Loading...
Glutamate Plasma Membrane Transport Proteins: A family of plasma membrane neurotransmitter transporter proteins that couple the uptake of GLUTAMATE with the import of SODIUM ions and PROTONS and the export of POTASSIUM ions. In the CENTRAL NERVOUS SYSTEM they regulate neurotransmission through synaptic reuptake of the excitatory neurotransmitter glutamate. Outside the central nervous system they function as signal mediators and regulators of glutamate metabolism.Catecholamine Plasma Membrane Transport Proteins: A group of membrane transport proteins that transport biogenic amine derivatives of catechol across the PLASMA MEMBRANE. Catecholamine plasma membrane transporter proteins regulate neural transmission as well as catecholamine metabolism and recycling.Membrane Transport Proteins: Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Glycine Plasma Membrane Transport Proteins: A family of sodium chloride-dependent neurotransmitter symporters that transport the amino acid GLYCINE. They differ from GLYCINE RECEPTORS, which signal cellular responses to GLYCINE. They are located primarily on the PLASMA MEMBRANE of NEURONS; GLIAL CELLS; EPITHELIAL CELLS; and RED BLOOD CELLS where they remove inhibitory neurotransmitter glycine from the EXTRACELLULAR SPACE.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.GABA Plasma Membrane Transport Proteins: A family of plasma membrane neurotransmitter transporter proteins that regulates extracellular levels of the inhibitory neurotransmitter GAMMA-AMINOBUTYRIC ACID. They differ from GABA RECEPTORS, which signal cellular responses to GAMMA-AMINOBUTYRIC ACID. They control GABA reuptake into PRESYNAPTIC TERMINALS in the CENTRAL NERVOUS SYSTEM through high-affinity sodium-dependent transport.Norepinephrine Plasma Membrane Transport Proteins: Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of noradrenergic neurons. They remove NOREPINEPHRINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. It regulates signal amplitude and duration at noradrenergic synapses and is the target of ADRENERGIC UPTAKE INHIBITORS.Symporters: Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.Monosaccharide Transport Proteins: A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES.Glutamates: Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Biological Transport, Active: The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Dopamine Plasma Membrane Transport Proteins: Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of dopaminergic neurons. They remove DOPAMINE from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS and are the target of DOPAMINE UPTAKE INHIBITORS.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Serotonin Plasma Membrane Transport Proteins: Sodium chloride-dependent neurotransmitter symporters located primarily on the PLASMA MEMBRANE of serotonergic neurons. They are different than SEROTONIN RECEPTORS, which signal cellular responses to SEROTONIN. They remove SEROTONIN from the EXTRACELLULAR SPACE by high affinity reuptake into PRESYNAPTIC TERMINALS. Regulates signal amplitude and duration at serotonergic synapses and is the site of action of the SEROTONIN UPTAKE INHIBITORS.Fatty Acid Transport Proteins: A broad category of membrane transport proteins that specifically transport FREE FATTY ACIDS across cellular membranes. They play an important role in LIPID METABOLISM in CELLS that utilize free fatty acids as an energy source.Intracellular Membranes: Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Glutamic Acid: A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.Membranes: Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures.Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.Receptors, Glutamate: Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases.Membrane Lipids: Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation.Multidrug Resistance-Associated Proteins: A sequence-related subfamily of ATP-BINDING CASSETTE TRANSPORTERS that actively transport organic substrates. Although considered organic anion transporters, a subset of proteins in this family have also been shown to convey drug resistance to neutral organic drugs. Their cellular function may have clinical significance for CHEMOTHERAPY in that they transport a variety of ANTINEOPLASTIC AGENTS. Overexpression of proteins in this class by NEOPLASMS is considered a possible mechanism in the development of multidrug resistance (DRUG RESISTANCE, MULTIPLE). Although similar in function to P-GLYCOPROTEINS, the proteins in this class share little sequence homology to the p-glycoprotein family of proteins.ATP-Binding Cassette Transporters: A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.Membrane Potentials: The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).Bacterial Proteins: Proteins found in any species of bacterium.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Kinetics: The rate dynamics in chemical or physical systems.Ion Transport: The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.Erythrocyte Membrane: The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Golgi Apparatus: A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Cell Membrane Permeability: A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.Glutamate Dehydrogenase: An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.Receptors, Metabotropic Glutamate: Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action.Membranes, Artificial: Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION.Plasma: The residual portion of BLOOD that is left after removal of BLOOD CELLS by CENTRIFUGATION without prior BLOOD COAGULATION.Cation Transport Proteins: Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Bacterial Outer Membrane Proteins: Proteins isolated from the outer membrane of Gram-negative bacteria.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Hydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Sodium: A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.Calcium: A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Endocytosis: Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.