An aldose-ketose isomerase that catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-phosphate. In prokaryotic and eukaryotic organisms it plays an essential role in glycolytic and gluconeogenic pathways. In mammalian systems the enzyme is found in the cytoplasm and as a secreted protein. This secreted form of glucose-6-phosphate isomerase has been referred to as autocrine motility factor or neuroleukin, and acts as a cytokine which binds to the AUTOCRINE MOTILITY FACTOR RECEPTOR. Deficiency of the enzyme in humans is an autosomal recessive trait, which results in CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.
An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.
An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.
An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.
Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.
A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.
An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC 1.1.1.14
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.
Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.
Oxidoreductases that are specific for ALDEHYDES.
D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10.
Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.
An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43.
Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.
Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS.
A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1.
An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205.
Alcohol oxidoreductases with substrate specificity for LACTIC ACID.
Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2.
A flavoprotein oxidoreductase that has specificity for medium-chain fatty acids. It forms a complex with ELECTRON TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.
A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.
An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.
A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC 1.2.4.3.
A condition of inadequate circulating red blood cells (ANEMIA) or insufficient HEMOGLOBIN due to premature destruction of red blood cells (ERYTHROCYTES).
An autosomal recessive disorder of fatty acid oxidation, and branched chain amino acids (AMINO ACIDS, BRANCHED-CHAIN); LYSINE; and CHOLINE catabolism, that is due to defects in either subunit of ELECTRON TRANSFER FLAVOPROTEIN or its dehydrogenase, electron transfer flavoprotein-ubiquinone oxidoreductase (EC 1.5.5.1).
A species of trematode blood flukes belonging to the family Schistosomatidae whose distribution is confined to areas of the Far East. The intermediate host is a snail. It occurs in man and other mammals.
A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE).
Schistosomiasis caused by Schistosoma japonicum. It is endemic in the Far East and affects the bowel, liver, and spleen.
Agents that act systemically to kill adult schistosomes.
A disorder beginning in childhood. It is marked by the presence of markedly abnormal or impaired development in social interaction and communication and a markedly restricted repertoire of activity and interest. Manifestations of the disorder vary greatly depending on the developmental level and chronological age of the individual. (DSM-V)
Severe distortions in the development of many basic psychological functions that are not normal for any stage in development. These distortions are manifested in sustained social impairment, speech abnormalities, and peculiar motor movements.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle.
A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
Software used to locate data or information stored in machine-readable form locally or at a distance such as an INTERNET site.
Databases devoted to knowledge about specific genes and gene products.
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.