Loading...
• ###### good approximation
• For this problem, a rational number a/b is a "good" approximation of a real number α if the absolute value of the difference between a/b and α may not decrease if a/b is replaced by another rational number with a smaller denominator. (wikipedia.org)
• ###### better approximation
• In particular, we get an efficient approximately truthful mechanism for the CPP problem that achieves a much better approximation ratio than can be achieved efficiently by any exactly truthful mechanism. (upenn.edu)
• ###### several approximations
• In case the stock pays one or more discrete dividend(s) no closed formula is known, but several approximations can be used, or else the Black-Scholes PDE will have to be solved numerically. (wikipedia.org)
• ###### Theorem
• We prove an abstract approximation theorem that is applicable to a wide variety of problems, primarily in statistics. (repec.org)
• In particular, the bound in the main approximation theorem is non-asymptotic and the theorem does not require uniform boundedness of the class of functions. (repec.org)
• We study applications of this approximation theorem to local empirical processes and series estimation in nonparametric regression where the classes of functions change with the sample size and are not Donsker-type. (repec.org)
• ###### calculation
• This approximation is often forced upon the physicists because the calculation with the Grassmann numbers is computationally very difficult in lattice gauge theory. (wikipedia.org)
• Generally, this allows three important approximations (for θ in radians) for calculation of the ray's path, namely: sin ⁡ θ ≈ θ , tan ⁡ θ ≈ θ and cos ⁡ θ ≈ 1. (wikipedia.org)
• ###### Chapter
• This chapter motivates the application of diffusion approximations and explains their correct derivation. (springer.com)
• The chapter addresses mathematicians who are interested in the theory of diffusion approximations and practitioners who wish to apply diffusion models for their specific problems. (springer.com)