Electron Transport
Oxidation-Reduction
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
NADH, NADPH Oxidoreductases
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
Dehydroascorbic Acid
The reversibly oxidized form of ascorbic acid. It is the lactone of 2,3-DIKETOGULONIC ACID and has antiscorbutic activity in man on oral ingestion.
Spectrophotometry
Flavin Mononucleotide
Cytochrome-B(5) Reductase
A FLAVOPROTEIN oxidoreductase that occurs both as a soluble enzyme and a membrane-bound enzyme due to ALTERNATIVE SPLICING of a single mRNA. The soluble form is present mainly in ERYTHROCYTES and is involved in the reduction of METHEMOGLOBIN. The membrane-bound form of the enzyme is found primarily in the ENDOPLASMIC RETICULUM and outer mitochondrial membrane, where it participates in the desaturation of FATTY ACIDS; CHOLESTEROL biosynthesis and drug metabolism. A deficiency in the enzyme can result in METHEMOGLOBINEMIA.
Flavin-Adenine Dinucleotide
L-Lactate Dehydrogenase (Cytochrome)
Cytochrome c Group
A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539)
Flavins
Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
Oxidoreductases
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
NAD
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
NADP
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
Ferredoxin-NADP Reductase
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
NADPH-Ferrihemoprotein Reductase
Electron Spin Resonance Spectroscopy
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Ascorbic Acid
A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant.
Antimycin A
Hydrogen-Ion Concentration
Cytochromes
Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands.
4-Chloromercuribenzenesulfonate
Threonine Dehydratase
A pyridoxal-phosphate protein that catalyzes the deamination of THREONINE to 2-ketobutyrate and AMMONIA. The role of this enzyme can be biosynthetic or biodegradative. In the former role it supplies 2-ketobutyrate required for ISOLEUCINE biosynthesis, while in the latter it is only involved in the breakdown of threonine to supply energy. This enzyme was formerly listed as EC 4.2.1.16.
Ferredoxins
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
Carbohydrate Dehydrogenases
Anaerobiosis
Heme
Oxidoreductases Acting on Sulfur Group Donors
Methylphenazonium Methosulfate
Metalloproteins
Cell Membrane
Glucose Oxidase
An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4.
Ubiquinone
A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals.
Spectrum Analysis
Quinone Reductases
NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.
NAD(P)H Dehydrogenase (Quinone)
A flavoprotein that reversibly catalyzes the oxidation of NADH or NADPH by various quinones and oxidation-reduction dyes. The enzyme is inhibited by dicoumarol, capsaicin, and caffeine.
Molybdenum
Iron
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Anemia, Iron-Deficiency
Anemia, Hypochromic
Anemia characterized by a decrease in the ratio of the weight of hemoglobin to the volume of the erythrocyte, i.e., the mean corpuscular hemoglobin concentration is less than normal. The individual cells contain less hemoglobin than they could have under optimal conditions. Hypochromic anemia may be caused by iron deficiency from a low iron intake, diminished iron absorption, or excessive iron loss. It can also be caused by infections or other diseases, therapeutic drugs, lead poisoning, and other conditions. (Stedman, 25th ed; from Miale, Laboratory Medicine: Hematology, 6th ed, p393)
Iron Chelating Agents
Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems.
Iron, Dietary
Iron or iron compounds used in foods or as food. Dietary iron is important in oxygen transport and the synthesis of the iron-porphyrin proteins hemoglobin, myoglobin, cytochromes, and cytochrome oxidase. Insufficient amounts of dietary iron can lead to iron-deficiency anemia.
Ferritins
Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types.