• In this divergent mode, a metal-dependent dioxygenase channels these dihydroxylated intermediates into one of the two possible pathways: the meta -cleavage pathway or the ortho -cleavage pathway [ 7 - 9 ] (Fig. 1 ). (biomedcentral.com)
  • Comment: In MetaCyc pathway catechol degradation to HPD I (meta-cleavage, link ), dioxygenase xylE converts catechol to (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate (also known as 2-hydroxymuconate 6-semialdehyde). (lbl.gov)
  • 4-OH-E1 meta-cleavage was catalyzed by a dioxygenase encoded by IM701_20340 or IM701_21000 or IM701_09625. (bvsalud.org)
  • Biosynthesis enzymes 3-dehydroshikimate dehydratase (3S,4R)-3,4-dihydroxycyclohexa-1,5-diene-1,4-dicarboxylate dehydrogenase terephthalate 1,2-cis-dihydrodiol dehydrogenase 3-hydroxybenzoate 4-monooxygenase 4-hydroxybenzoate 3-monooxygenase (NAD(P)H) 4-sulfobenzoate 3,4-dioxygenase vanillate monooxygenase 3,4-dihydroxyphthalate decarboxylase 4,5-dihydroxyphthalate decarboxylase Degradation enzymes The enzyme protocatechuate decarboxylase uses 3,4-dihydroxybenzoate to produce catechol and CO2. (wikipedia.org)
  • A number of bacteria that can degrade a variety of aromatic compounds have been identified and the pathways involved in the degradation have been extensively characterized [ 3 , 4 ]. (biomedcentral.com)
  • Overview: Tryptophan degradation in GapMind is based on MetaCyc degradation pathways I via anthranilate ( link ), II via pyruvate ( link ), or IX via 3-hydroxyanthranilate ( link ). (lbl.gov)
  • Comment: In MetaCyc pathway anthranilate degradation I ( link ), a dioxygenase cleaves off carbon dioxide and ammonia, leaving catechol. (lbl.gov)
  • In MetaCyc pathway anthranilate degradation IV ( link ), anthranilate hydroxylase/monooxygenase (hpaH) yields 3-hydroxyanthranilate. (lbl.gov)
  • Comment: 3-hydroxyanthranilate degradation is part of L-tryptophan degradation pathway XII ( link ). (lbl.gov)
  • Catechol degradation to HPD II also involves xylE and HPD, link . (lbl.gov)
  • In MetaCyc pathway catechol degradation III (ortho-cleavage, link ), the 1,2-dioxygenase catA forms cis,cis-muconate, a cycloisomerase forms (+)-muconolactone, an isomerase converts this to (4,5-dihydro-5-oxofuran-2-yl)-acetate (also known as 3-oxoadipate enol lactone), and a hydrolase cleaves this to 3-oxoadipate. (lbl.gov)
  • Comment: MetaCyc pathway 3-oxoadipate degradation ( link ) involves activation by CoA (using succinyl-CoA) and a thiolase (succinyltransferase) reaction that splits it to acetyl-CoA and succinyl-CoA. (lbl.gov)
  • This series of steps is part of protocatechuate para-cleavage, link , or catechol degradation II, link . (lbl.gov)
  • This is part of a MetaCyc pathway for catechol degradation, link . (lbl.gov)
  • Comment: (2Z)-2-hydroxypenta-2,4-dienoate (HPD) is a common intermediate in the aerobic degradation of many aromatic compounds. (lbl.gov)
  • Comment: There are two forms of anthranilate dioxygenase, 3-subunit antABC or 4-subunit andAabcd. (lbl.gov)
  • Dioxygenase NbaC cleaves the aromatic ring, yielding 2-amino-3-carboxymuconate 6-semialdehyde, a decarboxylase forms (2Z,4E)-2-aminomuconate semialdehyde, a dehydrogenase forms (2Z,4E)-2-aminomuconate, a deaminase forms (3E)-2-oxo-3-hexenedioate (also known as 2-oxalocrotonate), and a decarboxylase forms (2Z)-2-hydroxypenta-2,4-dienoate (HPD). (lbl.gov)
  • Comment: In pathway I, dioxygenase kynA opens the non-aromatic ring, to N-formyl-L-kynureine, a hydrolase yields L-kynurenine (and formate), and a hydrolase yields anthranilate and L-alanine. (lbl.gov)
  • In the convergent mode, structurally diverse aromatic compounds are converted to one of a few aromatic ring cleavage substrates such as catechol, gent sate, protocatechuate and their derivatives [ 5 ]. (biomedcentral.com)
  • Peripheral enzymes, particularly oxygenases and dehydrogenases, were found to transform structurally diverse substrates into one of these central intermediates by bringing about the hydroxylation of the aromatic nucleus (Fig. 2A ), and hence it is thought that bacteria have developed these enzymes to extend their substrate range [ 5 ]. (biomedcentral.com)
  • Comment: Dehydrogenase praB forms 2-hydroxymuconate, tautomerase praC forms (3E)-2-oxohex-3-enedioate (2-oxalocrotonate), and decarboxylase praD yields 2-hydroxypenta-2,4-dienoate (HPD). (lbl.gov)
  • The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. (wikipedia.org)
  • For example, pathway IV yields indole-3-lactate, which could potentially be oxidized to indole-3-acetate, which has a known catabolic pathway, but no prokaryotes are known to consume tryptophan this way. (lbl.gov)
  • Pathway VIII yields tryptophol (also known as indole-3-ethanol), which could potentially be oxidized to indole-3-acetate and consumed. (lbl.gov)
  • Cytochrome P450 monooxygenase (EstP1), 2-keto-4-pentenoate hydratase, pyruvate dehydrogenase, acetyl-CoA acetyltransferase, TonB-dependent receptor were involved in E2 catabolism. (bvsalud.org)
  • TIM barrel domain, Glyoxalase/fosfomycin resistance/dioxygenase domain, Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily [InterProScan]. (ntu.edu.sg)
  • Pathways X and XIII yield indole-3-propionate, which may spontaneously oxidize to kynurate, but kynurate catabolism is not reported. (lbl.gov)
  • Additional pathways are not included: the fate of 2-amino-5-oxocyclohex-1-enecarboxyl-CoA is not known ( link ), and anthraniloyl-CoA reductase (the only anaerobic route known, link ) has not been linked to sequence. (lbl.gov)
  • The results show that under pH 3-6, the adsorption of U(VI) by YF1 live cells increased with the increase of the pH. (bvsalud.org)
  • The genome sequence of R.pyridinivorans strain AK37 has identified several key enzymes involved in the six pathways of monocyclic aromatic compound biodegradation: protocatechuate 3,4-dioxygenase, benzoate 1,2-dioxygenase, 3-ketosteroid-9α-hydroxylase, 3-ketosteroid-σ-dehydrogenase, and so on. (kenyon.edu)
  • In two preclinical investigations, protocatechuic acid from Hibiscus sabdariffa showed an excellent ability to effectively inhibit the replication of herpes simplex virus type 2 and to potently deactivate the catalytic activity of urease. (wikipedia.org)
  • The 16S rDNA analysis revealed 99% nucleotide similarity to that of the type strain of R.rhodochrous (Fig. 2) ( 10 ). (kenyon.edu)