Loading...
Polycomb-Group Proteins: A family of proteins that play a role in CHROMATIN REMODELING. They are best known for silencing HOX GENES and the regulation of EPIGENETIC PROCESSES.Polycomb Repressive Complex 1: A multisubunit polycomb protein complex with affinity for CHROMATIN that contains methylated HISTONE H3. It contains an E3 ubiquitin ligase activity that is specific for HISTONE H2A and works in conjunction with POLYCOMB REPRESSIVE COMPLEX 2 to effect EPIGENETIC REPRESSION.Polycomb Repressive Complex 2: A multisubunit polycomb protein complex that catalyzes the METHYLATION of chromosomal HISTONE H3. It works in conjunction with POLYCOMB REPRESSIVE COMPLEX 1 to effect EPIGENETIC REPRESSION.Repressor Proteins: Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.Histone-Lysine N-Methyltransferase: An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. EC 2.1.1.43.High Mobility Group Proteins: A family of low-molecular weight, non-histone proteins found in chromatin.Drosophila Proteins: Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.Gene Silencing: Interruption or suppression of the expression of a gene at transcriptional or translational levels.Histones: Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Insect Proteins: Proteins found in any species of insect.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Drosophila: A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.Genes, Homeobox: Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Methylation: Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)Genes, Insect: The functional hereditary units of INSECTS.E2F6 Transcription Factor: An E2F transcription factor that represses GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F6 recruits chromatin remodeling factors directly to target gene promoters and lacks the transactivation domain responsible for binding to the retinoblastoma family of tumor suppressors.Chromatin Assembly and Disassembly: The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.Epigenesis, Genetic: A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.Protein Methyltransferases: Enzymes that catalyze the methylation of amino acids after their incorporation into a polypeptide chain. S-Adenosyl-L-methionine acts as the methylating agent. EC 2.1.1.Nucleoproteins: Proteins conjugated with nucleic acids.Homeodomain Proteins: Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).Chromosomal Proteins, Non-Histone: Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Lysine: An essential amino acid. It is often added to animal feed.YY1 Transcription Factor: A ubiquitously expressed zinc finger-containing protein that acts both as a repressor and activator of transcription. It interacts with key regulatory proteins such as TATA-BINDING PROTEIN; TFIIB; and ADENOVIRUS E1A PROTEINS.Ubiquitin-Protein Ligases: A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Chromatin Immunoprecipitation: A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.Proto-Oncogene Proteins: Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.Embryonic Stem Cells: Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Nucleosomes: The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.Multiprotein Complexes: Macromolecular complexes formed from the association of defined protein subunits.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Arabidopsis Proteins: Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Embryo, Nonmammalian: The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.Two-Hybrid System Techniques: Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.Cyclin-Dependent Kinase Inhibitor p16: A product of the p16 tumor suppressor gene (GENES, P16). It is also called INK4 or INK4A because it is the prototype member of the INK4 CYCLIN-DEPENDENT KINASE INHIBITORS. This protein is produced from the alpha mRNA transcript of the p16 gene. The other gene product, produced from the alternatively spliced beta transcript, is TUMOR SUPPRESSOR PROTEIN P14ARF. Both p16 gene products have tumor suppressor functions.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Kell Blood-Group System: Multiple erythrocytic antigens that comprise at least three pairs of alternates and amorphs, determined by one complex gene or possibly several genes at closely linked loci. The system is important in transfusion reactions. Its expression involves the X-chromosome.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.HMGA1a Protein: An 11-kDa AT-hook motif-containing (AT-HOOK MOTIFS) protein that binds to the minor grove of AT-rich regions of DNA. It is the full-length product of the alternatively-spliced HMGA1 gene and may function as an architectural chromatin binding protein that is involved in transcriptional regulation.HMGB2 Protein: A 23-kDa HMG-box protein that binds to and distorts the minor grove of DNA.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Cell Line: Established cell cultures that have the potential to propagate indefinitely.DNA Methylation: Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.Gene Expression Regulation, Plant: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.Stem Cells: Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Cell Aging: The decrease in the cell's ability to proliferate with the passing of time. Each cell is programmed for a certain number of cell divisions and at the end of that time proliferation halts. The cell enters a quiescent state after which it experiences CELL DEATH via the process of APOPTOSIS.Cell Proliferation: All of the processes involved in increasing CELL NUMBER including CELL DIVISION.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.HMGB1 Protein: A 24-kDa HMGB protein that binds to and distorts the minor grove of DNA.Response Elements: Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.Cell Line, Tumor: A cell line derived from cultured tumor cells.