Pyruvate Synthase
A ferredoxin-containing enzyme that catalyzes the COENZYME A-dependent oxidative decarboxylation of PYRUVATE to acetyl-COENZYME A and CARBON DIOXIDE.
Pyruvate Kinase
Pyruvate Dehydrogenase Complex
A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
Databases, Protein
Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.
Internet
User-Computer Interface
Software
Proteins
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Sequence Analysis, Protein
A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.
Pyruvate Carboxylase
Melissa
Islets of Langerhans
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
Insulin
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Glucose
Insulinoma
A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA.
Insulin-Secreting Cells
A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.
Methanosarcina barkeri
Methanosarcina
A genus of anaerobic, irregular spheroid-shaped METHANOSARCINALES whose organisms are nonmotile. Endospores are not formed. These archaea derive energy via formation of methane from acetate, methanol, mono-, di-, and trimethylamine, and possibly, carbon monoxide. Organisms are isolated from freshwater and marine environments.
Structural Homology, Protein
The degree of 3-dimensional shape similarity between proteins. It can be an indication of distant AMINO ACID SEQUENCE HOMOLOGY and used for rational DRUG DESIGN.
Euryarchaeota
Sulfolobus solfataricus
Decarboxylation
Acyl Coenzyme A
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
Sulfolobus
Androsterone
Ferredoxins
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Immunoglobulin delta-Chains
Mitochondrial Proton-Translocating ATPases
Bacterial Proton-Translocating ATPases
Membrane-bound proton-translocating ATPases that serve two important physiological functions in bacteria. One function is to generate ADENOSINE TRIPHOSPHATE by utilizing the energy provided by an electrochemical gradient of protons across the cellular membrane. A second function is to counteract a loss of the transmembrane ion gradient by pumping protons at the expense of adenosine triphosphate hydrolysis.
Molecular Sequence Data
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Amino Acid Sequence
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Phosphotransferases (Paired Acceptors)
Methanococcus
Pyruvate, Orthophosphate Dikinase
Carbohydrate Metabolism
Starch
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
Phosphoenolpyruvate Sugar Phosphotransferase System
The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-.
Gluconeogenesis
Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)
A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC 1.2.4.3.
Liver Cirrhosis, Biliary
FIBROSIS of the hepatic parenchyma due to obstruction of BILE flow (CHOLESTASIS) in the intrahepatic or extrahepatic bile ducts (BILE DUCTS, INTRAHEPATIC; BILE DUCTS, EXTRAHEPATIC). Primary biliary cirrhosis involves the destruction of small intra-hepatic bile ducts and bile secretion. Secondary biliary cirrhosis is produced by prolonged obstruction of large intrahepatic or extrahepatic bile ducts from a variety of causes.
Maple Syrup Urine Disease
An autosomal recessive inherited disorder with multiple forms of phenotypic expression, caused by a defect in the oxidative decarboxylation of branched-chain amino acids (AMINO ACIDS, BRANCHED-CHAIN). These metabolites accumulate in body fluids and render a "maple syrup" odor. The disease is divided into classic, intermediate, intermittent, and thiamine responsive subtypes. The classic form presents in the first week of life with ketoacidosis, hypoglycemia, emesis, neonatal seizures, and hypertonia. The intermediate and intermittent forms present in childhood or later with acute episodes of ataxia and vomiting. (From Adams et al., Principles of Neurology, 6th ed, p936)