Protein Biosynthesis
Peptide Elongation Factor Tu
A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP.
Ribosomes
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
RNA, Transfer, Amino Acyl
Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process.
Escherichia coli
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Peptide Chain Elongation, Translational
Abrin
A toxic lectin from the seeds of jequirity, Abrus precatorius L. Very active poison. Five different proteins have so far been isolated: Abrus agglutinin, the component responsible for: hemagglutinating activity, & abrins a-d, the toxic principals each consisting of two peptide chains are held together by disulfide bonds.
Peptide Elongation Factors
RNA, Transfer
The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains.
Molecular Sequence Data
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Geobacillus
Amino Acyl-tRNA Synthetases
A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS.
Ribosomal Proteins
Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits.
Peptide Chain Initiation, Translational
A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis.
Poly U
Amino Acid Sequence
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Transfer RNA Aminoacylation
The conversion of uncharged TRANSFER RNA to AMINO ACYL TRNA.
RNA, Messenger
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Keratins, Type II
Cycloheximide
Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis.
Base Sequence
Glutamate-tRNA Ligase
An enzyme that activates glutamic acid with its specific transfer RNA. EC 6.1.1.17.
Peptide Elongation Factor G
Peptide Elongation Factor G catalyzes the translocation of peptidyl-tRNA from the A to the P site of bacterial ribosomes by a process linked to hydrolysis of GTP to GDP.
Biosynthetic Pathways
GTP Phosphohydrolase-Linked Elongation Factors
Protein Synthesis Inhibitors
Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins.
RNA, Transfer, Arg
Mutation
Genetic Code
The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON).
Methionine-tRNA Ligase
Phenylalanine
RNA, Transfer, Phe
A transfer RNA which is specific for carrying phenylalanine to sites on the ribosomes in preparation for protein synthesis.
Peptide Biosynthesis
The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules.
Peptide Chain Termination, Translational
Peptide Elongation Factor 2
Peptide Elongation Factor 2 catalyzes the translocation of peptidyl-tRNA from the A site to the P site of eukaryotic ribosomes by a process linked to the hydrolysis of GTP to GDP.
Gene Expression Profiling
Cell-Free System
A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166)
Spiro Compounds
Oligonucleotide Array Sequence Analysis
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
Cloning, Molecular
Peptide Elongation Factor 1
Peptide elongation factor 1 is a multisubunit protein that is responsible for the GTP-dependent binding of aminoacyl-tRNAs to eukaryotic ribosomes. The alpha subunit (EF-1alpha) binds aminoacyl-tRNA and transfers it to the ribosome in a process linked to GTP hydrolysis. The beta and delta subunits (EF-1beta, EF-1delta) are involved in exchanging GDP for GTP. The gamma subunit (EF-1gamma) is a structural component.
Guanosine Triphosphate
Amino Acids
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Nucleic Acid Conformation
RNA, Bacterial
Streptomyces
A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.
Gene Expression Regulation, Plant
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
Molecular Structure
Anticodon
Sequence Homology, Amino Acid
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Electrophoresis, Polyacrylamide Gel
Transcription, Genetic
RNA
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Models, Molecular
Puromycin
A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis.
Saccharomyces cerevisiae
Gene Expression Regulation, Bacterial
Carbon Radioisotopes
Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.
Reticulocytes
Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes.
Peptide Initiation Factors
Substrate Specificity
RNA, Ribosomal
The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)
Polyribosomes
A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Liver
Multigene Family
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
Escherichia coli Proteins
Proteins obtained from ESCHERICHIA COLI.
Protein Binding
Binding Sites
Models, Biological
Gene Expression
Mass Spectrometry
Guanosine Diphosphate
Peptides
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
DNA, Complementary
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
Gene Expression Regulation
Reverse Transcriptase Polymerase Chain Reaction
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
DNA Primers
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Genetic Complementation Test
Protein Conformation
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Electrophoresis, Gel, Two-Dimensional
Terpenes
A class of compounds composed of repeating 5-carbon units of HEMITERPENES.
Proteins
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Cells, Cultured
Acyltransferases
Polyketide Synthases
Large enzyme complexes composed of a number of component enzymes that are found in STREPTOMYCES which biosynthesize MACROLIDES and other polyketides.
Rabbits
Peptide Synthases
Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups.
Glucose
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Blotting, Northern
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Temperature
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Structure-Activity Relationship
Codon
A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE).
Protein Structure, Tertiary
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Glycosyltransferases
Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4.
Oxidoreductases
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Arabidopsis
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
Mitochondria
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Plant Proteins
Carrier Proteins
Transport proteins that carry specific substances in the blood or across cell membranes.
Nucleic Acid Hybridization
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
Cell Membrane
Chromatography, High Pressure Liquid
Chromatography, Thin Layer
Signal Transduction
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Dose-Response Relationship, Drug
Tumor Cells, Cultured
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Alkyl and Aryl Transferases
Cell Division
Genes, Plant
The functional hereditary units of PLANTS.
Sequence Alignment
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Pteridines
Methyltransferases
Arabidopsis Proteins
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
Carbon Isotopes
Sterols
Transferases
Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2.
Lyases
Sequence Analysis, DNA
Anthraquinones
Plants, Genetically Modified
Acetates
Erythritol
Gene Deletion
Hemiterpenes
The five-carbon building blocks of TERPENES that derive from MEVALONIC ACID or deoxyxylulose phosphate.
Mutagenesis, Insertional
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
Cell Wall
The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.
Ethylenes
Tetrapyrroles
Carbohydrate Sequence
Fatty Acids
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Ergosterol
Multienzyme Complexes
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
Siderophores
Mixed Function Oxygenases
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
Coenzymes
Small molecules that are required for the catalytic function of ENZYMES. Many VITAMINS are coenzymes.
Plants
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
Gene Expression Regulation, Enzymologic
Magnetic Resonance Spectroscopy
Peptide Biosynthesis, Nucleic Acid-Independent
Glucosyltransferases
Hydro-Lyases
Plant Leaves
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Carotenoids
Glycolipids
Farnesyl-Diphosphate Farnesyltransferase
The first committed enzyme of the biosynthesis pathway that leads to the production of STEROLS. it catalyzes the synthesis of SQUALENE from farnesyl pyrophosphate via the intermediate PRESQUALENE PYROPHOSPHATE. This enzyme is also a critical branch point enzyme in the biosynthesis of ISOPRENOIDS that is thought to regulate the flux of isoprene intermediates through the sterol pathway.
Culture Media
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
Carbohydrate Epimerases
Lignin
The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed)
Oxidoreductases Acting on CH-CH Group Donors
Transaminases
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
Plant Growth Regulators
Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins.
Catalysis
Lanosterol
Carboxy-Lyases
Gibberellins
Uridine Diphosphate N-Acetylglucosamine
Metabolic Networks and Pathways
Glycosylation
The chemical or biochemical addition of carbohydrate or glycosyl groups to other chemicals, especially peptides or proteins. Glycosyl transferases are used in this biochemical reaction.
Microsomes
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Open Reading Frames
A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).
Galactosyltransferases
Alcohol Oxidoreductases
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
Plasmids
Pantothenic Acid
Plant Roots
Oxylipins
Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals.
Operon
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.