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Myeloid-Lymphoid Leukemia Protein: Myeloid-lymphoid leukemia protein is a transcription factor that maintains high levels of HOMEOTIC GENE expression during development. The GENE for myeloid-lymphoid leukemia protein is commonly disrupted in LEUKEMIA and combines with over 40 partner genes to form FUSION ONCOGENE PROTEINS.Gene Expression Regulation, Neoplastic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.Antennapedia Homeodomain Protein: Antennapedia homeodomain protein is a homeobox protein involved in limb patterning in ARTHROPODS. Mutations in the gene for the antennapedia homeodomain protein are associated with the conversion of antenna to leg or leg to antenna DROSOPHILA.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Animals, Genetically Modified: ANIMALS whose GENOME has been altered by GENETIC ENGINEERING, or their offspring.Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Seeds: The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.Retinoblastoma-Binding Protein 4: A retinoblastoma-binding protein that is involved in CHROMATIN REMODELING, histone deacetylation, and repression of GENETIC TRANSCRIPTION. Although initially discovered as a retinoblastoma binding protein it has an affinity for core HISTONES and is a subunit of chromatin assembly factor-1 and polycomb repressive complex 2.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).HMGA2 Protein: An AT-hook-containing (AT-HOOK MOTIFS) nuclear protein that is expressed predominantly in proliferating and undifferentiated mesenchymal cells.Chironomidae: A family of nonbiting midges, in the order DIPTERA. Salivary glands of the genus Chironomus are used in studies of cellular genetics and biochemistry.RNA, Untranslated: RNA which does not code for protein but has some enzymatic, structural or regulatory function. Although ribosomal RNA (RNA, RIBOSOMAL) and transfer RNA (RNA, TRANSFER) are also untranslated RNAs they are not included in this scope.Jumonji Domain-Containing Histone Demethylases: A family of histone demethylases that share a conserved Jumonji C domain. The enzymes function via an iron-dependent dioxygenase mechanism that couples the conversion of 2-oxoglutarate to succinate to the hydroxylation of N-methyl groups.Eye Color: Color of the iris.RNA Interference: A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Insect Hormones: Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones.HMGN Proteins: A family of HIGH MOBILITY GROUP PROTEINS that bind to NUCLEOSOMES.WingHeterochromatin: The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE.MADS Domain Proteins: A superfamily of proteins that share a highly conserved MADS domain sequence motif. The term MADS refers to the first four members which were MCM1 PROTEIN; AGAMOUS 1 PROTEIN; DEFICIENS PROTEIN; and SERUM RESPONSE FACTOR. Many MADS domain proteins have been found in species from all eukaryotic kingdoms. They play an important role in development, especially in plants where they have an important role in flower development.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Genomic Imprinting: The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992)Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.Trout: Various fish of the family SALMONIDAE, usually smaller than salmon. They are mostly restricted to cool clear freshwater. Some are anadromous. They are highly regarded for their handsome colors, rich well-flavored flesh, and gameness as an angling fish. The genera Salvelinus, Salmo, and ONCORHYNCHUS have been introduced virtually throughout the world.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Zinc Fingers: Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites.Ubiquitination: The act of ligating UBIQUITINS to PROTEINS to form ubiquitin-protein ligase complexes to label proteins for transport to the PROTEASOME ENDOPEPTIDASE COMPLEX where proteolysis occurs.Genes, Reporter: Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Crosses, Genetic: Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Cell Cycle: The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.Precipitin Tests: Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.Proto-Oncogene Proteins c-myc: Cellular DNA-binding proteins encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Cell Transformation, Neoplastic: Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.Genes, Suppressor: Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION.Macromolecular Substances: Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.Flowers: The reproductive organs of plants.Suppression, Genetic: Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE).Larva: Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals.Genes, Plant: The functional hereditary units of PLANTS.In Situ Hybridization: A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.Dosage Compensation, Genetic: Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Embryo, Mammalian: The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Gene Knockdown Techniques: The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.Tumor Suppressor Protein p14ARF: A gene product of the p16 tumor suppressor gene (GENES, P16). It antagonizes the function of MDM2 PROTEIN (which regulates P53 TUMOR SUPPRESSOR PROTEIN by targeting it for degradation). p14ARF is produced from the beta mRNA transcript of the p16 gene. The other gene product, produced from the alternatively spliced alpha transcript, is CYCLIN-DEPENDENT KINASE INHIBITOR P16. Both p16 gene products have tumor suppressor functions.Disorders of Sex Development: In gonochoristic organisms, congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Effects from exposure to abnormal levels of GONADAL HORMONES in the maternal environment, or disruption of the function of those hormones by ENDOCRINE DISRUPTORS are included.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Mice, Knockout: Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.