• These bacteria subsequently employ 1,2-CTD in the last step of the degradation of aromatic compounds to aliphatic products. (wikipedia.org)
  • A number of bacteria that can degrade a variety of aromatic compounds have been identified and the pathways involved in the degradation have been extensively characterized [ 3 , 4 ]. (biomedcentral.com)
  • In the convergent mode, structurally diverse aromatic compounds are converted to one of a few aromatic ring cleavage substrates such as catechol, gent sate, protocatechuate and their derivatives [ 5 ]. (biomedcentral.com)
  • Comment: In pathway I, dioxygenase kynA opens the non-aromatic ring, to N-formyl-L-kynureine, a hydrolase yields L-kynurenine (and formate), and a hydrolase yields anthranilate and L-alanine. (lbl.gov)
  • Dioxygenase NbaC cleaves the aromatic ring, yielding 2-amino-3-carboxymuconate 6-semialdehyde, a decarboxylase forms (2Z,4E)-2-aminomuconate semialdehyde, a dehydrogenase forms (2Z,4E)-2-aminomuconate, a deaminase forms (3E)-2-oxo-3-hexenedioate (also known as 2-oxalocrotonate), and a decarboxylase forms (2Z)-2-hydroxypenta-2,4-dienoate (HPD). (lbl.gov)
  • Comment: (2Z)-2-hydroxypenta-2,4-dienoate (HPD) is a common intermediate in the aerobic degradation of many aromatic compounds. (lbl.gov)
  • Thus far, 1,2-CTD has been observed to exist in the following species of soil bacteria and fungi: Pseudomonas sp. (wikipedia.org)
  • Enzymes induced in 4-fluorobenzoate-utilizing bacteria have been classified into three groups on the basis of their specificity towards cis- and trans-dienelactone. (inrae.fr)
  • This series of steps is part of protocatechuate para-cleavage, link , or catechol degradation II, link . (lbl.gov)
  • Overview: Tryptophan degradation in GapMind is based on MetaCyc degradation pathways I via anthranilate ( link ), II via pyruvate ( link ), or IX via 3-hydroxyanthranilate ( link ). (lbl.gov)
  • Comment: In MetaCyc pathway anthranilate degradation I ( link ), a dioxygenase cleaves off carbon dioxide and ammonia, leaving catechol. (lbl.gov)
  • In MetaCyc pathway anthranilate degradation IV ( link ), anthranilate hydroxylase/monooxygenase (hpaH) yields 3-hydroxyanthranilate. (lbl.gov)
  • Comment: 3-hydroxyanthranilate degradation is part of L-tryptophan degradation pathway XII ( link ). (lbl.gov)
  • Comment: In MetaCyc pathway catechol degradation to HPD I (meta-cleavage, link ), dioxygenase xylE converts catechol to (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate (also known as 2-hydroxymuconate 6-semialdehyde). (lbl.gov)
  • Catechol degradation to HPD II also involves xylE and HPD, link . (lbl.gov)
  • In MetaCyc pathway catechol degradation III (ortho-cleavage, link ), the 1,2-dioxygenase catA forms cis,cis-muconate, a cycloisomerase forms (+)-muconolactone, an isomerase converts this to (4,5-dihydro-5-oxofuran-2-yl)-acetate (also known as 3-oxoadipate enol lactone), and a hydrolase cleaves this to 3-oxoadipate. (lbl.gov)
  • Comment: MetaCyc pathway 3-oxoadipate degradation ( link ) involves activation by CoA (using succinyl-CoA) and a thiolase (succinyltransferase) reaction that splits it to acetyl-CoA and succinyl-CoA. (lbl.gov)
  • This is part of a MetaCyc pathway for catechol degradation, link . (lbl.gov)
  • In this divergent mode, a metal-dependent dioxygenase channels these dihydroxylated intermediates into one of the two possible pathways: the meta -cleavage pathway or the ortho -cleavage pathway [ 7 - 9 ] (Fig. 1 ). (biomedcentral.com)
  • The two enzymes were identified to be a part of two separate catechol dioxygenase families: 1,2-CTD was classified as an intradiol dioxygenase while 2,3-CTD was classified as an extradiol dioxygenase. (wikipedia.org)
  • Oxygenases belong to the oxidoreductive group of enzymes (E.C. Class 1), which oxidize the substrates by transferring oxygen from molecular oxygen (O 2 ) and utilize FAD/NADH/NADPH as the co-substrate. (biomedcentral.com)
  • the 1,2-CTD enzyme produced by Pseudomonas arvilla is the exception to this rule, containing two highly homologous subunits that can form either a homo- or hetero- dimer. (wikipedia.org)
  • Specific activities of Catechol-2,3-dioxygenase and effects of temperature and pH and their stabilities on the enzyme relative activities were observed. (openmicrobiologyjournal.com)
  • As the thiolate anion is not energetically favoured in the hydrophobic interior of the enzyme, it swings into the active site where it can be stabilized by the His202 imidazolium and the dipole of helix C. The Cys123 thiolate which now lies adjacent to the acyl carbon of the substrate, is thus generated only in the presence of substrate. (inrae.fr)
  • Alternative sites for cell density regulation of the enzyme could rely on its sensitivity to sulfhydryl groups. (embl.de)
  • The other MetaCyc pathways do not yield fixed carbon or are not reported in prokaryotes, and are not included. (lbl.gov)
  • Pathways X and XIII yield indole-3-propionate, which may spontaneously oxidize to kynurate, but kynurate catabolism is not reported. (lbl.gov)
  • Additional pathways are not included: the fate of 2-amino-5-oxocyclohex-1-enecarboxyl-CoA is not known ( link ), and anthraniloyl-CoA reductase (the only anaerobic route known, link ) has not been linked to sequence. (lbl.gov)
  • Many of these compounds have been reported to be toxic to the living organisms [ 3 ]. (biomedcentral.com)
  • Two compounds, Compound 1 (1,4-dihydrophenanthrolin-4-one-3-carboxylic acid) and Compound 5 [8-(N-butyl-N-ethylcarbamoyl)-1,4-dihydrophenathrolin-4-one-3-carboxylic acid], with comparable potencies in vivo, were chosen to investigate the effect of the inhibition of the hydroxylation of newly synthesized uterine collagen on the turnover of this protein in vivo. (embl.de)
  • This is clearly a major advantage to soil microbes which often find themselves in unfavorable environments containing low concentrations of carbon sources suitable for growth [ 6 ]. (biomedcentral.com)
  • rather, the enolate anion abstracts a proton from water and, in doing so, supplies the hydroxyl for deacylation. (inrae.fr)
  • Meanwhile, in the oxidative degradation of hydroquinone under a supercritical condition (409.9°C and 24.5 MPa) and subcritical condition (359.9°C and 24.5 MPa), -benzoquinone was to be an important intermediate [ 3 ]. (hindawi.com)
  • The formation of hydroquinone and -benzoquinone at early stages of phenol oxidation increases the toxicity of phenol wastewaters, showing that these compounds were more toxic and less degradable than the original pollutant [ 2 ]. (hindawi.com)