The chemical reactions involved in the production and utilization of various forms of energy in cells.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.
Heat production, or its measurement, of an organism at the lowest level of cell chemistry in an inactive, awake, fasting state. It may be determined directly by means of a calorimeter or indirectly by calculating the heat production from an analysis of the end products of oxidation within the organism or from the amount of oxygen utilized.
A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
The voltage difference, normally maintained at approximately -180mV, across the INNER MITOCHONDRIAL MEMBRANE, by a net movement of positive charge across the membrane. It is a major component of the PROTON MOTIVE FORCE in MITOCHONDRIA used to drive the synthesis of ATP.
A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.