii: muscle that pulls the eyebrows down and inward, forming wrinkles on the forehead
3. Frontalis: muscle that raises the eyebrows and forms horizontal wrinkles on the forehead
4. Procerus: muscle that pulls the medial ends of the eyebrows downward, forming vertical wrinkles between the eyebrows
5. Nasalis: muscle that compresses or dilates the nostrils
6. Depressor septi: muscle that pulls down the tip of the nose
7. Levator labii superioris alaeque nasi: muscle that raises the upper lip and flares the nostrils
8. Levator labii superioris: muscle that raises the upper lip
9. Zygomaticus major: muscle that raises the corner of the mouth, producing a smile
10. Zygomaticus minor: muscle that raises the nasolabial fold and corner of the mouth
11. Risorius: muscle that pulls the angle of the mouth laterally, producing a smile
12. Depressor anguli oris: muscle that pulls down the angle of the mouth
13. Mentalis: muscle that raises the lower lip and forms wrinkles on the chin
14. Buccinator: muscle that retracts the cheek and helps with chewing
15. Platysma: muscle that depresses the corner of the mouth and wrinkles the skin of the neck.

These muscles are innervated by the facial nerve, which arises from the brainstem and exits the skull through the stylomastoid foramen. Damage to the facial nerve can result in facial paralysis or weakness on one or both sides of the face.

The facial bones, also known as the facial skeleton, are a series of bones that make up the framework of the face. They include:

1. Frontal bone: This bone forms the forehead and the upper part of the eye sockets.
2. Nasal bones: These two thin bones form the bridge of the nose.
3. Maxilla bones: These are the largest bones in the facial skeleton, forming the upper jaw, the bottom of the eye sockets, and the sides of the nose. They also contain the upper teeth.
4. Zygomatic bones (cheekbones): These bones form the cheekbones and the outer part of the eye sockets.
5. Palatine bones: These bones form the back part of the roof of the mouth, the side walls of the nasal cavity, and contribute to the formation of the eye socket.
6. Inferior nasal conchae: These are thin, curved bones that form the lateral walls of the nasal cavity and help to filter and humidify air as it passes through the nose.
7. Lacrimal bones: These are the smallest bones in the skull, located at the inner corner of the eye socket, and help to form the tear duct.
8. Mandible (lower jaw): This is the only bone in the facial skeleton that can move. It holds the lower teeth and forms the chin.

These bones work together to protect vital structures such as the eyes, brain, and nasal passages, while also providing attachment points for muscles that control chewing, expression, and other facial movements.

Facial nerve diseases refer to a group of medical conditions that affect the function of the facial nerve, also known as the seventh cranial nerve. This nerve is responsible for controlling the muscles of facial expression, and it also carries sensory information from the taste buds in the front two-thirds of the tongue, and regulates saliva flow and tear production.

Facial nerve diseases can cause a variety of symptoms, depending on the specific location and extent of the nerve damage. Common symptoms include:

* Facial weakness or paralysis on one or both sides of the face
* Drooping of the eyelid and corner of the mouth
* Difficulty closing the eye or keeping it closed
* Changes in taste sensation or dryness of the mouth and eyes
* Abnormal sensitivity to sound (hyperacusis)
* Twitching or spasms of the facial muscles

Facial nerve diseases can be caused by a variety of factors, including:

* Infections such as Bell's palsy, Ramsay Hunt syndrome, and Lyme disease
* Trauma or injury to the face or skull
* Tumors that compress or invade the facial nerve
* Neurological conditions such as multiple sclerosis or Guillain-Barre syndrome
* Genetic disorders such as Moebius syndrome or hemifacial microsomia

Treatment for facial nerve diseases depends on the underlying cause and severity of the symptoms. In some cases, medication, physical therapy, or surgery may be necessary to restore function and relieve symptoms.

Facial injuries refer to any damage or trauma caused to the face, which may include the bones of the skull that form the face, teeth, salivary glands, muscles, nerves, and skin. Facial injuries can range from minor cuts and bruises to severe fractures and disfigurement. They can be caused by a variety of factors such as accidents, falls, sports-related injuries, physical assaults, or animal attacks.

Facial injuries can affect one or more areas of the face, including the forehead, eyes, nose, cheeks, ears, mouth, and jaw. Common types of facial injuries include lacerations (cuts), contusions (bruises), abrasions (scrapes), fractures (broken bones), and burns.

