Loading...
Voltage-Dependent Anion Channel 1: Voltage-dependent anion channel 1 is the major pore-forming protein of the mitochondrial outer membrane. It also functions as a ferricyanide reductase in the PLASMA MEMBRANE.Voltage-Dependent Anion Channels: A family of voltage-gated eukaryotic porins that form aqueous channels. They play an essential role in mitochondrial CELL MEMBRANE PERMEABILITY, are often regulated by BCL-2 PROTO-ONCOGENE PROTEINS, and have been implicated in APOPTOSIS.Anions: Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis.Ion Channels: Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.Ion Channel Gating: The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.Calcium Channels: Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.Membrane Potentials: The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).Chloride Channels: Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN.