A genus of GOLDEN-BROWN ALGAE in the family Ochromonadaceae, found mostly in freshwater. They bear two unequal FLAGELLA and are heterotrophic.
A family of microscopic freshwater EUKARYOTA, commonly known as golden algae. They share many features with the BROWN ALGAE but are planktonic rather than benthic. Though most are photosynthetic, they are not considered truly autotrophic since they can become facultatively heterotrophic in the absence of adequate light. In this state they can feed on BACTERIA or DIATOMS.
One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista.
A carbamate that is used as an herbicide and as a plant growth regulator.
A division of predominantly marine EUKARYOTA, commonly known as brown algae, having CHROMATOPHORES containing carotenoid PIGMENTS, BIOLOGICAL. ALGINATES and phlorotannins occur widely in all major orders. They are considered the most highly evolved algae because of their well-developed multicellular organization and structural complexity.
A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.