A minichromosome maintenance protein that is a key component of the six member MCM protein complex. In addition, interaction of this protein with cyclin A results in its recruitment to CENTROSOMES where it may play a role in controlling centrosome reduplication.
A minichromosome maintenance protein that forms a hexameric complex with MINICHROMSOME MAINTENANCE COMPLEX COMPONENT 9. The MCM8-MCM9 helicase complex is involved in HOMOLOGOUS RECOMBINATION REPAIR following the formation of DNA interstrand cross-links.
A minichromosome maintenance protein that forms a hexameric complex with MINICHROMSOME MAINTENANCE COMPLEX COMPONENT 8. The MCM8-MCM9 helicase complex is involved in HOMOLOGOUS RECOMBINATION REPAIR following the formation of DNA interstrand cross-links.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It is also found in tightly-bound trimeric complex with MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 4 and MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 6.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It contains a NUCLEAR LOCALIZATION SIGNAL which may provide targeting of the protein complex and an extended N-terminus which is rich in SERINE residues.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It contains a NUCLEAR LOCALIZATION SIGNAL, which provide targeting of the protein complex. In addition, acetylation of this protein may play a role in regulating of DNA replication and cell cycle progression.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It is also found in tightly-bound trimeric complex with MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 4 and MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 7.
A minichromosome maintenance protein that is a key component of the six member MCM protein complex. It is also found in tightly-bound trimeric complex with MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 6 and MINICHROMOSOME MAINTENANCE COMPLEX COMPONENT 7.
Structures within the nucleus of archaeal cells consisting of or containing DNA, which carry genetic information essential to the cell.
A sequence-specific DNA-binding protein that plays an essential role as a global regulator of yeast cell cycle control. It contains a 56 amino acid MADS-box domain within the N-terminal of the protein and is one of the four founder proteins that structurally define the superfamily of MADS DOMAIN PROTEINS.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A family of proteins that were originally identified in SACCHAROMYCES CEREVISIAE as being essential for maintaining the structure of minichromosomes00. They form into a protein complex that has helicase activity and is involved in a variety of DNA-related functions including replication elongation, RNA transcription, chromatin remodeling, and genome stability.
A family of anaerobic, coccoid to rod-shaped METHANOBACTERIALES. Cell membranes are composed mainly of polyisoprenoid hydrocarbons ether-linked to glycerol. Its organisms are found in anaerobic habitats throughout nature.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
The process by which a DNA molecule is duplicated.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands.
Proteins found in any species of archaeon.
A CELL CYCLE and tumor growth marker which can be readily detected using IMMUNOCYTOCHEMISTRY methods. Ki-67 is a nuclear antigen present only in the nuclei of cycling cells.
The origin recognition complex is a multi-subunit DNA-binding protein that initiates DNA REPLICATION in eukaryotes.
Geminin inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex. It is absent during G1 phase of the CELL CYCLE and accumulates through S, G2,and M phases. It is degraded at the metaphase-anaphase transition by the ANAPHASE-PROMOTING COMPLEX-CYCLOSOME.
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
A unique DNA sequence of a replicon at which DNA REPLICATION is initiated and proceeds bidirectionally or unidirectionally. It contains the sites where the first separation of the complementary strands occurs, a primer RNA is synthesized, and the switch from primer RNA to DNA synthesis takes place. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Macromolecular complexes formed from the association of defined protein subunits.
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A genus of anaerobic, rod-shaped METHANOBACTERIACEAE. Its organisms are nonmotile and use ammonia as the sole source of nitrogen. These methanogens are found in aquatic sediments, soil, sewage, and the gastrointestinal tract of animals.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Deoxyribonucleic acid that makes up the genetic material of archaea.
Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
The use of fluorescence spectrometry to obtain quantitative results for the FLUORESCENT ANTIBODY TECHNIQUE. One advantage over the other methods (e.g., radioimmunoassay) is its extreme sensitivity, with a detection limit on the order of tenths of microgram/liter.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
The three-part structure of ribbon-like proteinaceous material that serves to align and join the paired homologous CHROMOSOMES. It is formed during the ZYGOTENE STAGE of the first meiotic division. It is a prerequisite for CROSSING OVER.
Molecular products metabolized and secreted by neoplastic tissue and characterized biochemically in cells or body fluids. They are indicators of tumor stage and grade as well as useful for monitoring responses to treatment and predicting recurrence. Many chemical groups are represented including hormones, antigens, amino and nucleic acids, enzymes, polyamines, and specific cell membrane proteins and lipids.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Deoxyribonucleic acid that makes up the genetic material of fungi.
Proteins found in any species of fungus.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.