Facial injuries can have significant psychological and emotional impacts on individuals, in addition to physical effects. Treatment for facial injuries may involve simple first aid, suturing of wounds, splinting or wiring of broken bones, reconstructive surgery, or other medical interventions. It is essential to seek prompt medical attention for any facial injury to ensure proper healing and minimize the risk of complications.

An encyclopedia is a comprehensive reference work containing articles on various topics, usually arranged in alphabetical order. In the context of medicine, a medical encyclopedia is a collection of articles that provide information about a wide range of medical topics, including diseases and conditions, treatments, tests, procedures, and anatomy and physiology. Medical encyclopedias may be published in print or electronic formats and are often used as a starting point for researching medical topics. They can provide reliable and accurate information on medical subjects, making them useful resources for healthcare professionals, students, and patients alike. Some well-known examples of medical encyclopedias include the Merck Manual and the Stedman's Medical Dictionary.

Physical conditioning in the context of human health refers to the process of improving physical fitness and overall health through regular exercise and physical activity. This involves engaging in various forms of exercise such as cardio, strength training, flexibility exercises, and balance exercises to enhance various components of physical fitness including:

1. Cardiovascular endurance: The ability of the heart and lungs to supply oxygen to the muscles during sustained physical activity.
2. Muscular strength: The amount of force a muscle can exert in a single effort.
3. Muscular endurance: The ability of a muscle or muscle group to sustain repeated contractions over time.
4. Flexibility: The range of motion around a joint.
5. Body composition: The proportion of lean body mass (muscle, bone, and organs) to fat mass in the body.

Physical conditioning aims to improve these components of fitness, leading to overall improvements in health, functional capacity, and reduced risk of chronic diseases such as obesity, diabetes, heart disease, and cancer. It is an essential component of a healthy lifestyle and is recommended for people of all ages and abilities.

In medical terms, "wing" is not a term that is used as a standalone definition. However, it can be found in the context of certain anatomical structures or medical conditions. For instance, the "wings" of the lungs refer to the upper and lower portions of the lungs that extend from the main body of the organ. Similarly, in dermatology, "winging" is used to describe the spreading out or flaring of the wings of the nose, which can be a characteristic feature of certain skin conditions like lupus.

It's important to note that medical terminology can be highly specific and context-dependent, so it's always best to consult with a healthcare professional for accurate information related to medical definitions or diagnoses.

Dermatoglyphics is the study of the fingerprints, palm prints, and other skin ridge patterns found on the hands and feet. These patterns are formed during fetal development and are generally considered to be unique to each individual. Dermatoglyphics can provide important clues about a person's genetic makeup and health status, and they are often used in forensic investigations to help identify individuals. In medicine, dermatoglyphics may be used to help diagnose certain genetic disorders or birth defects.

Mating preference in animals refers to the selection of specific individuals as mates based on certain characteristics or traits. These preferences can be influenced by various factors such as genetic compatibility, physical attributes (e.g., size, color, health), behavioral traits (e.g., dominance, aggression), and environmental conditions.

Mating preferences play a crucial role in the process of sexual selection, which is one of the main mechanisms driving evolutionary change. They can lead to assortative mating, where similar individuals are more likely to mate with each other, or disassortative mating, where dissimilar individuals are more likely to mate.

Mating preferences can also contribute to reproductive isolation between different populations or species, ultimately leading to speciation. In some cases, these preferences may be hard-wired into an animal's behavior, while in others, they might be more flexible and influenced by learning and experience.

Sexual behavior in animals refers to a variety of behaviors related to reproduction and mating that occur between members of the same species. These behaviors can include courtship displays, mating rituals, and various physical acts. The specific forms of sexual behavior displayed by a given species are influenced by a combination of genetic, hormonal, and environmental factors.

In some animals, sexual behavior is closely tied to reproductive cycles and may only occur during certain times of the year or under specific conditions. In other species, sexual behavior may be more frequent and less closely tied to reproduction, serving instead as a means of social bonding or communication.

It's important to note that while humans are animals, the term "sexual behavior" is often used in a more specific sense to refer to sexual activities between human beings. The study of sexual behavior in animals is an important area of research within the field of animal behavior and can provide insights into the evolutionary origins of human sexual behavior as well as the underlying mechanisms that drive it.